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1 Introduction

This note considers the problem of single-particle reconstruction from an estimation
theoretic point of view. The note is meant for beginning graduate students in image pro-
cessing who are interested in single particle reconstruction, but have little knowledge
of molecular biology or experimental electron microscopy.In this note, biological and
experimental aspects are discussed in a highly simplified manner, but the description
is sufficient for understanding the mathematical formulation of the problem. Readers
may consult Frank [1] for details.

Our ultimate goal is to formulate and solve SPR in a maximum-likelihood (ML)
framework. Familiarity with basic estimation theory, at the level of Young and Smith
[2] is useful.

2 A Guided Tour of Cryo-em and SPR

We begin with a brief guided tour to introduce the reader to the problem and its impor-
tance.

2.1 Macromolecules and their structure

A central fact of modern biology is that large polymeric molecules and their assemblies
(proteins, DNA etc.) are vital to cell function. These marcomolecules not only make
biochemical cell reactions possible, but they also maintain cell structure, cause cell
motion, sense and respond to signals in the environment, etc.

Macromolecules are able to do all this because of their three-dimensional structure.
Their structure allows macromolecules to dock with other molecules. Docking facili-
tates reactions between the docked molecules. In addition,structural flexibility allows
motion, signal transduction, etc.

X-ray crystallography and Nuclear Magnetic Resonance are classical methods of
reconstructing the three-dimensional structure of macromolecules. A more modern
method iscryogenic electron microscopy (cryo-em), which is described shortly be-
low. In cryo-em, random projections of the macromolecule are obtained and the three-
dimensional structure of the macromolecule is reconstructed from the projections.

Biological macromolecules and their assemblies are generically referred to aspar-
ticles in cryo-em. The reconstruction problem is calledsingle-particle reconstruction
(SPR).

The terms cryo-em and SPR are sometimes used interchangeably. To avoid confu-
sion, we will adopt the following convention. The term cryo-em will refer to the exper-
imental process of obtaining images, while SPR will refer tothe algorithmic problem
of reconstrucing the three-dimensional structure from theprojections.
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Summary: Understanding the three-dimensional structure of a macro-
molecule is key to understanding how it works. Cryo-em is a modern
technique for reconstructing the three-dimensional structure of macro-
molecules.

2.2 Cryo-em
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Figure 1: A simplified schematic of a cryo-EM experiment.

In very simple terms, the cryo-em approach is to freeze several identical copies
of the particle in a layer of vitreous (non-crystallized) ice, and then to obtain a sin-
gle transmission electron microscope image of the preparation (figure 1). This image,
called amicrograph, contains projection images of the particle at random orientations
– the orientation being determined by how the particle is frozen in ice. After a micro-
graph is obtained, each projection of the particle in the micrograph is manually isolated
by a bounding box. This is calledparticle picking. We will call the content of an indi-
vidual bounding box animage. The SPR problem is to estimate the 3D structure of the
particle using all images obtained from one or more micrographs.

Because particles are embedded at random orientations, an image of the particle is
essentially a projection of the particle along a random direction. This observation gives
a “particle centric” description of cryo-em that is useful for mathematical formulation.
It is illustrated in figure 2. In this description, the particle is in a fixed standard orienta-
tion. A randomly oriented orthonormal frame is positioned at the center of the particle.
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Figure 2: The equivalent cryo-EM experiment: The particle is fixed but projected along
the z-axis of a random projection frame.

This is theprojection frame in figure 2. The particle is projected along the z-axis of the
projection frame to form an image. The measured image is thisimage with a random
in-plane shift (because manual placement does not place thecenter of the bounding box
exactly at the center of the projected particle), a random in-plane rotation (because the
sides of the bounding box are not oriented along the x-y axis of the projection frame),
plus additive noise.

The above description leaves out one important effect, which is due to the electron
microscope. The image produced by the microscope is not simply a projection of the
particle. It is more accurately modeled as a projection followed by convolution with
a filter. The spectral response of the filter is called theContrast Transfer Function
(CTF). Figure 3 shows a typical CTF in the Fourier domain. TheCTF is real valued,
spherically symmetric, and takes positive and negative values.

The CTF has zeros in the Fourier domain and information aboutthe particle is lost
at these frequencies. However, the CTF (and its zeros) can beadjusted by changing
the defocus value of the microscope. To take advantage of this, micrographs ofthe
same particle are obtained at different CTFs whose zeros do not coincide. Thus, some
information is available at every frequency.

Figure 4 shows the image formation model taking the CTF and additive noise into
account.
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Figure 3: Spectral response of the CTF filter
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Figure 4: Signal Flow for Cryo-EM.
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Summary: In cryo-em, many copies of same particle are frozen in vitre-
ous ice and micrographs are obtained at different CTFs by changing the
defocus value of the microscope. Images of individual particles are iso-
lated by particle picking. Each image is a random projectionof the par-
ticle, filtered by the CTF, further shifted and rotated, withadditive noise.
Each image has its own projection frame (unknown), CTF (known), im-
age shift and rotation (unknown).

The goal of SPR is to reconstruct the three-dimensional structure of the
particle from the images.

2.3 The maximum-likelihood approach to SPR

How should the structure of the particle be reconstructed from its noisy random pro-
jections? This problem belongs a category of problems called estimation problems.
One approach to solving estimation problems is themaximum-likelihood approach. To
refresh the reader’s mind, this section contains a very brief qualitative description of
maximum likelihood.

The space

of structures

Contours of

likelihood
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Maximum
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modes of a flexible
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Figure 5: Illustration of the maximum-likelihood approach.

Suppose we have a set (a mathematical space) of possible structures for the particle
(figure 5). Each point (element) of this space is a specific rigid structure. Further sup-
pose that we have a set of images from a cryo-em experiment. Using basic probability
theory and the image generation model of figure 4, we can calculate the probability
that any structure in the space of structures produced the observed experimental im-
ages. This calculation reveals a function called thelikelihood function on the space
of structures – by definition the value of the likelihood function at any point in the
structure space (i.e. at any structure) is the probability that this structure produced the
observed experimental images. Figure 5 illustrates hypothetical contours of the likeli-
hood function for observed images from a cryo-em experiment. The contours are the
gray curves in the figure.

From the above discussion, it should be clear that for rigid SPR, the structure with
the highest value of the likelihood function is our best estimate of the real structure,
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since it is structure that most likely produced the observedimages. Finding this maxi-
mizing structure ismaximum likelihood SPR. Using maximum-likelihood involves two
steps: first, using the image formation model and probability theory to formulate the
likelihood function, and second, finding a procedure for maximizing the likelihood
function.

There is one technical point that needs to be mentioned before proceeding. For sev-
eral reasons, it is usually simpler to maximize the logarithm of the likelihood function
rather to than directly maximizing the likelihood function. This does not really change
anything - because logarithm is a monotonic function, the structure that maximizes the
log-likelihood function also maximizes the likelihood function.

2.4 Evaluation

Once a structure is obtained from SPR, we have to evaluate itsquality. A commonly
used measure is the Fourier Shell Correlation (FSC). FSC is explained in further detail
in section 6.

3 Mathematical Formulation of SPR

3.1 Notation and Conventions

We now fix some mathematical notation and conventions. We will use them to derive
the equation for the image formation process. The notation might seem a little abstract;
the point of the notation is to avoid complicated-looking equations.

3.1.1 Spaces

The standard 2D and 3D spaces areR2 andR3. Points in these spaces are denoted
bold face,u,v etc. When we need coordinates, we will writeu = (ux, uy) in 2D or
u = (ux, uy, uz) in 3D.

3.1.2 Coordinate vectors

Unit coordinate vectors inR2 andR3 arei, j andi, j, k respectively.

3.1.3 Composition of functions

The composition off : Rn → Rm with g : Rm → Rp is usually writteng ◦ f . For
simplicity we will write it asgf . Potentially this notation can be confusing since it
looks like the product of two functions. We will not need the product of two functions
often below, and when we do, we will explicitly write it with a“ .” e.g. h.g.
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3.1.4 Particle Structure

By aparticle structure or simply astructure we mean a functionS : R3 → R. Its value
S(u) gives the electron scattering density of the physical particle at the pointu ∈ R3.
By “reconstructing the particle structure” we mean estimating S from images.

3.1.5 Image

An image is a function fromR2 to R. The value of an imageI at a pointu ∈ R2 is
I(u).

3.1.6 Ray projection

A set of unit orthonormal vectorsP = {i′, j′,k′} in 3D forms theprojection frame. The
ray projection operator, denotedΣP , attached to the projection frameP , operates on a
structureS to give an image whosex, y coordinates are aligned alongi′, j′ and whose
valueI(v) at the pointv ∈ R2 is given by(ΣPS)(v) =

∫

S(vxi
′ + vyj

′ + zk′)dz.

3.1.7 CTF

The CTF operator C applies the contrast transfer function to an imageI, i.e it con-
volves the imageI with a circularly symmetric kernel.

3.1.8 Translation and rotation of points and images

The 2D translation operatortv : R2 → R2 translates any pointu ∈ R2 to u + v.
Similarly the 2D rotation operatorrθ : R2 → R2 rotates every pointu ∈ R2 by θ in
the counter-clockwise direction around the origin.

As defined above, rotation and translation operate on pointsof R2. There is a
natural extension by which rotation and translation act on functionson R2. Let tv
be a translation operator and letI : R2 → R be an image. ThenIt−1

v
is the imageI

“translated” in the same way astv translates points ofR2. In cryo-em it is conventional
to talk of “translating the image”. To mimic this, we introduce the dual operatort∗

v

which acts onI by
t∗
v
I = It−1

v
.

t∗
v

translatesI in the same way thattv translates points ofR2.
Similarly, r∗θ is the “dual” operator of rotation defined by

r∗θI = Ir−1
θ .

r∗θ rotates images in the same way therθ rotates points ofR2.
Below we will need to jointly apply rotation and the translation operators to an

image, and we use the simplified notationT ∗
θ,v = r∗θt

∗
v

for it. Note thatT ∗−1
θ,v =

t∗−v
r∗−θ.
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3.2 Image Formation

As described in section 2 (figure 4) an individual cryo-em image is formed by pro-
jecting the structure with an arbitrary projection frame, convolving the resulting image
with a CTF, transforming the convolved image by an arbitrarytranslation and rotation
to mimic the manual placement of the bounding box, and addingnoise. That is,

I = T ∗
θ,vCΣPS + e, (1)

wheree is zero mean additive Gaussian noise with a known standard deviation.
In an experiment,N images are obtainedIn, n = 1, . . . , N . Since the projection

frame, CTF etc. can vary from image to image

In = T ∗
θn,vn

CnΣPn
S + e. (2)

To proceed further, assume that the structure and the image are discretized toV ×
V ×V voxels andP ×P pixels respectively, and that all operators are replaced bytheir
discrete versions. Then, the likelihood of observing the set of images{In} is

p({In} | S, {Pn}, {vn}, {θn})

=
1

(2π)NP 2/2σNP 2
exp

{

∑

n

−
‖In − T ∗

θn,vn
CnΣPn

S‖2

2σ2

}

, (3)

whereσ is the pixel-wise standard deviation of noise. We assume that σ is known
(using regions of the micrograph that do not have particles).

The log-likelihood is

log p({In} | S, {Pn}, {vn}, {θn}) =
∑

n

−
‖In − T ∗

θn,vn
CnΣPn

S‖2

2σ2
, (4)

where terms without the conditioning variables are dropped.

4 Maximum-likelihood with Auxiliary Parameters

We are interested in the structureS, but the image likelihood also depends on{Pn}, {vn}, {θn}.
These parameters areauxiliary parameters for the problem and should be marginalized
out for an exact maximum-likelihood reconstruction of the problem. The marginalized
log-likelihood does not have a simple closed form solution and the EM algorithm is
required to maximize the marginalized log-likelihood withrespect toS. We do not
pursue this strategy in this note (we have pursued this strategy elsewhere [3]). Instead
we formulate the problem as a joint maximum-likelihood estimation of the structure
and the auxiliary parameters:

Ŝ, P̂n,
ˆ{vn}, ˆ{θn} = arg max

S,{Pn},{vn},{θn}
log p({In} | S, {Pn}, {vn}, {θn}).(5)
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4.1 The objective function J

Maximizing the log-likelihood of equation (4) is equivalent to minimizing a scaled neg-
ative version of it. One scaled negative version is the objective functionJ(S, {Pn}, {vn}, {θn})
defined by

J(S, {Pn}, {vn}, {θn}) =
∑

n

‖In − T ∗
θn,vn

CnΣPn
S‖2. (6)

This objective function is minimized to obtain estimates ofthe structure and auxiliary
variables.

Before proceeding further, it is useful to rewrite the objective function as follows:

J(S, {Pn}, {vn}, {θn}) =
∑

n

Jn(S, Pn,vn, θn), ,where (7)

Jn(S, Pn,vn, θn) = ‖In − T ∗
θn,vn

CnΣPn
S‖2.

Finally, sinceT ∗
θn,vn

and its inverse preserve norm,

Jn(S, Pn,vn, θn) = ‖In − T ∗
θn,vn

CnΣPn
S‖2

= ‖T ∗−1
θn,vn

(In − T ∗
θn,vn

CnΣPn
S)‖2

= ‖T ∗−1
θn,vn

In − CnΣPn
S‖2. (8)

5 The SPR Algorithm

The minimization ofJ with respect to the structure and the auxiliary variables can
be carried out iteratively as described immediately below.It turns out that SPR with
different CTFs (unequalCns) is a little harder to describe than SPR with equal CTFs.
For now, we will assume equal CTFS and replace allCn with C. We will return to the
unequal CTF case in section 5.5.

The minimization algorithm is:

Algorithm A1:

1. Initialize: Set the iteration counterr = 1, initializeSr, {Pn}
r, {vn}

r, {θn}
r.

2. Minimize w.r.t. auxiliary parameters:

{Pn}
r+1, {vn}

r+1, {θn}
r+1 = arg min

{Pn},{vn},{θn}
J(Sr, {Pn}, {vn}, {θn}).

(9)

3. Minimize w.r.t. S:

Sr+1 = argmin
S

J(S, {Pn}
r+1, {vn}

r+1, {θn}
r+1). (10)

4. Iterate: If the structureS has not converged, setr = r + 1 and go to step 2.

The details of the minimizations in steps 2 and 3 are given immediately below.
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5.1 Minimization w.r.t. auxiliary parameters

The minimization in step 2 is over all auxiliary parameters,with one set of auxiliary
parameters (Pn,vn, θn) per image. But, as equations (7) and (8) show, the objective
functionJ is separable with respect to these sets of parameters. That is, the minimiza-
tion with respect to the auxiliary variables for any image can be carried out indepen-
dent of minimization with respect auxiliary variables for all other images. Hence, for
n = 1, 2, . . . , N independently:

P r+1
n ,vr+1

n , θr+1
n = arg min

Pn,vn,θn
Jn(S

r, Pn,vn, θn).

(11)

The objective functionsJn are highly non-convex in auxiliary parameters and the
minimization in equation (11) is non-trivial to carry out. In SPR, one popular strategy
for this minimization is to further descretize the problem and then to minimize by
exhaustive search.

A simple, general description of this idea is given immediately below. Its applica-
tion to the minimization in equations (11) is explained after the general description.

Discrete exhaustive search: In general, suppose we want to minimize a functionf

over a setX. Assume that the setX has infinite elements and that the functionf is
non-convex and complicated. We choose a finite subsetX̃ ⊂ X and find by exhaustive
search thex ∈ X̃ that has the lowest value off . We take thisx to be an approximation
of the minimizer off . WhenX is a compact subset ofRn, thenX̃ is taken to be the
set of vertices of a finite grid inX (figure 6). If the grid spacing is fine enough, then
the result of exhaustive search is likely to be a good approximation of the minimizing
x.

Search domain X

X: Vertices of this grid
~

Figure 6: Exhaustive search.

Turning back to the minimization in equation (11), note thatthe domain of auxiliary
variablesvn, θn is the set of all translations of the image that account for the mis-
centering of the bounding box× the set of all rotations of the image that account for
the mis-orientation of the bounding box. Consider these oneat a time. Although the
bounding box center is not exactly at the center of the projected particle, it is quite
close to it. Thus the domain of translations of any image can be considered to be a
only a few pixels in the x and y directions. The set of all rotations cannot be similarly
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restricted since we have no prior knowledge of the orientation of the projection frame.
Thus the domain of rotations is[0, 2π). We can discretize the domain of translation
and rotation by choosing a rectangular grid for translations (say∆x,∆y ≃ 1 pixel),
and a rotational grid (say with∆θ ≃ 1 degree). LetD̃T be resulting discrete set of
translations× rotations.

i

j

k

k'

i'

j'

Uniform grid of

unit normals 

in the northern

hemisphere

Figure 7: Sampling projection frames.

The domain of the projection framePn is the set of unit normals of the north hemi-
sphere (figure 7) for thek′ axis× the set of rotations ofi′, j′ axis aroundk′. This set
can be simplified. Since we are accounting for thei′, j′ rotation in the image rotation,
we can simply take the domain of the projection frame to be theset of unit normals
of the north hemisphere with a single fixed rotation of thei′, j′ axis. Let this set of
discrete projection frames bẽDP .

The minimization in equation (11) can be carried with the exhaustive search

Exhaustive search:
Forn = 1, 2, . . . , N (i.e for all images),

For allPn ∈ D̃P , (i.e. for all projection frames),
For allvn, θn ∈ D̃T , (i.e. for all image translations and rotations),

Calculate‖T ∗−1
θn,vn

In − CΣPn
S‖2 and return the minimizingPn,vn, θn.

Exhaustive search can be further sped up by noticing that theprojection images
generated by theCΣPn

S term are identical for alln. These images need be generated
only once. The exhaustive search algorithm modified to take this into account is:

Exhaustive search with precomputatiom:
For allP ∈ D̃P ,

Generate the projection imageπP = CΣPS.
LetΠ = {πP } be the set of these generated projection images.
Forn = 1, 2, . . . , N

For allvn, θn ∈ D̃T and allπP ∈ Π,
Calculate‖T ∗−1

θn,vn
In − πP ‖

2 and return the minimizingP asPn (identified from
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the minimizingπP ), and the minimizingvn, θn.

In plain words, this algorithm corresponds to first calculating the projected im-
agesπ using the projection frames iñDP . Next thenth data image is compared with
each projection using all transformations iñDT , and the projection+transformation
pair which gives the least mismatch is retained. Figure 8 illustrates this.

3D Particle

Projections

of the particle

Images

Images are matched

to the most similar particle

projection (after translation

and rotation)

Project

Figure 8: Exhaustive search with precomputation.

5.2 Minimization w.r.t. S

The objective functionJ of equation (7) is quadratic inS (for fixed values of auxiliary
parameters, the ray projection, CTF, image translation androtation are linear opera-
tors). In principle, a closed form solution is available forthe minimizingS, but the
matrices involved are very large and numerically impossible to work with. Iterative
numerical minimization is a natural alternative. The conjugate gradient method is es-
pecially attractive because the objective function is quadratic inS. In practice, we find
that a few iterations of conjugate gradient are sufficient tofind a very good approxima-
tion to the minimizingS.

Just as with the minimization with respect to auxiliary variables, it is also possi-
ble to speedup the minimization with respect toS. To understand how, notice that at
the end of the auxiliary variable minimization step, for each image we have a projec-
tion frameP r+1

n and a pair of transformation parametersvr+1
n , θr+1

n . Looking at this
slightly differently, with every projection frameP ∈ D̃P we can associate a set of
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images for whichP r+1
n = P (the set of images whose best match projection frame is

P ). Let IP be this set. It should be clear thatIP1
6= IP2

for P1 6= P2 and that∪PIP
is the set of all images (since every image matches to someP ). Thus,

J(S, {Pn}, {vn}, {θn}) =
∑

n

‖T ∗−1
θn,vn

In − CΣPn
S‖2

=
∑

P∈D̃P

∑

In∈IP

‖T ∗−1
θn,vn

In − CΣPS‖
2

=
∑

P∈D̃P

{

∑

In∈IP

‖T ∗−1
θn,vn

In − µP ‖
2 + ‖µP − CΣPS‖

2

}

,

=
∑

P∈D̃P

∑

In∈IP

‖T ∗−1
θn,vn

In − µP ‖
2 +

∑

P∈D̃P

‖IP ‖ × ‖µP − CΣPS‖
2,

(12)

where,

µP =
1

‖IP ‖

∑

n such thatIn∈IP

T ∗−1
θn,vn

In

is the mean of all images that “match” to the projection frameP , and‖IP ‖ is the
number of images inIP . In SPR, the imageµP is called theclass mean.

The first term on the right hand side of equation (12) can be dropped since it is
independent ofS. Thus, the following form of the objective function can be used in
the minimization w.r.t.S:

J(S, {Pn}, {vn}, {θn}) =
∑

P∈D̃P

‖IP ‖ × ‖µP − CΣPS‖
2. (13)

5.3 SPR for single CTF

Putting all this together, the SPR reconstruction algorithm for a single CTF is:

Algorithm A2:

1. Initialize: Set the iteration counterr = 1, initializeSr, {Pn}
r, {vn}

r, {θn}
r.

2. Minimize w.r.t. auxiliary parameters (Project and align):

(a) Generate all projection imagesπP = CΣPS
r, for P ∈ D̃P .

(b) For each data image, use exhaustive search to find the projection image and
transformation parameters that minimize‖T ∗−1

θn,vn
In − πP ‖

2. SetP r+1
n to

the projection frame of the minimizing projection image andvr+1
n , θr+1

n to
the minimizing transformation parameters.

3. Minimize w.r.t. S (Reconstruct):

14



(a) Calculate class meansµP for all P ∈ D̃P .

(b) Using conjugate gradient minimizeJ of equation (13) with respect toS.
SetSr+1 to the minimizingS.

4. Iterate: If the structureS has not converged, setr = r + 1 and go to step 2.

The algorithm is illustrated in figure 9.
This finishes the description of the rigid particle SPR algorithm with a single CTF.

3D Particle

Projections

of the particle

Images

Images are matched

to the most similar particle

projection (after translation

and rotation)

Project

Means

of the matching 

images

R
e-

es
tim

at
e 

st
ru

ct
ur

e

S
te

p 
2

Step 3

Figure 9: Rigid particle SPR algorithm.

5.4 Comments

Some comments on the above development before we proceed to the multi-CTF case.

1. This algorithm is similar to many reported SPR algorithmsin the literature. The
difference lies in the fact that this algorithm uses a singleobjective function
whose value is reduced in every iteration, whereas other SPRalgorithms do not
have a single objective function. Thus the above algorithm is guaranteed to con-
verge.
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2. The reconstruction stage of our algorithm falls under thegeneral rubric ofal-
gebraic reconstruction techniques (ART) of tomography. Many reported SPR
algorithms do not use ART; instead they adopt Fourier domaintechniques. The
comparison of ART to Fourier domain techniques (in the context of SPR) re-
mains to be done.

5.5 Multi-CTF SPR

SPR with mulitple CTFs is a straight-forward extension of Algorithm A2. A clear
understanding of what “multiple CTFs” means is useful to understand the extension.
In a typical cryo-em procedure, particles are embedded in many different vitreous ice
layers. Each layer is imaged with a known, but possibly different, microscope defocus
value. Thus each micrograph has its own CTF, and all images from this micrograph
inherit that same CTF. Below, we will letC denote the set of all CTF’s present in the
cryo-em procedure. The imageIn has the CTFCn ∈ C.

Because the CTF is no longer fixed, the first change in the algorithm occurs in the
generation of projection images in step 2 of the algorithm. We now have to generate
projection images for different CTFs as well. Thus step 2 of the algorithm becomes:

2. Minimize w.r.t. auxiliary parameters (Project and align):
(a) Generate all projection imagesπP = CΣPS

r, for (C,P ) ∈ C × D̃P .
(b) For each data image, use exhaustive search to find the projection image

and transformation parameters that minimize‖T ∗−1
θn,vn

In − πP ‖
2. SetP r+1

n

to the projection frame of the minimizing projection image andvr+1
n , θr+1

n

to the minimizing transformation parameters.

In figure 8 this corresponds to generating more projections –each projection for
one combination of CTF and a projection direction. The matching part of the algorithm
stays the same.

Step 3 of algorithm A2 has to be modified too. Similar to the modification of
step 2, the image classesIP have to refined so that there is an image class for each
combination of CTF and projection direction. LetICP be the set of images that match
the projection image for(C,P ) ∈ C × D̃P in step 2. Then the class mean for these
images is:

µC,P =
1

‖IC,P ‖

∑

n such thatIn∈IC,P

T ∗−1
θn,vn

In.

Moreover, the objective function in equation (13) modifies to

J(S, {Pn}, {vn}, {θn}) =
∑

(C,P )∈C×D̃P

‖IC,P ‖ × ‖µC,P − CΣPS‖
2. (14)

Step 3 of the algorithm modifies to
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3. Minimize w.r.t. S (Reconstruct):
(a) Calculate class meansµC,P for all (C,P ) ∈ C × D̃P .
(b) Using conjugate gradient minimizeJ of equation (14) with respect toS.
SetSr+1 to the minimizingS.

6 Evaluating SPRs

As mentioned before, the quality of an SPR reconstruction ismeasured by Fourier Shell
Correlation.

6.1 Fourier Shell Correlation

Fourier Shell Correlation (FSC) gives a measure of signal-to-noise ratio at different
spatial frequecies in the reconstruction [1]. The data images are randomly split into
two sets and a reconstruction is obtained from each set. Suppose thatF1(ω) andF2(ω)
are the 3D discrete Fourier Transforms of the two reconstructions, whereω is the 3D
frequency. Suppose that the 3D Fourier domain is partitioned into spherical bins of
thickness∆r. Let the bins be denotedΩi i,= 1, . . . ,K. Then, the FSC in theith bin
is

FSC(i) =
Re{

∑

ω∈Ωi
F1(ω)F

∗
2 (ω)}

√

∑

ω∈Ωi
F1(ω)F ∗

1

√

∑

ω∈Ωi
F2(ω)F ∗

2

. (15)

The FSC is usually plotted as a function of the center frequency of the binΩi. In the
presence of noise in the reconstruction, the FSC begins witha high value of1 and rolls
off down to0. The frequency at which the FSC reaches0.5 is usually taken to be the
resolution of the reconstruction.

7 Conclusions

This note presented the single particle reconstruction (SPR) problem in cryogenic elec-
tron microscopy in a maximum-likelihood framework. CTF andmulti-CTF problems
were addressed.
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