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1 Introduction

This note considers the problem of single-particle reqoisibn from an estimation
theoretic point of view. The note is meant for beginning gigté students in image pro-
cessing who are interested in single particle reconstractiut have little knowledge
of molecular biology or experimental electron microscdpythis note, biological and
experimental aspects are discussed in a highly simplifieshera but the description
is sufficient for understanding the mathematical formolaif the problem. Readers
may consult Frank [1] for details.

Our ultimate goal is to formulate and solve SPR in a maximikelihood (ML)
framework. Familiarity with basic estimation theory, a¢ level of Young and Smith
[2] is useful.

2 A Guided Tour of Cryo-em and SPR

We begin with a brief guided tour to introduce the reader &ogfoblem and its impor-
tance.

2.1 Macromoleculesand their structure

A central fact of modern biology is that large polymeric nmlkes and their assemblies
(proteins, DNA etc.) are vital to cell function. These manmecules not only make
biochemical cell reactions possible, but they also maintail structure, cause cell
motion, sense and respond to signals in the environment, etc

Macromolecules are able to do all this because of their tbiensional structure.
Their structure allows macromolecules to dock with othetanadles. Docking facili-
tates reactions between the docked molecules. In addginrctural flexibility allows
motion, signal transduction, etc.

X-ray crystallography and Nuclear Magnetic Resonance kassical methods of
reconstructing the three-dimensional structure of maoteaules. A more modern
method iscryogenic electron microscopy (cryo-em), which is described shortly be-
low. In cryo-em, random projections of the macromolecuteatained and the three-
dimensional structure of the macromolecule is reconstcufrom the projections.

Biological macromolecules and their assemblies are gealbrireferred to apar-
ticlesin cryo-em. The reconstruction problem is calkdgle-particle reconstruction
(SPR).

The terms cryo-em and SPR are sometimes used interchapg@alalvoid confu-
sion, we will adopt the following convention. The term crgo will refer to the exper-
imental process of obtaining images, while SPR will refeth® algorithmic problem
of reconstrucing the three-dimensional structure frompttogections.



Summary: Understanding the three-dimensional structure of a macro-
molecule is key to understanding how it works. Cryo-em is aleno
technique for reconstructing the three-dimensional stinecof macro-
molecules.

2.2 Cryo-em
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Figure 1: A simplified schematic of a cryo-EM experiment.

In very simple terms, the cryo-em approach is to freeze aéveentical copies
of the particle in a layer of vitreous (non-crystallizedg,iand then to obtain a sin-
gle transmission electron microscope image of the prejparéfigure 1). This image,
called amicrograph, contains projection images of the particle at random ¢aigons
— the orientation being determined by how the patrticle igdroin ice. After a micro-
graph is obtained, each projection of the particle in theragitaph is manually isolated
by a bounding box. This is callgghrticle picking. We will call the content of an indi-
vidual bounding box aimage. The SPR problem is to estimate the 3D structure of the
particle using all images obtained from one or more micrplsa

Because particles are embedded at random orientationsiaayeiof the particle is
essentially a projection of the particle along a randomatiioa. This observation gives
a “particle centric” description of cryo-em that is usefot fnathematical formulation.
Itis illustrated in figure 2. In this description, the palei¢s in a fixed standard orienta-
tion. A randomly oriented orthonormal frame is positionétha center of the particle.
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Figure 2: The equivalent cryo-EM experiment: The partisl&3ed but projected along
the z-axis of a random projection frame.

This is theprojection framein figure 2. The particle is projected along the z-axis of the
projection frame to form an image. The measured image idrttage with a random
in-plane shift (because manual placement does not placettier of the bounding box
exactly at the center of the projected particle), a randoplame rotation (because the
sides of the bounding box are not oriented along the x-y axilseoprojection frame),
plus additive noise.

The above description leaves out one important effect, wisiclue to the electron
microscope. The image produced by the microscope is notlgianprojection of the
particle. It is more accurately modeled as a projectiorofedd by convolution with
a filter. The spectral response of the filter is called @umtrast Transfer Function
(CTF). Figure 3 shows a typical CTF in the Fourier domain. TTé- is real valued,
spherically symmetric, and takes positive and negativeesal

The CTF has zeros in the Fourier domain and information atheuparticle is lost
at these frequencies. However, the CTF (and its zeros) cadjosted by changing
the defocus value of the microscope. To take advantage of this, micrographhef
same patrticle are obtained at different CTFs whose zero®tooincide. Thus, some
information is available at every frequency.

Figure 4 shows the image formation model taking the CTF awlitiae noise into
account.
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Figure 3: Spectral response of the CTF filter
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Figure 4: Signal Flow for Cryo-EM.



Summary: In cryo-em, many copies of same particle are frozen in vjtre-
ous ice and micrographs are obtained at different CTFs bggihg the
defocus value of the microscope. Images of individual pksiare isot
lated by particle picking. Each image is a random projectibthe par-
ticle, filtered by the CTF, further shifted and rotated, vétiditive noise
Each image has its own projection frame (unknown), CTF (kmjowmn-
age shift and rotation (unknown).

The goal of SPR is to reconstruct the three-dimensionattstre of the
particle from the images.

2.3 Themaximume-likelihood approach to SPR

How should the structure of the particle be reconstructerhfits noisy random pro-
jections? This problem belongs a category of problems a&##mation problems.
One approach to solving estimation problems isrtlagi mum-likelihood approach. To
refresh the reader’s mind, this section contains a veryf ualitative description of
maximum likelihood.

The space

Maximum / of structures
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likelihood
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Figure 5: lllustration of the maximum-likelihood approach

Suppose we have a set (a mathematical space) of possildeiséisifor the particle
(figure 5). Each point (element) of this space is a specifid styucture. Further sup-
pose that we have a set of images from a cryo-em experimeirtg basic probability
theory and the image generation model of figure 4, we can legdcthe probability
that any structure in the space of structures produced theredd experimental im-
ages. This calculation reveals a function called likelihood function on the space
of structures — by definition the value of the likelihood ftion at any point in the
structure space (i.e. at any structure) is the probabhiy this structure produced the
observed experimental images. Figure 5 illustrates hygtiaidl contours of the likeli-
hood function for observed images from a cryo-em experim&he contours are the
gray curves in the figure.

From the above discussion, it should be clear that for rig&® Sthe structure with
the highest value of the likelihood function is our bestraste of the real structure,



since it is structure that most likely produced the obseim@bes. Finding this maxi-
mizing structure isnaximum likelihood SPR. Using maximum-likelihood involves two
steps: first, using the image formation model and probghitieory to formulate the
likelihood function, and second, finding a procedure for mmzing the likelihood
function.

There is one technical point that needs to be mentioneddpfoceeding. For sev-
eral reasons, it is usually simpler to maximize the loganithf the likelihood function
rather to than directly maximizing the likelihood functiorhis does not really change
anything - because logarithm is a monotonic function, thecsire that maximizes the
log-likelihood function also maximizes the likelihood fttion.

2.4 Evaluation

Once a structure is obtained from SPR, we have to evaluatgidity. A commonly
used measure is the Fourier Shell Correlation (FSC). FSgpisiaed in further detail
in section 6.

3 Mathematical Formulation of SPR

3.1 Notation and Conventions

We now fix some mathematical notation and conventions. Weus@ them to derive
the equation for the image formation process. The notatighiseem a little abstract;
the point of the notation is to avoid complicated-lookingiations.

3.11 Spaces

The standard 2D and 3D spaces @&#& andR3. Points in these spaces are denoted
bold face,u, v etc. When we need coordinates, we will wrile= (u,, u,) in 2D or
u = (Ug, Uy, uz) in 3D.

3.1.2 Coordinate vectors

Unit coordinate vectors iR? andR? arei, j andi, j, k respectively.

3.1.3 Composition of functions

The composition off : R™ — R™ with g : R™ — RP is usually writteng o f. For
simplicity we will write it asgf. Potentially this notation can be confusing since it
looks like the product of two functions. We will not need threguct of two functions
often below, and when we do, we will explicitly write it with“d’ e.g. h.g.



3.1.4 Particle Structure

By aparticle structure or simply astructurewe mean a functioss’ : R? — R. Its value
S(u) gives the electron scattering density of the physical plartit the pointx € R3.
By “reconstructing the particle structure” we mean estintgab from images.

3.15 Image

An image is a function fromR? to R. The value of an imagé at a pointu € R? is
I(u).

3.1.6 Ray projection

A set of unit orthonormal vecto® = {i’, j’, k’} in 3D forms theprojection frame. The
ray projection operator, denoted p, attached to the projection frani& operates on a
structureS to give an image whose, y coordinates are aligned aloilgj’ and whose
valueI(v) at the pointy € R? is given by(XpS)(v) = [ S(v,i' + vyj’ + 2K')dz.

317 CTF

The CTF operator C' applies the contrast transfer function to an imdgée it con-
volves the imagéd with a circularly symmetric kernel.

3.1.8 Trandation and rotation of points and images

The 2D translation operatar, : R?> — R? translates any point € R? tou + v.
Similarly the 2D rotation operator, : R? — R? rotates every poina € R? by @ in
the counter-clockwise direction around the origin.

As defined above, rotation and translation operate on poh®?. There is a
natural extension by which rotation and translation actwmcfionson R?. Let t,
be a translation operator and et R? — R be an image. Theiit;! is the imagel
“translated” in the same way &g translates points d®2. In cryo-em it is conventional
to talk of “translating the image”. To mimic this, we introckithe dual operataft,
which acts o/ by

tiI =TIty

t: translated in the same way that, translates points dR?.
Similarly, r is the “dual” operator of rotation defined by

T —1
rol =1Ir, .

7} rotates images in the same way theotates points oR?.
Below we will need to jointly apply rotation and the trangbat operators to an
image, and we use the simplified notati@pi, = rgt; for it. Note that7; ;' =

* *
[ 2 PR



3.2 Image Formation

As described in section 2 (figure 4) an individual cryo-em gmés formed by pro-
jecting the structure with an arbitrary projection frameneolving the resulting image
with a CTF, transforming the convolved image by an arbittaapslation and rotation
to mimic the manual placement of the bounding box, and addlige. That is,

I=T;,CEpS +e, (1)

wheree is zero mean additive Gaussian noise with a known standanrdtaben.
In an experiment)N images are obtainef},, n = 1,..., N. Since the projection
frame, CTF etc. can vary from image to image

I, =T; o .Cu¥p, S +e. 2)

To proceed further, assume that the structure and the imag#iszretized td” x
V x V voxels andP x P pixels respectively, and that all operators are replacetidiy
discrete versions. Then, the likelihood of observing thesenages{I,,} is

p({In} | S, { P}, {va}, {0n})

1 1o = T, 1, CaZr, S|
) Wwexp{z— 207 - ©®

whereo is the pixel-wise standard deviation of noise. We assumedhia known
(using regions of the micrograph that do not have particles)
The log-likelihood is

In - T;-,,,,V-,,,CRZPHSHQ

202 ’

logp({In} [ S, {Pu},{vn}, {n}) = Z*” (4)

where terms without the conditioning variables are dropped

4 Maximum-likelihood with Auxiliary Parameters

We are interested in the structuebut the image likelihood also depends{dd, }, {v,}, {6»}-
These parameters aaaxiliary parameters for the problem and should be marginalized

out for an exact maximum-likelihood reconstruction of thelgem. The marginalized
log-likelihood does not have a simple closed form solutiod ¢he EM algorithm is
required to maximize the marginalized log-likelihood wittspect toS. We do not
pursue this strategy in this note (we have pursued thisglyatlsewhere [3]). Instead

we formulate the problem as a joint maximum-likelihood mstiion of the structure

and the auxiliary parameters:

S’pnv {V:n}v {eAn} = Ing({In} ‘ S, {Pn}’ {Vn}’7 {971}>(5)

arg max
SAPn} {vn} {0n}



4.1 Theobjectivefunction J

Maximizing the log-likelihood of equation (4) is equivatéa minimizing a scaled neg-
ative version of it. One scaled negative version is the dgivjetunctionJ (S, { P, }, {vn}, {0»})
defined by

J (S, {Pn}a {Vn}v {en}) = Z HIn - Te*n,annEPnS”2- (6)

This objective function is minimized to obtain estimateshaf structure and auxiliary
variables.
Before proceeding further, it is useful to rewrite the okbijefunction as follows:

J(Sa {Pn};{vn}a{on}) = ZJn(S, Pn,Vn,en), ,Where (7)

Jn(S7P’navn79n) = HITl _TQ*n,VnCnZPnSHQ'

Finally, sincely; , and its inverse preserve norm,

JTL(Sa Py, vn, on) = ||In - Te*n,vn OnEPnSH2
= 75y, Un = T5, v, CuZp, 8|
Ty L -GS S ®

5 The SPR Algorithm

The minimization ofJ with respect to the structure and the auxiliary variables ca
be carried out iteratively as described immediately beltivturns out that SPR with
different CTFs (unequal’,s) is a little harder to describe than SPR with equal CTFs.
For now, we will assume equal CTFS and replace&gliwith C'. We will return to the
unequal CTF case in section 5.5.

The minimization algorithm is:

Algorithm A1l:
1. Initialize: Set the iteration counter= 1, initialize S”, { P, }", {v,n}", {0.}".
2. Minimizew.r.t. auxiliary parameters:

P Y qv, VL {0,V = ar min JS", AP}, Avn}, {0, }).
P} v} {00} 8y min (8" AP} {va}, {60})
)

3. Minimizew.r.t. S:
ST — arg msin J(S,{P Y v, 1 {0,37Y). (10)

4. Iterate: If the structureS has not converged, set= r + 1 and go to step 2.

The details of the minimizations in steps 2 and 3 are givenediately below.
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5.1 Minimization w.r.t. auxiliary parameters

The minimization in step 2 is over all auxiliary parametavith one set of auxiliary
parametersi®,,v,,0,) per image. But, as equations (7) and (8) show, the objective
function J is separable with respect to these sets of parameters. sl ltlae iminimiza-
tion with respect to the auxiliary variables for any image && carried out indepen-
dent of minimization with respect auxiliary variables fdir@her images. Hence, for
n=1,2,..., N independently:

r—4+1 r+1 r+1 . . r
Pn » Vi ,Qn = arg min Jn(S 7P7L7Vn70n)-

n,Vn,Un

(11)

The objective functiond,, are highly non-convex in auxiliary parameters and the
minimization in equation (11) is non-trivial to carry ouh §PR, one popular strategy
for this minimization is to further descretize the problendahen to minimize by
exhaustive search.

A simple, general description of this idea is given immegliabelow. Its applica-
tion to the minimization in equations (11) is explained aftee general description.

Discrete exhaustive search: In general, suppose we want to minimize a functjon
over a setX. Assume that the set has infinite elements and that the functifris
non-convex and complicated. We choose a finite suliset X and find by exhaustive
search the: € X that has the lowest value ¢f We take this: to be an approximation
of the minimizer off. WhenX is a compact subset ®", thenX is taken to be the
set of vertices of a finite grid iX (figure 6). If the grid spacing is fine enough, then
the result of exhaustive search is likely to be a good appration of the minimizing
Z.

Search domain X

X: Vertices of this grid

Figure 6: Exhaustive search.

Turning back to the minimization in equation (11), note thatdomain of auxiliary
variablesv,,, 0,, is the set of all translations of the image that account fer rtiis-
centering of the bounding box the set of all rotations of the image that account for
the mis-orientation of the bounding box. Consider theseatretime. Although the
bounding box center is not exactly at the center of the ptegeparticle, it is quite
close to it. Thus the domain of translations of any image aawdnsidered to be a
only a few pixels in the x and y directions. The set of all rimtas cannot be similarly

11



restricted since we have no prior knowledge of the oriemadif the projection frame.
Thus the domain of rotations [, 27). We can discretize the domain of translation
and rotation by choosing a rectangular grid for translatitsayA,, A, ~ 1 pixel),
and a rotational grid (say with, ~ 1 degree). LetD; be resulting discrete set of
translationsx rotations.

Uniform grid of
unit normals
in the northern
hemisphere

Figure 7: Sampling projection frames.

The domain of the projection fram@, is the set of unit normals of the north hemi-
sphere (figure 7) for thk’ axis x the set of rotations of , j’ axis aroundk’. This set
can be simplified. Since we are accounting forith§ rotation in the image rotation,
we can simply take the domain of the projection frame to bestiteof unit normals
of the north hemisphere with a single fixed rotation of th§’ axis. Let this set of
discrete projection frames bep.

The minimization in equation (11) can be carried with theaidtive search

Exhaustive search:
Forn =1,2,..., N (i.e for all images),
For all P, € Dp, (i.e. for all projection frames),
For allvy, 6,, € Dy, (i.e. for all image translations and rotations),
Calculate||Tg‘nfinIn — C¥p, S| and return the minimizing,,, vy, ..

Exhaustive search can be further sped up by noticing thapithjection images
generated by thé’> p_ S term are identical for alh. These images need be generated
only once. The exhaustive search algorithm modified to thlsdnto account is:

Exhaustive search with precomputatiom:
Forall P € Dp,
Generate the projection image = CXpS.
LetIl = {np} be the set of these generated projection images.
Forn=1,2,...,N
For allvy, 6,, € Dy and allrp € 11,
Calculate||T9*7:},nIn — 7p||? and return the minimizind® as P, (identified from

12



the minimizingzp), and the minimizingv,,, 6,,.

In plain words, this algorithm corresponds to first caldalgtthe projected im-
agesr using the projection frames iBp. Next then!" data image is compared with
each projection using all transformations ih-, and the projection+transformation
pair which gives the least mismatch is retained. Figureu8tihtes this.

; i 3D Particle

Projections
of the particle

!
Images are matched
to the most similar particle
projection (after translation
and rotation)

Images

Figure 8: Exhaustive search with precomputation.

5.2 Minimization w.r.t. S

The objective functiory of equation (7) is quadratic ifi (for fixed values of auxiliary
parameters, the ray projection, CTF, image translationratation are linear opera-
tors). In principle, a closed form solution is available fbe minimizing$, but the
matrices involved are very large and numerically impogstbl work with. Iterative
numerical minimization is a natural alternative. The cgajie gradient method is es-
pecially attractive because the objective function is gqatciin S. In practice, we find
that a few iterations of conjugate gradient are sufficieffint a very good approxima-
tion to the minimizings.

Just as with the minimization with respect to auxiliary aaies, it is also possi-
ble to speedup the minimization with respectsto To understand how, notice that at
the end of the auxiliary variable minimization step, for leé@mage we have a projec-
tion frameP7 ™! and a pair of transformation parametefs™, 67!, Looking at this
slightly differently, with every projection fram@& < Dp we can associate a set of

13



images for whichP’*1 = P (the set of images whose best match projection frame is
P). LetZp be this set. It should be clear tHas, # Zp, for P, # P, and thatupZp
is the set of all images (since every image matches to dem&hus,

J(S AP} {va} {00 })

> T 0, In = CSp, S|

n

= > > T - CspS|?

PeDp In€Zp

= > {Z ||Tgm\1,n-[n_/~LP||2+||,UP_CEPSH2}7

PeDp \In€Ip
= > > Ty In—ppl*+ Y IZell x lup — CEpS|,
pPeDp In€lp PeDp
(12)
where,
Lp = 1 Z 71
| Zp|| fnovn

n such that,ezp

is the mean of all images that “match” to the projection frafeand || Zp|| is the
number of images ifp. In SPR, the image p is called theclass mean.

The first term on the right hand side of equation (12) can bepid since it is
independent of. Thus, the following form of the objective function can besdsn
the minimization w.r.t.S:

T AP AVal A0} = D IZell x up —CEpSIP. (13)
PeDp
5.3 SPRfor singleCTF
Putting all this together, the SPR reconstruction algoritor a single CTF is:
Algorithm A2:
1. Initialize: Set the iteration counter= 1, initialize S”, { P, }", {v.}", {0, }".
2. Minimize w.r.t. auxiliary parameters (Project and align):

(a) Generate all projection images = CXpS”, for P € Dp.

(b) For each dataimage, use exhaustive search to find thectiooj image and
transformation parameters that minimiz&, ! I, — 7p||?. SetP;*! to

the projection frame of the minimizing projection image arfid!, 07! to
the minimizing transformation parameters.

3. Minimizew.r.t. S (Reconstruct):

14



(a) Calculate class meaps forall P € Dp.
(b) Using conjugate gradient minimizé of equation (13) with respect t6.
SetS™*+! to the minimizings.

4. Iterate: If the structureS has not converged, set=r + 1 and go to step 2.

The algorithm is illustrated in figure 9.
This finishes the description of the rigid particle SPR alfon with a single CTF.

; i 3D Particle

NN
:

Projections
of the particle

Images are matched
to the most similar particle
projection (after translation

Step 2

and rotation)

Re-estimate structure

Images

— >

Means
of the matching

Step 3 images

Figure 9: Rigid particle SPR algorithm.

54 Comments
Some comments on the above development before we procewsel noulti-CTF case.

1. This algorithm is similar to many reported SPR algoritimthe literature. The
difference lies in the fact that this algorithm uses a singdgective function
whose value is reduced in every iteration, whereas otherd@giithms do not
have a single objective function. Thus the above algorithguiaranteed to con-
verge.
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2. The reconstruction stage of our algorithm falls undergéeeral rubric ofal-
gebraic reconstruction techniques (ART) of tomography. Many reported SPR
algorithms do not use ART; instead they adopt Fourier dort&ihniques. The
comparison of ART to Fourier domain techniques (in the canté SPR) re-
mains to be done.

55 Multi-CTF SPR

SPR with mulitple CTFs is a straight-forward extension ofj@ithm A2. A clear
understanding of what “multiple CTFs” means is useful toansthnd the extension.
In a typical cryo-em procedure, particles are embedded imyrdiferent vitreous ice
layers. Each layer is imaged with a known, but possibly diffé, microscope defocus
value. Thus each micrograph has its own CTF, and all images this micrograph
inherit that same CTF. Below, we will It denote the set of all CTF's present in the
cryo-em procedure. The imadg has the CTF,, € C.

Because the CTF is no longer fixed, the first change in theighgoioccurs in the
generation of projection images in step 2 of the algorithne Mdw have to generate
projection images for different CTFs as well. Thus step zhefdlgorithm becomes:

2. Minimize w.r.t. auxiliary parameters (Project and align):

(a) Generate all projection images = CXpS", for (C, P) € C x Dp.

(b) For each data image, use exhaustive search to find thecfiosj image
and transformation parameters that minim@g ~J I, — 7p|*. SetP;*!
to the projection frame of the minimizing projection imagela” 1, or+t
to the minimizing transformation parameters.

In figure 8 this corresponds to generating more projectiorach projection for
one combination of CTF and a projection direction. The matgpart of the algorithm
stays the same.

Step 3 of algorithm A2 has to be modified too. Similar to the ification of
step 2, the image class&s have to refined so that there is an image class for each
combination of CTF and projection direction. L&t » be the set of images that match
the projection image fo(C, P) € C x Dp in step 2. Then the class mean for these
images is:

1 _
por=tor 2 T
" nsuch thatr, ezc p

Moreover, the objective function in equation (13) modifies t

J(S AP Ava} . {00}) = > Zerll % llper — CSpS|P. (14)
(C,P)eCxDp

Step 3 of the algorithm modifies to

16



3. Minimize w.r.t. S (Reconstruct):
(a) Calculate class meapg p for all (C, P) € C x Dp.
(b) Using conjugate gradient minimizeof equation (14) with respect t6.
SetS™*+! to the minimizings.

6 Evaluating SPRs

As mentioned before, the quality of an SPR reconstructiomsiasured by Fourier Shell
Correlation.

6.1 Fourier Shell Correation

Fourier Shell Correlation (FSC) gives a measure of sigodldise ratio at different
spatial frequecies in the reconstruction [1]. The data iesagre randomly split into
two sets and a reconstruction is obtained from each set.dSeppatt; (w) and F» (w)
are the 3D discrete Fourier Transforms of the two reconstnog, wherew is the 3D
frequency. Suppose that the 3D Fourier domain is partitldneo spherical bins of
thicknessAr. Let the bins be denoted; i,= 1,..., K. Then, the FSC in thé" bin
is

Fsc(y = — R uea A@HW}
\/Zweﬂi Fr(w)Fy \/ZwGQi Fy(w)F3

The FSC is usually plotted as a function of the center frequer the binQ;. In the
presence of noise in the reconstruction, the FSC beginsaditgh value ofl and rolls
off down to0. The frequency at which the FSC reacliesis usually taken to be the
resolution of the reconstruction.

(15)

7 Conclusions

This note presented the single particle reconstructioRjPPoblem in cryogenic elec-
tron microscopy in a maximum-likelihood framework. CTF andlti-CTF problems
were addressed.
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