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ABSTRACT
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Using Gibbs Priors
Mindy MinHae Lee
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1994

Two methods of improving reconstructions of emission tomography (SPECT and PET)
are studied. First, using a Bayesian model we present a mechanism to incorporate prior
information derived from a registered anatomical CT/MR image to aid the reconstruction
of functional SPECT/PET images. Our method encourages the reconstructed image to
be piecewise smooth; the contribution here is the inclusion of a coupling term that influ-
ences the creation of edges in the vicinity of significant anatomical edges. The coupling
term is modeled in a Gibbs prior distribution. Simulations on mathematical phantoms are
presented. Second, we have employed a continuation method to develop a new framework
for emission tomography reconstructions. A Gibbs prior of piecewise smoothness is used
in our Bayesian model. Our Gibbs prior potential function, ¢*, consistent with the use
of line processes, leads to difficult minimization problems. We present a method wherein
the “correct” ¢* function is approached through a sequence of smooth ¢ functions. The
minimum of the objective function corresponding to one member of the ¢ function se-
quénce is used as an initial condition for the minimization of the next, less approximated,
stage. A deterministic annealing algorithm with closed—form update equations is derived
to implement our continuation method. Simulation results on a mathematical phantom

are presented.
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Chapter 1

Introduction

In nuclear medicine, a pharmaceutical tagged with a radioactive isotope (a radio-
pharmaceutical) is injected into the human body. By choosing a pharmaceutical
which has preferential affinity to a certain type of tissue, a radiopharmaceutical can
be delivered to an organ of interest. The spatial distribution of the pharmaceuti-
cal in the body can then be mapped by detecting the gamma rays emitted in the
radioactive decay of the isotope.

Unlike x-ray techniques, where the radiation source is external to the pa-
tient, the source of radiation in nuclear medicine is located within the body. This is
referred to as emission mode (an imaging system with an external source of radia-
tion is referred to as transmission mode). The spatial distribution of the radioactive
pharmaceutical within a given organ typically yields information about the physi-
ological function of the organ, whereas an x-ray image typically yields anatomical
information. Thus nuclear medical imagery, mapping the distribution of emitted

radioactivity, is used to localize the malfunctioning (diseased) areas of an organ by



measuring abnormal concentrations of radioactivity. A chest x-ray, for example,
provides an anatomical map of the thorax, whereas using a radioactive gas such
as 133Xe in an emission mode procedure enables study of the gas ventilation of the
patient’s lungs: the patient inhales the gas and the radioactive distribution within
the lungs is mapped by detecting the gamma rays emitted.

A conventional nuclear medicine image is a two-dimensional collapsed view
of a three-dimensional object similar to an x-ray radiograph. It is often impossible,
however, to identify certain features with only a few conventional two-dimensional
views because all depth information is superimposed onto a single plane. Using
a technique called tomography we can overcome the superposition of information
and obtain cross-sectional views of a patient. In nuclear medicine, the detection of
radioactive emission and the subsequent cross sectional image reconstruction pro-
cedures are collectively known as emission tomography. This thesis deals primarily
with reconstruction techniques developed for use in Single Photon Emission Com-
puted Tomography (SPECT) and Positron Emission Tomography (PET), which

are discussed in more detail below.

1.1 Tomography in Medicine

Tomography in medicine is a method used to view or image a selected cross section
of a patient without surgical intervention, and is a process to define the three-
dimensional distribution of information of interest in the body.

Due to a lack of three-dimensional displaying techniques, the images are



usually presented as a series of two-dimensional slices. Before the introduction of
computers in tomography, classical tomographic technique imaged a cross section
of a patient by blurring other planes. This was done by selecting a particular depth
of interest by mechanical focusing of the detector system and, thus blurring other
depth planes. The revolution of modern computers, however, has enabled us to ob-
tain tomographic images of narrow cross sections of the body without interference
(blurring) from neighboring layers. This technique is known as computed tomog-
raphy. In computed tomography, a set of projection data taken around the body
of a patient is used to image cross sections. Below, we briefly review widely used
modern diagnostic tomographic imaging methods in medicine.

The first medical scanner to perform x-ray computed tomography (x-ray
CT - commonly known as CAT scan) was developed by Hounsfield in the early
1970s. In x-ray CT, a radiation source and its detector unit rotate together around
a patient’s body [2]. At each rotation angle, the source irradiates the patient with
a parallel (or fan) beam of x-rays. The rays which traverse the body without
attenuating are collimated and collected by the detection system. Lower particle
counts in the detector indicate regions of high attenuation. The plane from the
source to the detector determines the cross section of the patient’s body. The set
of detector measurements for a given plane is then used to reconstruct this cross
section. The detector measurements are often referred to as projections since they
represent a projection of attenuation information at each angle. The high signal to
noise ratio in CT together with well engineered collimation and mechanics allows

high resolution (0.5 - 1.5 mm) images. The images correspond to regions of differing



attenuation coeflicients of the constituent tissue.

Kuhl [23] first introduced tomographic approaches in rotational scanning
of the liver in nuclear medicine in 1958. Over the years, tomographic imaging
in nuclear medicine has evolved into two distinct categories: SPECT and PET
[11]. Since SPECT and PET both image via emission mode, they are collectively
referred to as emission tomography, whereas x-ray CT is referred to as transmission
tomography.

In emission tomography, a pharmaceutical tagged with a radioactive iso-
tope is either injected, swallowed, or inhaled and delivered to a target organ in the
body. SPECT uses gamma-emitting radioisotopes, such as ®™Tc (the meta-stable
isotope of technetium), that emit a single photon [9]. Emitted single photons are
most commonly detected by a system with parallel (or fan-beam) lead collimators.
For parallel collimators, many sets of parallel line integrals of the source distribu-
tion, referred as parallel projections, are obtained by rotating the detection system
around the patient. A reconstruction algorithm is then applied to the projection
data to estimate the three-dimensional activity distribution. In PET, a positron-
emitting radioisotope, such as %8Ga, is used. An emitted positron annihilates with
a nearby electron creating two 511 KeV photons traveling in (nearly) opposite di-
rections. Using an annihilation coincidence detection scheme [41], pairs of photons
detected simultaneously are counted. When a coincidence event is detected, the an-
nihilation event has occurred somewhere along the line connecting the two points
of detection. Since the localization in PET is obtained electronically (coincidence

detection) instead of using physical collimators, the detection efficiency in PET is



high compared to the one in SPECT (roughly, one million counts per second for
PET and ten thousand counts per second for SPECT). Another advantage of PET
is labelling naturally occurring elements (1*C,®*N,® O, or ¥F) in biomolecules.
PET, however, requires isotopes with half-lives on the order of tens of minutes;
this necessitates an expensive cyclotron for on-site source production. On the con-
trary, SPECT sources are relatively long lived. For instance, " Tc, a frequently
used radioisotope in SPECT, has a half life of six hours and can thus be purchased
from off-site vendors. Consequently, only a handful of large research institutes are
equipped with PET scanners whereas most major hospitals and medical centers are
equipped with SPECT scanners. The typical spatial resolutions of SPECT is 7 - 8
mm and of PET 5 - 6 mm. Simple SPECT and PET detector systems are depicted
in Figure 1.1.

Although its data collection and reconstruction methods are very different
from the projection method described above, another widely used tomographic
technique is magnetic resonance imaging (MRI), also known as nuclear magnetic
resonance (NMR) [39]. It was proposed in 1973 by Lauterbur [28] and by Mansfield
and Grannell [37]. Unlike x-rays that interact with atomic electrons, low frequency
radio waves are used to interact with the spin of atomic nuclei in the human body.
A patient is placed in a static magnetic field that is then subject to pulsed elec-
tromagnetic energy in the radio-frequency (RF) range. This results in measurable
changes in the net magnetic moment of certain atomic nuclei. Measurements of
spin density and other tissue related parameters such as spin-lattice and spin-spin

relaxation times yields information on tissue type. MR images based on discrim-
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Figure 1.1: Simple Detection Schemes. (a) SPECT. (b) PET.



inating hydrogen proton densities of tissue are commonly used, where the signal
results from mainly from the hydrogen in water. Since soft tissues are made up
mainly of water, the level of water content can be measured in hydrogen proton
MR imaging. These MR images typically provide high resolution (0.5 - 1.5 mm)
anatomical information.

Emission tomography is often used in clinical diagnosis either to detect spe-
cific disease areas or to study particular physiological functions of an organ. Its
ability to obtain physiological and biochemical information is important since phys-
iological and biochemical changes often precede anatomical changes due to patho-
logical conditions. Kuhl et al. [24], for example, used emission tomography in
neurology to study both regional blood perfusion and metabolism in the brains of
patients with partial epilepsy. For the majority of the patients, x-ray CT scans
appeared normal. Their PET studies, however, showed increased blood flow and
metabolism within epileptic focus during seizure activity. In psychiatry, emission
tomography may also provide information on underlying biochemical/physiological

defects in certain mental illnesses [1].

1.2 Thesis Outline

In Chapter 2, we present a brief overview of the physics, the instruments, and the
imaging characteristics involved in SPECT and PET imaging. Once we obtain the
detector measurements (projection data) of SPECT or PET, our task is to esti-

mate, or reconstruct, the three dimensional source distribution. In Chapter 3, we



discuss some reconstruction methods used in emission tomography. We present
two frameworks: deterministic and probabilistic image reconstruction techniques.
Often, various diagnostic imaging methods are used together to make an accurate
diagnosis of an illness. In these cases, both anatomical and functional images of
the organ of interest are available. Due to the low signal-to-noise ratio in emis-
sion tomography compared to that in CT or MR, emission tomography generally
produces lower resolution reconstructed images than those of CT/MR. We believe
that the high resolution anatomical information obtained in CT/MR scans can aid
the reconstruction of functional images of emission tomography if we have a proper
way of incorporating the information in our reconstruction problem. In .Chap-
ter 4, we investigate a means of fusing the anatomical information obtained from
corresponding(registered) CT/MR images with with functional images of emission
tomography using a Bayesian probabilistic approach. In Chapter 5, we propose a
new deterministic reconstruction framework using a continuation method. We also
present the derivation of our deterministic annealing algorithm. Finally, in Chap-
ter 6, we propose possible future directions for SPECT and PET and concluding

words.



Chapter 2

Physics and Instruments of

SPECT and PET

2.1 Poisson Distribution

In radioactive decay, the total number of gamma rays emitted per unit time by a
radioactive source follows a Poisson distribution [49]. The general form of Poisson
distribution can be written:

pre
z!

Pr(X =z)=

where Pr(X = z) is the probability of a random variable, X, of mean, y, having
the value z. The sum of independent Poisson random variables follows a Poisson
distribution, with the mean equal to the sum of the means of the individual Poisson

distributions. A radioactive source can, thus, be thought of as a three dimensional
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array of independent Poisson distribution. A detector measurement that counts the
gamma emitted by a source follows a Poisson distribution that is the sum of many
source distributions. Individual detector measurements in a detector system are
independent of all others since each detected photon results from an independent
atomic decay and is detected in only one detector bin. Because the mean and
the variance of a Poisson distribution are identical, the signal-noise ratio in the
measurement data is proportional to the square root of the detector measurement

counts. Poisson noise is the dominant noise in the reconstruction images of SPECT

and PET.

2.2 Attenuation

To first order, a detector measurement corresponds to the sum of decay activity
within pixels along a line selected by a collimator. In practice, however, each
decay photon has some probability of interacting, or scattering, in the patient’s
body before reaching the detection system. Below, we briefly review the physical
mechanisms involved in low energy photon interactions. Low energy (approximately
100 KeV) photons (gamma rays and x-rays) interact with matter in three principal
ways [22]: Compton scattering, photoelectric effect, and pair production. Compton
scattering is a photon-electron interaction in which a photon collides with a free or
nearly free electron, loses a part of its energy to the electron aﬁd then scatters in a
new direction. In the photoelectric effect, a photon is absorbed by an atom, and an

electron, called a photoelectron, is emitted from an inner orbit of the atom. Pair
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production occurs when a photon of energy greater than 1.022 MeV is completely
absorbed by the nucleus of an atom and a electron-positron pair is created. The
positron (which is the antiparticle of the electron) quickly annihilates with a nearby
atomic electron, producing two 511 KeV photons traveling in opposite directions.
The source photons in both SPECT and PET are at energy levels considerably
less than 1.022 MeV required for pair production. A commonly used isotope in
SPECT, %™Tc, releases gamma rays with an energy of 140 KeV. The photons
created from the positron annihilation in PET have energies of 511 KeV. Only
Compton scattering and the photoelectric effect are, therefore, significant in SPECT
and PET.

Because of these interactions, the number of photons detected differs from
the number of photons emitted. The level of attenuation is a function of the type
of matter (tissue) traversed. The attenuation coeflicient of a given material is mea-
sured by the number of photons removed from a collimated (pencil) beam, either
through absorption or scattering, during traversal through the material. Since in
SPECT and PET only Compton scattering and the photoelectric effect are signifi-

cant, the total linear attenuation coefficient can be written

HMtotal = [photoelectric + HCompton- (21)

Let Np be the original number of photons and N(z) represent the number of photons

that travel a distance z in uniform matter without being attenuated. With a
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constant attenuation coefficient (one type of tissue), g, N(z) can be written:
N(z) = Nye™=. (2.2)

Since the body is composed of different types of tissues, there can be different

attenuation coefficients involved. Equation 2.2 then becomes:
N(z) = Npe~ Jo 1=’ (2.3)

As seen in Equation 2.3, attenuation increases with the depth of the source in
the patient. Without attenuation corrections, the reconstructed image will appear
less radioactive than the actual distribution. This can cause ambiguity of projection
measurements in SPECT, i.e. a strong source at a great distance from the detector
and a weak source nearer to the detector can yield the same measurements. The
attenuation problem in PET is less serious than in SPECT.

If the attenuation coefficient is a constant, then the attenuation of the an-
nihilation photons depends on the thickness of the body and is independent of
position between detectors. This enables reasonable estimation of the attenua-
tion in the cross section being imaged if we know the shape and location of the
cross section. The brain, for example, is treated as a region of constant attenuation
coefficient. Further, the attenuation coefficients of the human body vary less for an-
nihilation photons than for lower energy photons in SPECT. In water, for example,

the attenuation coefficient of a 140 KeV photon is 0.15 cm™! while the attenuation
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coefficient of a 511 KeV photon is approximately 0.095 cm=!. In a brain of radius
10cm, roughly 20% of 140 KeV photons will be lost to attenuation.

To make accurate attenuation corrections, we must have knowledge of the
radioactive distribution at every location within the patient. The distribution of
radioactivity is, however, what we are trying to estimate from our detector measure-
ments. A simple approximation, for instance, might be to assume that the patient’s
contour is an ellipse and that the attenuation of the tissue is uniform. Chang [6]
proposed a postcorrection method in which the reconstructed image is folded with
an attenuation correction matrix, with the inverse of the average measured attenu-
ation of a source at each location as the correction factor. In an iterative correction
method, the corrected image can be reprojected and compared with the measured
data by subtraction. From the error projection, we can construct an error matrix
and combine it with the corrected image to create a second corrected image, and

SO Omn.

2.3 Instruments and Imaging Characteristics of PET

and SPECT

The Anger camera is a commonly used instrument to detect emitted photons in
SPECT systems [53]. A typical Anger camera consists of a collimator, scintillation
crystal and on the order of 30 to 100 photomultiplier tubes. Each photomultiplier
also consists of two major elements: a photocathode and an electron multiplier.

Collimators are used to select photons at a certain angle at the face of the camera.
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For parallel collimators, only the photons arriving perpendicular to the camera are
detected.

When a photon hits the surface of the scintillation crystal, it interacts with
the atoms of the scintillator and (near) visible light is emitted. When this visible
light strikes a photocathode, it releases electrons via the photoelectric effect. The
electron signal is amplified by the photomultiplier tube and then fed to the detection
electronics to determine the energy of the incident photon and its location in the
discretized detector space. The signal-to-noise ratio is very poor from the low
photon collection efficiency of the collimators (typical photon counts in a detector
bin is roughly 20-30). Photon collection efficiencies for collimators are typically on
the order of 102.

A ring-shaped (hexagonal, octagonal, circular) array of detectors is often
used to count the annihilation gamma rays in PET systems [42]. Frequently used
detectors consist of scintillation crystal and a photomultiplier tube. Mechanical
collimators are not necessary since two coincident photons determine the line of
the positron source location. A higher detection sensitivity is achieved in PET due
to the absence of collimators.

In both systems, once a photon is detected and while it is being processed
through the electronics, no other photons can be counted in the vhit detector crys-
tal. The amount of time needed to process an event in the detector electronics
is called deadtime [53]. Even though deadtimes per cietector crystal in both PET
and SPECT electronics are roughly the same, PET produces a significantly higher

integrated counting rate since its array of detectors enable multiple detecting pro-
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cesses.

In SPECT, the spatial resolution is affected by both statistical noise and
inaccuracy caused by the imaging system itself. The Anger camera introduces two
kinds of blurring: collimator resolution caused by the finite size of collimator holes
and intrinsic resolution primarily due to a diffusion of light photons in the crystal.
Other inaccuracies may be caused by non-uniformity of camera system response
and the misalignment of the center of rotation used in the reconstruction process.

Some of the processes limiting the accuracy of localization of the source
particular to PET are: 1) The finite range of positrons before annihilation: a
positron travels a short distance before annihilation occurs which makes the location
of annihilation slightly different than the location of the positron source, 2) Non-
colinear photon emission: the two photons also are not emitted at exactly 180°
with respect to each other and 3) background noise in PET: primarily accidental
and scatter coincidences. Accidental coincidences occur when photons originating
from two independent positron annihilations arrive at the detector pair within the
coincidence resolving time. Scatter coincidence occurs when one or both of the
photon pair forward-scatter. The line of detection no longer passes through the
original annihilation site, causing position resolution errors.

In SPECT, the scattered photons usually have significantly lower energies
than the primary photons. Thus the detector system usually uses an energy window
to reject photons with less than a certain level of energy to avoid counting scattered
photons without significant loss of sensitivity. In PET, however, the photons are

at higher energies than those counted in SPECT, and thus lose comparatively less
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energy by scattering. It is, therefore, much more difficult to cut away the scattered
photons without losing a significant number of primary photons. Patient motion
during imaging also affects the spatial resolution in both SPECT and PET.

There are also several problems involved with the dynamic change of the
pharmaceutical [40] in emission tomography. Often, we assume that the radiophar-
maceutical distribution in the body is constant during imaging time. However, the
injected pharmaceutical re-distributes within the body over time. To scan the pa-
tient, it typically takes about 15 minutesin PET and 30 to 45 minutes in SPECT to
collect a significant amount of data. The spatial distribution of the pharmaceutical,
however, can change in seconds or minutes. In addition, the radioactive metabolic
decaying processes causes the amount of radicactive material to decrease in time. .
If we could obtain a significant amount of measurements for reconstruction in a
shorter imaging time, we could minimize the error due to dynamic change of the

radiopharmaceutical within the patient’s body.



Chapter 3

Reconstruction Methods

In this section, we describe the techniques used to reconstruct a set of projection
data. The result is a map of the radiopharmaceutical distribution in the given
cross section of the patient’s body. Although many of the reconstruction techniques
discussed in this thesis are applicable to both SPECT and PET, the remainder of
this thesis deals only with SPECT.

In general, we can group the reconstruction methods into two general ap-
proaches: deterministic and probabilistic. In a deterministic approach, an error
term is minimized directly whereas in a probabilistic approach, a probability of
interest is maximized.

Parallel-hole collimator projection measurements can be represented math-

ematically in the continuous domain by the following line integral :

o0

(z,y)ds = [: f(z,y) 6(z cosd + ysinf — t) dzdy 3.1)

Py(t) = ey f »

17
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Figure 3.1: Forward Projection Measurement. The upper figure, P(t), represents
the forward projection of the radioactive distribution, f(z,y). Ps(t1) is a particular
projection measurement along the dense line in f(z,y) at a distance ¢;, from the

origin and perpendicular to the line given by 6.
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where f(z,y) represents the intensity of émitted radiation at location (z,y), 8 is
a given projection angle, and ¢ is the detector location. The function Pp(t) is the
projection of f(z,y) at angle #, which is the sum of f(z,y) values along a line
t = zcosf 4 ysind, and is called the Radon Transform of f(z,y). This is depicted
in Pigure 3.1.

In emission tomography, however, the radiation measured is not simply the
sum of f(z,y) along a ray, but the attenuated sum of f(z,y). If u(z,y) represents

the attenuation coefficient of a tissue at (z,y), then the attenuated Radon Transform

of f(z,y) is:
Py(t) = /oo/oo f(z,y) e~ Jray H(e' W) 't/ 8(z cosd + ysinf — t)dzdy  (3.2)

Although the projection process is described in Equation 3.1 and Equa-
tion 3.2 in continuous space for mathematical convenience, the actual measured
projection data are sampled in discrete space and the source intensity is also esti-
mated in discrete space. The projection data, g, and the source intensity, f, are
treated as vector fields, allowing us to use the tools of linear algebra. In Section 3.1,
g and f denote deterministic quantities for the sake of convenience. For the rest of

the thesis, g and f will be treated as random quantities.
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3.1 Deterministic Framework

In the deterministic framework, the image recovery methods are deterministic. Of-
ten, noise is not modeled in the system and the solutions (reconstructed images)
follow directly from the projection data.

In forward transformation, a transformation matrix maps the image space

to the projection space. Without accounting for noise, it is written
910 = D Awyij fij (3.3)
ij

where the forward transformation matrix element is Asp,;, fi; is the image space,
and the projection measurements are represented by g:. The reconstruction prob-
lem then naturally involves inverting the matrix, A, to obtain the estimate, £, of

the original source distribution, f, i.e.
f=Aa"g.

The forward transformation matrices, however, are usually singular or nearly sin-
gular: for a given set of projection data, g, there may be many (or no) solutions,
f, and, therefore, the inverse, A~!, may not exist at all. Even in the case where
A1 exists, its computation can become prohibitively expensive. In addition, the

reconstruction problem may become ill-posed due to Poisson noise in the projection

data.
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Figure 3.2: Back Projection

The back projection operation can be thought of as the “opposite” process
of forward projection. Here, each measured projection value is added to every grid
location of the reconstructed source distribution that is viewed by that detector
element, as illustrated in Figure 3.2. In general, back-projection of a given forward

transformation matrix A can be expressed in summation form as
fBij = ZAij;tagw- (3.4)
6

In vector notation, the back projection process amounts to applying the
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transpose of the matrix A to the projection data vector g,

fz = ATg. (3.5)

Note that AT £ A-1. The estimate f5 obtained from the back-projection procedure
alone has a star-like blurring of the original distribution f. The blurring is caused
by the back-projection process and the star pattern is due to the finite number of
projection angles used. To correct the blurring, the projection data is filtered with a
ramp function in the frequency domain and then the filtered data is back-projected
[48]. This is the most commonly used reconstruction method in the clinics and is
referred to as filtered back-projection(FBP). Since the ramp filter tends to amplify
the high frequency values where signal-to-noise is low, modified ramp filters which
roll at high frequency, are usually used.

There are also iterative deterministic approaches [2] that start with a first
estimate for f and correct the error at every step until convergence. An error term

at the n'h iteration, e”, can be defined as

" =g—g"=g- Af", (36)

where g is the measured projection, g" is the forward projection of the current
estimate, £7, and A is the forward projection operator. As the error vector, e,
approaches zero, the estimated solution, f ", approaches the true solution. At every

iteration, a new estimate can be calculated by back-projecting the error term and
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subtracting it from the the current estimate such that

fril = fr _ g ATg (3.7)
where o is an acceleration parameter with typical value 0 < o < 1. The iterations
are carried out until the error term converges.

In the Algebraic Reconstruction Technique (ART), projection points are
addressed one at a time and the image estimate is updated arbund the projection
angle. Because pixel elements are updated at the end of the ray-sum, ART is
sometimes called the ray-by-ray reconstruction method. The simultaneous Iterative
Reconstruction Technique (SIRT) is another iterative method. In SIRT, the pixel
elements are addressed one at a time using data from all the projection points
simultaneously and corrected one at a time. SIRT is sometimes called the point-

by-point reconstruction method.

3.2 Probabilistic Framework

In the probabilistic framework, image reconstruction involves maximizing a certain
probability of interest.

In Equation 3.3, we assume that projection measurements can be made
with arbitrary precision. Due, however, to the random nature of radiocactive decay,
statistical variation or noise is always presents in actual projection data. Since

noise is a random variable, each set of projection measurements is different every
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time, even with the same f. We can not recover f exactly from g = Af, regardless
of how precise the measurement of g is.

Table 3.1 summarizes our notational definitions. Lowercase bold quantities
denote 2-D vector fields and the corresponding lowercase, italicized quantities de-
note the elements of the vector field. Similarly, uppercase bold quantities denote
2-D random fields and uppercase italicized quantities denote the corresponding ran-
dom variables of the random field. For example: F is a random field, f is a vector
field which is a particular instance of the random field, and f;; is an element of
f corresponding to the location (z,7), and F; is a random variable corresponding
to the location (z,7). The expression Pr(F = f) denotes the probability that the

random field F takes the value f.

3.2.1 Maximum Likelihood Estimate

The maximum likelihood (ML) estimate attempts to find an f that maximizes the
likelihood function, Pr(G = glf). In the ML estimate, f, is considered a nonrandom
and unknown parameter [55]. For the sake of notational consistency, however, we
use the probabilistic notation for f. In general, the likelihood function models noise
of the system from which data is acquired. The solution for the ML estimate can

be written

fmL = arg max Pr(G = g|f).
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Table 3.1: Symbols used throughout the thesis

X Random field

Xi; A random variable corresponding to the the location (¢, j) of the random field, X
x A vector field which is a particular instance of the random field, X

T An element of x corresponding to the location {3, j)

f,F 2-D source function, associated random field

fuiap  MAP estimate for £

e, G Projection data, associated random field

c,C Complete data, associated random field

Fx{-} Expected value over a random field X

Afi;  Vertical gradient fiiq ; — fi;

Ak fi;  Horizontal gradient f; ;11 — fi;

LL Line process, associated random field for line process
1 Horizontal, vertical line processes

Imap  MAP estimate for 1

.i;  Forward projection operator

Gio Expected detector bin count
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The likelihood function is the forward projection model prescription for generating
the observed projection data, g, from the underlying deterministic source distri-
bution, f. The number of photons detected in ¢ at a projection angle, 4, has a
Poisson distribution with mean 3;; Hyp,i; fi;. The linear forward matrix element,
H.i6,i;, denotes the probability of a photon emitted from the location (z,j) being
detected in the detector bin (¢,6). Note that H is a probability matrix where as A
in Section 3.1 is a deterministic matrix. Since each detector bin’s counts are inde-
pendent of all other detector bin counts, as discussed in Section 2.1, the likelihood,

Pr(G = g|f), can be expressed as a product of independent Poisson distributions:

o Hapsi fii )10 e~ Loig TeowisFis
Pr(G=gl|f) = H(E] te’JfJ) i :

3.8
10 gw! ( )

In Equation 3.8, g is the number of counts detected in bin ¢ at projection angle
0, and 3;; Higyi; fi; is the expected number of counts in (¢, §) for a particular source
distribution, f. Note that H;s.;; can account for physical effects such as scattering
and attenuation, as well as response and geometrical factors associated with the
detector for PET and SPECT. It cannot, however, include nonlinear effects such
as detector dead time and random coincidences in PET.

Since the logarithm is a monotonic function, maximizing the likelihood is

equivalent to maximizing the log-likelihood. Using Equation 3.8, we have:

log Pr(G = g|f) = > | guo log(}_ Hanyii fis) — D_ Huoiiifis — log(gw!) |- (3.9)

117
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The term log(g:!) can be dropped for the maximization since it is independent of

f. The ML estimate, fur, is then given by

fu, = arg max log Pr(G = glf)

= argmax | gwlog(}_ Husifis) — 23 Hiosisfis | - (3.10)
to 3

i t8 i3
3.2.1.1 Expectation Maximization (EM)

One of the approaches to performing the ML estimate is the expectation maximiza-
tion (EM) technique proposed by Dempster et al. [10]. Shepp and Vardi [50], and
independently Lange and Carson [27], applied the EM technique to emission to-
mography. The EM approach uses what is known as an incomplete/complete data
formulation. The complete data set c,;;, denotes the number of photons detected
at bin (¢,0) that are emitted from pixel (z,j). The incomplete data set g, where
go is the number of photons counted in bin (¢,8), is what we actually observe
in emission tomography. The complete data set can be observed only indirectly
through the incomplete data set g. A many-to-one mapping from the complete
data space to the incomplete data space exists for emission tomography: given c,
there is only one particular set of projection data g, but given g, there are many

possible realizations of c. We have

G =Y _ Cuoyij-
i
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The corresponding maximum likelihood estimate for the complete/incomplete data

formulation can be written

arg max log Pr(G = g|f)

Pr(G = g|C = ¢,)Pr(C = c|f)
Pr(C = ¢|G = g, 1)

= argmax [log Pr(G = g|C = ¢,f) + log Pr(C = c|f)

= argmax log

—~log Pr(C = c|G = g,f)] (3.11)

= argmax [log Pr(C = c|f) — log Pr(C = c|G = g,f)]. (3.12)

Because of the many-to-one mapping from the complete data space, C, to the
incomplete data space G, the value of Pr(G = g|C = c,f) in Equation 3.11 be-
comes unity. This makes the corresponding log(-) term go to zero. Now, taking
the conditional expectation with respect to the complete data field C of both sides,
conditioned on a current estimate, f*, and projection data, g, (we use the nota-
tion of Table 3.1, Ex{-}, to denote the expected value over a random field X),

Equation 3.12 becomes
arg max log Pr(G = glf) = arg max [Q(flf'") - H(flfn)] .
Since the left side of the equation does not involve C, it is unchanged. Here,

Qi) & {Z;[log Pr(C = ¢|f)]Pr(C = ¢|G = g, i)
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= Ec{log PI(le)lG =g f'n},
and

H(f|f") ¥ Y [log Pr(C = ¢|G = g,£)]Pr(C = ¢|G = g, ")
{c}
= Ec{logPr(C|G = g,f)|G = g,{"}.

According to Jensen’s inequality [47], any update of f, relative to the current esti-
g q

mate £7, is guaranteed to decrease the value of H(f|f*). Hence,

HE™EY) < H(E ") (3.13)

for any f**! # f*. Note that Ex{X|Y = y} denotes an expectation of a ran-
dom field X conditioned on Y, Ex{Pr(X = x|Y = y)} denotes an expectation of
the conditional probability function of a random field X, and Ex{Pr(X = x|Y =
y)|Y =y} denotes an conditional expectation of the conditional probability func-
tion of a random field X.

Maximizing the log-likelihood, therefore, reduces to maximizing Q(f|f").
The EM algorithm for the ML estimate is an iterative schere where each iteration

consists of the following two steps.

E-step : Form  Q(f|f*) = Ec{log Pr(C|f)|G = g, "}

M-step : Solve n—n+1,
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ol = arg max Q(f|f™)

E-step: The complete data Cy,;; is modeled as independent Poisson random vari-
ables with mean values Hu,; f;;, where fi; is the source intensity at (¢,7). Hence
the conditional probability,

) t6;ij o—Heg;ijfij

le HH (Hte,ufzj

18 ij Ow HA

Taking the logarithm of the both sides of the above equation yields

logPr(CIf) = > [Cusijlog(Hiey; fis) + (—Hiasifij) — log(Cuayis!)]

1Y)

= Y " [Cisyjlog fi; + (—Hies; fi;)] + terms independent of f.

t6 i3

Now, taking the conditional expectation with respect to the complete data space

of the above equation, we obtain,

Ec{log Pr(C|f)|G = g, {"}

=30 [EC{Cté’;ile = g,f"}log fi; + ("‘Hte;z’jfij)]

t6 i3

+ terms independent of f. (3.14)
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We, therefore, need only to evaluate the term Ec{Ci,;;|G = g, "} for the E-step.

As is shown in Appendix A [20, 50],

A Huoiii 2
Ec{C 9;,"[G = g,f"} =g 9——1—”,\—. (3.15)
o O S Husga f
Now, the E-step can be written
Q") = Ec{logPr(C[f)|G =g, {"}
geoHeo i 1
_ _zm,,-') fi + 5 2Tl g g,
;j [( Y R %: Lokt Heo i Sy ’
+ terms independent of f. (3.16)

- We show in Appendix B that the above objective function in Equation 3.16 can

also be obtained by using an algebraic transformation of the Poisson log-likelihood

function in Equation 3.10.

M-step: It is easy to show that the Poisson log-likelihood is concave. Recall
the log-likelihood function logPr(G = gl|f) in Equation 3.9. If we take a second

partial derivative of log Pr(G = g|f), we get

9% log Pr(G = g|f) _ Zg ) HioiHioimn
0 f1i0 fmn = (i Moy fig)
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which is always less than or equal to zero for all k£ # m and [ # n. For any f,

9% log Pr(G = glf)
Z Z fkl afklafmn f'm.'n.

kl mn

is always less than or equal to zero. The above equation becomes zero when g;p = 0
for all (¢,6). The log-likelihood, hence, is concave.
Now the maximization step becomes trivial - we simply take partial deriva-

tives and set them equal to zero:

aQ(tlE)

Hieis f7: 1
8f = “—ZHtGU +Z shid %; Jf] —_—= 0- (3.17)
13

7 Y Husai S fid

This, then, gives an update equation for f;;,

geoHeo,i; F1
fntl _ 0 Zkl Heo, Sy (3 18)
= , .
Y 219 Heojis

with an initial guess 3 > 0 for all (¢,7). Thus, the EM-ML approach becomes
an explicit iterative reconstruction procedure. Notice that the intensity values are
always nonnegative at each iteration. Since Hyp,;; is the probability of a photon

detected at (f,0) being emitted from (Z,7), > Hip:; = 1. By summing over all

pixels (z, j) of Equation 3.18, it is easy to show that total photon count is preserved:

Z forl = tho

tj
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Due, however, to the inherently ill-posed nature of the unconstrained ML estima-
tion (see page 100 in [54]), the reconstructed image deteriorates with increasing
iterations [56]. This effect often called the “checkerboard effect” has been ad-
dressed by Snyder et al. [52]. Several methods have been suggested to overcome
this effect. Veklerov and Llacer [35], for instance, proposed stopping rules in the
iteration process. Snyder and Miller [51] proposed the use of sieves to smooth the
reconstruction.

A different approach taken by several authors [16, 19, 20, 21, 29, 33, 34] is
to model the reconstruction problem using the Bayesian paradigm, which includes
prior knowledge of F. In the Bayesian approach, F is now modeled as a random
field. A prior can then be assumed. The approach is successful in overcoming the
checkerboard effect and also has better convergence properties than the ML-EM
algorithm. The majority of the work described in this thesis focuses on how to

model the prior information to best capture our knowledge.

3.2.2 Bayesian Approach
By Bayes Theorem, the a posteriori conditional probability density of F' given the

projection measurements G is

Pr(G = g|F = £)Pr(F = )
Pr(G =g) ’

Pr(F =f|G=g) = (3.19)

where Pr(G = g|F = f) is the likelihood function and, Pr(F = f) is the a priori

probability distribution of F. Note that Pr(G = g) is a constant term independent
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of f. (The probability of the random field G having particular measurements g is
some number.) There are several ways to approach the above Bayesian problem
[44]. We can use a minimum mean squared estimate (MMSE) to obtain an estimate

of the expected value of F conditioned on G,
fumse = Er{F|G = g},

where the notation Fx{-} denotes the expectation over a random field X.
We can also find the maximum @ posteriori (MAP) estimate of f by maxi-

mizing Pr(F = f|G = g),
fuap = arg max Pr(F =1|G =g)

If the posterior distribution, Pr(F = f|G = g), is symmetric and unimodal, then
fumse = f'MAp. Also note that the ML estimate can be considered a special case of
the MAP estimate when the prior distribution, Pr(F = f), is uniform.

The MAP estimate is the method that we are interested in. Using the

logarithm (monotonic) function, we rewrite the MAP estimate as

arg max log Pr(F =f|G = g)
= argmex [log Pr(G = g|F = f) + log Pr(F = f) — log Pr(G = g)]

= argmax [log Pr(G = g|F =) + log Pr(F =f)]. (3.20)
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One approach for the MAP estimate is to again use a complete/incomplete

data formulation. The estimate can then be written

arg max [log Pr(G = g|F =1) + log Pr(F =) |
= argmax [log Pr(C =c|F =f) —logPr(C =¢|G =g,F =)

+logPr(F =1)]. (3.21)

As with the EM-ML approach, we take the conditional expectation (with respect
to the complete data space C) of both sides in Equation 3.21, conditioned on a
current estimate, £, and projection data, g. Since the left side of the equation
does not involve C, it is unchanged, as is the term involving log Pr(F = f). Now,

we obtain

arg max log Pr(F =f|G = g)
= argmax [QEIE™) — H(f|f") +log Pr(F = )],

= argmax B(f|g), (3.22)

where

B(flg) ¥ Q(f|t") — H(f|f") + log Px(F = f).
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As mentioned previously, H(f|f*) decreases at every iteration. The EM-MAP al-

gorithm, hence, consists of the following two steps:

E-step : Form  Q(F[f") = Ec{logPr(C|F =f)|G =g, F ={"} (3.23)

’

M-step : Solve  arg max [Q(f[f'") + log Pr(F = f)] (3.24)

Including the prior term may, however, make the M-step function non-concave. In
general, finding a global maximum of the M-step can become a difficult problem in

this case. We can instead employ the generalized EM method.

3.2.2.1 Generalized EM (GEM)

In the GEM approach, the M-step is replaced by finding an f that increases the
M-step function, instead of one that maximizes the function at each iteration. We

write the GEM procedure

E-step : Form  Ec{logPr(C|F = f)|G = g,F = {"}
M-step : Find £ that satisfies

[Q(F|f™) + log Pr(F = )] > [Q(£*|f") + log Pr(F = ).

Notice that the EM method is a special case of Generalized EM in which we

search for f that maximizes Q(f|f") + log Pr(F = f). Following from the definition
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of GEM and the inequality of Equation 3.13,
B(f**'lg) > B(f"lg),

for any sequence {f} of a GEM algorithm. Hebert and Leahy [20] employed the
GEM approach in emission tomographic reconstruction using a prior based on a
Gibbs distribution.

Here, we briefly discuss the general convergence of EM/GEM approaches
[20]. Since both EM and GEM approaches ensure an increase in B(f|g) at every
M-step, their solutions converge monotonically to some B*, if B(f|g) is bounded
from above. For the EM approach, even if we perform a global maximization in the
M-step, there is no guarantee that B* is the globalnmaximum of B(f|g) due to the
H(f If'”) term: the M-step only involves maximization with respect to Q(f |f'"), which
is only a part of the posterior distribution. The remainder of the distribution, — H,
is increased but not maximized. In general, the EM/GEM approach only assures
that the sequence {f*} will converge to a fixed point of B(f|g), given that Q(f|f")+
log Pr(F = f) is continuous with respect to both f and f* [58]. The convergence
of the EM-ML algorithm of our particular case, a Poisson likelihood distribution,
is shown in Appendix B. We show that the EM-ML update equation of a Poisson
likelihood distribution can be obtained by using an algebraic transformation of the

Poisson log-likelihood function followed by a coordinate-wise optimization.



Chapter 4

Incorporating Intermodality

Information in the Prior

In both functional imaging PET and SPECT, there is a significant loss of informa-
tion in going from object to projection data due to the projection imaging process,
resulting in an image of poor quality. In an attempt to improve reconstructions,
several authors 16, 19, 20, 21, 29, 33, 34] have proposed probabilistic frameworks
incorporating object priors in their models. Most of these models were formulated
with the assumption that the object being imaged is generally smooth with some
discontinuities (corresponding to boundaries). These assumptions are generic in

that they apply to the general class of objects under consideration. One might well

The work in this chapter reflects joint work done with my colleagues Gene Gindi, Anand

Rangarajan, and George Zubal. The description here follow closely the written account in [18].

38
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suppose that prior information concerning the smoothness and discontinuities of
the specific object being imaged should provide some additional advantage relative
to generic information.

An opportunity to obtain such prior information is provided by recent re-
sults in the registration of anatomical CT or MR images with functional (SPECT
or PET) images from the same patient [8, 17]. More recently, these registration
techniques have been applied to brain SPECT perfusion images for registration
with MRI anatomy [59, 62]. In general, CT and MR images provide high spatial
resolution anatomical information. We hope to obtain improved reconstruction
by integrating the images of multiple modalities. To the extent that boundaries
of some anatomical objects correspond to edges in the spatial distribution of ra-
diopharmaceuticals, we indeed get the nongeneric prior information (intermodality
information) from registered CT /MR images. Previous work incorporating anatom-

ical priors has been reported in [7, 30].

4.1 Anatomical Image as Prior

Whether the edge information obtained from anatomical images can serve as a
useful prior for functional image reconstruction depends on the degree of spatial
correlation of anatomical structure with the functional radiopharmaceutical distri-
bution. In the cases where the correlation is good, we may expect the anatomy to
serve as a useful prior.

One example of good anatomical and functional correlation can be seen in
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the autoradiograph in Figure 4.1, obtained from a study [57] involving radiophar-
maceuticals for brain perfusion imaging. The autoradiograph is obtained from thin
physical slices of a monkey brain, after injecting a radiopharmaceutical which ac-
cumulates in tissue corresponding to the blood flow. The autoradiograph shows a
strong correlation of the blood flow distribution to the anatomy. The boundary
between grey (the dark convoluted outer region) and white matter (the light in-
termediate region) is distinct, as is the boundary between white matter and the
internal structure (the dark inner region). Since these and other regions can be
well delineated on anatomical images, it may be possible that selected boundaries
obtained from CT or MRI can be used as nongeneric (intermodality) prior in a
functional image reconstruction. The autoradiograph also shows a reasonable uni-
formity of the distribution within each region, supporting the generic smoothness
assumption.

In this chapter, the prior information obtained from the anatomical image
is represented by an “edge map” e with elements e;; where 0 < ¢;; < 1. A value
of e;; = 1 represents the highest level of confidence that a corresponding functional
edge exists at location (z,7). We have two edge maps: e for horizontal edges and
e’ for vertical edges. For brevity we shall use e (or e;;) without superscript, except
where necessary. A diagonal edge can be approximated as a combination of vertical
and horizontal edges following a staircase shape. The edge map is to be incorporated
in the reconstruction model as prior information and the reconstruction model
should have the following two properties: i) the edge map should not overrule the

data — an edge in the functional image should be reconstructed even if it is not



41

i

Figure 4.1: Autoradiograph of a monkey brain

promoted by the edge map, and ii) a strong edge map value should not create a
false edge in the functional image.

The values of the edge map are not derived by simply running an edge
operator over the anatomical image since the value of e;; should depend on the
particular anatomical edge under consideration. In order to set e;; to a high value,
we need both a strong anatomical edge and a reasonable expectation that there
exists a corresponding edge in the functional image at location (¢, 7). A principled
way of deriving the edge map may involve an intelligent segmentation procedure
that can correctly label all anatomical regions. Values of the edge map can then be

assigned based on the locations of the edges, the tissue types of the adjacent regions,
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and the type of radiopharmaceutical used in the study. The correlation of functional
and anatomical edges is likely to depend on all three of these factors. Given the
edge map from the anatomical image and given the registration transformation as
derived from one of several applicable techniques, we then have enough information
to apply e;;. For our simulations, the edge map is derived by hand tracing only those
anatomical edges that are likely to correlate with functional edges and assigning
values to those edges.

In practice, the correlation between anatomical and functional edges involves
some level of position resolution error. Here, we classify such errors into three types:

1) An anatomical edge may be grossly misaligned by many pixels relative
to the functional edge, completely missing (for example, in the case of abnormal
concentration of radioactivity corresponding to a diseased area within an organ,
the diseased area may not be seen in the anatomical image), or present as an extra,
inappropriate edge that has no corresponding functional edge.

2) An anatomical edge may be misaligned up to a few pixel distances in the
functional image due to intermodality registration error.

3) An anatomical edge may not be localized within the pixel resolution
of the functional image reconstruction. Because a typical slice thickness in the
functional image acquisition is about 0.7cm ~ lcm, a three-dimensional boundary in
the distribution is reconstructed as a blurred two-dimensional boundary averaging
over the slice thickness. This is often referred as the partial volume effect. In
addition, due to the slice thickness of the anatomical image itself (0.5mm - 1.5mm

in CT/MR), averaging also occurs in anatomical images and there may not exist a
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highly localized boundary in the anatomical images to start with. For some region
boundaries, this transition from one tissue type to another may occur over several
resolution distances in the anatomical image.

"In our work, the effects of 1) are modelled by including extra and missing
edges in the simulations. The effects of 3) are crudely modelled by blurring the
anatomical edges resulting a thin band rather than a thin line. A proper model for
2) might include random misalignments, by a few pixels, of sections of anatomical
boundary. A detailed study would include an assessment of the effects on the
reconstructions of shifting an anatomical edge in a controlled manner away from
its nominal position. In the initial work presented here, we lump the effects of 2)

and 3) into our blur model.

4.2 A Model for Bayesian Reconstruction with In-
termodality Information

We now formulate a Bayesian model for our reconstruction problem. In a Bayesian
model, the posterior distribution is obtained from the likelihood and prior distribu-
tions (Section 3.2.2). The prior represents our knowledge of the spatial distribution
of the source. Here, we model the likelihood as a Poisson distribution (Equation 3.8)
as discussed in Section 3.2.1, and the prior as a Gibbs distribution for the reasons
to be discussed in Section 4.2.2.2.

The reconstruction problem is to estimate a 2-D source distribution f given

projection data g of the source and a registered edge map e, which is a deterministic
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Table 4.1: Symbols used in Chapter 4

Horizontal, vertical anatomical edge confidence maps

Prior weighting parameter

Energy function parameters

Space variant weak membrane parameter 1 (1 — e?j) + nzef‘j

H v v
Space variant weak membrane parameter 1 (1 — e;) + kze};

Prior potential function obtained by eliminating line processes:

Broken parabola

Prior potential functions that approximate ¢*(-)
Energy function for the prior on f and 1

Overall objective function

Equivalent overall objective function obtained by
eliminating line processes

Approximated objective function used in optimization
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quantity obtained from an anatomical modality. The estimate should be consistent

with the projection data and be generally smooth except at locations of significant

edges in the source distribution f. Locating these edges is aided by high values of

e. Table 4.1 summarizes our notational definitions in this chapter and Table 3.1

shows the notational definitions used throughout this thesis.
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4.2.1 Formulation with Line Processes

We first formulate our reconstruction problem with the line processes as proposed
by Geman and Geman [15] to model discontinuities in the 2-D image f, though
we shall eventually dispense with the line processes. We model the prior via the
use of binary-valued line processes which are unobservables corresponding to image
discontinuities. At locations where the line processes are “off”, the prior encour-
ages smoothness by penalizing the formation of high image-intensity gradients; at
locations where the line processes are “on”, this penalty is removed and high inten-
sity gradients are permitted. The prior consists of both continuous variables (the
source intensities) and binary variables (the line processes), and we are interested
in simultaneously estimating them. A value lf‘j = 1 corresponds to the presence of a
horizontal line process located between pixel locations (¢ + 1,7) and (%,7). A value
I¥; = 1 corresponds to the presence of a vertical line process located between pixel
locations (z,7) and (2,5 +1). Locations of both }; and lfj are shown in Figure 4.2.
For brevity, we shall use the quantity 1 with no superscripts except when necessary.

We may now write Bayes theorem:

Pr(G =g|F =f,L =1)Pr(F =f,L =1)
Pr(G = g) '

Pr(F=f,L=1G=g)= (4.1)

Given the posterior distribution in Equation 4.1, one possible estimator is the max-
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ij

Figure 4.2: Locations of [f; and l,hj
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imum a posterior: estimate (MAP). We require the following MAP estimate:

(fwap,Ivap) = arg max PrF =f,L=1G=g) (4.2)
= argr(rtl_aﬁ( Pr(G=glF=f,L=1)Pr(F=f,L=1) (43)

= arg max Pr(G =g|F = f)Pr(F = f|L =1)Pr(L =1).(4.4)

The term Pr(G = g) can be dropped in the above equations since the arg max in
Equation 4.2 is carried out only with respect to f and 1. Since the projection data
g is obtained from a forward projection of the source f, it does not involve the line
processes 1. Therefore, the likelihood term Pr(G = g|F = f,L = 1) in Equation 4.3
becomes Pr(G = g|F = f). The prior term, Pr(F = f,L = 1), in Equation 4.3 is

rewritten in two terms:
Pr(F =f,L =1)=Pr(F =f|L =1)Pr(L =1),

where the conditional probability Pr(F = f|L = 1) is interpreted as prior on f

conditioned on 1, and the probability Pr(L = 1) as prior on 1 alone.

4.2.2 An Objective Function for MAP Estimation

In this section, we describe how we model each term in Equation 4.4. In particular,
our focus is on modeling the Gibbs prior distribution, Pr(F = f,L =1), in which the

intermodality information (edge map), e, is utilized. Using the monotonic property
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of the logarithm function, we rewrite our MAP estimate in Equation 4.4

(fuap,Imap) = arg max Pr(G =g|F ={)Pr(F =f|L =1)Pr(L =1)

|

= argr(ri;ill)l [ —logPr(G =g|F =1f) —logPr(F =f|L =1)

¥

~logPr(L =1)] (4.5)

4.2.2.1 The Likelihood

The likelihood, Pr(G = g|F = f), is modeled as a Poisson distribution (Equa-

tion 3.8). The objective function associated with the likelihood is thus

—log Pr(G =g|F =f)
= Z Z Hio:i fi; — 9o log(Z Hisyiifi;)| + terms independent of £
9 | 5 i

= D(f) + terms independent of f

(4.6)

where

D) E 3 |3 Huiifis — 9 log (3 Hanii i) | -
ij

11 ij

4.2.2.2 The Prior

The latter two terms in Equation 4.5 constitute the prior. It is usually assumed

that the structure of images is locally correlated. The property of local correlation
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can be described by a Gibbs distribution (see for example, in [3] on page 195)

[15, 16, 20]. In general, a Gibbs distribution has the form

1
Pr(X =x) = Z—xe'E(x), (4.7)
where
Zy = e B (4.8)
{x}

is called a partition function. The partition function is the sum of probabilities of all
possible configurations of x. The notation Y (4} denotes the sum over all possible
configurations of x. The term E(x) is referred to as the related Gibbs energy
function. We, thus, model the prior as a Gibbs distribution with an associated

energy function Ep;(f,1) and a weighting parameter Ay,

Pr(F=f,L=1)= _Zl_e—/\lEm (£
1

=Pr(F =f|[L =1)Pr(L =1)

_ L oEsE+E ) — L nEsE) L nELQ)
=z _de A (4.9)

where Pr(F = f|L = 1) and Pr(L = 1) are again modeled as Gibbs distributions,

PI‘(F = fIL = l) — Zie—zhEs(f,l)’
2
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and

Note that Z;, Z,, and Z3 are normalizing constant terms independent of f or 1.

We then have

—logPr(F =f|L =1) = \;Es(f,1) + terms independent of f and 1,

where we define the energy function as

Es(f,1) ¥ (&) (1~ 1) + Z (A fi5)*(1 = 13). (4.10)
2y}

Note that the energy function, Es(f,1), is defined over the intensities and the line
processes. Here we take for our definitions of discrete partial derivatives AYf;; =
fir1,;— fij and A fii = fiiv1— fi;. The two terms involving AYf and A" f encourage
smoothness except where discontinuities occur (/;; = 1).

The term, Pr(L = 1), imposes constraints on the discontinuities and in
particular incorporates anatomical boundary information.

For the prior on the line process, we have

—logPr(L =1y = M EL(l) + terms independent of 1,
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where

def an(l” +lh) nl—ng)Z(lfJefJ—}-lf‘] Z) 0 < K < &

ij

= Er, (l) + Ep,(1). (4.11)
For convenience, we define

EL,()¥ s 3 (15 +18)

ij

and

def
Br, () % —(s1 = 52) 3 (et + Uil
ij
The term Ep, (1) penalizes the creation of discontinuities. The penalty for creating
a discontinuity is proportional to the constant ;. In fact, the combination of the
smoothness prior on the intensities, Es(f,1), in Equation 4.10 and the first penalty
term, Ey, (1), in Equation 4.11, (Eg + Ey,), is known as the weak membrane prior

model which is widely used in the computer vision literature [5, 13, 45]:

Ewn(f,]) = Es(f,])+ Ep, (1)

S [0 (1 — 1) + (A £ig)P(1 - ]+mzaaum

ij

> (A2 = 18) + ] +2 (A fi5)2(1 = %) + maldy] . (412)

ij
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The weak membrane prior, Ewa(f,1) encourages the image f to be composed
of smooth patches that are broken only at locations of high intensity gradient
by discontinuities (line processes, 1). As k; is increased, fewer discontinuities are
obtained.

The main focus of the work in this chapter is to utilize edge information from
the anatomical image to influence the breaking of smoothness in the reconstruction.
At locations where there exist significant anatomical edges (high values of e;;), the
smoothness should be broken more easily. One way to accomplish this is to reduce
the penalty for creating discontinuities at those locations. This effect can be seen

by rewriting Equation 4.11 as

E(1) = Ei,(1)+ EL(1)

= w5 +1) - () 3 (e + tyeh)

ij

= Z[[M(l—e )+ el U+ [ka(1 — ) + el 1] (413)
ij
In Equation 4.13, the new penalty, £1(1 — e;;) + &2€;;, interpolates between two

fixed constants k1 and &, using e. Now we can write the “prior energy”:

EPl(fal) = ES(f7l)+EL(l)

= Z [ (Avfij)2(1 - ) [hl(l - eza) + "'261.7 ] +

i

DL £ (1= 1) + [ka(1 — €) + mael] 1 ]. (4.14)

ij
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The effect of anatomical information, e, is to spatially modulate the creation of
discontinuities in the reconstruction by varying the penalty accordingly. For exam-
ple, if e?j is close to unity, then the energy is reduced by turning on a line process
lf‘j = 1 only if (Af;;)? > k2. Conversely, if e?j is close to zero, an edge is created
only if (A"fi;)?> > k1. Since k1 > k2, the threshold for creating an edge is reduced
at locations where we have high confidence that an edge exists (large e;;). A cou-
pling term of this form has been proposed by Gamble et al. [12] and Poggio et al.
[43] in the context of data fusion for computer vision. In their work, an attempt
was made to fuse edges from registered intensity, stereo, texture, color, and motion
images. In principle, the parameters «; and 5 should be estimated from a given
object or the class of objects under consideration. (For instance, we know that the
typical radiopharmaceutical uptake ratio in grey and white matter of brain is 4:1.
This ratio may be used to estimate «; and «; for the edges between grey and white
matter.) By comparing the prior energy Ep;(f,1) with the weak membrane model
Ewwm in Equation 4.12, we can see that our prior energy Ep;(f,1) is a modified

weak membrane model

Epy(£,) =3 [ (& f)2(1 = I +a”lf;]+§:[ (A fi)2(1 = 18) + a1 |

3]
ij
with space variant parameters

off = kil — ef) + ke,
? ? ? (4.15)

e h h
CY,‘.7 -— /‘51(1 - em) + /§2eij,
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instead of space invariant parameter x; alone. The new parameters, o; and «

P e

Figure 4.3: oo vs. e

h,
17?7

are space variant due to the space variance of e (shown in Figure 4.3).

Having both the likelihood and the prior defined, we now rewrite the MAP

estimate

(fviap,lmap) =

a.rgr(ril‘al;c Pr(F=f,L=1G=g)

argr(xil‘ilr)l [~logPr(F =f,L =1|G = g)]

arg I(It},ilr)l [D(f) + M (Es(f,1) + EL(1))]

arg r(rtplr)l [D(f) + M Epi(f,1)] (4.16)

arg min Ey(£,1). (4.17)
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From the above equation, we can see that the parameter, A;, weights the prior with

respect to the likelihood objective. We have an overall objective function

E(£) ¥ D)+ MEp(f,1)

= D(f) + M 3 [(Afii)2(1 = 1) + [ma(1 — €f) + rael]it]

ij

+h) [(AF£i5)2(1 = 1) + [62(1 — €l) + mael;]13]

%j

= D()+ M 2 (&)1 — 1) + oIl

ij

+(Ahf1]) (1 - lv) + az] 1_7] (418)

4.2.3 An Equivalent Objective Function

Though the objective function in Equation 4.18 embodies the problem, its mini-
mization requires a great deal of computation. Minimizing the objective function
requires a hybrid optimization technique since the intensities f can essentially be
treated as a continuous field and subject to gradient—based optimization whereas
the binary line processes 1 are subject only to combinatorial optimization. Instead
of proceeding with such a hybrid optimization, we show that the binary line pro-
cesses can be eliminated from the objective function leading to a new, equivalent
objective function which depends only on the intensities f. This new objective func-
tion has the same global minima as the original one. The new objective function
itself, however, needs modification due to two drawbacks which we will show below.
In this section, we describe the process of modification from the original objective

function in Equation 4.18 to the final objective function which we eventually utilize.
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We first eliminate the line processes from the prior in Equation 4.18. Because

D(f) does not involve line processes, our minimization problem (Equation 4.16),
argmin [D(f) + A Epi (£,1)],

is equivalent to
arg mijn [D(f) + M (arg mlin Ep(f, l))] .

Since the line processes are independent of each other, the optimization with respect

to the line processes can be performed separately at each location:
arg mlin Ep((£f,1)
becomes

i Y )2 (1 =1k h jh i k(1 =12 v 1.
Zj [arg o2in (20 £i52(1 = 1) + alyit] + arg e [(A. Jay (1= 15) + %LJ]} ;
where [;; € {0,1} donates that the line process at location (4,;) takes a value of
either 0 or 1. This reduces to a simple solution for each line process as a function of
f. Examine, for example, the term in Equation 4.14 corresponding to the horizontal
line process I%;. When (& f;;)? < o, the term is minimized when the line process

lf‘j is equal to zero. Similarly, when (A"f;;)? > oz?j, the term is minimized when
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Figure 4.4: MAP solution for the line process, [;;.

the line process lf‘j is equal to unity. The solution for the line process I

the MAP estimates given f, can thus be written as

h
ij

h B
—e5) + Kae

(A i) < af‘j = k(1

(A fi)E > a?j = £1(1

- efj) + Kae

with a similar expression for the vertical line process I;

a

the line process, l;;, is shown in Figure 4.4.

A

v,
)

and 1

ij

(4.19)

. The MAP estimate for

This is a modified version of line process elimination found in Blake and

Zisserman [5]. When the MAP estimate for 1 is substituted back into the objective

function in Equation 4.18, we obtain an equivalent objective function which depends
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only on the intensities:

E{(f) = D(£) + M 3 [¢"(& fis) + 67 (& fi5)] (4.20)
i
where the prior potential functions are

Nfi)? (Nf)? < oy
¢"(&'fiy) = &y (85 (4.21)

afj (&fi)? > af-‘j

with a corresponding expression for ¢*(A% f;;). (For the sake of convenience, we shall
henceforth write expressions for ¢* and related functions in terms of A’ f;; only — the
dependence on A" f;; should then be obvious.) Figure 4.5 shows ¢*(Af;;). Though
the global minima of Equation 4.20 are the same as those of Equation 4.18 and the
problems associated with binary line variables have been circumvented, there still

remain problems of optimizing Equation 4.20.

4.2.4 A Modified Objective Function

There are two problems associated with using the above potential function ¢*. The
broken parabola form of ¢* may make the objective function highly non-convex.
(We refer to ¢* as a “broken parabola” due to its shape.) The combination of the
likelihood term and the broken parabola prior has been analyzed for the simple
case where the likelihood is of the form ||f — g||? which corresponds to the image

estimation or surface reconstruction problems in early vision work [5]. Our situation
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O*(Afy;)

| | Af,
"'\/0. ij 0 ‘/(X. 3

Figure 4.5: ¢*(Afi;)

in image reconstruction (Poisson likelihood) is considerably more complex despite
the fact that the log-likelihood is concave. We speculate that the combination of
the Poisson likelihood with the broken parabola is indeed non-convex. However, a
smoother choice of such a Gibbs prior may alleviate this problem. For example, in
the aforementioned early vision case, Blake and Zisserman [5] show that a smoother
version of the broken parabola does make the whole objective function convex.
Indeed, a number of researchers [16, 19, 20, 26] have implicitly incorporated smooth
Gibbs priors of this kind into the medical reconstruction problem, but with only
generic prior (no intermodality information was included).

To this end, consider the following which is a modified form of the Gibbs
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Figure 4.6: ¢*(Af) and ¢SM(Af)
prior due to Geman and McClure [16],
h (A f;:)2
g (e ) = L (42)

ol 4+ (A fi;)?

This Gibbs prior is displayed in Figure 4.6. This choice of ¢°M is smoother

than the broken parabola and similar to smooth approximations in [5] advocated

M can be moti-

to overcome non-convexity. The heuristic transition from ¢* to
vated by considering the following modification due to [45] of the original objective

function in Equation 4.18. The prior, Ep;(f,1) in Equation 4.14, is modified in the
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following:

(Mfs V(-1 +ablly = (Af)(L— L)+ aly(1h)?
with the line process l,’-‘j now assuming continuous values in the unit interval [0,1].
With this form of the prior, the line process can be eliminated as shown in [45]
to obtain the functional form in Equation 4.22. Thus the modification from ¢* to
¢%M is not totally ad hoc and corresponds to a modification of the original prior
from a binary to a continuous line process.

The second drawback, first pointed out by Geman and Reynolds [14] in the
context of image restoration is characteristic of the broken parabola and still persists
in the ™ formulation. Qualitatively speaking, the drawback is manifested as local
high-intensity “hot spots” in the reconstruction. The manifestation of hot spots can
be understood by examining the structure of the ¢&M (Af) function (see Figure 4.6).
Note that as A f approaches zero, the derivative of ™ (Af) approaches zero. In
addition, as Af approaches infinity, the derivative again approaches zero as seen
in the flat region of the ¢°™ function. In between, the derivative is positive. The
degree of smoothing depends on the magnitude of the derivative of the 4 (A f)
function. In the two regions, close to the origin, and far from the origin (the flat
region), the derivative of §°M(Af) is ver~y small. In pixel neighborhoods, where
the derivatives are very small, the prior is small, and the reconstruction is driven

solely by the likelihood term. The likelihood term may then create a local, high

intensity, single pixel, hot spot (due to a particular noise realization) which causes
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the magnitudes of Af at that location to become quite large. Ordinarily, the hot
spot would be eliminated in subsequent iterations by the smoothing action of the
prior. However, if the gradients at that spot (Af) happen to be large enough, so
that the flat region of the #°™ function applies, then smoothing is again suspended
and the hot spot remains. Thus the small derivatives of ¢M at both the origin
and flat segments conspire to create hot spots.

One way to overcome this conspiracy is to eliminate the vanishing derivative
of ¢°M at the origin. This does not permit the likelihood to create hot spots by
the above mentioned mechanism. Consider the following modification of ¢°M to
a cusp-like form (see Figure 4.7(a)) where the derivative is non-vanishing at the

origin:

ol | fi4]
$TR( fi) = oo 4.23

(A%f35) oE 1] (4.23)
This functional form (not including the coupling term) has been suggested and used
by Geman and Reynolds in [14] for reasons similar to the ones detailed above.

The transition from ¢M to ¢%% is shown by Rangarajan and Chellappa

[45]. Consider the following modification of the prior

(& f (1 =15 + a1 = |F51(0 = 1) + oy (157,

with the line process lf‘j still assuming continuous values in the unit interval [0, 1].

The only change from the previous prior is the use of the absolute value of the



Figure 4.7: (a) ¢°F. (b) ¢*, $°M, and ¢°F.
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spatial derivative instead of the squared form. The line process can be eliminated
from this modified objective function in a manner similar to the earlier eliminations.
When this is done and the solution substituted back into the objective function, we
retrieve Equation 4.23. Thus the modification from ¢“™ to ¢°F is not totally ad
hoc but corresponds to a modification of the prior from the squared gradient form
to the absolute value form. This is the prior used in our final objective function for
this chapter. Figure 4.7(b) shows the relation between ¢*, 4™, and #°F.

After including the likelihood and our prior, we can arrive at the final ob-

jective function that we optimize:

ESR(E) = D(f) +0 3 [4%R(A ) + 4R (A0 )

ij

= DD Hisiifis — g0 log (D Higyis fi5)

W | g 7
> [ (m(l —efj)+fsze£‘j) 1A fii| ]
1

7 | (sa(1—ely) + ﬂze?j) + | A fi] |
B> [ (k1(1 =€) + ko) 100 fi5] ]
1 .

7 | (m1(1 =€) + raely) + [ fi5]

(4.24)

Note that the weighting factor A, appears in the final objective function.

The objective function highlights two aspects of our approach. The first
is the use of an intermodality term that modulates the creation of discontinuities
according to anatomical as well as functional information. The second is the use of
a cusp-like potential which alleviates the problems of non-convexity and hot spots.

We note that it is common in image processing and computer vision prob-
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lems to include line process clique potentials to enforce higher level constraints
that encourage discontinuities to occur along smooth, unbroken contours. Fur-
thermore, the clique potentials discourage the formation of discontinuities along
parallel, closely-spaced contours (“thick” contours). In particular, previous efforts
[30] and [7] in anatomical-functional correlation have made use of clique potentials.
Our results, however, show that the anatomical edge information e serves the above
purposes.

In our formulation, the formation of smooth, unbroken contours is encour-
aged by the anatomical information e through the lowering of the penalty for cre-
ating a discontinuity. High values of e occur on a band of smooth contours and
discontinuities tend to follow the locus of e. However, the intrinsic properties of the
weak membrane promote the formation of smooth, thin contours (see for example,
in [5] on pages 87-88) rather than a band of contours. These intrinsic properties,
“hysteresis” (formation of smooth and unbroken contours) and “non-maximum sup-
pression” (formation of thin contours), are discussed extensively in [5].

Note also that in the absence of cliques, the line processes are independent
and can thus be eliminated resulting in an equivalent energy function that depends
only on the source intensities. This simplifies the search since we do not have to
minimize the energy function with respect to the line processes.

For an actual minimization algorithm, the cusp-like potential used here is not
differentiable and, hence, gradient-based minimization methods can not be used.
Instead, we use a quenching algorithm which is identical to the zero temperature

limit of simulated annealing. The details are presented in Section 4.4. It should be
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noted that the focus of the work in this chapter is on the incremental improvement
in reconstruction due to the intermodality prior and that the issue of efficiency in

the actual optimization algorithm is not considered.

4.3 Related Work

Chen, et al. [7] have incorporated CT/MR boundary information in PET recon-
struction, using a Gibbs posterior distribution model based on the work of Johnson,
et al. [21]. They approximated the Poisson likelihood with a Gaussian distribution,
using the square root of the intensity as variables to be incorporated in a Gibbs pos-
terior distribution model, and modeled the prior as a Gibbs distribution with line
processes and cliques. Because of the difficulty of the mixed variable optimization,
they let the line processes take continuous values. (There is more discussion on the
work of Johnson, et al. [21] in Section 5.5.) An iterative conditional average (ICA)
algorithm was used in which each intensity and line process value was updated by
computing the mean values of the respective conditional distributions given the
current estimates at each iteration. Intermodality information was incorporated
by including a weighting factor in the conditional density of line sites. An edge
value obtained from a registered CT /MR image and the value of the line process
determined the weighting factor at each site. At each line site, if both the value

of the line process (conditional mean value) and the intermodality edge value &;;
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exceeded some threshold value, then the weighting factor was given by

2
wii = i
] = .
lthresholdOthreshold

If either fell below its threshold value, the weighting factor was set to 1 and the
conditional distribution of that line site was not influenced by the corresponding
edge value of the anatomical image. The known edges of their phantom were used
in the simulations as the intermodality information. Their algorithm is run some
number of iterations without the intermodality edge information to estimate initial
values of the line processes in the functional image. Although the results using
the intermodality information show an improvement in the reconstruction, there
is no mathematical justification corresponding to the modification of the condi-
tional probability of the line process by including the modulated weighting factor.
Furthermore, the line processes are explicitly included and the evaluation of the con-
ditional probability of the line process makes the optimization step difficult. Since
ICA is used, the mean values of the line processes may not necessarily approach 0
or 1.

Leahy and Yan [30] have also used the anatomical image information to
improve PET reconstruction. They modeled the likelihood function as a Poisson
distribution and the prior as a Gibbs distribution with line processes and simple
cliques (simple hysteresis and non-maximum suppression). The anatomical edges

were obtained by using an edge detector on a registered MR image. Using our
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energy function notation, their prior energy function can be rewritten

Ep = 3 [ (&fi(1 = 1) +olly + aVi(lh) | +

[ (A1 = 1) + ol + aVa(1) |

ij

where the line clique potentials are given by:

h _ h h h __ h h h h
Vi(li) = —e(lijpn — L)l = —elijnliy + el ;05

v . v v v o v v v v
%(lij) = _e(lz'+l,j - li,j+1)lz'j = _di+1,j i T 6li,j+llij°

The first term in both line clique potentials corresponded to hysteresis, and the
second term to non-maximum suppression. The anatomical edges were incorpo-
rated by treating the anatomical edges as fized line processes in the functional
image to be reconstructed. At the line sites where there existed corresponding
anatomical edges, the line process values were fixed to the values of anatomical
edges throughout the updating procedure. Ounly the line processes at sites with-
out corresponding anatomical edges were considered for updates. The update was
done using a modified ICA method. The modification of ICA algorithm involved
introducing a temperature parameter in the conditional probability distribution
of the line processes. They showed that this modification made the ICA method
converge to a local minimum. (See also Section 5.5.) Taking anatomical edges
and fixing them as function image line processes could, however, create false edges

in the functional image due to the problems discussed in Section 4.1. There was
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no mathematical justification for their method of incorporating the intermodality

information.

4.4 Simulation Results

The optimization was carried out via a quenching procedure. In our implementa-
tion, individual pixels are visited sequentially following a raster scan. One iteration
in our algorithm corresponds to a single raster scan. Af each pixel, the source
intensity is altered and the change in objective is calculated. A move that reduces
objective is always accepted, and a move that increases objective is always rejected.
Pixels are altered according to the following scheme: a new value is sampled from a
Gaussian probability density whose mean is equal to the current pixel intensity and
whose standard deviation is fixed at 55. This analog value is added to the current
pixel intensity and the result discretized to the nearest integer. The parameter
space for F is thus discretized to 256 levels. Note that the allowed intensity range
varies from 0 to 255 and when a sampled pixel value falls out of this range, we use
a wraparound scheme wherein 255 is added to values less than 0 and subtracted
from values greater than 255. The algorithm is run until the number of pixels
whose values change in an iteration reaches a plateau of less than a suitably chosen
threshold. By plateau we mean that the number of pixel changes per iteration is
less than or equal to the threshold for 100 consecutive iterations. Figures 4.3(a)
and (b) show the ratio of pixel acceptances per iteration in the quenching runs for

reconstruction of Figure 4.9(g) and Figure 4.11(d), respectively.
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Figure 4.8: Pixel acceptance ratio per iteration in the quenching run. (a) Ratio for

Figure 4.9(g). (b) Ratio for Figure 4.11(d).
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Following [16], we form an initial estimate using an Expectation Maximization~
Maximum Likelihood (EM-ML) algorithm. In general, the EM-ML estimate is ex-

pected to get us close to the answer, thus saving an excessive number of iterations.

Phantom I

The first set of results is shown in Figure 4.9. Figure 4.9(a) shows a 64x64 brain
phantom that was obtained from hand tracing selected anatomical edges of an
actual MRI image of a human brain. The phantom has three regions that rep-
resent grey matter, white matter and a generalized internal structure. The outer
region (grey matter) was completely and homogeneously filled with an equivalent
radioisotope density of concentration 100; the intermediate region (white matter)
was similarly filled with values of 25; and the two inner regions with values of 50.
These regions crudely approximate the expected radioisotope density of a brain
perfusion agent. Projection data was mathematically generated by calculating the
Radon transform by using 64 equiangular projections around 360 degrees with 64
detector bins per projection. Independent Poisson noise was added to each detector
bin. The total counts were approximately 3.3 x 10° counts.

Figure 4.9(b) shows the result obtained using filtered backprojection (FBP)
with a ramp filter with no lowpass cutoff. Figure 4.9(c) shows the result obtained
using EM-ML after 90 iterations where the total RMS error was least.

The next result, Figure 4.9(d) shows a weak membrane reconstruction. This
is essentially an implementation of our reconstruction algorithm without benefit of

the anatomical information and is obtained simply by setting e;; = 0 everywhere
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(h) -
Figure 4.9: Simulations on Phantom I. (a) 64x64 brain phantom. (b) FBP re-
construction (c) EM-ML reconstruction. (d) Weak Membrane reconstruction. (e)
Reconstruction using edge map (f). (f) Perfect edge map. (g) Reconstruction using

edge map (h). (h) Blurred edge map with extra and missing edges.
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in our objective function (Equation 4.24). Values of k; = 13.0 and A\, = 0.69
were used. The objective function no longer depends on k; once e;; is set to zero.
The initial estimate was obtained with a choice of 25 iterations of the EM-ML
algorithm. The weak membrane reconstruction was obtained using our quenching
algorithm after 369 iterations. The plateau threshold of the quenching algorithm
was 14.

The next result, Figure 4.9(e), demonstrates the improvement in the recon-
struction due to the anatomical information. Here, we used our objective function
(Equation 4.24) with £, = 15.0 and &, = 5.0, and A; = 0.69. The anatomical infor-
mation, illustrated in Figure 4.9(f), displays the combined vertical and horizontal
edge maps. The value of e;; was set to unity along the depicted boundaries and
zero everywhere else. Again, the initial estimate was obtained with 25 iterations of
the EM-ML algorithm, and a plateau threshold of 10 for the quenching algorithm,
resulting in a total of 400 iterations.

In order to be useful, the reconstruction algorithm should be robust with
respect to uncertainties in the correlation between function and anatomy. The
uncertainty can occur in several ways: (1) an anatomical edge is present but has
no corresponding functional edge - extra edge; (2) a functional edge exists with no
corresponding anatomical edge - missing edge; and (3) there is a misregistration
error between the two types of edges. Note that extra edges can arise in two ways:
either an anatomical edge is erroneously drawn, or the anatomical edge is correct
but there is simply no corresponding functional edge at that location. Also, a

missing edge can occur in two ways: either a significant anatomical edge is missed,
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or a strong functional edge occurs at an unexpected location.

An attempt to test the robustness of the algorithm with respect to these
uncertainties is depicted in the modified edge maps of Figure 4.9(h). Here, there is
an extra (diagonal) edge in the lower right corner, and an obvious band of missing
edge information in the upper region. In addition, a general blurring of the edge
map reflects our uncertainty in registration between the modalities. (For a real
SPECT study, this blurring would translate into a misregistration error of about
+3mm.) A discussion of our model of this uncertainty is found in Section 4.1. In
particular, e; = 1 at the same locations as in Figure 4.9(f) and for each such non-
zero pixel, the horizontally, adjacent pixels ¢};,; and € ;_; are set to 0.5. Similarly,
e?j = 1 at the same locations as in Figure 4.9(f) with vertically, adjacent pixels

h

h
€rt1,j and €1,

set to 0.5. The corresponding reconstruction using this incomplete
information is shown in Figure 4.9(g) with initial estimates as in Figure 4.9(e).
The parameters &1, k2 and A for this case are the same for the reconstructions
displayed in Figure 4.9(¢). The same plateau threshold value of 10 was used and
the total number of iterations was 409.

We now discuss the subjective quality of our results; later we present a quan-
titative assessment. Our best result using anatomical information, Figure 4.9(e),
shows good image quality even in regions of low contrast. Detailed spatial struc-
tures appear well defined. The effect of a large band of missing edges as well as an
extra diagonal line (lower right) is seen in Figure 4.9(g). Overall, the image quality

in the region corresponding to the band of missing edges degrades slightly with

some detail lost in the low contrast structures. There was no visible degradation
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due to the extra diagonal line. In addition, there is a slight loss of detail due to
the blurring of the anatomical edges. Comparatively speaking, the weak membrane
results in Figure 4.9(d) are more patchy, especially in regions where the phantom
was uniform (e.g. grey matter). Small details, such as the border between the
grey and white matter of the brain are not as well preserved in the weak mem-
brane reconstruction. Not surprisingly, both the FBP and EM-ML reconstructions
(Figures 4.9(b) and (c)) are noisier than the MAP reconstructions. Compared to
the best intermodality reconstructions, the small, detailed structures in FBP and
EM-ML are not as clearly resolved.

The RMS error relative to the phantom was evaluated for selected regions
of interest (ROI) in order to quantitatively assess the efficacy of our algorithm.
Figure 4.10(a) displays RMS error vs. iteration number for a ROI corresponding
exactly to the bright, outer region (grey matter, value equal to 100) of the phan-
tom. As seen, the Bayesian reconstructions result in improved RMS error in this
region; the addition of prior anatomical information results in further improvement
relative to the Bayesian reconstruction obtained without the anatomical informa-
tion (weak membrane). Note also that the RMS error obtained with the modified
(with blurred, missing and extra edges) edge :map is nearly identical to the result
obtained with the perfect edge map. This illustrates a robustness of the algorithm
to slight errors in the edge map. Figure 4.10(b) shows a similar plot for the ROI
corresponding to the intermediate (white matter, value equal to 25) region. Once
again, the Bayesian reconstructions show considerable improvement over FBP and

EM-ML, and the addition of anatomical prior information is clearly beneficial.
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Phantom II

We also ran the algorithm on a second phantom shown in Figure 4.11(a). This 32 x
32 phantom consists of three regions of values 75, 130 and 150 against a background
of 100. Projection data was mathematically generated by calculating the Radon
transform using 32 equiangular projections around 180 de\grees with 32 detector
bins per projection. Independent Poisson noise was added to each detector bin.
The total counts were approximately 1.3 x 10® counts.

Figure 4.11(b) shows the result obtained using EM-ML after 50 iterations,
where the number of iterations was selected to correspond to the minimum RMS
error relative to the phantom.

As with the previous phantom, we ran the Bayesian reconstructions with
weak membrane and anatomical priors. For the anatomical priors, we used an
edge map with missing and extra lines but without blur. Figure 4.11(e) show the
anatomical edge map used in the intermodality reconstruction. Comparison with
the phantom in Figure 4.11(a) shows a missing edge (upper right) and false edges
corresponding to an extra region (center). The parameters for the weak membrane
reconstruction were A; = 0.77 and &y = 17.0 with e;; set to zero everywhere. Note
that the objective function no longer depends on «, once e;; is set to zero. The
parameters for the intermodality reconstruction were A; = 0.7, k; = 15.0 and
ke = 5.0.

Figure 4.11(c) shows the weak membrane reconstruction after 617 iterations.

The reconstruction is generally smoother than FBP or EM-ML, but note the error
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Figure 4.11: Simulation on Phantom II. (a) 32x32 mathematical phantom. (b)
EM-ML reconstruction. (c) Weak Membrane reconstruction. (d) Reconstruction

using edge map (e). (e) Edge map with an extra region and a missing edge.
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in the reconstruction of the boundary of the upper left region. When anatomical
information is employed as shown in Figure 4.11(d), the error is corrected and the
resulting reconstruction is qualitatively superior. Figure 4.11(d) shows the result
after 682 iterations. The plateau thresholds for both reconstructions were equal to
4.

As before, in order to quantitatively assess the performance of our algorithm,
we plot the RMS error vs. iteration for two ROIs. Figure 4.12(a) displays RMS
error vs. iteration number for an ROI corresponding exactly to the bright upper
right region of the phantom; Figure 4.12(b) shows the RMS error for an ROI corre-
sponding exactly to the background (i.e. the region in the phantom with value 100).
As seen, the Bayesian reconstructions result in improvement in these regions; the
addition of prior anatomical information results in further improvement relative to

the reconstruction obtained without the anatomical information (weak membrane).

Phantom III

In proceeding to a more realistic case, we used a Monte Carlo simulation program
[61], [60], [59] that simulates SPECT projection data from a three dimensional
phantom. It simulates the physical absorption and scattering properties of tissue,
as well as geometric imaging factors and detector response. The gray levels in
Figure 4.13(a) depict the relative radionuclide concentrations (ratio 6:4:1 for inner
structure, grey matter and white matter, respectively) used in the simulation. To
realistically model scattering, the source distribution was made three dimensional

by stacking the two dimensional source Figure 4.13(a) in the axial direction. The
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primary emission energy was set to 140 Kev which corresponds to 99mTc. The
parameters of the Monte Carlo program were set so that the voxel size was 1.5 x
1.5 x 7.5 mm on a side. Within the border of the phantom, water was assumed to
be the uniform attenuating medium. The collimator was modeled to correspond to
a Low Energy All Purpose (LEAP) collimator with an acceptance angle of 1.5 de-
grees FWHM. Given the source characteristics and the geometry, the typical SNR
of the detector counts was approximately 7.0.

The resulting reconstructions are shown in Figure 4.13. Figure 4.13(a) shows
the phantom source distribution. Figure 4.13(b) shows a conventional filtered back-
projection reconstruction using a ramp filter with no lowpass cutoff. Figure 4.13(c)
shows an EM-ML reconstruction after 50 iterations. Figure 4.13(d) shows our re-
construction using intermodality information. The intermodality information was
the same as in Figure 4.9(g). The parameters for our reconstruction were A; = 0.2,
k1 = 100.0, k2 = 5.0 and the initial estimate was obtained with 10 iterations of
the EM-ML algorithm. For our quenching algorithm, the range of pixels sampled
was 0 to 350 and a standard deviation of 10 was chosen. No attenuation or scatter
correction was applied in any of the three algorithms above. Although the inter-
modality reconstruction is less noisy and exhibits somewhat improved recovery of
spatial detail, it is more patchy. To improve the reconstruction, we must account for
attenuation and scattering. This requires a more realistic forward transformation

model.
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(e)
Figure 4.13: Simulation on Phantom IIIL (a) 64x64 brain phantom. (b) FBP re-
construction (c¢) EM-ML reconstruction. (d) Reconstruction using edge map (e).

(e) Perfect edge map.
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4.5 Discussion

We have presented in this chapter a Bayesian model that incorporates correlated
anatomical edge information into the functional image reconstruction. Our results,
obtained by using mathematical phantoms, show that the anatomical information
leads to improved reconstructions. On the other hand, we need a more realistic for-
ward operator, H, with attenuation corrections to fully test the method on clinical
data. The reconstruction method has shown some degree of robustness to errors
such as blurring, and missing or extra edges.

An important feature of our approach is that anatomical information is in-
corporated independently of an actual optimization technique. This takes the form
of a space varying modulation of the penalty for creating discontinuities through
the use of a coupling term. A second advantage is in the use of a cusp-like potential,
the properties of which were discussed in Section 4.2.

Several issues must be addressed before it is practical to use anatomical
information as priors. Further work must be done to test validity of correlating
anatomical structures with function for different radiopharmaceuticals. Given reli-
able knowledge of anatomy—function correlation, there must be efficient procedure
to extract significant anatomical edges that are likely correlate to function. This
will require the ability to reliably distinguish various tissue types in an anatomical
image. In addition, accurate 3-D registration is required along with an improved
means of modeling residual registration errors into the reconstruction procedure.

The work detailed in this chapter presents one possible means of incorpo-



rating anatomical information into a functional image reconstruction problem.
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Chapter 5

A Continuation Method for

Bayesian Reconstruction

As shown in Chapter 4, a Bayesian reconstruction is often modeled with a Gibbs
prior defined on both the binary valued line processes, 1, as well as the source
intensities, f. Due to the mixed (continuous and binary) variables, however, the
simultaneous MAP estimation of f and 1 becomes a difficult problem. In Chapter 4,
we used a Gibbs “potential” function, $°F obtained by making some modifications
to our original function, ¢*. The function ¢“F implicitly captures the property of
line processes, but only in an approximate manner. The “correct” ¢ function, ¢*,

consistent with the use of line processes, however, leads to difficult minimization

problems.

The description in this chapter expands the work in [31].
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In this chapter, we present a new framework for a Bayesian reconstruction in
emission tomography that offers a principled and efficient way of handling the prob-
lems associated with the mixed variable objectives. Here, a continuation method
is used to approach the “correct” potential function, ¢*, through a sequence of
smooth ¢ functions — to this end, a deterministic annealing algorithm is derived
and employed. This results in a sequence of objective functions (depending only
on the continuous variables) that approaches the original mixed variable objective
function. The sequence is indexed by a control parameter (the temperature). At
each temperature, a standard descent optimization algorithm is used to find a so-
lution which is then used as an initial estimate for the next temperature setting.
The objective functions at high temperatures ére smooth approximations of the
objective functions at lower temperatures. Consequently, it is easier to minimize
the objective functions at high temperatures and then track the minimum through
variation of the temperature. This is the essence of a continuation method. In
other domains, such as computer vision, where certain problems can be formulated
employing Bayesian estimates, continuation methods have been successfully used
[13, 45] to find good solutions.

In Chapter 4, we made use of intermodality information to model the prior
distribution. For the sake of simplicity in developing the continuation method, we
only use the weak membrane model without intermodality information. It should
be noted, however, that intermodality information can be used in the continuation

framework that we develop here.
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Table 5.1: Symbols used in Chapter 5

Prior weighting parameter

Space invariant weak membrane parameter

Temperature control parameter

Expected value of line processes

Energy function for the prior on f and 1

Energy function for the marginal intensity prior

Energy function for the temperature modified marginal intensity prior
Overall objective function

Equivalent overall objective function obtained by eliminating line process
Temperature modiiied objective function used in optimization at each
Prior potential function obtained by eliminating line process; broken parabola
Marginal intensity prior potential function

Temperature modified prior potential function
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5.1 An Energy Function for MAP Estimation

We are interested in a MAP estimate of a Bayesian model for the reconstruction

problem. As in Section 4.2.2, we have the following for the MAP estimate

(fMAP,iMAP) = arg r{%‘aﬁc Pr(F=f,L=1G=g)

1l

argx(ri;’ilr)l [~logPr(G=g|F =f,L=1)~logPr(F =f,L =1)]
= argr(x;}ll):l [~logPr(G =g|F =f)—logPr(F=£f,L=1)] (5.1)
As in Chapter 4, the likelihood term Pr(G = g|F = f,L = 1) becomes Pr(G =
g|F = f) since the projection data, g, obtained from a forward projection of the
source, f, does not .involve the line process, 1.

The likelihood is again modeled as a Poisson distribution as in Equation 3.8.

From Equation 4.6, we have

—log Pr(G = g|F =f)

= D(f) + terms independent of f

il

Z Z Hio:i5 fis — Z gie log(Z H:o,i5fi;) + terms independent of f.
] ;

tg i i3

We model the prior as a Gibbs function defined over the intensities and the

line processes:

Pr(F=f,L=1)= Zie-Em(fvl) (5.2)
4
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where the partition function, Zj, is a constant independent of f and 1. The source
distribution is assumed to be piecewise smooth. We again use the weak membrane
model in Equation 4.12 for the prior. The associated energy function for our prior

can then be written
Eps(f,1) & 23 [((Af:)%(0 — 1) + odls) + (A fy)2(1 = 1) + odf)] . (5.3)
]

The two terms involving A’ f and A f encourage smoothness except where discon-
tinuities occur. The terms with the parameter o penalize the creation of disconti-
nuities. Fewer discontinuities are obtained at large values of . Note that here the
prior energy function, Ep,(f,1), contains the weighting parameter A;. It is modeled
somewhat differently than in Equation 4.9.

We can now write the MAP estimate

(fvap,Ivap) = arg min [ log Pr(G = g|F = f) —log Pr(F = f,L =1)]

arg I(Til}lf)l [D(f) + Ep2(£,1)]

= argmin Ey(f,1),
where the overall objective function

Ey(f,) € D(f)+ Epa(£,1)

= 2> Huifis — ) gw0log(D Heyii fis)
s 7

tg i
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+ho 30 [((&Fia2(1 = 1) + ally) + (A Fs)*(1 - 1) + ot)] . (5.9)

The parameter A; weights the prior with respect to the likelihood objective D(f).

5.2 A Continuation Method for MAP Estimation

In principle, one could minimize the non-convex energy function in Equation 5.4
by searching over all configurations of (f,1), but this is impractical due to the large
number of configurations. The search over configurations in the weak membrane,
however, can be reduced to a search only over the intensities, f. This was shown
in Section 4.2.4 for the prior distribution with space varying weak membrane pa-
rameters, af‘j and of;. Here, however, we are interested in the weak membrane
prior without intermodality information. Blake and Zisserman [5] have shown for

a

the weak membrane prior that the solution for the line process (%

57

(the MAP esti-

mate), reduces to

0 (&f;)? < a

ot = (5.5)
1 (A”fij)2 > o

with a similar expression for the vertical line process I};. Note that « is a space-

invariant parameter. When the MAP estimate for 1 is substituted back into the

objective function of Equation 5.4, we obtain an equivalent objective function that
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depends only on the intensities:

E3(f) = D(f) + 1 [$"(&fi5) + 6"(&fi5)| (5.6)
where

M(&fi)? (&fy) £ @

" (A fi5) = T, (5.7)
Ao (A"fij)z > «

with a corresponding expression for ¢*(A* f;;). This is similar to the case in Chap-
ter 4, but we repeat it here for notational consistency. Figure 5.1 shows ¢*(Af;;).
We again refer to ¢* as a broken parabola as in Chapter 4. Though the global min-
ima of Equation 5.6 are the same as those of Equation 5.4 and the use of binary line
variables have been circumvented, there are problems associated with minimizing
an objective function consisting of the likelihood and the broken parabola. The
objective function remains non-convex (discussed in Section 4.2.4) and, since the
broken parabola makes the objective function non-differentiable, efficient methods
of minimization such as gradient descent are ruled out. In Chapter 4, we dealt
with these problems by approximating ¢* with ¢%. In this chapter we pursue a
new approach - a continuation method - where a sequence of functions is used to
closely approxilﬂa,te #*. In this new approach, we are trying to find a solution to

the original problem and not simply to approximate it with modification steps.
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Figure 5.1: ¢*(Af)

5.2.1 Marginal Posterior and Marginal Prior

We first show the relationship between the broken parabola and the potential func-
tion arising out of the marginal prior. The marginal intensity posterior distribution

can be written

Pr(F=f|G=g) = S Pr(F=f,L=1G=g)

{1}
_ ZPr(G=g|F=f)Pr(F=f,L=l)
- ! Pr(G =g)

PG =glF =) [«~pop_gp_
PG =g [%}:P(F_f,L_l)]
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P1(G = g|F =)
Pr(G =g)

Pr(F = f), , (5.8)

where Pr(F = f) is the marginal intensity prior. We can evaluate the marginal
intensity prior using the prior distribution in Equation 5.2 and integrating out the

line processes:

Pr(F=f)=Y Pr(F=f,L=1) (5.9)
1
- 3 L 20 T {0 £ POt oA 1) (-1 etz ]} (5.10)
g Z
= L 3 o= 228" fi P (1=tfy)+adll} 3 o2 {(8" £ P (1Y) +all;} (5.11)
Zy i |ik={0,1} 19,={0,1}
= ZL4H [e—-k2(Avfij)2 + C—A2OI] [e—/\z(Ahf.‘j)z + e—z\ga] (5.12)
]
ogle= 28 Fi)? L o= el s 1ogle=22(8" £i)? | o= Dza
_ _ZI:BZ,,{I gle ™28 i) o220 logle ™28 i3 ez | (513)
def Z%e‘{sz“‘MP(A"f‘f)*Ei:‘"‘MP‘A"f‘f)} (5.14)
wf L _mue)
Zy '

In Equation 5.10, 3° g3} denotes the summation over all configurations of {” and
1%, where IY; and I are either 0 or 1 for all (2, j). The transition from Equation 5.10
to Equation 5.11 can be shown by analogy with its continuous variables equivalent,
ie. f-ofe"z”?dwl--da:n = [I; fe~% dz;. Equation 5.12 is obtained by summing
over If; and [} (taking values 0 and 1). Taking the logarithm of the product in

Equation 5.12 and then exponentiating it, we obtain Equation 5.13. Shown in
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Equation 5.14, the marginal intensity prior Pr(F = f) is a Gibbs distribution with

an energy function
Eup(f) E Y dup(&f5) + 3 dup(Afiy),
4] ij
where the potential function

dup(Af;) ¥ —log [e—«\z(A"f.',-)2 +e—A2a]

(5.15)
¢MP(Ahf,]) déf — log [e—)\z(Ahfij)2 + e—/\ga] .

By examining dapp(A f;;), we see that the above marginal prior distribution
Pr(F =) is a smooth Gibbs prior. Figure 5.2 shows that the function, ¢pp(A fi;),
is indeed a smooth approximation of the broken parabola, ¢*(A f;;), in Figure 5.1.

We can now write the MAP estimate for the marginal posterior

arg max Pr(F =f|G =g)
= arg mfin [~ log Pr(F = |G = g)]
= arg mfin [~1log Pr(G = g|F =f) — log Pr(F = f)

+ terms independent of f]

= argmin [D(f) + Epp(f)]

= argmin | D(f) + 3 [$3P (& fi) + duap (& F5)] |
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Figure 5.2: ¢upp

Note that the above objective function, D(f) + Enp(f), approximates the original
objective, E3(f), in Equation 5.6 with ¢arp(Afi;), which is a smooth approximation
of the broken parabola ¢*(Af;;). This gives us the motivation to use a continuation
method approach to our optimization problem.

Since ¢prp is a smooth, differentiable approximation of the broken parabola,
the minimization of the objective function is easier since gradient descent methods
can be used. Note, however, that solutions to the MAP estimate on marginal
posterior are not the solutions to the original objective function. If we can generate

a sequence of smooth and differentiable ¢ functions from ¢p;p that more and more
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closely approach ¢*, then we expect the solution to this sequence of problems to

tend to the solution of the original ¢* problem.

5.2.2 Introducing a Temperature Parameter

We can indeed generate a sequence of ¢’s from @pp that approach the broken

parabola, ¢*. This is achieved by introducing a control parameter, 3, usually iden-

tified with the inverse of a computational temperature (8 = =), into the potential

function, ¢pmp, in Equation 5.15. This parameter gives the extra degree of freedom

necessary to apply the continuation method. We will refer to 8 as a temperature
1

control parameter and T = 5 as a temperature. Consider the following sequence of

smooth potential functions indexed by 3:
do(Af) & ‘%1% [P 4 g=8dac] (5.16)

Note that for 8 = 1, ¢p=1(Afi;) = dmp(Afi;). We now examine the relationship
between the broken parabola ¢*(Af;;), and the above potential function ¢g(A fi;).

Consider the situation at large values of § (low temperature) for the potential
function ¢g(Af;;) in Equation 5.16. If o > (Afi;)?, the first term, e=P*2(Afis)°,
inside the log(-) expression dominates. This reduces the entire log expression to
M(Afi;)?% I a < (Afi;)?, the second term, e#*¢ inside the log(-) expression
dominates and the entire expression reduces to A;a. Inspection reveals that at
large values of B, ¢g is in fact the broken parabola ¢* of Equation 5.7. At low

values of B, the function is very smooth. As can be seen from Figure 5.3, g
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Figure 5.3: ¢g functions with 8 = 2,4,8

approaches the broken parabola as the temperature is reduced to zero (annealing).

Our goal is to find the minimum of the objective function

Eg(f) = D(f) + Eme(f; ) (5.17)
= D(f) + X [da(&fis) + da(& i)
> Huiifis — Ze geo log(3_ Moy f5)

e ij

:l lo e-’ﬂz\z(A"fij)z e—ﬁz\za lo e—ﬂz\z(A"'f{j)2 +e—ﬂ,\2a
3 > [tog ( + ) +log ( )]
ij

by performing a standard minimization procedure at each temperature. This mini-

mum is then used as an initial condition for the next temperature setting. Because
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the potential function ¢g is smooth and differentiable, we are able to employ gra-

dient descent-like methods for the minimization.

The temperature modified distribution

We would like to éhow now that ¢g(Afi;) in Equation 5.16 can be obtained from the
temperature modified prior distribution. Consider the following modification [13]
of the prior Pr(F = f,L =1) in Equation 5.2 where we introduce the temperature

parameter (3 > 0) according to :

Pry(F=f,L=1) & Tz'l‘ [Pr(F =f,L =1)]°
5
1
_ 1 -BEm(f)) 5.18
¢ (5.18)

Here, Zs is a normalizing constant and Zg is a new partition function, both inde-
pendent of f and 1. For B = 1, Prgy(F = f,L = 1) = Pr(F = f,L = 1). At
high values of B, the modified prior becomes more peaked. The locations of the
peaks and valleys, however, are independent of the value of 8. Therefore, both
Prg(F = f,L =1) and Pr(F = f,L =1) have minima and maxima occurring at the
same f and | configurations. In Equation 5.9, we have obtained a potential function,
émp, that is a smooth approximation of the broken parabola ¢*, by integrating out
the line processes from the prior Pr(F = f,L =1). Here, we evaluate the marginal
intensity prior distribution of the temperature modified prior by integrating out the
line processes and then show that the potential function arising from this marginal

intensity is indeed ¢g(Afi;). The marginal intensity distribution of the temperature
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modified prior is

Prg(F=f)=) Prg(F=f,L=1) (5.19)
{1
Y %_e-ﬁAzZ;,-{[(A"f:'j)2(1—153)+a15‘,-]+[(A"fij)2(1—1?j)+a12’,~]} (5.20)
g4y <6
- 1 T PR e} | | S () (-t
Zs i | ih={01} It;={0,1}
1 vy y
—_ 76 | [e"ﬁ/\2(A fx])2 + e—ﬁ/\201] [e—ﬁz\z(Ahf,J)z + e-—ﬁAza] (5.21)
)
— _l_ezn{‘°s[e“”2“‘"ffi’2+e-‘”2“]+log[e“’*2(“hf='i’2+e-"*2°1}
= =
L [ el I e el T St emsise
=z
- .. Y fii . h i
%_gf ‘21;'6 ﬁ{z:u ¢/3(A f])+ZIJ ép(A fJ)} (5'22)
def _1_e~/3EMP(f;ﬁ)
Zs

where
Enp(£;8) F 2 do(Xfi) + 3 da(L fi)-

The above steps are similar to Equations 5.10-5.14. We have shown that we can in-
deed obtain the potential function ¢g(Afi;) in Equatibn 5.16 from the temperature
exponentiated marginal intensity prior distribution, Prg(F = f), where # > 0. Our
deterministic annealing parameter, 3, ranges from low to high values according to

the annealing schedule.
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In summary, the broken parabola, ¢*, was obtained by eliminating the line
process from the original prior energy function in Section 5.2. This was done by
minimizing the objective function with respect to the line process and then substi-
tuting the solution back into the objective function. In Section 5.2.1, the marginal
prior distribution of the intensities was obtained by summing over all configura-
tions of the line processes in the prior distribution. Following this, we showed the
resulting marginal intensity prior was a smooth Gibbs prior and its potential func-
tion was a smooth approximation of the broken parabola. This smooth potential
motivated us, in Section 5.2.2, to use a continuation method where a sequence of
smooth potential functions, ¢g, indexed by a temperature parameter, 3, was gen-
erated. The function, ¢g, was a smooth approximation of the broken parabola at
high temperatures (low values of §) and approached the broken parabola at low
temperatures. We showed that ¢3 could also be obtained from a temperature modi-
fied marginal prior distribution which was obtained by introducing 8 to the original
prior distribution Pr(F = f,L =1). Integrating out the line processes, we obtained
a marginal intensity prior distribution whose Gibbs potential function was indeed
-

Our overall objective function to be minimized at each 8 is

Eg(f) = D(f) + Emp(f; 8) (5.23)

= D(f)+ X [66(& £5) + dp (A £35)]
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= > > Huifii — Y gwlog(D>_ Hussifii)

t6 4] 10 ij

+ (:ﬁ_l) ; [lég (e~ﬁA2(A"fij)2 + e—ﬁf\w) + log (.g-ﬁ)\z(A"f-'j)2 + e-ﬁz\za)] )
Note that the likelihood objective function, D(f), in the above is the same as in
the original objective function in Equation 5.6 and does not depend on 8. Since
#s(Afi;) approaches ¢*(Afi;) at high values of 8, the minimum of the above ob-
jective function approaches a minimum of the objective function in Equation 5.6
at high values of 3.

Despite the absence of the line processes from our final objective function
in Equation 5.23, line processes are implicitly contained in the broken parabola
which is reached at limiting values of the control parameter 8 (Equation 5.5). This
is because the marginal intensity prior originated from the prior distribution on
f and 1. The property of line processes does not vanish when the line processes
are integrated out, but is instead contained in the marginal distribution of the
intensities. In the next subsection, we show that the property of line process is

embodied in our objective function of Equation 5.23.

5.2.3 Conditional Mean Values of Line Processes in the Marginal

Intensity Prior

Here, we show that the expected values of line processes at a given temperature
can be obtained from the temperature exponentiated marginal intensity prior. The

following is the derivation of the mean values of line processes conditioned on f and
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g at each §:

E{L}|F =£,G = g; 8}
= 1-Prg(Ll =1|F =f,G =g) +0-Prg(LL = O|F =f,G = g)
= 1-Prg(LE =1F =£) +0-Prg(L}; = 0|F = 1)

= Prﬁ(L,-j = 1|F = f)

Since the line processes can be completely described by f alone and independently of
g, the conditional probability Prg(L¥; = 1|F = f, G = g) becomes Prg(L% = 1|F =
f). The conditional probability of the line processes at each 8 can be expressed by

using Equations 5.18 and 5.21 in the following:

Prg(F =f,L=1)

Prg(L=1F=f) = Pry(F = 1)
(_21_)e~[3>\2Z;]-[(A"fij)2(1—13)4'0‘15}'1'(&1"'1‘)2(1-15',')'*'0":’,'
6

( 1 )Hij [ —BAscx + e—ﬁAz(AVfij)z] [e_ﬁ/\za e— Ao hfl.j)z]
Zs + BAra(A
e—ﬁz\2 [(A"f;_,)z(l lh )+al:‘] —BA2 [(Ahfij)2(1 l:,j) l?j]

B e

Because the line processes are independent of each other in our model, their mean

values can be easily seen from the above conditional probability to be

E{LLIF =f,G=g;8} = Prg(ll=1F=f)
e—,@)\za
e—ﬁ/\zu + e"ﬁ/\z(Avfij)z
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1
1 + e—Bl(&" fij)*—e]

(5.24)

and similarly,

v 1
E{LWIF - f’ G= & IB} - 1 + e—ﬁ/\z[(Ahfij)z—a] ’ (525)

Even though our objective function Eg(f) in Equation 5.17 depends only on
the intensities, it implicitly contains the conditional mean values of the line pro-
cesses: we can always calculate the conditional mean values of the line processes
from the intensity values alone. Since the temperature exponentiated prior even-
tually becomes the original prior distribution as the temperature is lowered from
high values to zero, the conditional mean values of the line processes obtained from
the temperature modified distribution eventually approach the “true” values of the

line processes.

5.3 Derivation of the Deterministic Annealing Al-
gorithm

Our original MAP estimate problem is now reduced to a combination of minimizing
the objective function, Eg(f), in Equation 5.17 at each §, and tracking the min-
imum through increasing values of 3. A standard gradient descent minimization
technique can be inefficient for an objective function such as Eg(f) because of its

global connectivity. Instead, we use the incomplete/complete data formulation for
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the EM approach discussed in Section 3.2. Following Equations 3.23 and 3.24, the

EM algorithm in our case can be written

E-step : Form  Q(f|f*) = Ec{log Pr(C|F = £)|G = g,F = {"}
M-step : Solve  arg max [Q(f]f'”) — Epp(f; ,B)]

= argmin [—QEE") + Enp(£; 8)) - (5.26)

Recall Equation 3.16 for Q(f|f*). Note that we formulated our optimization prob-
lem as an equivalent minimization problem instead of a maximization problem.

The M-step objective function to be minimized is

M 8) ¥ —QUEE") + Emp(f; )

= —QUIE") + X [$(&fis) + ¢a(A"fff)]

Hiosi
= >N Hipiifi; — E > ge————— i

it G 0 2kl His; klfkl

+ Z (——-ﬁ) log { ~Fhae y e"ﬁ’\z(A"f")2]

ij

+¥ (—%) log [e=#%ex 4 e8] (5.27)
ij

log(f35)

Thus, Eg(f) = D(f)+ Exp(f; 8) has been transformed, via the EM approach, to the
minimization of M(f|f”; 8) at each EM iteration at a given 8. The transformation
of D(f) to —Q(f|f,) is shown in Appendix B. Due to the prior, however, the M-step

objective is difficult to minimize (see Section 3.2.2). Instead we use a coordinate-
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wise descent technique for the minimization. This, however, only decreases the
M-step objective function at each EM iteration rather than minimizing it, which
is the same as the generalized EM (GEM) algorithm discussed in Section 3.2.2.1.
When we are at location (7,j), the objective function is minimized with respect
to f at (7,7) keeping all other variables fixed. A new location is then chosen, and
the method is repeated. After a full sweep of the lattice, the procedure is fepeated
until convergence criteria (typically objective differences or norms) are met. This
method always converges to a local minimum [36]. This local minimum is then
used as the initial estimate for the next temperature setting and a local minimum
at this new temperature is then found. By varying the temperature in this way,
we attempt to find the global minimum. Unlike gradient descent methods, the
coordinate-wise descent technique also avoids concerns of choice of step sizes. The
closed form solution for each variable can be obtained simply by differentiating the

objective function and solving for the variable of interest. Hence,

OM(flf") _3Q(f|f'“) OEnp(f)
of; —  Ofy Ofij

(5.28)

where a_czg%j@ was shown in Equation 3.17 to be

6@ flfn Ht(? HY] 1
H 0;i3 g ,
COfy %: i Z S e F >kt Hao; klsz fi’
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and,
8EMP f 1 e"‘ﬁ)‘2(A"fij)2
_—a—fi;(-l = _'E e—Bhzax + e—Br2(&Vfi;)? [—213/\2(ﬂ+1,j - flj)(_l)]

e P2 (& fi1,5)
+ e—Praa I g—BR(B fic; ) [_213’\2(-)(1'.7' - fi—l,j)]
e—Pra (&P fi)
T e—Bhaa | —BAa(&Ffij)F [_2:8)‘2(f;',j+1 - ﬁj)("l)]
e—ﬁ)\2(Ahfi,j—1)2
e—Praa § P2 (BF fi 1) [—'218/\2(fij - fi,j—l)] . (529)

We are interested in obtaining a closed-form solution for f;; from @%f}?:—@ =
0 at each location, while keeping all other f variables fixed. However, upon exam-
ining Equation 5.29, it is clear that such an explicit solution is impossible due to
the transcendental nature of the exponential term. One possible solution to this
problem is to separate the global dependence of the variables by introducing a
new, albeit dependent (on f) variable z;; [4] and to descend on each z; and fi;

separately. Let us first consider one of the exponential terms in Equation 5.29,

e—PRa(8 £5)?
e—Bra oy g—BA2 (¥ ;)% "

By examining the mean value of the horizontal line process at

(2,7) in Equation 5.24, the exponential term is equivalent to

1 — conditional mean value of lf‘]

This suggests we take z;; to be the conditional mean value of line process, ;.
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We now define

2% def e=Fr2a = 1
U T e=Bipage—PR8i)E T ~FRl(AR ;) =a) (5.30)
h o def e=Faa _ 1 '
Zij T ona Fe— POV Ty —FRl(A¥ f5)e—a] "
From the definition of z, we then have
1 v e—Br2(ah f;5)? _ 1
A e=Brga g —Pr2(ARfi)2 T L —Bhgla—(A1i5)2) (5.31)
1 B e—Br2 (A% £i5)? _ 1 |
TR T TharePR(BIGR T 1pe-Prale (A"

However, arbitrarily changing variables in the objective function and then perform-
iﬁg coordinate-wise descent on the new variables does not guarantee convergence
unless there exists a corresponding objective function that can be expressed in
terms of the new variables. In the following section (Section 5.4), we show that
such a corresponding objective function of f and z can be derived by using Lagrange

parameters. This corresponding function is

. Higi; f}
Me(f,2lt™; 8) =" Hupifis — ZEgm i
5 1 53 Y Moy £

+ZA2[<Avﬁ,->2u— U>+az]+z [24 log(=h) + (1 — =k log(1 — 2&)]

log(fi5) (5-32)

+Z Az [(Ahﬂj)2(1 ) + oz ] + Z [zzg log(2 u) +(1- z:;) log(1 — zfi)] :

Thus minimizing the above function, M°(f, z|{"; 8), gives us the same answer as

minimizing M(f|f*; 8). We perform coordinate-wise descent on f while keeping z
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constant, and on z while f is held constant. Now the M-step in our GEM algorithm

becomes two steps:

oM°(£, z|f™; B)

Ml-step :  Fix z values, s =0 = f""'1 for all 7, 5
)

M2-step :  Fix f values, oM (g,z|f i) =0 = 2 foralli,j
Zij

M1-step : We take the partial derivative of the objective function M°(f,z|f; 8)

in Equation 5.32 with respect to f;; and get

OMe(f, z|f"; B) Huuif 1
= H " g
afij Z 0id Z S Hewa Yokl Hw skl f &l fta

+2h fii [(1 - :;> +(1- ?_1,,» + (1= 25) + (1 - 225,)]

—2X [fi+1,j(1 —28) + fic (U= 2l g) + fusmn (L= 28) + fijm(1 = z:'],j—l)] :

(5.33)

Note that if we use the definition of z in Equation 5.30 and substitute it in Equa-
tion 5.29, the original M-step of Equation 5.28 becomes the same as Equation 5.33.
This shows the consistency of our transformed M-step function (Equation 5.32).
If we set Equation 5.33 to zero, we get a quadratic equation in f;;. Solving this
equation for f;; and choosing the non-negative root, we get an update equation for

fi; at GEM iteration n 4 1:

—(Z1o Hiosij — 222 X3) + \/ Soio Hioiis — 222X3)? + 82X X (534
41X, -34)

A

fn+1
.
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where

Ht@ 31
Xy o Z gm0
okt Heg; sz [

def v v
Xz = (1- Zij lgn) + (1 — z?-1,j lgn) + (1 — 235 ) + (L — 275_; )
def
Xs € fi(U =2 |p) 4 ficni (1= 2805 1)
+ figrr(U =23 Jga) + figa(1 = 2854 |g)-

The

The notation 2; |3, stands for 2}; evaluated using f*, and similarly for zZJ lgn-
value of X is non-zero except when all the surrounding line processes of a pixel,
fij, are exactly eciual to one. For the case when all the surrounding line pro-
cesses are equal to one, Equation 5.33 reduces to —:T?j of the EM-ML method (see
Equation 3.17). Our temperature varying scheme, however, avoids the creation of
extreme hot spots. Since we update pixels sequentially by using the raster scan, we

use the most recent estimates of fi+1 ;41 for computing X3. The intensity update

equation also guarantees positivity of f;; because of the non-negativity of X;, X,

and Xs.

M2-step : For the update equation for z;;, we take partial derivatives of Equa-
tion 5.32 with respect to z}; and zf‘j, and set the equations to zero to solve for zf‘j

and z};. The following shows the steps used in solving for z};:

OM-(f,z[f"; ) _
az'!".

]

=X (A fii)? + oo + ﬁ[log( 2 —log(1 —23)] =0
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1—2z};
= log(——2) = —Bha(Afi5)" + Bracx
ij
= iv — 1 = e~BP2(8"fij)*~)20]
zij
v 1
= 2z

T ] J e-PDelA fiP—2aa]

The update equation obtained from the coordinate descent method for 2; is the
same as our definition in Equation 5.30, as expected. This verifies the consistency
of our definition. The update equation for z at GEM iteration n +1 can, hence, be

written

zY. I - = 1
iy Ifntl e—p[az(Ahf'.'f“ ¥2=324]’

1+ (5.35)

zb‘. |— = 1
W lfnt Lo P2 T2zl

To ensure that the solution obtained by differentiating M° with respect to
fi; and to z;; and setting it to zero is indeed a minimum, it is sufficient to show that
M is separately convex with respect to f;; and z;;. This can be done by examining

the second derivatives:

8> M° (£, z|f*; B)
of%
H.

_a o833 £ Ch by,
- ?-21- <Zt9 gi6 Dok H:B;klfl?l) +2% (4 2y T A T 21’1_1) 2 0

O M°(f,2|f"; B) _ 1 > 0
o(zpr Ba(l-zy) T
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A

The second derivative, %ﬂgj—o-, goes to zero only when [T is zero and all four sur-
rounding z’s are exactly equal to one. The second derivative, z%%%, goes to zero
when f — oo. In practice, however, § never reaches infinity, therefore z never
becomes exactly zero or one. We have guaranteed that a single M-step taken in
any direction is a descent step since the fixed point in that direction corresponds
to a minimum. This minimum is achieved in a single step. Hence, convergence of

the GEM procedure to a local minimum of M° is guaranteed.

Our deterministic annealing algorithm can be outlined as follows:

do {
do {
/* GEM procedure */
frn _ foi1
sy gt
Yhile(|M(E+1, &m41[fn; B) — M(E, 27l )| > )
increase

}while( z values not converged to either 0 or 1 within a tolerance)

We start with a high value of temperature (low £ ), and at each temperature carry
out the GEM procedure until convergence. Convergence is reached when the dif-
ference of consecutive M-step objectives is within some convergence parameter, €.

We then lower the temperature (increase ) and carry out the GEM procedure
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4

Prior o
Optimi

Solution in f 1

¢B Solution in £ <l>

Marginal

. Figure 5.4:

at the new temperature. The temperature is lowered until all mean values of line
processes, z, converge to either 0 or 1 within a tolerance. At each temperature,
the GEM procedure consists of two kinds of updates. We first update f, according
to the update equation Equation 5.34, over the entire image with z values held
fixed, and then update z, according to Equation 5.35, over the entire image using
the new f values. Once the new estimate, f'"‘”, has been obtained, a new M-step
objective function is obtained by substituting f**! for £ to get M(f,z|f"+; 8). In
this manner, the entire GEM procedure is carried out until convergence. Figure 5.4
shows the relation of the temperature modified marginal prior to the original prior,

¢*, in the deterministic annealing method.
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5.4 Convergence to a Local Minimum in the De-

terministic Annealing Algorithm

As mentioned in the previous section (Section 5.3), we do not yet know whether
coordinate-wise descent on the new variable z in our objective function is guaranteed
to converge. If it does converge, is it in fact a local minimum rather than a maximum
or a saddle point? The convergence can be proved by producing an objective
function that corresponds to the new variables, z. By examining the first and
second order derivatives, we also show that a local minimum is indeed achieved.
In this section, we start with the M—step function in Equation 5.27 and
systematically derive the objective function (Equa,tion'5.32) corresponding to the

change of variables z = z(f). Recall the M-step objective function in Equation 5.27:

M(fIf™8) & —Q(El™) + Bwe(f; 6)

= —Q(f|f") + Z [¢ﬁ(Ahﬁj) + ¢ﬁ(/—\”fij)]

Hig.i; I
= > ) Huwuifii — Zzgta 9 ]fJ

G 8 5 0 2k His; klfkl

+ Z (——;—) log [e‘ﬁ’\”‘ + e‘ﬁ’\z(A"f‘i)z]
> (“E) log [e=2 4 (2457

ij

og(fi;)

The work in this section is done in close conjunction with the work of Anand Rangarajan
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A change of variables in the objective function can be performed by the method of
Lagrange parameters. Consider the following transformation to be applied at every

location (3, j),

¢(Ahf1.7’ z]) f}if £( 1_7) + p’zj((A fi.'l) z]) (536)

where a similar relationship applies for A f;;, s?j and ufJ In Equation 5.36,
( z]) d_e'f __log [ ~Ph + e—ﬁz\zs,J] 3

with uf; being a Lagrange parameter (corresponding to s};) which will be deter-
mined shortly. Note that the definition of £(sY;) is written in terms of a dummy
variable, s¥;. The variable s is forced towards the value (A" f;;)* by the action of
the Lagrange constraint term in Equation 5.36 (then v (A" f;;, s¥;) and ¥(AY fij, s%)
become @p(A*f;;) and dp(Afi;), respectively). Differentiating £(sY;) with respect

to s}; and setting the result to zero, we get

/\2 e—-ﬁ/\gsfj /\2 e—ﬁz\z(s}’j—-a)

v __ ¢lrvy —
pi; =& (sh;) = e—Phaa | g P ] 4 g-Palha)"

The transformation after Lagrange parameter elimination is

YA fij, %) = €(s}) + € (s3) (A F5)° = s)- (5.37)
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In Equation 5.37, when the derivative with respect to s}; is set to zero, we
get
V(N 5, 5%) ,

A =0 = E(sh) + € (sH)(A ) — sy) — €(sy) =0

%
= £ (sH) (A ) = s) =0. (5.38)
There are two solutions for the above equation. One is when s}; = (A"f;;)? and
the other is when ¢"(s%;) = 0. The fixed point of interest is at s¥ = (A"f;;)%. To
ensure that this fixed point is a minimum, we examine the second partial derivative

of Y(Afi;, s};) with respect to s¥;:

PY(N fiy,s%) € (sh) (A i) — s8))
d(s%)? B 0sY;

= (A ) = s5) — €' ()

|} evaluate at s = (A"f;)?

_fn(sfj)i

where,

o~Palstj—a)

[1 + e‘ﬁ’\’*’(s:’j“")]z.

£ () = —BX\

Notice that {"(s}’j) < 0, meeting the positivity condition of the second partial
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derivative of (A" fi;, %) at the fixed point s}; = (A'f;;)%. The case £"(s%;) = 0

occurs when either 3 — oo or s}, — oco. Since, in practice, 8 never reaches

infinity and s;; € [0,00), £"(s%;) = 0 does not occur. Therefore, the fixed point
= (A"f;;)? is a minimum. We now have an objective function in the two sets

of variables f;; and s;; along with the fixed point condition s¥ = (A*f;)? and
= (& fi;)%

We now rewrite Equation 5.37 as
PO g, s8y) = (A Fig )€ () + (ECst) — sh€ () -

S h
Using the transformation 2¥; = z(s};) =1 - —%—J—l and 2 = z(sl) =1 - 32£ ( £y (note

that this transformation is a restatement of (Equation 5.30)), we get

(A fij, 2) = A(A"ﬁj)z(l—z;;-)uzazgj
[z log(z;;) + (1 — 23;) log(1 — 2;;)]
(A fiy2t) = A (A“fi,-)( — 2) + hpazl

+= [zzg 10g( 1]) + (1 - % )lOg(l - zz])] (539)

Using Equation 5.39, we get the following corresponding objective function of

M(£|f*; 8) in Equation 5.27

Hio;s
f Zlfn ZZHtO,szzJ Zzgw t9,.7

og( fij) (5.40)
G 10 G o0 ki Hie, klfkl !
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#5002 + et + 2 (5) Bl + 4 25 lgth )

20 [(Y (1 - 2h) + acl] + 3 (‘;‘) |25 Log(=5) + (1 - =5 log (1 - )]

Now we perform the coordinate descent on the above function M°. First we descend

on z: we take a partial derivative of M° with respect to 2; by fixing all other 2},

and all fi and then we set it equal to zero and solve for 2}; (similarly for 23;).

OM°(f, z|f™; B)

z

=0

i
1 v 1 v
N WO L 3 []og(zij) + 1] +3 [— log(1 — 2;) — 1] =0
N i (e 5o
1 -2z

» 1
T T @]

Notice that the solution for z is the same as the conditional mean value of the line
processes as we expect. If we substitute the solutions back into the function M°,
we get our original M-step function M (f|f"; 8).

We have shown that there exists a corresponding objective function, M°, to
the change of variable, z, and that the coordinate-wise descent on the new variable,

z, indeed converges to a local minimum.
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5.5 Related Work

Below, we discuss related work that utilize Bayesian models with priors to attempt
to enforce piecewise smoothness. The priors are expressed through Gibbs potential
functions. We can group these efforts into two types: those that use priors defined
only with respect to the intensities, and those with priors using both intensities

and line processes.

5.5.1 Prior Defined on Intensities

All of the following efforts used a Gibbs potential function, ¢, defined only on
intensities. There were no associated mixed variable objective functions from which
the ¢ functions were derived. Most such reconstructions using Gibbs potential
functions are improvements over the EM-ML reconstruction; however, some of the
¢ functions lack the property of allowing formation of discontinuities.

Geman and McClure [16] used a ¢ function of the form ¢(Af) = ﬁ_?i—)fz)z.
They used stochastic relaxation for the MMSE estimation and a gradient descent
method for the MAP estimation. In the context of image restoration, Geman
and Reynolds [14] later mentioned the possible use of a more general ¢ function:
d(Af) = -i-l-i-A[_il}-le’ k =1,2,... Their results were obtained using stochastic relaxation
with a ¢ function having £ = 1. They use both the first order derivative (Af; =
fi — fi-1), which is more effective in recovering the discontinuities, and the higher

order derivatives (for example, the second order derivative, A%f; = Af; — Afi_1),

which are supposedly more suitable for recovering the basic geometric structure of
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regions. This is implemented so that the first-order model generates a starting point
for the second-order model, which in turn provides the starting point for the third-
order model, and so on. In general, stochastic relaxation is very computationally
demanding since the conditional distribution at each pixel site has to be computed
for the full range of possible pixel values. Geman and McClure decreased the
number of operations by selectively reducing the sampling range instead of using
the full dynamic range.

Hebert and Leahy [20] used three different ¢ functions: (i) ¢(Af) = (Af)?,
which was earlier used by Geman and Geman [15] in image restoration, increasingly
penalizes the difference between neighboring pixels; (ii) ¢(Af) = ;(‘_?—g)fz)—z suggested
by Geman and McClure; and (iii) ¢(Af) = log(1 + (Af)?) which is a compromise
between (i) and (ii). Their main concern was to integrate a ¢ function with the
likelihood into a GEM algorithm.

Green [19] suggested a convex ¢ function: ¢(Af) = log(cosh(Af)) and de-
vised a one-step-late (OSL) algorithm for optimization. While having several math-
ematically desirable properties, Green’s ¢ function does not promote the formation
of discontinuities. The OSL algorithm is an EM-type approach in which the partial
derivative of the prior energy function (equivalent to our %ﬁ in Equation 5.29)
is approximated using the current estimate of f™ to get a closed form update equa-
tion for the new estimate, f**1. The convergence of the algorithm depends on the
form of the prior energy function, and there is no proof of the convergence of the

algorithm in general.

Lange [26] derived several ¢ functions with desirable mathematical proper-
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ties. These ¢ functions, however, do not promote formation of discontinuities, nor
was there empirical testing of the functions. The OSL algorithm was also modi-
fied in such a way that searching was done in a particular direction to guarantee
convergence.

Lalush and Tsui [25] compared three different ¢ functions proposed in 16, 19,
20) by parameterizing ¢. They showed that the effects of these ¢ functions could be
understood by examining the derivatives of the functions. The motivation here was
to run empirical tests on image reconstruction under different parameter settings.
In all instances, they used the MAP-EM OSL procedures for reconstruction. The
results showed that the ¢ functions proposed by Geman and McClure [16], and
by Hebert and Leahy [20] lead to much more selective smoothing than does the ¢

function suggested by Green [19], which tends to smooth noise and edges equally.

5.5.2 Prior Defined on Intensities and Line Processes

Some researchers modeled priors using both line process and intensities to capture
the property of discontinuities. The main drawback for using line processes directly,
however, is that it leads to a difficult mixed variable optimization problem since
there is no objective function, ¢. Thus the posterior distribution is maximized
directly instead of minimizing an objective function.

Johnson, et al. [21] modeled the prior using line processes with complex
cliques. They mentioned the difficulty of optimization due to the mixed variables.
In this study, the Poisson likelihood is approximated by a Gaussian distribution,

using the square root of the intensities as variables. Since in a Gaussian distribu-
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tion, the mode and the mean are the same, they used the Iterative Conditional
Average (ICA) method for the intensity updating procedure which is equivalent
to performing Iterative Conditional Mode (ICM) updating. The Gaussian form is,
however, only an approximation of the true Poisson likelihood. In the Poisson case,
ICA and ICM lead to different values.

Since they do not have a ¢ function, they estimate the line processes directly.
However, due to the binary nature of line processes, the line estimates will converge
faster than the image intensities when ICM is used for both line process update and
intensity update. To avoid this, they let the line processes take continuous values
in the interval [0,1] and then use ICA on line processes. The expected values
of binary valued line processes, however, are continuous, hence it may have been
unnecessary to make the line processes be continuous first and then apply the ICA
method. They could have directly used the expected values of line processes from
the binary values. Using the continuous line values to evaluate the mean values
probably leads to a smooth approximation of their Gibbs prior. There is, further,
no proof of convergence of their ICA method.

The approach of Leahy and Yan [30] is perhaps closest in spirit to our
work. Their prior consists of the weak membrane energy function with cliques,
and the search method involved an ICM procedure on the intensities. Their update
equation for the intensities is similar to Equation 5.34, but it explicitly contains
line processes since there is no ¢ function in the model. The ICA method with
varying temperature control parameter, T, is used to estimate the line processes.

The ICA method does not guarantee that the estimated line process converges to
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zero or one, and the method is not proven to converge to a local minimum. To
overcome the above problem, an annealing-like technique was used for the line
process estimation within the GEM procedure, and the prior energy function was
modified by introducing the control parameter, . When fixing T' = 1, their line
process update is equivalent to the [CA method. In the limit T' — 1, the estimation
becomes equivalent to the ICM method. At each GEM iteration, after updating
the intensities, the line processes are updated in an annealing fashion by reducing
temperature, although there is no detailed report on how the temperature reduction
is done. Reducing the temperature to zero makes the line processes converge to
the values zero or one. Their approach is different than ours in that they used the
temperature varying scheme with the GEM procedure to estimate line processes.
Our approach, on the other hand, employs the temperature scheme globally, and
each GEM iteration is carried out at a given temperature. The convergence of

Leahy and Yan’s algorithm is not guaranteed.

5.6 Results

We simulated the algorithm using the math phantom shown in Figure 5.5(a).
The 40x40 phantom contains three “hot” regions of intensity 110 counts, three cold
regions of intensity 80, and a background of intensity 100. We used 40 projection
angles over 360° with 40 detector bins at each projection angle. Independent Pois-
son noise was added to each detector bin. The total counts were approximately 2.6

x 10% counts. In our algorithm, A is the Radon transform. Figure 5.6(b) shows



123

()

Figure 5.5: Simulations on Phantom IV. (a) 40x40 phantom. (b) EM-ML recon-
struction. (c) Reconstruction using quenching algorithm. (d) Expected value of

line processes, 2, in (c).
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(i)
Figure 5.6: Simulations on Phantom IV. (e) Reconstruction using deterministic

annealing algorithm at £ = 3. (f) Expected value of line processes, z at k = 3. (g)

and (h) k=6. (i) and (j) k= 13.
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an EM-ML result obtained after 45 iterations, which corresponds to the minimum
RMS error over the entire image. Note that the picture is noisy and that the low
contrast hot regions are barely discernible. Figures 5.6(e) - (j) show the source, f,
reconstructions and corresponding expected value of the line processes, z, for the
deterministic annealing algorithm at high to low temperatures (k = 3,6,13). Note
that all three hot regions are recovered and the corresponding line processes are
approximately correct. The initial condition for f was a constant intensity of 50,
and z was initialized to 0.5. We used 13 values of 8 with an initial 8 of 0.03125
and a B doubling annealing schedule. The corresponding temperature at each tem-
perature iteration is shown in Figure 5.7. At a given temperature, we optimize
until the objective difference at successive iterations satisfies |AE| < 7, where k is
a temperature iteration number and 74y = 7:/2 with 73 = 0.3. The annealing is
terminated when z;; < 0.1 or z;; > 0.9, for all (Z,7). The parameters were A, = 0.1
and a = 2.7.

We eliminated the annealing strategy and instead ran a “quenching” algo-
rithm by executing the deterministic annealing algorithm at a single, very high
value of § (8 = 256) with the same parameters. The results in Figures 5.5(c)
and (d) show an inferior reconstruction with profuse and erroneous line processes
compared to the annealing results in Figures 5.6(e) — (j).

The computation time for one iteration of our GEM algorithm is close to
that of one iteration of a standard EM algorithm. Even though the inclusion of
the mean of the line processes triples the number of variables relative to a standard

EM update, the line process iterations are computationally negligible compared to
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Figure 5.7: Temperature (1/8) vs. temperature iteration, k.

the update of the source intensity variables, f. The update of f is computation-
ally intensive since it involves computation of projections. For our deterministic
annealing runs, the number of iterations at a given temperature depends on the
choice of threshold 7. For 71 = 0.3, the number of iterations ranged between 6 and
68 for a total of 311 iterations over 13 temperatures. The EM result was obtained
at 45 iterations and the quenched annealing at 60 iterations. To a great extent the
computational burden depends on the termination criteria chosen.

Table 5.2 show the quantitative results in the form of RMS errors in the
seven regions of interest (ROI) corresponding to the six squares and background of
the phantom. The RMS error for the EM algorithm is taken at the 45" iteration.
As seen, the best total RMS error was achieved by the deterministic annealing al-

gorithm. Qualitative and quantitative comparison to the quenching method shows
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Table 5.2: RMS error in ROI for various algorithms

Deterministic
EM-ML | Quenching | Annealing
Top left 4.935 4.074 4.984
Top middle 5.385 5.271 3.394
Top right 4.831 1.120 0.382
Bottom left 7.046 6.826 6.400
Bottom middle | 5.039 3.168 3.449
Bottom right 5.210 1.816 2.314
Base region 5.656 3.183 2.004
Total image 4.293 2.633 2.264

that temperature annealing is beneficial. The RMS errors in the entire image are
also plotted in Figure 5.8. Although the total RMS errors for the deterministic an-
nealing algorithm and the quenching algorithm are fairly close, the reconstructed
images look much different. The profile along a horizontal line through the upper
three squares is shown in Figure 5.9, and through the lower three squares in Fig-
ure 5.10. The profile of the deterministic annealing reconstruction is clearly closer

to the phantom than the profile of the quenching reconstruction.
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Figure 5.8: Total RMSE for different algorithms used

5.7 Discussion

All related previous efforts have used smooth Gibbs energy functions (or equivalent)
to approximate their prior model. It is known that smooth functions are easier to
handle. In general, if a potential function has desirable mathematical properties,
such as convexity and existence of the first and the second derivatives, it does not
promote the formation of discontinuities. On the other hand, if a prior captures the
property of discontinuities, either by introducing line processes directly or by using
a certain form of ¢ function, it tends to lead to a difficult optimization problem.
One of the advantages of the deterministic annealing approach presented

here is that it allows us to approach the broken parabola, which is in fact the correct
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potential function derived from the original weak membrane energy function that
promotes formation of discontinuities, through the variation of a control parameter.
Since the correct potential function is approached rather than being approximated,
the original intent of the objective function is retained.

The second advantage is that the method supports an efficient search of
global minima in the reconstruction problem. The local minimum problem has
been addressed by the method of simulated annealing. In essence, simulated an-
nealing consists of sampling from a posterior distribution combined with progressive
lowering of the temperature (annealing). It has been shown that there exists [15]
an optimal annealing schedule that can be used to find the global minimum. Un-
fortunately, following this annealing schedule, or even an approximation thereof,
is computationally prohibitive rendering simulated annealing impractical. An ad-
vantage of the deterministic annealing method is that it avoids stochastic sampling
and may handle local minima in an efficient manner. The deterministic algorithm
tracks the minimum thr;)ugh a sequence of objective functions that more closely
approximate the original objective function as the temperature is lowered. Since
the first member of the objective function sequence is a smooth approximation of
the original objective, its minimum, which we expect to be in the vicinity of the
desired global minimum, is most likely found at a low temperature. The determin-
istic annealing algorithm is also parallelizable, making it particularly appealing in
a parallel computing environment.

The use of the weak membrane model in our work represents a particular

choice of prior. The deterministic annealing framework does not depend on this
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choice and may be extended to more complex situations involving cliques as shown
in [13, 45]. As noted earlier, the intermodality information can also be incorpo-
rated in ¢g by making the weak membrane parameter, «, space variant following
Equation 4.15.

As discussed in Section 5.5, there are, in general, tradeoffs between having
a mathematically desirable potential function and potential functions that smooth
noise and discontinuities selectively. Furthermore, in cases with a prior using line
processes to capture the property of discontinuity formation, we end up with a
difficult optimization step leading to a non-closed form update procedure. The
deterministic annealing method proposed here, which results in closed form update
equations and is mathematically more tractable, is one way to overcome some of

these obstacles.



Chapter 6

Summary

We have presented two approaches to improving image reconstruction in emission
tomography in this thesis. In Chapter 4, we proposed a method that incorporated
anatomical information in the reconstruction procedure. In previous efforts, the
anatomical information was incorporated as part of the optimization procedure.
Here, the anatomical information is incorporated as a part of the Gibbs prior en-
ergy function and, therefore, does not depend on a particular algorithm used for the
actual optimization. The results show that the reconstructions with intermodal-
ity information are improved, not only over EM-ML reconstructions but also over
MAP reconstructions that use only a generic smoothness prior. In Chapter 5, we
proposed a new framework for emission tomography reconstruction using a con-
tinuation method. Although continuation methods have been successfully used in
other areas, such as computer vision, they have not yet been applied in the domain

of image reconstruction from projection data. This is mainly because each projec-

tion data measurement is globally connected to many source locations which makes
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it difficult to employ a continuation method directly. We derived a deterministic
annealing algorithm with closed form update equations.

One potential improvement for both of these approaches could be a more
systematic way of estimating and/or adjusting parameters such as the prior weight-
ing parameter, A\; and A, the intermodality parameters, «; and k3, in Chapter 4,
and the temperature control parameter, 3, in Chapter 5. Geman and McClure [16]
used an EM method to estimate the prior weighting parameter A. Reconstructions
under different prior weighting parameter settings have been investigated in [25].
The intermodality parameters can perhaps capture particular edge information.
For instance, we know that the typical radiopharmaceutical uptake ratio in grey
and white matter of the brain is 4:1. This ratio may be used to estimate x; and
k9 for grey and white matter edges. As discussed in Section 4.5, further validation
studies of the correlation between anatomical structures and functions for different
types of radiopharmaceutical are necessary for incorporating anatomical informa-
tion correctly. Development of a sophisticated segmentation algorithm could also
help us to select only valid anatomical edges.

Future directions include incorporation of intermodality information in the
deterministic annealing algorithm and modeling attenuation corrections in the for-
ward projection operator H to enable our algorithms to be applied to clinical data.
The framework presented in Chapter 5 could also be used with other priors. Work is
being done using this framework with the weak plate prior [32], which allows piece-
wise linear regions in the reconstruction rather than piecewise flat regions enforced

by a weak membrane prior.



Appendix A

In this appendix, we prove the relation Equation 3.15 regarding the conditional

expectation, namely,

Hioyii f55

Ec{Ci|G = g, "} = grg—2-—.
7 ot Heora f 14

Let us consider k number of independent Poisson random variables X7, ---, X

with means y,,- - -, pt. The joint probability is then

z Tk
Pr(Xl =T, '7Xk = -'Ek) = e_(”1+"'+l-l'k)£tl__ “ e Hﬁ—._
zq! zp!

It it also known that the sum of independent Poisson random variables is a Poisson

random variable [46]. We, therefore, can write:

Y
Pr(Y =y) = e
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where Y = X; +---+ X} and g = py + - - - + gk Then the joint probability of

X, = z1,- - -, X = x conditioned on their sum Y =y,

PrX :x,...,X =
Pr(Xy =21, - X =a|V =y) = = Pr(lY=y)lc ‘”k)

v ()" ()"
zlooeap! \ p p/

This is a multinomial distribution of k classes with probabilities u/y,- - -, pr/p-

The expected value of X; conditioned on 3, X; =Y =y is

E{X|Y =y} = y&

Following the derivation found in [20], we consider the complete data, Cig.;;,
which are modeled as independent Poisson random variables with means H,g,; fi;.
The joint probability given fn is then

A fn H 7] A’l:n o

Pr(C = c|f") = HHe_H“”*"f‘J’—( o J|) —.

0 ij Cefyij*
Recall the Poisson likelihood, Pr(G = glf), in Equation 3.8. The joint probability

given " can be written

tn i Hegif2) " € Xi; Masyii £
PI(G=g|f)=H( : :) ' .
8 Gio-



137

Since 3°;; Cig;i; = Gio, we have

Pr(Cisa1 = epi11, *+ Ciozij = Cuoijy - Cromn = cgmn|G = g,£7)

= Pr(Cia1 = cto:11, ", Cisij = Cioisr -, Crosmn = oo |Geo = 910, ),
and
Ec{Ci.;|G = g,f"} = Ec{Ciss;|Gie = g9, 1" }.

The joint distribution of Ciga1 = ¢, - -, Cig;un = cg;mnv for MN independent

random variables conditioned on their sum Gy = gy,

Pr(Cio11 = cigii1, -+ Cissij = Ci03i5, -+ Crosmn = cio;mn|Gro = g1o, ™)

_ geo! Hio;11S74 Hio,mN frin

cig;11 Ceo;MN
_ . .. I :
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Thus the expected value of a multinomial variable Ec{Cls.;;|Gi = g:0,1"}, is equal

is a multinomial distribution of M N classes with probabilities

to
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Appendix B

Algebraic Transformation of the

Poisson Likelihood Function

Here, we apply an algebraic transformation to the Poisson log-likelihood objective
function and show that a coordinate-wise optimization on the transformation leads
to the EM-ML algorithm in Chapter 3. Recall the Poisson log-likelihood function

to be maximized (in Equation 3.10),

> gwlog(d Husiifis) — D > Hasuis fis- (B.1)
7 G

0 i

The work in this section is done is close conjunction with the work of Anand Rangarajan
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Consider the following transformation to be applied at every location (¢,7):

o15ij = log(Mussi; fis)
= Tagsfi = &7
= Z Hto;ijfij — Z eace;ij
ij ij
= 10g(z Hw;ijfij) = log(z e7toiid), (B.2)
i ij
We rewrite the log-likelihood function (Equation B.1) using the transform in Equa-

tion B.2:

Erp = awlog(D>_e79) + 3> uwyii(log Heoyis fi — ouasi) — D, D Heasii fij»(B-3)
t6 ij t6 ij 0 i
where u,;; is a Lagrange parameter to be determined. Note that the transformed
objective function, Eyj, and the original Poisson log-likelihood function have the
same fixed points [38].
Now, taking the partial derivatives of Erp with respect to oys;;; and to ug,;

and setting each equal to zero yields,

O0FELL Gro€” i
=0 = 2B =0
9065 T ek i
o gy = 0 (B.4)
t6iiy — Ekl e t0;kl .
O0FL,
=0 = o =log Hss; fis. (B.5)
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Notice that the Lagrange transformation (Equation B.4) and Equation B.5 together
form the expected value, Ec{Ci.;;|G = g,f"}, the E-step (Equation 3.15) of the

EM algorithm. The objective function after Lagrange parameter elimination is

e t0;i5

Erp, = tho log( E €Y + 3 the oo 108 Hessii fij
te i
Te6;i
—Zzo'to zggw - 0:9 — — ZZHta;ijfij- (B.6)
th ij g &)

Now, we perform the coordinate-wise optimization on Er;, with respect to

both a4p,;; and f;;. Taking a partial derivative of Ery with respect to oyg;; yields,

aELL e9t6;ij eCtoiij 2
owg; [Zu g7 (Zu e"w;k'> (log Hegyij — owas) =0 (B.7)

= 0w, = log Htt‘);ijfz’j-‘ (B.8)

Taking a partial derivative of Ey;, with respect to f;; yields,

aELL U:s sif

—_—=0 = the ZHteu (Bg)
afi

o €7t83k ftf) m
7t0;i]

Etﬁ gie;i =0t
T (B.10)
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= fij=

To ensure that the solution obtained for f;; by taking partial derivative of

Ep1 and setting it to zero is a maximum, it is sufficient to show that the second
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derivatives evaluated at the fixed point are negative:

e0t85i eTt93is 2
= 9w o €0tk o S €7tk
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aie;ij=log Hee;ij fij
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0. (B.12)

oee;ij=log Hes,ij fij

In practice, we do not let f;; vanish completely. Therefore, the cases where the
second derivatives in Equation B.11 and Equation B.12 go to zero do not occur and
the fixed point is indeed a maximum. The general convergence of the coordinate-
wise optimization to a fixed point is shown in [36].

The coordinate-wise update equations can be written

5 g e"?a;ij
t9 9t0iis = o
fn+l Zkle tO;kt
i DY Hw'i:i

~ndl fn+1
Gioma = log H [T,

The above two equations can be combined into one update equation for f;;:

ﬂ.

2!9 gto,l] Zk 'an

a4l

ij -
Zw Ht0;z]

(B.13)

Notice that the above update equation is the same as the EM-ML update equation
for fi; in Equation 3.18.

We can also obtain the M-step function of the EM-ML method in Equa-
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tion 3.16 by substituting log H,;; f,’; for o1,;; in Equation B.6:

Erp = Z G0 10g(2 He; Ufu) + Z Z G0 =~ Moo Uf” log Hegyi; [
t8 ij Zkl Ht@ z]fkl

- Z th@ log Hta,zg ”)_____tf_J_fg_ - Z Z Hte z]fz]
6 7 Zk! Hw 3td fkl 6 ij
Hze g
= gig—————log f;; — Heosi; fis
%; Zktheszkz ! %%: o
+terms independent of f. (B.14)

We have shown that a coordinate-wise optimization on the algebraically
transformed function of the Poisson log-likelihood objective function is equivalent

to the EM-ML method in Section 3.2.1.1, and that it converges to a local maximum.



Bibliography

[1]

2]

[3]

[4]

[5]

[6]

N. C. Andreasen. “Brain Imaging: Applications in Psychiatry”. Science,

239:1381-1388, 1988.

H. H. Barrett and W. Swindell. Radiological Imaging: The Theory of Image

Formation, Detection, and Processing. Academic Press, New York, 1981.

J. Besag. “Spatial Interaction and the Statistical Analysis of Lattice Systems
(with discussion)”. . Journal of the Royal Statistical Society, B, 36:192-326,

1986.

M. Black and A. Rangarajan. “On Line Processes, Outlier Rejection, and
Robust Statistics”. Technical Report YALEU-DCS-RR-993, Department of

Computer Science, Yale University, October 1993.

A. Blake and A. Zisserman. Visual Reconstruction. Artificial Intelligence. MIT

Press, Cambridge, MA, 1987.

L. T. Chang. “A Method for Attenuation Correction in Radionuclide Com-
puted Tomography”. IEEE Trans. on Nuclear Science, NS-25(1):638-643,
1978.

143



144

[7] C.T. Chen, X. Ouyang, W. H. Wong, X. Hu, V. E. Johnson, C. Ordonez, and
C. E. Metz. “Sensor Fusion in Image Reconstruction”. IEEE Trans. Nuc. Sci.,

NS-38(2):687-692, April 1991.

[8] C. T. Chen, C. A. Pelizzari, G. T. Y. Chen, M. D. Cooper, and D. N. Levin.
“Image Analysis of PET Data with the Aid of CT and MR Images”. In
C. N. deGraaf and M. A. Viergever, editors, Information Processing in Medical

Imaging, page 601. Plenum Press, 1987.

[9] B. Y. Croft. Single-Photon Emission Computed Tomography. Year Book Med-
ical Publishers, Chicago, 1986.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood from

Incomplete Data via the EM Algorithm”. J. R. Statist. Soc., 39:1-38, 1977.

[11] P. J. Ell and B. L. Holman, editors. Computed Emission Tomography. Oxford

University Press, Oxford, 1982.

[12] E. Gamble, D. Geiger, T. Poggio, and D. Weinshall. “Integration of Vision
Modules and Labeling of Surface Discontinuities”. IEEE Trans. on Sys., Man

and Cybernetics, SMC-19(6):1576-1581, November/December 1989.

[13] D. Geiger and F. Girosi. “Parallel and Deterministic Algorithms from MRFs:
Surface Reconstruction”. IEEE Trans. on Pattern Analysis and Machine In-

telligence, PAMI-13(5):401-412, May 1991.



[14]

[15]

[16]

[17]

[18]

[19]

[20]

145

D. Geman and G. Reynolds. “Constrained Restoration and the Recovery of
Discontinuities”. IEEE Trans. on Pattern Analysis and Machine Intelligence,

PAMI-14(3):367-383, March 1992.

S. Geman and D. Geman. “Stochastic Relaxation, Gibbs Distributions and
the Bayesian Restoration of Images”. IEEE Trans. on Pattern Analysis and

Machine Intelligence, PAMI-6(6):721-741, November 1984.

S. Geman and D. E. McClure. “Statistical Methods for Tomographic Image
Reconstruction”. In Proceedings of the 46th Session of the ISI, Bulletin of the

IST, 1987.

P. Gerlot and Y. Bizais. “Image Registration: A Review and a Strategy for
Medical Applications”. In C. N. deGraaf and M. A. Viergever, editors, Infor-

mation Processing in Medical Imaging, pages 81-89. Plenum Press, 1987.

G. Gindi, M. Lee, A. Rangarajan, and 1. G. Zubal. “Bayesian Reconstruction
of Functional Images Using Registered Anatomical Images as Priors”. IFEE

Trans. on Medical Imaging, TMI-12(4):670-680, December 1993.

P. J. Green. “Bayesian Reconstructions from Emission Tomography Data Us-
ing A Modified EM Algorithm”. IEEE Trans. on Medical Imaging, MI-9(1):84-
93, March 1990.

T. Hebert and R. Leahy. “A Generalized EM Algorithm for 3-D Bayesian
Reconstruction for Poisson Data using Gibbs Priors”. IEEE Trans. on Medical

Imaging, MI1-8(2):194-202, June 1989.



146

[21] V. E. Johnson, W. H. Wong, X. Hu, and C. T. Chen. “Image Restoration

[22]
23]

[24]

[25]

[26]

[27]

[28]

Using Gibbs Priors: Boundary Modeling, Treatment of Blurring, and Selection
of Hyperparameter”. IEEE Trans. Patt. Anal. Mach. Intell., PAMI-13(5):413-

425, May 1991.
G. Knoll. Radiation Detection and Measurement. Wiley, New York, 1989.
D. E. Kuhl. “Rotational Scanning of the Liver”. Radiology, 71:875-876, 1958.

D. E. Kuhl, J. Engel Jr, M. E. Phelps, and C. Selin. “Epileptic Patterns of
Local Cerebral Metabolism and Perfusion in Humans Determined by Emis-

sion Computed Tomography of ¥FDG and ¥*NH,”. Annuals of Neurology,
8(4):348-360, October 1980.

D. S. Lalush and B. M. W. Tsui. “Simulation Evaluation of Gibbs Prior
Distributions for Use in Maximum A Posteriori SPECT Reconstructions”.

IEFEFE Trans. on Medical Imaging, MI-11:267-275, 1992.

K. Lange. “Convergence of EM Image Reconstruction Algorithms with Gibbs
Smoothing”. IEEE Trans. on Medical Imaging, MI-9(4):439-446, December
1990.

K. Lange and R. Carson. “EM Reconstruction Algorithm for Emission

and Transmission Tomography”. Journal of Computer Assisted Tomography,

8:306-316, April 1984.

P. C. Lauterbur. “Image Formation by Induced Local Interactions: Examples

Employing Nuclear Magnetic Resonance”. Nature, 242:190-191, 1973.



[29]

[30]

[31]

[32]

[33]

[34]

147

R. Leahy, T. Hebert, and R. Lee. “Applications of Markov Random Fields
in Medical Imaging”. In D. A. Ortendahl and J. Llacer, editors, Information

Processing in Medical Imaging, pages 1-14. Wiley-Liss, 1989.

R. Leahy and X. Yan. “Incorporation of Anatomical MR Data for Improved
Functional Imaging with PET”. In A. C. F. Colchester and D. J. Hawkes,
editors, Information Processing in Medical Imaging, pages 105-120. Springer—
Verlag, 1991.

M. Lee, A. Rangarajan, I. G. Zubal, and G. Gindi. “A Continuation Method
for Emission Tomography”. IEEE Trans. on Nuclear Science, 40(6):2049-2058,
1993.

S.-J. Lee, A. Rangarajan, and G. Gindi. “Weak Plate Mechanical Models in
Bayesian Reconstruction for Emission Tomography”. In Conference Record of

the 1993 IEEE Nuclear Science Symposium and Medical Imaging Conference

(in press).

E. Levitan and G. T. Herman. “A Maximum A Posteriori Probability Expec-
tation Maximization Algorithm for Image Reconstruction in Emission Tomog-

raphy”. IEEE Trans. on Medical Imaging, MI-6:185-192, 1987.

Z. Liang, R. Jasczack, R. Coleman, and V. Johnson. “Simultaneous Recon-
struction, Segmentation and Edge Enhancement of Relatively Piecewise Con-
tinuous Images with Intensity Level Information”. Medical Physics, 18(3):394-
401, May/June 1991.



148

[35] J. Llacer and E. Veklerov. “Feasible Images and Practical Stopping Rules
for Iterative Algorithms in Emission Tomography”. IEEE Trans. on Medical

Imaging, 8, 1989.

[36] D. G. Luenberger. Linear and Nonlinear Programming. Addision-Wesley Pub-

lishing Company, Reading, MA, second edition, 1984.

[37] P. Mansfield and P. K. Grannell. “NMR Diffraction in Solids”. Journal of

Phys C: Solid State Physics, 6:1.422-426, 1973.

[38] E. Mjolsness and C. Garrett. “Algebraic Transformations of Objective Func-

tions”. Neural Networks, 3:651-669, 1990.

[39] P. G. Morris. Nuclear Magnetic Resonance Imaging in Medicine and Biology.

Clarendon Press, Oxford, 1986.

[40] K. Nakajima, N. Shuke, J. Taki, T. Ichihara, N. Motomura, H. Bunko, and
K. Hisada. “A Simulation of Dynamic SPECT Using Radiopharmaceuticals
with Rapid Clearance”. The Journal of Nuclear Medicine, 33(6):1200-1206,
1992.

[41] M. E. Phelps, E. J. Hoffman, N. A. Mullani, and M. M. Ter-Pogossian. “Ap-
plication of Annihilation Coincidence Detection to Transaxial Reconstruction

Tomography”. Journal of Nuclear Medicine, 16:210, 1975.

[42] M. E. Phelps, J. C. Mazziotta, and H. R. Schelbert. Positron Emission To-
mography and Autoradiography: Principles and Applications for the Brain and

Heart. Raven Press, New York, 1986.



149

[43] T. Poggio, E. B. Gamble, and J. J. Little. “Parallel Integration of Vision

Modules”. Science, 242:436-440, October 1988.

[44] H. V. Poor. An Introduction to Signal Detection and Estimation. Springer-
Verlag, New York, 1988.

[45] A. Rangarajan and R. Chellappa. “A Continuation Method for Image Estima-
tion and Segmentation”. Technical Report CAR-TR-586, Center for Automa-

tion Research, University of Maryland, October 1991.

[46] C. R. Rao. Advanced Statistical Methods in Biometric Research. Hafner Pub-

lishing Company, Darien, Conn, 1970.

[47] C. R. Rao. Linear Statistical Inference and Its Applications. Wiley, New York,

1973.

[48] A. Rosenfeld and A. C. Kak, editors. Digital Picture Processing: Volume 1.

Academic Press, New York, second edition, 1982.

[49] E. Serge. Nuclei and Particles: An Introduction to Nuclear and Subnuclear

Physics. W. A. Benjamin, Inc., New York, 1965.

[50] L. A. Shepp and Y. Vardi. “Maximum Likelihood Reconstruction for Emission
Tomography”. IEEE Trans. on Medical Imaging, MI-1(2):113-122, October
1982.

[51] D. L. Snyder and M. I. Miller. “The Use of Sieves to Stabilize Images Produced
with the EM Algorithm for Emission Tomography”. IEEE Trans. on Nuclear
Science, NS-32:3864-3872, 1985.



150

[52] D. L. Snyder, M. I. Miller, L. J. Thomas Jr., and D. G. Politte. “Noise and Edge
Artifacts in Maximum-Likelihood Reconstructions for Emission Tomography”.

IEEE Trans. on Medical Imaging, MI-6(3):228-238, 1987.

[63] J. A. Sorenson and M. E. Phelps. Physics in Nuclear Medicine. Grune and

Stratton, Orlando, second edition, 1987.

[54] J.R. Thompson and R. A. Tapia. Nonparametric Function Estimation, Model-
ing, and Simulation. Society for Industrial and Applied Mathematics, Philadel-
phia, 1990.

[65] H. Van Trees. Detection, Estimation, and Modulation Theory: Part I. John

Wiley and Sons, New York, 1968.

[56] Y. Vardi, L. A. Shepp, and L. Kaufman. “A Statistical Model for Positron

Emission Tomography”. J. Amer. Stat. Assoc, 80:8-37, 1985.

[57] R. C. Walovitch, T. C. Hill, S. T. Garrity, E. H. Cheesman, B. A. Burgess,
D. H. O’Leary, A. D. Watson, M. V. Ganey, R. A. Morgan, and S. J. Willams.
“Characterization of Technetium-99m-L,L-ECD for Brain Perfusion Imaging,
Part 1: Pharmacology of Technetium-99m ECD in Nonhuman Primates”. The

v Journal of Nuclear Medicine, 30(11):1892-1901, 1989.

[58] C. F. J. Wu. “On the Convergence Properties of the EM Algorithm”. The
Annals of Statistics, 11(1):95-103, 1983.

[59] G. Zubal and C. Harrell. “Voxel Based Monte Carlo Calculations of Nuclear

Medicine Images and Applied Variance Reduction Techniques”. In A. C. F.



[60]

[61]

[62]

151

Colchester and D. J. Hawkes, editors, Information Processing in Medical Imag-

ing, pages 23-33. Springer—Verlag, 1991.

I. G. Zubal, G. Gindi, M. Lee, C. Harrell, and E. Smith. “High Resolution
Anthropomorphic Phantom for Monte Carlo Analysis of Internal Radiation
Sources”. In Proceedings of the Third Annual IEEE Symposium on Computer-

Based Medical Systems, pages 540-547, 1990.

I. G. Zubal, C. R. Harrell, and P. D. Esser. “Monte Carlo Determination
of Emerging Energy Spectra for Diagnostically Realistic Radiopharmaceuti-

cal Distributions”. Nuclear Instruments and Methods in Physics Research,

A299:544-547, 1990.

1. G. Zubal, H. Tagare, L. Zhang, and J. Duncan. “3-D Registration of In-
termodality Medical Images”. In J. H. Nagel and W. M. Smith, editors, Pro-
ceedings of the Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, pages 293-294, 1991. vol. 13.





