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Dongshan asked a monk, “What is the most painful thing in the world?”
The monk said, “Hell is the most painful.”
Dongshan said, “Not so. If you wear monk’s robes, and underneath, you have not clarified the
great matter, that’s the most painful thing.”

- Essential Zen, K. Tanahashi and T. D. Schneider, 1994.

But what were his solutions? Enigmas of a higher order.

- Ka, Roberto Calasso, 1998.

1 Introduction

This note discusses elementary set theory, function theory, and random variables. I have defined
everything as clearly as I can, but there is one problem that is not easy to resolve: a mathematically
consistent definition of a random variable requires very high powered mathematics called measure

theory. On the other hand, most of the applications we are interested in can be handled without
measure theory. So I will introduce random variables informally without measure theory. This
requires you to accept some intuitive “definitions”, but there aren’t too many of them, and you
have probably seen most of them before if you have taken an undergraduate course in probability.

In contrast, I will present set and function theory more rigorously. You will not need fancy
mathematics to understand this; rather the challenge is to change your point of view regarding
some familiar things.

2 Set Theory

Informally, a set is a well-defined collection of distinct mathematical objects, which are called the
elements of the set. This informal definition is sufficient for us.

Some comments:

1. By “well-defined” we mean that given any mathematical object, we can unambiguously decide
whether or not the object is in the set.

If an object a is contained in a set A, we write a ∈ A. If a is not contained in A, we write
a /∈ A.
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2. All elements of the set are distinct.

3. There are two common ways of defining sets:

(a) Exhaustive listing: Define a set by listing all of its elements, e.g. A = {a, b, c, d}. Such
definitions are common when the set contains a finite number of elements.

(b) Definition by property: Define a set by the properties its elements must have, e.g. A =
{x | 3x2 + 2x − 1 = 0} is the set of all numbers x that satisfy the property that
3x2 + 2x− 1 = 0.

4. The empty set ∅ has no elements, ∅ = {}.

A finite set is a set with a finite number of elements. An infinite set is a set with an infinite
number of elements.

Standard notation for commonly used sets:

N = the set of natural numbers = {1, 2, 3, . . .}
N0 = the set of non-negative integers = {0, 1, 2, . . .}
Z = the set of integers = {. . . ,−1, 0, 1, . . .}
Q = the set of rational numbers

R = the set of real numbers

Rn = the set of ordered n-tuples of real numbers .

The set Rn deserves special attention, since much of what we will be doing will be in Rn.

2.1 Rn

An element x of Rn is often written as (x1, · · · , xn). We can also think of an element of Rn as a
column vectors with n components or as a row vector with n components, such as




x1
x2
· · ·
xn


 or [x1 x2 · · · xn].

R is identical as R1. We will visualize R as a line, R2 as a plane, etc.
The important thing about Rn is that besides being a set, it is a vector space. That is, we

can think of each element x of Rn as an n−dimensional vector. The vector space operations of
addition, scalar multiplication, inner product are defined as:

1. Addition: If x = (x1, · · · , xn) and y = (y1, · · · , yn), then x+ y = (x1 + y1, · · · , xn + yn).

2. Scalar Multiplication: If x = (x1, · · · , xn) and α is a real-number (i.e. a scalar), then
αx = (αx1, · · · , αxn).

3. Inner product: If x = (x1, · · · , xn) and y = (y1, · · · , yn), then the inner product of x and
y, denoted 〈x, y〉 =

∑n
i=1 xiyi. If the elements of Rn are written as column vectors then

〈x, y〉 = xT y, and if the elements of Rn are written as row vectors then 〈x, y〉 = xyT .
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4. Norm: The norm of an element x of Rn is written as ‖x‖ and is defined as ‖x‖ =
√
〈x, x〉 =√∑n

i=1 x
2
i . By the Pythagorian formula, we may interpret ‖x‖ as the distance from the orgin

of Rn to the tip of the vector x.

If a, b ∈ Rn, then a < b means that all n-components of a are less than the corresponding
components of b. That is, if a = (a1, . . . , an), b = (b1, . . . , bn), then a < b implies ai < bi, i =
1, . . . , n. Repeating this idea we can define what a ≤ b, a ≥ b, and a > b mean (I am not repeating
the definitions to save space; they are obvious). The meaning of a = b is standard. Of course, given
any two elements of Rn none of these relations might hold. The only exception is in R1, when at
least one of these relations always holds for any two elements.

If a ∈ Rn, then we will take a → ∞ to mean that all components of a go to infinity. Similarly,
a → −∞ means that all components of a go to minus infinity.

2.2 Images as elements of a set

A critical step in carrying out applied mathematical research is to select a mathematical object
to represent the physical thing we want to analyze. Depending on the kind of analysis we want
to conduct (e.g. which property of the physical object we want to emphasize) the same physical
object can be represented by very different mathematical objects. Here we set out to represent an
image as an element of Rk.

Informally speaking a digital image is a finite grid of pixels and each pixel has value (also called
its intensity). Suppose the grid is two dimensional and has n × m pixels. Then we can scan the
grid from top left to bottom right in raster fashion and stack all the intensity values in order as an
k = n ×m column vector. Conversely, given a k = n ×m long column vector we can sequentially
insert the components of the vector in the grid in raster fashion to get an image.

What we have achieved in doing this is the following: We have identified images as elements
of Rk. This identification has some interesting properties: Each image is a unique element of Rk,
and every element of Rk is an image. Further, the set of all possible images is identical to the set
of all elements of Rk, and “similar” elements of Rk are images with a “similar” appearance.

On the other hand, this representation of images does not preserve neighborhoods. That is,
pixel intensities from neighboring pixels in the grid are not found in neighboring components of its
representation as an element of Rk.

Problem: Can you extend this idea to represent a Diffusion Tensor Image (DTI)? At every pixel
of a DTI image, we have a 3× 3 matrix of numbers instead of a single intensity.

2.3 Subsets and the Power set

To return to set theory, we now develop the notion of a subset and the power set of a set:

Definition: A set A is a subset of B if every element of A is an element of B (i.e. a ∈ A ⇒ a ∈ B).
The empty set ∅ is a subset of every set.

“A is a subset of B” is written as A ⊂ B. Some important subsets of R are:

The closed interval denoted [a, b]: [a, b] = {x | a ≤ x ≤ b}.
The open interval denoted (a, b): (a, b) = {x | a < x < b}.

3



The following natural chain of subsets is important:

N ⊂ N0 ⊂ Z ⊂ Q ⊂ R.

Definition: The power set of a set A is the set of all subsets of A. The power set of A is denoted
2A.

2.4 Set theoretic operations

You have probably seen the following set theoretic operations before:

1. Intersection: A ∩B = {a | a ∈ A and a ∈ B}.

2. Union: A ∪B = {a | a ∈ A or a ∈ B}.

3. Difference: A \B = {a | a ∈ A and a /∈ B}.

4. Symmetric Difference: A△B = (A \B) ∪ (B \ A).
The symmetric difference of two sets is a set containing elements that only belong to one of
sets.

5. Complement: If A ⊂ B, then Ã = B \ A.

Two sets A and B are disjoint if A ∩B = ∅.
The following theorem, called deMorgan’s theorem will be useful later:

DeMorgan’s Theorem: ˜∪nAn = ∩nÃn, ∩̃nAn = ∪nÃn.

2.5 Partition

Definition: If Ai, i = 1, . . . , n are subsets of A, i.e. Ai ⊂ A, with the property that Ai ∩ Aj = ∅
for i 6= j, and ∪iAi = A, then the sets Ai are called a partition of A.

You should visualize a partition as shown in figure 1 (page 5):

2.6 Cartesian product

We now come to an important idea:

Definition: The Cartesian product or simply the product of two sets A and B, denoted A×B, is
the set of all ordered pairs of elements of A and B, i.e.

A×B = {(a, b) | a ∈ A, b ∈ B}.

You should visualize Cartesian products as shown in figure 2 (page 5).

Warning: In general, A×B is not equal to B ×A.
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Set A

A1

A2

A3

A4

Figure 1: Set A partitioned by A1, A2, A3, A4

Set A

Set B

Set A×B

a

b

(a, b)
b b

b b

b b

Figure 2: The Cartesian product of two sets
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Analogous to the definition of the product of two sets, we can define a product of n sets as

A1 ×A2 × . . .×An = {(a1, . . . , an) | ak ∈ Ak, k = 1, . . . , n}.

Comment: Given a set A we will often take products of the set A with itself, e.g. A × A or
A×A×A× . . .×A.

If [ai, bi], i = 1, . . . , n are intervals in R, then
∏n

i=1[ai, bi] = [a1, b1]× [a2, b2]× . . .× [an, bn] is a
cube in Rn. If (−∞, ai], i = 1, . . . , n are half-infinite intervals, then

Ha =
n∏

i=1

(−∞, ai] (1)

is an half-infinite cube in Rn.
Finally, Rn ×Rm = Rn+m.

3 Functions

We want to define functions on arbitrary sets, and not just numbers. If you think of functions as
something that is given by a numerical formula, such as f(x) = x2, then I urge you to read this
section very carefully and change your point of view.

Given two arbitrary sets A and B, we want to define a function f from set A to set B in the
following way: the function takes every element a ∈ A and associates with it a unique element
b ∈ B. By “a unique element b ∈ B” we mean that if the function associates the element b1 with a,
then it cannot associate an element b2 6= b1 with the same a. Since associating an element a ∈ A
with an element b ∈ B is the same as creating the ordered pair (a, b), we have the definition:

Definition: A function from set A to set B, denoted f : A → B, is the set of ordered pairs

f = {(a, b) | a ∈ A, b ∈ B, (a, b1) ∈ f and (a, b2) ∈ f only if b1 = b2}.

Some terminology and notation used with functions: We say that the function f : A → B
maps the set A to set B. The set A is called the domain of the function. The set B is called
the co-domain or the range of the function. We will take the notation f(a) to mean the element b
that a is associated with. We call f(a) the “value of the function f at a” or the “evaluation of the
function at a”. Please do not refer to f(a) as the function. The function is f just by itself, while
f(a) is one element in B.

I emphasize that this definition works for any two sets A and B. The elements of these sets
need not be numbers. The elements can be abstract mathematical objects. Here is one example
of this:

Example: Let A = {sin, cos, tan} be a set containing ordinary trignometric functions sin, cos, tan,
and let B = {− sin, cos, sec2} be a set containing ordinary trignometric functions − sin, cos, sec2.
Define a function f : A → B by:

f = {(sin, cos), (cos,− sin), (tan, sec2)},
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so that f(sin) = cos, f(cos) = − sin, and f(tan) = sec2. You will easily recognize the function f
as the familiar “differentiation” of elementary calculus. Differentiation is a function from A to B.
End of example

It might help your intuition to visualize any function f : A → B as a table with the first column
containing all elements of A, and the second column containing corresponding elements of B:

Element of A Paired element of B

a1 b1
a2 b2
. . . . . .

The requirement that each element of A be paired with a single element of B simply means
that each element of A can occur in only one row of the table. An element of B can occur in more
than one row.

In some applications, it helps to visualize the function as a slot machine in which we can put
any single element of A and from which comes a single element of B:

f f(x)x

Figure 3: Function

When the domain of a function is a finite set, we often define the function by writing it out as
follows:

f(a) =





b1 if a = a1
b2 if a = a2
· · · · · ·
bn if a = an

We will now extend the notation used with functions. Suppose f : A → B is a function from A to
B. Let A′ ⊂ A, then we take f(A′) to be the subset of B defined by f(A′) = {b | b = f(a), a ∈ A′}.

Similarly, if B′ ⊂ B then we take f−1(B′) to be the subset of A defined by f−1(B′) = {a |
f(a) ∈ B′}. Note that f−1 may or may not be a function (why?).

Finally, note that if the elements of A and B are numbers, then (if we are lucky) we might have
a closed form formula for f(a) such as f(a) = a2. This is how we are introduced to functions in
high school, but as you can see, it is a very special case.

3.1 Image as a function

Images can also be represented by functions. Suppose that the grid G has n×m pixels. Then, we
can consider an image as something that associates a number (the pixel intensity) with each pixel.
That is, we can model the image as a function I : G → R. Thinking of images as functions is a
very powerful tool.
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3.2 Functions from Rn to Rm

Suppose f : Rn → Rm. Then, f accepts as an input an ordered n-tuple of real numbers (the
element of Rn) and produces as an output an ordered m-tuple of real numbers (the element of
Rm). Any such function can be regarded as a collection of m functions f1, f2, · · · , fm : Rn → R as
follows: If y = f(x), then

y =




y1
y2
...
ym



=




f1(x1, · · · , xn)
f2(x1, · · · , xn)

...
fm(x1, · · · , xn)



= f(x).

The functions f1, · · · , fm are called the components of the function f .
If the component functions are differentiable, then the matrix

Jf =




∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

· · · · · · · · · · · ·
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn




is the Jacobian matrix or simply the Jacobian of f . Then Jf (a) denotes the value of Jj at x = a.
If f maps Rn to Rn (equal dimensions), then Jf is a square matrix. If A is a “small” subset in

the first copy of Rn and B = f(A), and a ∈ A, then

vol (A)

vol (B)
∼=| detJf (a) |, (2)

where, vol (A) =
∫
A dx, vol (B) =

∫
B dy. The above relation becomes exact in the limit as

vol (A) → 0, but is quite useful in the approximate form as well.

3.3 Composition of functions

If f : A → B, and g : B → C, then we can define a function, called the composition of f and g, and
denoted g ◦ f , as g ◦ f : A → C given by (g ◦ f)(a) = g(f(a)) for all a ∈ A. The notation (g ◦ f)(a)
means the following: the function g ◦ f is evaluated at a. The brackets around g ◦ f are to suggest
that you think of g ◦ f as a single function. The composition of functions is illustrated in figure 4.

Set A Set B Set C
f g

g ◦ f

Figure 4: Composition of functions
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4 Probability and Random Variables

This section is very intuitive and informal. We begin by adopting the following informal description
of randomness:

1. There is an “experiment” that we carry out. Every time we carry out the experiment, we
measure a quantity. The measured quantity is an element of Rn.

Each occurrence of the experiment is called a trial of the experiment.

2. Repeated trials of the experiment do not necessarily give the same measurement. This is
randomness.

4.1 Random Variable

By a random variable x we mean a variable which can take all of the values that occur in infinite
trials of the experiment. These values are all in Rn. Suppose A is a subset of Rn. Then by
“the probability that a random variable x takes values in A” we mean the following: Repeat the
experiment N times and in each trial check whether the value of x is in A. Divide the number of
times this happens by N , and take the limit of the ratio as N → ∞. This limit is the probability
that x takes values in A, denoted P{x ∈ A} :

P{x ∈ A} = lim
N→∞

no. of times x ∈ A

N
.

The set A in the above definition is called an event. In a trial if x ∈ A we say that event A
happened. We also call the probability that x takes values in A the probability of event A. This
terminology is standard.

Some further comments:

1. If x takes values in Rn, then we say that x is an n−dimensional (n−dim) random variable.

2. We often simplify the notation P{x ∈ A} to P{A} when the random variable x is clear from
context. When there is the possibility of ambiguity, we revert back to using P{x ∈ A}.

3. The measured value of x in a trial is called a sample of x or a realization of x. Sometimes
the notation x = a is used to indicate that a is a sample of x in an experiment.

Warning: The above is a very simplified version of the standard mathematical definition of a
random variable. There are many shortcomings of this intuitive approach. The most significant
shortcoming you should be especially aware of is this: measure theory shows that it is not possible
to define the probability P{A} for all events, i.e. for all subsets A ⊂ Rn (any attempt to do so
leads to logical inconsistencies). It is only possible to define probabilities of certain events which
are called measurable. Defining a measurable event is a complicated matter, and we will avoid the
definition. Instead we will adopt the following idea: The only events A ∈ Rn whose probabilities
we will calculate will be those that have a well-defined n-dimensional volume

∫

A
dx1 . . . dxn
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(sets with volume 0 and ∞ are included). Note that this means events in R1 must have a length,
events in R2 must have an area, etc. Such sets are measurable, and as long as we stick with them,
we have no fear of inconsistency.

A second simplification we made above is the idea that the probability is defined as the limit
of a quantity as the number of trials goes to infinity. In complicated problem this definition runs
into trouble. Modern probability theory gets around this by adopting an axiomatic approach (due
to the Russian mathematician Kolmogorov) to define probability. This too is too complicated for
us, and we will proceed by adopting the above simplification. The simplification will suffice for us,
because we will not be dealing with complex problems that require the axiomatic approach.

4.2 Diagrams

Experiment Rn

x

Trial

Figure 5: The convention for drawing diagrams

Later in these notes, we will create complex experiments from simple experiments. The defini-
tions of complex experiments will be easier to understand with the help of diagrams. The convention
we will adopt for diagrams is the following: We will draw two sets as shown in figure 5. The first
set will be the set of all trials (any graphical point in this set will represent a trial), and we will
simply call this set the experiment. The second set will be the space Rn and a labeled arrow, say
labeled x, from the experiment to Rn will indicate the value that the random variable x takes for
the trial which is the beginning of the arrow.

4.3 A formula for calculating probability

If events A1, . . . , An partition event A, then

P{A} =
n∑

i=1

P{Ai}.

4.4 Conditional probability

The conditional probability of event A given event B, denoted P{A | B}, is the probability that
event A occurs given that event B occurs

P{A | B} =
P (A ∩B)

P (B)
. (3)

This is illustrated in figure 6.
Since P{A ∩B} = P{A | B} × P (B), and P{A ∩B} = P{B ∩A} = P{B | A} × P{A},

P{A | B} = P{B | A} × P{A}
P{B} . (4)

This is known as Bayes’ Theorem.
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Rn

Event A Event B

Event A ∩B

Figure 6: Conditional probability

4.5 Independent Events

Events A and B are independent if P{A ∩ B} = P{A} × P{B}. For independent events A and
B, P{A | B} = P{A} and P{B | A} = P{B}. Thus, knowing that one event occurred does not
change the probability of the other event occuring. Loosely speaking, we say that independent
events do not provide any information about each other.

4.6 Probability density and distribution functions

With every n-dim random variable x we associate a probability density function (pdf) fx : Rn →
[0,∞) so that the probability of an event A is obtained as

P{A} = P{x ∈ A} =

∫

A
fx(u)du.

The pdf is required to satisfy
∫∞
−∞ fx(u)du = 1. We will allow the pdf to contain delta functions.

The strategy to calculate a pdf of an n-dim random variable x from the basic description of
the problem is this. Let a ∈ Rn be a point and Aa be a small cube centered at a with sides
∆x1,∆x2, . . . ,∆xn. Let vol = ∆x1×∆x2× . . .×∆xn. First calculate the probability of the event
Aa, i.e. P{Aa}. Then set

fx(a) = lim
vol (Aa)→0

P{Aa}
vol (Aa)

.

A very useful approximation for calculating P{x ∈ A} is possible when A has a small (infinites-
imal) volume, if a is any element of A then,

P{x ∈ A} =

∫

A
fx(u)du ∼= fx(a) vol(A).

We will use this approximation frequently below.
We also associate another function with a random variable x. It is called the cumulative distri-

bution function (cdf), and is denoted Fx : Rn → [0, 1]. The value Fx(a) of the cdf at a ∈ Rn is the
probability that the random variable x falls in the half-infinite cube Ha, i.e.

Fx(a) = P{Ha} =

∫

Ha

fx(u)du. (5)

That is, Fx(a) is the probability that x ≤ a.
The cdf has the following properties:

11



1. The cdf Fx only takes values between 0 and 1,

2. lima→∞ Fx(a) = 1,

3. lima→−∞ Fx(a) = 0.

Given the pdf, we can calculate the cdf from equation (5). The converse is harder to do, unless
the cdf is differentiable. If it is differentiable, then

fx(a) =
∂n

∂x1 . . . ∂xn
Fx |x=a,

where ∂n

∂x1...∂xn
is the mixed partial derivative of Fx.

From now on, whenever we say “x is a random variable”, we will assume that it has a pdf and
a cdf.

4.7 Function of a random variable

Suppose that x is an n-dim random variable and f : Rn → Rm is a function. Then y = f(x) is
a m-dim random variable – in every trial, y takes the value f(x). The cdf and pdf of y can be
calculated from the cdf and pdf of x as follows:

CDF:

The cdf of y is

Fy(a) = P{y ∈ Ha} = P{x ∈ f−1(Ha)}.
This idea is illustrated in figure 7.

Rn Rm

f

Haf−1(Ha)

Figure 7: Calculating the cdf of a function of a random variable

Example : Suppose x is a 1-dim random variable, and f : R1 → R1 is the square function so that
y = f(x) = x2. Then, Ha = (−∞, a] and

f−1(Ha) =

{
∅ if a < 0

[−√
a,
√
a] if a ≥ 0.

Hence,

Fy(a) =

{
0 if a < 0

Fx(
√
a)− Fx(−

√
a) if a ≥ 0.
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PDF:

The pdf of y is obtained from the pdf of x as follows. Let Aa ∈ Rm be a small cube centered at
a ∈ Rm. Assume f−1(A) is an event in Rn. Then

fy(a) = lim
vol (Aa)→0

Px(f
−1(Aa))

vol (Aa)
. (6)

There is one commonly occurring special case where this formula simplifies. This is the case
where n = m, i.e. f : Rn → Rn, and for every a ∈ Rn, the set f−1(a) = {b1, . . . , bk} is finite (the
number of elements of f−1(a) need not be fixed, they can depend on a). Further suppose that Jf ,
the Jacobian matrix of f , exists everywhere in Rn.

a
Aa

f
b1

b2

B1

B2

Figure 8: Calculating the pdf of a function of a random variable.

Then we have the situation illustrated in figure 8. Let Jf (bi) be the n× n Jacobian matrix at
bi:

Jf (bi) =




∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

· · · · · · · · · · · ·
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn



(bi).

From elementary multivariate calculus we know the following: For a infinitesimal cube Aa

centered at a with sides ∆y1∆y2 . . .∆yn, the set f−1(Aa) consists of k infinitesimal disjoint sets,
f−1(Aa) = B1 ∪ B2 ∪ . . . ∪ Bk, with bi ∈ Bi and Bi ∩ Bj = ∅ for i 6= j. Further, vol (Aa) =
vol (Bi)× | detJf (bi) |.

The event y ∈ Aa is identical to the event that x is in some Bi. Because Bi partition f−1(Aa)

P{y ∈ Aa} = P{x ∈ f−1(Aa)}

=
k∑

i=1

P{Bi}

≃
k∑

i=1

fx(bi) vol (Bi)

≃
k∑

i=1

fx(bi)
vol (Aa)

| det Jf (bi) |
. (7)

Thus,

P{y ∈ Aa}
vol (Aa)

≃
k∑

i=1

fx(bi)

| det Jf (bi) |
.
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This equation becomes exact in the limit as vol (Aa) → 0. Thus

fy(a) = lim
vol (Aa)→0

P{y ∈ Aa}
vol (Aa)

=
k∑

i=1

fx(bi)

| detJf (bi) |
. (8)

To use this formula the variables bi on the right hand side have to be expressed in terms of the
variable a. The following example illustrates this:

Example : Let’s calculate the pdf for the square function. Since y = f(x) = x2. Jf (b) = ( dfdx)(b) =
2b, and | det Jf (b) |= 2 | b |.

If a < 0, then f−1(a) is empty. If a = 0, then f−1(a) = {0}, and if a > 0, then f−1(a) =
{−√

a,
√
a}. Thus, using equation (8):

fy(a) =





0 if a < 0
∞ if a = 0

fx(−
√
a)+fx(

√
a)

2
√
a

otherwise.

Example : Let f : Rn → Rn be defined by f(x) = Ax, where A is an n × n invertible matrix.
That is,

f(x) = (f1(x1, . . . , xn) , . . . , fn(x1, . . . , xn))

= (a11x1 + a12x2 + . . . + a1nxn , . . . , an1x1 + an2x2 + . . . annxn).

Thus,

Jf =




∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

· · · · · · · · · · · ·
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


 =




a11 a12 · · · a1n
· · · · · · · · · · · ·
an1 an2 · · · ann




= A.

Further, because A is an invertible matrix, f−1(v) = A−1v, so that

fy(v) =
fx(A

−1v)

| detA | .

4.8 Joint random variables and marginalization

We now arrive at an important concept. Suppose that at each trial of the experiment we measure
two quantities instead of one. Now, we have two random variables, say x and y, and they take
values together in every trial.

There is a very convenient way of regarding such random variables as a single random variable.
Suppose the x is n-dim and y is m-dim. Then, the ordered pair x, y is n+m-dim, We regard the
ordered pair x, y as a single random variable called the joint random variable x, y. The joint random
variable has cdf and pdf Fx,y and fx,y. These are the called the joint cdf and joint pdf respectively.

To understand the relation between the joint and individual cdfs, it is convenient to relate the
events in Rn and Rm with events in Rn+m:

1. An event A ⊂ Rn and B ⊂ Rm defines the event A×B ⊂ Rn+m. This is illustrated in figure
9. Of course, not every event in Rn+m is defined this way.
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Event A

Event B

Rn

Rm

Event A×B

Rn+m

Figure 9: The event A×B in Rn+m.

2. If A is an event in Rn, then x ∈ A if and only if (x, y) ∈ A × Rm. One consequence of
this is that in repeated trials, the number of times x ∈ A is identical to the number of times
(x, y) ∈ A×Rm, so that P{x ∈ A} = P{(x, y) ∈ A×Rm}.

3. Similarly, if B is an event in Rm then, y ∈ B if and only if (x, y) ∈ Rn × B, and similar to
the above, P{y ∈ B} = P{(x, y) ∈ Rn ×B}.

We can now relate the cdfs of the joint random variable to the cdfs of the individual random
variables

Fx(a) = P{x ∈ Ha} = P{(x, y) ∈ Ha ×Rm} = Fx,y(a,∞), (9)

Fy(a) = P{y ∈ Ha} = P{(x, y) ∈ Rn ×Ha} = Fx,y(∞, a). (10)

A similar argument (which we skip for now) also relates the pdf of the joint random variable,
to the pdfs of the individual random variables:

fx(a) =

∫ ∞

−∞
fx,y(a, v)dv, (11)

fy(a) =

∫ ∞

−∞
fx,y(u, a)du. (12)

We refer to this calculation of cdfs and pdfs of x and y from the joint cdf and pdf of x, y as
marginalization, and the cdfs and pdfs of x and y calculated from the joint cdf and pdf as the
marginal cdfs and the marginal pdfs.

4.9 Independent random variables

Let x, y be joint random variables with x n-dim and y m-dim. Then, x and y are independent

random variables if for every event A ∈ Rn and B ∈ Rm,

P{A×B} = P{A} × P{B}. (13)
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The probability on the left hand side is of this equation is calculated using the joint random
variable x, y and the probabilities on the right hand are calculated using the random variables x
and y individually.

It is easy to show that the random variables x and y are independent if and only if

Fx,y(a, b) = Fx(a)Fy(b), and (14)

fx,y(a, b) = fx(a)fy(b) (15)

for all a, b. Thus we say that two random variables are independent if and only if their joint cdf
(pdf) is a product of their marginal cdfs (pdfs).

4.10 Conditioning of random variables

If x and y are n-dim and m-dim random variables and A ⊂ Rn and B ⊂ Rm are events, then the
conditional probability of A given B is P{A | B} given by

P{A | B} =
P{A×B}
P{B} , (16)

which is short form for

P{x ∈ A | B} =
P{(x, y) ∈ A×B}

P{y ∈ B} . (17)

Recall some notation. In Rn, the notation u ≤ w means that all n components of u are less
than or equal to the corresponding components of w, i.e. ui ≤ wi, for i = 1, · · · , n. Setting ∆a =
(∆a1, · · · ,∆an), the inequality a ≤ x ≤ a+∆a represents the set of inequalities ai ≤ xi ≤ ai+∆ai
which is a cube in Rn, and thus an event in Rn. Similarly, b ≤ y ≤ b+∆b is an event in Rm. The
conditional probability of the event a ≤ x ≤ a+∆a given the event b ≤ y ≤ b+∆b is

P{a ≤ x ≤ a+∆a | b ≤ y ≤ b+∆b} =
P{a ≤ x ≤ a+∆a, b ≤ y ≤ b+∆b}

P{b ≤ y ≤ b+∆b}

≈ fx,y(a, b) vol (∆a) vol (∆b)

fy(b) vol (∆b)
.

Thus,

P{a ≤ x ≤ a+∆a | b ≤ y ≤ b+∆b}
vol (∆a)

≈ fx,y(a, b) vol (∆a) vol (∆b)

fy(b) vol (∆a) vol (∆b)
,

and,

lim
vol (∆a)→0, vol (∆b)→0

P{a ≤ x ≤ a+∆a | b ≤ y ≤ b+∆b}
∆a

=
fx,y(a, b)

fy(b)
.

The quantity on the right-hand side of the above equation is called the conditional pdf of x given
y and denoted fx|y(a | b), so that

fx|y(a | b) = fx,y(a, b)

fy(b)
=

fx,y(a, b)∫∞
−∞ fx,y(u, b)du

. (18)

16



If A is any event in Rn, then the probability that x takes values in A given that y = b is

P{A | {b}} =

∫

A
fx|y(u | b)du. (19)

Thus the conditional cdf Fx|y is defined by

Fx|y(a | b) =
∫

Ha

fx|b(u, b)du. (20)

Using equation (18) we obtain:

fy|x(b | a) = fx|y(a | b)× fy(b)

fx(a)
. (21)

This formula is called Bayes rule and is probably the most important formula in this course.
One final comment. If x and y are independent random variables, then

fx|y(a | b) = fx,y(a, b)

fy(b)
=

fx(a)fy(b)

fy(b)
= fx(a). (22)

Similarly, fy|x(b | a) = fy(b).

Example: Suppose x and y are n-dim random variables which are observed simultaneously in an
experiment. Let z = x+ y. We want to calculate the pdf of z.

First, we will calculate the conditional pdf fz|y from fx|y. Suppose y has a fixed value y = c,
then z = x+ c. We take this equation to mean that z is a function of x, i.e. z = f(x) = x+ c. For
this function, the Jacobian matrix is identity for all x, hence its determinant is 1 for all x. And
f−1(b) = b− c, so that

fz|y(b | c) = fx|y(b− c | c).

Therefore,

fz(b) =

∫ ∞

−∞
fz|y(b | c)fy(c)dc

=

∫ ∞

−∞
fx|y(b− c | c)fy(c)dc

=

∫ ∞

−∞
fx,y(b− c, c)dc.

An interesting special case is when x and y are independent random variables. In that case,
fx,y(b− c, c) = fx(b− c)fy(c), so that

fz(b) =

∫
fx(b− c)fy(c)dc.

That is fz = fx ⊗ fy, where ⊗ is the convolution operator. This special case is important in many
applications. End of example.

The technique used in the above example is often used to calculate the pdf of a random variable
z which is a function of two random variables x, y.
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Example: Suppose x, y are two joint 1-dim random variables. Let r =
√
x2 + y2. We want to

calculate the pdf of r from the pdfs of x and y.
There are many ways of solving this problem. One interesting way is to introduce another

random variable θ = tan−1(y/x) such that the function F : R2 → R2 given by

F (x, y) = (
√
x2 + y2, tan−1(y/x)) = (r, θ)

is one-to-one with a well defined Jacobian matrix. Then, we consider (r, θ) as a joint random
variable, and use the Jacobian result to get

fr,θ(r, θ) =
fx,y(F

−1(r, θ))

| det JF (F−1(r, θ)) | .

Finally, we marginalize to get fr:

fr(r) =

∫
fr,θ(r, θ)dθ.

I encourage you to work out in detail the above formulae for the sample case where x and y are
independent random variables, i.e. fx,y = fxfy.

4.11 Summary of Recipes

So far we used several tricks in the examples to calculate the pdfs of functions of random variables.
These tricks are actually general procedures which can often be used in solving real-life problems.
I list these procedures below as general recipes:

Recipe 1 (cdf by definition):

This is the mother of all recipes and always works. Given y = f(x), calculate the cdf of y as
Fy(a) = Fx(f

−1(Ha)) =
∫
f−1(Ha)

fx(u)du. This may or is not always computationally tractable.

Recipe 2 (pdf by definition):

This is the pdf version of the above recipe. Given y = f(x), calculate the pdf of y by first
calculating the probability of the event Aa (remember, this is a small cube centered at a). Thus
P{Aa} = P{f−1(Aa)} =

∫
f−1(Aa)

fx(u)du. Then,

fy(a) = lim
vol Aa→0

P{Aa}
vol Aa

.

The feasibility of this method depends on whether the integral
∫
f−1(Aa)

fx(u)du and the limit is
tractable.

Recipe 3 (pdf by Jacobian):

If f : Rn → Rn with a well defined Jacobian matrix and if f−1(a) is a finite set of points. Then
the pdf of y = f(x) is given by the formula of equation (8). This method requires the domain and
co-domain of f to have the same dimension.
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Recipe 4 (pdf by conditionals):

If z = f(x, y) such that for a fixed y the function f is from Rn to Rn and satisfies the requirements
of recipe 3. Then, fix y and use recipe 3 to calculate fz|y from fx|y. From this, obtain the joint
distribution fz,y = fz|yfy, and marginalize this to get fz =

∫
fz,ydy.

Recipe 5 (pdf by auxiliary variables):

If z = f(x, y), then introduce a new random variable w = g(x, y) such that function F defined by
F (x, y) = (f(x, y), g(x, y)) = (z, w) is one-to-one and has a Jacobian. Use recipe 3 to get the pdf
fz,w and marginalize to get the pdf fz =

∫
fz,wdw.

These recipes can be used often, but are, of course, not exhaustive.

4.12 Repeated trials

Because the measurement in an experiment is random, we often conduct repeated trials to get many
measurements. To analyze this, we associate a random variable with each trial. For n trials, we
have n random variables, x1, . . . , xn. To analyze all of these random variables, we consider them as
joint random variables that are independent, but identically distributed. What this means is the
following: Joint random variables: this really means that we consider the n repeated trials of the
experiment as a single trial of a super-experiment that yields a single n−tuple of measurements.
Independent random variables: Taking x1, . . . , xn as independent random variables implies that any
one of the n experiments has no influence on any other. Identically distributed: This means that
the marginal probability densities of x1, . . . , xn are all equal (since they are repeated trials of the
same experiment). We denote the marginal probability distribution by fx.

The term i.i.d. is often used to describe independent identically distributed random variables.
When x1, . . . , xn are i.i.d.,

fx1,...,xn
(a1. . . . , an) = fx1

(a1)× . . .× fxn
(an) (Independence)

= fx(a1)× . . .× fx(an). (Identically distributed) (23)

5 Convergence of Random Variables

Convergence of random variables is probably the most advanced topic we will need. Convergence
of random variables is important in estimation theory because we will often have the following
situations:

1. We conduct n repeated trials and calculate a single number from the n measurements as an
estimate of something. For example, we may calculate the average of the n measurements to
estimate some underlying constant. We want to know what happens to our estimate as we
increase n, the number of measurements (trials). In particular we want to know whether this
estimate converges, and if it does, then does it converge to the true value of the underlying
constant?

We think of the situation in the following way: First, we imagine a single super(mega?)-
experiment consisting of infinite trials of the basic experiment. Each trial of this super-
experiment yields an infinite sequence of measurements. To this super-experiment, we attach
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an infinite sequence of random variables x1, . . . , xn, . . . where xn corresponds to calculating a
single number from the first n measurements. We then ask whether the sequence of random
numbers converges to the desired constant. What we mean by this convergence is explained
below.

2. Once we know what it means for a sequence of random variables to converge to a constant, we
can immediately generalize the idea to a sequence of random variables converging to another
random variable. Suppose, as above, that x1, . . . , xn, . . . is a sequence of random variables
defined on a super-experiment. Further suppose that x is another random variable associated
with the super-experiment. Then we say that the sequence of random variables x1, . . . , xn, . . .
converges to x if the sequence of random variables x1 − x, . . . , xn − x, . . . , converges to 0.

Although we used the idea of a super-experiment to motivate convergence of random variables,
the definition (given below) only requires that there be some experiment in which we have a sequence
of random variables x1, . . . , xn, . . . plus another random variable x that the sequence may converge
to.

There any many different (non-equivalent) notions of convergence of random variables. We will
use two notions called convergence in probability and convergence in distribution.

Definition: The sequence of random variables x1, . . . , xn, . . . , converges in probability to a con-
stant c if, for every ǫ > 0,

lim
n→∞

P{| xn − c |> ǫ} = 0. (24)

Convergence in probability is written as xn
P→ c.

2ǫ

Increasing n

fxn

c

Figure 10: Convergence in Probability.

The definition is illustrated in Figure 10 (page 20) for R1 valued random variables. We pick
any positive number ǫ which defines the half width of an interval around c. Then, we calculate the
probability P{| xn− c |> ǫ} = 1− ∫ ǫǫ fxn−c(u)du and check whether it goes to zero as n goes to ∞.

If it does go to zero for any ǫ, then we say that xn
P→ c.

Definition: The sequence of random variables x1, . . . , xn, . . . , converges in probability to a random

variable x, if xn − x
P→ 0.

Convergence in probability is a very useful notion in estimation theory. Convergence in distri-

bution is a slightly weaker notion, but is also useful:
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Definition: The sequence of random variables x1, . . . , xn, . . . , converges in distribution to x a ran-
dom variable x if the cdf Fxn

converges to the cdf Fx (this convergence is the ordinary convergence
of functions). Convergence in distribution is denoted as Fxn

→ Fx.

Some comments on the difference between convergence in probability and convergence in dis-
tribution:

1. Convergence in distribution is really a convergence of the cdf as a deterministic function. It
does not address the underlying “randomness” in the experiment. Convergence in probability
does.

2. If a sequence of random variables converge in probability to another random variable, then
they also converge in distribution. But the converse is not true. This is what we mean by
“convergence in distribution is a weaker notion than convergence in probability”.

3. The definition of convergence in distribution does not require the random variable sequence
x1, . . . , xn, . . . and the random variable x to be defined in the same experiment. All that
is required is that their cdfs exist. In contrast, convergence in probability requires that
x1, . . . , xn, . . . and x be defined on the same experiment.

4. You will not be required to be prove that a sequence of random variables converges to another
random variable. However, you will encounter theorems which say that a certain sequence of
random variables converges to another random variable in probability or in distribution and
you are required to understand what this means.

There are two important theorems in probability that use the notion of convergence in proba-
bility and convergence in distribution. The theorems are called the (weak) law of large numbers
and the central limit theorem

Theorem: (The law of large numbers) If x1, . . . , xn, . . . is a sequence of i.i.d. random variables
with mean µ, then the sequence of random variables defined by x̂n = 1

n(x1 + . . .+ xn) converges in

probability to µ, i.e. x̂n
P→ µ.

Theorem: (The central limit theorem) Let x1, . . . , xn, . . . be a sequence of i.i.d. random vari-
ables with mean µ and a finite variance-covariance matrix Σ. If x̂n = 1

n(x1 + . . . + xn), then the
sequence yn =

√
n(x̂n−µ) converges in distribution to N (0,Σ) (the notation N (0,Σ) will be given

meaning below).

6 Expected Values and Moments

Definition: If x is an n-dim random variable, and g : Rn → Rm is a function, then the expected

value of g, denoted E(g) or E[g], is

E(g) =

∫ ∞

−∞
g(u)fx(u)du. (25)

The notation for expected values is a little peculiar. When we have a formula for g(x), then we
write E(formula for g(x)) instead of E(g), e.g. if g(x) = xTx, then we write E(xTx) for E(g). Also
it is common to use x as the variable of integration so that E(g) =

∫
g(x)fx(x)dx. When written
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this way, the subscript in the probability density fx should not be viewed as the same variable as
the one used in the integration.

You are probably familiar with E(x) =
∫
xfx(x)dx as the mean of the random variable x. The

mean of the random variable x is also written as x̄.
The notation for E suggests that we think of E as a function - it accepts a function g as an

input and produces a vector E(g) as an output. When viewed this way, we call E the expectation

operator. A very important property of the expectation operator is that it is linear:

Theorem: If g, h : Rn → Rm, then for all real numbers α, β,

E(αg + βh) = αE(g) + βE(h).

Proof:

E(αg + βh) =

∫
(αg(u) + βh(u))fx(u)du

= α

∫
g(u)fx(u)du+ β

∫
h(u)fx(u)du

= αE(g) + βE(h).

Later, we will use the following properties of expected values:

1. If c is a constant, then E[c] = c. The proof is simple: E[c] =
∫
cfx(u)du = c

∫
fx(u)du = c.

2. If x is an n-dim random variable with µ = E[x] and c ∈ Rn is a constant, then E[xT c] = µT c.
For a proof, begin by noting that

µ =




µ1

· · ·
µn


 =

∫



x1
· · ·
xn


 fx(u1, . . . , un)du1 . . . dun.

so that µk =
∫
xkfx(u1, . . . , un)du1 . . . dun = E[xk] for k = 1, . . . , n.

Thus, E[xT c] = E[
∑n

k=1 xkck] =
∑n

k=1E[xkck] =
∑n

k=1 µkck = µT c.

3. If x is an n-dim random variable with µ = E[x] and c ∈ Rn is a constant, then

E[‖x− c‖2] = ‖µ− c‖2 + E[(x− µ)T (x− µ)].

The proof is as follows:

E[‖x − c‖2] = E[(x− c)T (x− c)]

= E[(x− µ+ µ− c)T (x− µ+ µ− c)]

= E[(x− µ)T (x− µ) + 2(x− µ)T (µ− c) + (µ− c)T (µ− c)]

= E[(x− µ)T (x− µ)] + 2E[(x− µ)T (µ− c)] + E[(µ − c)T (µ − c)].

Consider the second the third term:

E[(µ − c)T (µ− c)] = (µ− c)T (µ− c) (since (µ − c)T (µ− c) is a constant.)

E[(x− µ)T (µ− c)] = E[xT (µ − c)− µT (µ − c)]

= E[xT (µ − c)]− µT (µ− c)]

= E[xT (µ − c)]− E[µT (µ − c)]

= µT (µ− c)− µT (µ− c) = 0.
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6.1 Moments

Definition: If x is a 1-dim random variable, then E(xk) is called the kth moment of x and
E((x− x̄)k) is called the kth central moment of x.

The first central moment is always zero. The second central moment is called the variance. The
square root of the second central moment is the standard deviation.

Similar moments and central moments can be defined for n-dim random variables. The following
are especially important:

x̂ = E(x)(Mean) (26)

Cxx = E((x− x̄)(x− x̄)T )(Variance-covariance matrix) (27)

If x is n-dim, then Cxx is an n×n matrix whose i, jth entry is Cxx is E((xi−x̄i)(xj−x̄j)). Thus, Cxx

contains variances of the components of x along the diagonal and the covariances of the components
in other locations. The matrix Cxx is symmetric.

Given two n-dim random variables x and y the cross-covariance matrix is Cx,y = E((x− x̂)(y−
ŷ)T ). If x and y are independent random variables, then the cross-covariance matrix is 0.

7 Discrete Random Variables

So far all our examples and illustrations have implicitly assumed that the pdf of random variables is
a smooth function of its arguments. There is an important class of random variables called discrete

variables whose pdf is a weighted sum of delta functions centered at a1, . . . :

fx(a) =
∑

i

αiδ(a − ai), (28)

where, all αi ≥ 0, and
∑

i αi = 1, and sum may have finite or infinite terms.
Usually we do not talk about the pdf of a discrete random variable. Instead we talk of the

probability distribution px of the random variable:

px(a) =

{
αi if a = ai
0 otherwise.

(29)

Dealing with discrete random variables sometimes requires care. We will deal with this as the
situation arises.

8 Some commonly-used probability density functions

We will need a number of models of probability density functions for solving estimation theoretic
questions. There is an entire discussion of this to come. For now, we will simply list a few
distributions so that we can construct some simple illustrative examples:

8.1 Scalar (univariate) densities

The univariate densities discussed below are illustrated in figure 11 on page 25.
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Normal: This pdf is given by:

fx(x) =
1√
2πσ

exp(−(x− µ)2

2σ2
), (30)

where µ and σ2 are the mean and the variance of the density. The normal density is also called the
Gaussian density. The normal density is also denoted as N (µ, σ).

The normal density has a number of interesting properties which are stated below in the dis-
cussion of the multivariate normal density.

Uniform: The uniform density on the interval [a, b], is

fx(x) =

{
1

(b−a) if x ∈ [a, b]

0 otherwise.
(31)

This density is denoted U(a, b). Note that there is no uniform density over an infinite or a
semi-infinite interval.

Gamma: The Gamma density is defined for non-negative values of its argument:

fx(x) = xk−1 e−x/θ

θkΓ(k)
,

where k > 0 is called shape parameter and θ is called the scale parameter, and Γ is the Gamma
function of calculus. The mean and variance of a Gamma distribution are kθ and kθ2 respectively.

Notice the profound change in shape of this density as k increases from 0 to 1 and beyond.

Poisson: This is a discrete distribution. Its probability function is given by:

p(x) = e−λλ
x

x!
, (32)

for x integer ≥ 0, where E(x) = λ. It turns out that E((x − λ)2) = λ. That is the mean and
variance of a Poisson distribution are equal. The number λ is called the intensity of the Poisson
distribution. The Poisson distribution is denoted Poisson(λ).

The Poisson distribution is used to model the number of photons arriving at a detector in a
finite time interval.

The Poisson distribution has the following property: If independent random variables x1, x2, . . . , xn
are distributed according to Poisson(λ1), Poisson(λ2), . . . , Poisson(λn), then the random variable
x1 + x2 + . . .+ xn is distributed according to Poisson(λ1 + λ2 + . . . + λn).

When the intensity λ is large, the Poisson distribution can be approximated by a normal
distribution with mean λ and variance equal to

√
λ.

Binomial: This is also a discrete distribution. If the probability of one event in a trial is p, then
the probability of observing k events in n trials is given by the Binomial distribution:

f(k) =

(
n
k

)
pk(1− p)n−k. (33)

The mean and variance of the Binomial distribution are np and np(1 − p) respectively. We will
denote the Binomial distribution as B(n, p).
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(a) Univariate normal density (b) Gamma density

(c) Poisson distribution (d) Binomial distribution

Figure 11: Some univariate densities and distributions (from Wikimedia.org)

8.2 Multivariate densities

Multivariate Normal (or multivariate Gaussian): If x is an n-dim random variable then it
has a multivariate normal density N (µ,Σ) if

f(x) =
1

(2π)n/2(det Σ)1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (34)

and µ is the mean and Σ = Cxx is the variance-covariance matrix of the random variable. The
matrix Σ is required to be positive definite and symmetric.

Now that you understand the notation N (µ,Σ), read the central limit theorem again.
The multivariate normal has the following properties:

1. Because the matrix Σ is symmetric and positive definite, there exists an n × n orthonormal
matrix U such that Σ = UTΛU , where Λ is a diagonal matrix with entries λ1, λ2, . . . , λn > 0.
The transposed rows of the U matrix form an orthonormal basis of Rn, (i.e. UTU = UUT =
I). The λk and the (transpose of) the kth row of U form an eigensystem (an eigenvalue +
eigenvector) of Σ.

2. The contours f(x) = c are ellipsoids in Rn with center at µ, the transposed rows of U as the
directions of the axes whose lengths are proportional to

√
λk.

3. Suppose we let Λ1/2 be a diagonal matrix with the kth diagonal entry equal to
√
λk, then the

matrix A = UTΛ1/2U has the property that AA = Σ (check this), and hence A is usually
denoted Σ1/2. If a random variable Z is distributed as N (0, I) and x = µ +Σ1/2z, then x is
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distributed as N (µ,Σ). This is often a useful way of thinking about a multivariate normal
distribution.

4. If C is an m × n matrix with m ≤ n, then the random variable Cx is distributed as
N (Cµ,CΣCT ). We refer to this by saying that “linear combinations preserve normality”.

5. Suppose we partition x as x = (xa, xb), and correspondingly µ as µ = (µa, µb) and Σ as

Σ =

(
Σaa Σab

Σba Σbb

)
, (35)

then, the marginal density of xa is N (µa,Σaa), and the conditional density of xb given xa is

N (µb +ΣbaΣ
−1
aa (xa − µa),Σbb − ΣbaΣ

−1
aaΣab). (36)

6. In the above, if xa and xb has the same dimension, then xa + xb has the normal density
N (µa + µb,Σaa +Σab +Σba +Σbb).

Multinomial: This is a discrete probability distribution. The classic “urn” example describes it
easily. Suppose that an urn has balls with k different colors and that the probability of choosing
a ball with the ith color is pi. We draw n balls and use x = (x1, . . . , xk) to denote the number of
balls of different colors that we have drawn (xi is the number of balls of the ith color). Then x is a
random variable with a multinomial distribution:

f(x) =
n!

x1! . . . xk!
px1

1 . . . pxk

k . (37)

The multinomial distribution has the property that the marginal distribution of xi is Binomial
with parameters n and pi.

9 Parameterized Densities

All of the densities we considered above have parameters (e.g. the mean and the standard deviation
are parameters of the univariate normal). Very often we will explicitly have to consider how the
probability density varies as a function of the parameters. When we need to do this, we will write
the probability density function as fx(u; θ), where u is the value at which the density is evaluated,
and θ is the parameter. If a probability density function contains more than one parameter, then
we often group all the parameters into a single vector of parameters θ.

If a probability density function does not have parameters, then we can create a parameterized
probability density from it by using a parameterized function. For example, suppose x has the
probability density fx, then setting y = θx, where θ > 0 is a scalar parameter gives the probability
density function py(y; θ) =

1
θfx(y/θ).

Probability density functions which are related to each other by changes of parameter are said
to belong to a parametric family of densities.

There is an alternate notation for parametric densities. When the random variable is understood
from context, it is common to suppress the subscript and write the density simply as f(x; θ).
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9.1 Parameters as random variables

Given a value of the parameter θ, the probability density function f(x; θ) describes the density of
the random variable x. If we regard θ in turn as a random variable, then f(x; θ) can be thought of
as the conditional probability density of x given θ. If θ has the marginal distribution fθ(θ), then
the joint distribution of x and θ is fx,θ(x, θ) = f(x; θ)fθ(θ). From the marginal, we can calculate
the marginal of x as fx(x) =

∫
fx,θ(x, θ)dθ =

∫
f(x; θ)fθ(θ)dθ.
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