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Intensity Nonuniformity Correction for Brain MR Images with Known Voxel
Classes∗

Yunho Kim† and Hemant D. Tagare‡

Abstract. Intensity nonuniformity in magnetic resonance (MR) images, represented by a smooth and slowly
varying function, is a typical artifact that is a nuisance for many image processing methods. To
eliminate the artifact, we have to estimate the nonuniformity as a smooth and slowly varying function
and factor it out from the given data. We reformulate the problem as a problem of finding a unique
smooth function in a particular set of piecewise smooth functions and propose a variational method
for finding it. We deliver the main idea using a simple one-dimensional example first and provide
a thorough analysis of the problem in a three-phase scenario in three dimensions whose application
can be found in the brain MR images. Experiments with synthetic and real MR images and a
comparison with a state-of-the-art method, N3, show our algorithm’s satisfactory performance in
estimating the nonuniformity with and without noise. An automated procedure is also proposed for
practical use.
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1. Introduction. Magnetic resonance (MR) images often contain an artifact called the
“intensity nonuniformity artifact” [2]. Possible causes of this artifact are RF coil inhomo-
geneity and gradient-driven eddy currents. This artifact causes MR image intensities to be
spatially modulated by a function. The standard model for the nonuniformity artifact is

(1.1) h = g · f + η,

where h is the observed image and g, f, and η are the modulating function, the true image, and
noise, respectively. In many applications, estimating and compensating for the modulation
function g is necessary before further processing the image. In the literature, the modulating
function g is sometimes called the bias field or the nonuniformity.

As (1.1) stands, the nonuniformity function g cannot be estimated uniquely from h be-
cause, a priori, h cannot be uniquely factored into two functions. Additional assumptions are
required. The usual assumptions are that g is extremely smooth while f is piecewise constant.
Thus, factoring h means associating smooth changes of h with g, and the discontinuities of
h with f . These assumptions eliminate most of the ambiguity in factoring h, but not all of
it. It is still impossible to distinguish between factorizations of h that differ by multiplicative
constants, i.e., between the factorization h = g · f , and the factorization h = (ag) · (f/a) for
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a > 0. We live with this ambiguity and take “estimating g from h” to mean calculating any
function that is proportional to g, with a positive constant of proportionality.

There have been many previous attempts at estimating g from h; we refer the reader to
a comprehensive survey [2] and the references therein. Among the nonuniformity estimation
methods, the N3 method (nonparametric nonuniform intensity normalization) [14] is popular.
It begins with the following observation: Without noise, applying the logarithmic function to
the noiseless version of (1.1) gives

(1.2) log(h) = log(g) + log(f).

Thus the problem of finding the multiplicative function g from (1.1) becomes the problem of
finding the additive function log(g) from (1.2), which is more tractable. Assuming that log(g)
and log(f) are independent or uncorrelated random variables and that H,G,F are probability
density functions of log(h), log(g), log(f), respectively, the problem becomes estimating the
probability density G of log(g). The relation (1.2) implies that H = G ∗ F , which shows that
the effect of the nonuniformity distribution G is to blur the probability density F . The N3
algorithm first estimates F by sharpening the observedH and with this estimate F̃ , a Gaussian
function G is found that produces the best fit to the estimate F̃ given H via deconvolution.
Then producing log(g) involves another smoothing process using B splines. It is reported in
[14] that the quality of the result produced by N3 is senitive to the smoothing process. In
addition, N3 has many parameters that have to be tweaked for a good estimate. For example,
it is observed in [1] that the parameters used in the past for 1.5 T scanners needed modification
for 3 T scanners. Finally, a theoretical limitation of N3 is that its convergence has not been
mathematically analyzed and is poorly understood.

There are more recent algorithms that use variational approaches for nonuniformity cor-
rection [9, 12]. The authors of [9] use the fact that images from a body coil have low signal-to-
noise ratio but good spatial homogeneity, while images from surface coils have strong signal
response near the coils but the image intensity rapidly diminishes away from the coils. Making
use of data obtained from a body coil and surface coils, the authors propose a discrete model:

min
b,f

λB‖yB − f‖2 + λS‖yS − b ◦ f‖2 + α‖Lb‖2 + γ‖Df‖pp,

where B and S stand for body and surface, respectively, L is the Laplace operator, and D is
the gradient operator. The bias field b and the underlying structure f are estimated by the
above minimization problem, which is extended to situations where multiple surface coils and
multiple pulse sequences are used. In contrast to the above model, the authors of [12] propose
a continuous model:

min
u,σ

J(u, σ) =
1

2

∫
Ω
|σu− ũ|2dx+

ν

2

∫
Ω
|∇2σ|2dx+

κ

2

∫
Ω
u2dx+ μ

∫
Ω
φε(|Du|)dx,

and analyze the minimization problem in the primal-dual setting. Here σ is the bias field and
u is the image without nonuniformity. Both of these variational approaches model the bias
field in the Sobolev space H2 and the underlying structure either in the Sobolev space W 1,p

or in the BV space.
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Unlike the above approaches, our algorithm is designed for cases where some knowledge is
available of anatomy contained in the MR image. This is often true of large structural studies
of the brain for various disorders or diseases with a structural component (e.g., images such
as those in the publicly available PPMI database). In these studies, once the skull is stripped
from the brain images, the remaining pixels belong to three classes: cerebro-spinal fluid (CSF),
gray matter (GM), and white matter (WM). Moreover, for a given field strength, say 1.5 T,
the relative brightness of the three pixel classes is approximately known. For example, at
1.5 T WM is roughly twice as bright as CSF. As we show below, this prior knowledge can
be exploited to accurately estimate the nonuniformity function in a variational formulation
of the problem. Our goal is to solve the intensity nonuniformity problem using this idea in
a mathematically sound formulation, taking care to state the underlying assumptions clearly
and to prove convergence. Our formulation turns out to be closely related to the classical
problem of variational image segmentation. So we draw upon variational segmentation theory
to design our algorithm, and to prove its convergence.

The outline of this paper is as follows. In section 2, we informally discuss the key idea
behind our algorithm using a rather simple one-dimensional (1-D) example. In section 3, we
present the mathematical framework that we use to pose the problem precisely. In section 4,
we pursue a detailed analysis of our proposed problem for a three-phase scenario with an ap-
plication to the brain MR imaging in mind. In section 5, we extend our three-phase framework
to a general K-phase case, whose analysis is not further repeated. In section 6, we provide
numerical schemes and some explanation about choosing algorithm parameters. In section 7,
we further propose an adaptive procedure which turns out to be useful in practice when prior
knowledge is not accurate. In section 8, we report the performance of our algorithm in esti-
mating the intensity nonuniformity in synthetic MR images with and without noise. We also
explain the need for an automated procedure in practice and show how the adaptive procedure
from section 7 works. Then, we provide results of using our algorithms with real MR images
and close the section by comparing our results with the state-of-the-art N3 method.

2. Nonuniformity correction using prior knowledge.

2.1. A simple 1-D example. To informally explain the main idea, we begin with a highly
simplified example, where the true image f and the nonuniformity function g are 1-D functions
on an interval I of the real line, and the observed image h is noise-free. This is illustrated in
Figure 1. We further assume for simplicity that the underlying image f is piecewise constant,
as shown in Figure 1(a), so that

f = μ11Σ1 + μ21Σ2 ,

where 1Σ1 and 1Σ1 are indicator functions of two disjoint sets that partition I, in which f
takes values μ1 and μ2, respectively. We consider these sets to be two disjoint intervals only
for illustrative purposes. The explanation below requires only that the sets partition I. We
note that μ1, μ2,Σ1,Σ2 are all unknown.

Let g be the nonuniformity function as shown in Figure 1(b), and let h = f · g be the
observed image as in Figure 1(c). The task is to recover from h a function proportional to
g without further knowledge of f . This can be done as follows: Let ρ = μ1/μ2 be the ratio
of the μ’s, and assume that ρ is known. Set h1 = h

√
ρ and h2 = h/

√
ρ. The functions h1
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Figure 1. (a) Underlying signal f defined on an interval I, which is piecewise constant taking two values;
(b) nonuniformity function g; (c) the function h = g · f ; (d) plot of h

√
ρ in dark blue dashed line and h/

√
ρ

in light red dashed line; (e) the black solid curve is the information we can retrieve about the nonuniformity
function g, which is

√
μ1μ2g.

and h2 are drawn in Figure 1(d) with dashed lines. Notice that if we combine a piece of h1
with a piece of h2, then we can recover a function proportional to g. This is illustrated in
Figure 1(e), where the combined function is drawn with a solid line. To be more precise, the
functions h1, h2 are given by

h1 = h
√
ρ =

√
μ1
μ2
g × (μ11Σ1 + μ21Σ2) =

√
μ1
μ2
gμ11Σ1 +

√
μ1μ2g1Σ2 ,

h2 = h/
√
ρ =

√
μ2
μ1
g × (μ11Σ1 + μ21Σ2) =

√
μ1μ2g1Σ1 +

√
μ2
μ1
μ2g1Σ2 .

Since 1Σ11Σ1 = 1Σ21Σ2 = 1 and 1Σ11Σ2 = 1Σ21Σ1 = 0, we have h11Σ2 + h21Σ1 = g
√
μ1μ2,

which is proportional to g.
The above intuition suggests a possible algorithm: Calculate h1 and h2 from h by multi-

plying and dividing by
√
ρ. Estimate a partition Σ1,Σ2 of I such that h11Σ2 + h21Σ1 gives

the smoothest possible function. Note that the only way to do this in Figure 1 is to parti-
tion I exactly at the discontinuity of h. Then, the function h11Σ2 + h21Σ1 is an estimate of
a function proportional to g. Basically, this is our algorithm. An important technical part
of the problem is to estimate Σ1,Σ2 by maximizing the regularity of h11Σ2 + h21Σ1 . This
subproblem is closely related to segmentation.

The idea discussed above can be easily extended to the case where f is piecewise constant
and takes K ≥ 2 different values (the case above has K = 2). But formulating the problem in
this generality gives equations that are somewhat opaque. To make the presentation simple,
we formulate the problem and present its analysis for K = 3 in section 4. This case is
important because one of our main applications is correcting for intensity inhomogeneities in
skull-stripped brain MR images, where K equals 3.

All of the definitions, theorems, and proofs for the K = 3 case carry over to the general
K ≥ 2 case without any difficulties.

3. Mathematical tools. We now turn to discussing some of the mathematical background
we need to formulate the problem for the K = 3 case.
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3.1. Function spaces. We consider a bounded open set Ω ∈ R
n. For the experiments in

section 6, n = 3 is used. The main function spaces that we rely on are the bounded variation
(BV) space and the Sobolev spaces.

Definition 3.1. A function u ∈ L1(Ω) is of bounded variation if

sup

{∫
Ω
u(x) div(ϕ(x))dx : ϕ ∈ C1

c (Ω;R
n), |ϕ(x)| ≤ 1

}
<∞.

We denote by BV (Ω) the set of all the L1 functions of bounded variation.
It is important to note that BV (Ω) imposes enough regularity for its members to be

almost differentiable and yet allows discontinuities to some extent, which can be seen from
the theorem below. This is the main reason for using BV (Ω) in image processing.

Theorem 3.2. A function u ∈ BV (Ω) has a distributional derivative Du, an n-dimensional
Radon measure on Ω, whose total variation is

|Du|(Ω) = sup

{∫
Ω
u(x) div(ϕ(x))dx : ϕ ∈ C1

c (Ω;R
n), |ϕ(x)| ≤ 1

}
.

We will denote the total variation of the Radon measure Du associated with u ∈ BV (Ω)
by either of the following:

|Du|(Ω),
∫
Ω
|∇u|.

If u is differentiable, then Du is simply the gradient ∇u of u and the total variation is nothing
but the L1 norm of ∇u, i.e.,

|Du|(Ω) =
∫
Ω
|∇u| =

∫
Ω
|∇u(x)|dx.

Then BV (Ω) becomes a Banach space with the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) +

∫
Ω
|∇u|.

However, a better topology on BV (Ω) to work with is the weak-* topology. In particular, a
set E is of finite perimeter in Ω if the characteristic function 1E belongs to BV (Ω) and its
boundary measure, the perimeter of E, will be denoted by

P(E; Ω) = |D1E |(Ω) =
∫
Ω
|∇1E |.

The lower-semicontinuity property, the approximation property of u ∈ BV (Ω) by smooth
functions, the compactness property of a bounded sequence in BV (Ω), and the coarea formula
are particularly useful in analyzing functionals defined on BV (Ω). For more details about the
properties of BV (Ω), we refer the reader to [8] and [10].

Another function space that we use is the Sobolev space Hk(Ω) defined as follows.
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Definition 3.3. Let k ∈ N. Then Hk(Ω) is the set of functions that have weak derivatives

∇αu =
∂|α|u

∂α1
x1 · · · ∂αk

xk

,

where

α = (α1, . . . , αk), αi ≥ 0, i = 1, . . . , k, and |α| =
k∑
i=1

αi ≤ k,

with the norm

‖u‖Hk(Ω) =

⎛
⎝∑

|α|≤k

∫
Ω
|∇αu(x)|2dx

⎞
⎠

1
2

.

What is important is that Hk(Ω) is a Hilbert space for all k ∈ N. We will use elements of
H1(Ω) to model the nonuniformity function g in the following sections. We refer the reader to
any partial differential equations textbook for more details about the Sobolev spaces (e.g., [7]).

3.2. The Mumford–Shah model. Besides function spaces, we also discuss briefly the MS
(Mumford–Shah) model, from which segmentation algorithms are commonly derived. The
MS model is a minimization problem of the form

(3.1) min
u,K
F(u,K) =

∫
Ω\K
|∇u(x)|2dx+ α

∫
Ω
|u(x)− f(x)|2dx+ βH1(K),

where α, β > 0 and Ω is a bounded open subset of R2 andH1 is the 1-D Hausdorff measure and
K is a 1-D rectifiable curve. This model has been extensively analyzed, analytically as well
as numerically. One of the references that we would like to point out is the CV (Chan–Vese)
model [6], where the authors apply the MS model to the two-phase segmentation problem via
a level set function φ to represent the region of interest. More precisely, if we consider (3.1)
over a particular set containing only binary functions

c11Σ + c21Ω\Σ,

then (3.1) becomes

(3.2) min
c1,c2∈R,Σ⊂Ω

α

∫
Σ
|f(x)− c1|2dx+ α

∫
Ω\Σ
|f(x)− c2|2 + β

∫
Ω
|∇1Σ|.

The authors of [6], indeed, propose to solve

(3.3) min
c1,c2,φ

{∫
Ω
|∇H(φ)|+ λ

∫
Ω
[(f(x)− c1)2H(φ(x)) + (f(x)− c2)2(1−H(φ(x)))]dx

}
,

where H is the Heaviside function. Note that (3.2) and (3.3) are equivalent with Σ = {φ > 0}.
For numerical experiments, a regularized Heaviside function Hε is used in place of H. Later,
Chan, Esedoglu, and Nikolova [5] proposed a convex formulation for (3.3) to solve (3.2) with
c1, c2 fixed, i.e.,

(3.4) min
0≤φ≤1

{∫
Ω
|∇φ|+ λ

∫
Ω
[(f(x)− c1)2φ(x) + (f(x)− c2)2(1− φ(x))]dx

}
.
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To overcome some limitations of (3.4), the author of [13] used a strictly convex formulation to
solve (3.2) with c1, c2 fixed, which gives segmentation with a faster algorithm. Generalizations
to R

n of the MS and the CV models are straightforward and we use these techniques in our
algorithm and refer the reader to the references mentioned above for further information.

4. The problem description.

4.1. Generalizing the idea of section 2. With the preliminaries out of the way, we turn to
taking the intuition of section 2 and converting it into a well-defined problem. As mentioned
in section 2, we do this for the case where f takes K = 3 values, μ1, μ2, and μ3. First, a
straightforward generalization of the idea of section 2 is presented.

Theorem 4.1. Let Ω ⊂ R
N be open and connected, N ≥ 1. Suppose that a given function h

on Ω is a product of two unknown functions f and g through h = f · g. Suppose g is positive
and continuous in Ω and f is positive and piecewise constant with K = 3, i.e.,

f = μ11Σ1 + μ21Σ2 + μ31Σ3 ,

where μ1 > μ2 > μ3 > 0 and the partition Ω = Σ1 ∪ Σ2 ∪ Σ3 is unknown. Further, suppose
that the two ratios

ρ1 =
μ1
μ2
, ρ2 =

μ2
μ3

are known. Then, there exist α1, α2, α3 in R depending only on ρ1, ρ2 such that the set X
defined by {

u : Ω→ R : u(x) ∈ {α1h(x), α2h(x), α3h(x)}
}
,

contains a unique continuous function g̃, which is a positive constant multiple of the unknown
function g. Moreover, h/g̃ is a constant positive multiple of the unknown function f .

Proof. We note that ρ1, ρ2 determine all the ratios

μj
μi

=

i−1∏
k=j

ρk for 1 ≤ j < i ≤ 3.

Define each αi, i = 1, 2, 3, by

αi =

⎛
⎝∏
j �=i

μj
μi

⎞
⎠

1
3

=

⎧⎪⎪⎨
⎪⎪⎩

1
3
√
ρ21ρ2

if i = 1,

3
√
ρ2/ρ3 if i = 2

3
√
ρ1ρ

2
2 if i = 3.

Note that these αi’s are not zero and depend only on ρ1, ρ2. Then, for any i, j,

αiμi = 3
√
μ1μ2μ3 = αjμj,

which implies that 0 < α1 < α2 < α3.
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If we multiply the given h by αi, then

αih = αig · (μ11Σ1 + μ21Σ2 + μ31Σ3)

=

⎛
⎝∑
j �=i

αiμjg1Σj

⎞
⎠+ αiμig1Σi

=

⎛
⎝∑
j �=i

αiμjg1Σj

⎞
⎠+ (g 3

√
μ1μ2μ3)1Σi .

This means that
α1h1Σ1 + α2h1Σ2 + α3h1Σ3 = g 3

√
μ1μ2μ3.

Therefore, g̃ = g 3
√
μ1μ2μ3 is continuous and is contained in the set X, where

X =
{
u : Ω→ R : u(x) ∈ {α1h(x), α2h(x), α3h(x)}

}
.

Next, suppose ḡ ∈ X is also a continuous function. Then, by the definition of X, there exists
a partition Ω = Σ̄1 ∪ Σ̄2 ∪ Σ̄3 such that

ḡ = α1h1Σ̄1
+ α2h1Σ̄2

+ α3h1Σ̄3
.

Note that

G :=
g̃

ḡ
=

∑3
i=1 αi1Σi∑3
i=1 αi1Σ̄i

=
∑

1≤i,j≤3

αi
αj

1Σi∩Σ̄j

must be continuous. Since G is piecewise constant, G must be a constant function. Suppose
that G ≡ t �= 1. It is easy to see that for i = 1, 2, 3,

Σi ∩ Σ̄i = ∅.
Moreover, for any x1 ∈ Σ1 and x2 ∈ Σ̄1, there exists i, j > 1 such that x1 ∈ Σ̄i and x2 ∈ Σj.
This implies that

G(x1) =
α1

αi
< 1 <

αj
α1

= G(x2),

which is a contradiction because G ≡ t �= 1. Hence, G ≡ 1 and g̃ is the unique continuous
function in X. Note that

h

g̃
=

f · g
g 3
√
μ1μ2μ3

=
1

3
√
μ1μ2μ3

f

is a constant multiple of the unknown function f .
This theorem captures the intuition of section 2 precisely. It shows that up to a constant

scaling factor, the function g can be found in the set

X =
{
u : Ω→ R : u(x) ∈ {α1h(x), α2h(x), α3h(x)}

}
,

which is the only continuous function in X; all other functions in X have some discontinuity.
For simplicity, here and in what follows, we will reserve the symbol ψ for “g up to a

multiplicative factor,” which is the unique continuous function in the set X we want to find.
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4.2. Finding ψ. How can we use Theorem 4.1 when there is noise in the data? Naively,
we might try to find ψ by minimizing the L2 norm of

ψ − (α1h1Σ1 + α2h1Σ2 + α3h1Σ3)

with some regularization penalty for ψ. But this idea does not correctly handle the noise
variance. According to (1.1), the noise in h has equal variance at all points of Ω. Multiplying
h with different α’s in Σ1,Σ2, and Σ3 will result in unequal noise variances in Σ1,Σ2, and
Σ3. Simply minimizing the L2 norm of ψ − (α1h1Σ1 + α2h1Σ2 + α3h1Σ3) does not account
for differing noise variances in the three regions and hence is not appropriate. But it is
straightforward to see that (ψ/α1 − h)1Σ1 + (ψ/α2 − h)1Σ2 + (ψ/α3 − h)1Σ3 retains equality
of noise variance since the data, h, are not being multiplied by any αi’s. Thus, finding ψ by
minimizing the L2 norm of (ψ/α1−h)1Σ1 +(ψ/α2−h)1Σ2 +(ψ/α3−h)1Σ3 is the appropriate
use of Theorem 4.1 when the data are noisy.

What remains is to construct an algorithm for finding ψ. To this end, we represent the
partition of Ω into three disjoint sets by two functions 0 ≤ φ1, φ2 ≤ 1, so that 1Σ1 , 1Σ2 , and
1Σ3 are closely approximated by φ2φ1, φ2(1 − φ1), and (1 − φ2), respectively. The regularity
of ψ is measured by a functional Rβ,M (ψ), which is discussed later.

With these preliminaries at hand, we propose to find ψ (as well as φ1, φ2) as the solution
to the following minimization problem:

(4.1)

min
0≤φ1≤1,
0≤φ2≤1,

ψ

{
F(φ1, φ2, ψ) =

∫
Ω
|∇φ1|+

∫
Ω
|∇φ2|+Rβ,M (ψ)

+
λ

2
|α|2

∫
Ω

[
φ2(x)φ1(x)

(
h(x)− ψ(x)

α1

)2

+ φ2(x)(1 − φ1(x))
(
h(x) − ψ(x)

α3

)2

+ (1− φ2(x))
(
h(x)− ψ(x)

α2

)2 ]
dx

}

with α = (α1, α2, α3). In fact, the parameter λ
2 |α|2 can be replaced simply by λ; however,

we kept the factor |α|2 because (4.1) was derived initially from a vectorial setting where this
factor appeared. Keeping the factor has no effect on the answer.

The minimization problem (4.1) can be understood as follows. For a fixed ψ, the objective
function in (4.1) attempts to find a partition represented by φ1, φ2 such that ψ/αi approxi-
mates h closely in each subset of the partition. The first two terms in the functional regularize
φ1 and φ2. Further, for fixed φ1 and φ2, the functional in (4.1) attempts to find a regularized
ψ that further minimizes the difference (h− ψ/αi) in in each subset of the partition.

When it comes to Rβ,M , a regularizer for ψ, to ensure that ψ is a slowly varying smooth
function, we require ψ to be a bounded H1 function by using

Rβ,M (ψ) = β

∫
Ω
|∇ψ|2 + χM (ψ),
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where β > 0 and

χM(ψ) =

{
0 if ‖ψ‖∞ ≤M,

∞ otherwise

for some 0 < M < ∞ since we may well expect that a slowly varying smooth function over
a bounded region should be bounded. Note that β > 0 controls the variation of the shape of
the function ψ. An important observation when choosing Rβ,M is that the solution function
ψ should be independent of scaling h by a positive constant. In other words, our choice of
Rβ,M with M =∞ above confirms that with φ1, . . . , φK−1 fixed, ψ∗ minimizes the functional
in (4.1) with input h if and only if γψ∗ minimizes the same functional with input γh, γ > 0.
Our choice of Rβ,M is appropriate in this sense. Since the boundedness of h implies the
boundedness of ψ∗ as will be seen later, Rβ,M with M =∞ is of interest in most applications.

To understand the minimization problem (4.1) further, we introduce three supplemental
functionals:

F1
φ2,ψ(u) =

∫
Ω
|∇u|+ λ

2
|α|2

∫
Ω
φ2

[(
h− ψ

α1

)2

−
(
h− ψ

α3

)2
]
u,

F2
φ1,ψ(u) =

∫
Ω
|∇u|+ λ

2
|α|2

∫
Ω

{[
φ1

(
h− ψ

α1

)2

+ (1− φ1)
(
h− ψ

α3

)2
]
−
(
h− ψ

α2

)2
}
u,

F3
φ1,φ2(u) = Rβ,M(u) +

λ

2
|α|2

∫
Ω

[(
1

α2
1

φ2φ1 +
1

α2
3

φ2(1− φ1) + 1

α2
2

(1− φ2)
)
u2

− 2h

(
1

α1
φ2φ1 +

1

α3
φ2(1− φ1) + 1

α2
(1− φ2)

)
u+ h2

]
.

Then, we can observe the following:

(4.2) argmin
0≤φ1≤1

F(φ1, φ2, ψ) = argmin0≤φ1≤1F1
φ2,ψ(φ1),

(4.3) argmin
0≤φ2≤1

F(φ1, φ2, ψ) = argmin0≤φ2≤1F2
φ1,ψ(φ2),

and

(4.4) argmin
ψ
F(φ1, φ2, ψ) = argminψ F3

φ1,φ2(ψ).

Theorem 4.2. Let h ∈ L2(Ω). Then, there exist binary functions φ∗1, φ∗2 taking values 0
and 1 and an H1 function ψ∗ such that (φ∗1, φ∗2, ψ∗) solves the minimization problem (4.1), in
other words,

F(φ∗1, φ∗2, ψ∗) ≤ F(φ1, φ2, ψ)
for any 0 ≤ φ1 ≤ 1, 0 ≤ φ2 ≤ 1, and ψ ∈ H1(Ω).

Proof. The proof uses a standard technique in optimization theory. Since the functional
F is bounded from below, we may choose a minimizing sequence

{(φn1 , φn2 , ψn)}∞n=1.
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Note that {φn1}∞n=1 and {φn2}∞n=1 are bounded sequences in BV and {ψn}∞n=1 is a bounded se-
quence in H1(Ω) with supn ‖ψn‖∞ ≤M . This makes it possible for us to extract subsequences
that possess weak-∗ or weak limits, that is, there is a subsequence {(φnk

1 , φnk
2 , ψnk)}∞k=1 such

that as k →∞,

φnk
1 → u∗1 pointwise a.e., φnk

2 → u∗2 pointwise a.e., ψnk → ψ∗ pointwise a.e.

and ∫
Ω
|∇u∗1| ≤ lim inf

k→∞

∫
Ω
|∇φnk

1 | and

∫
Ω
|∇u∗2| ≤ lim inf

k→∞

∫
Ω
|∇φnk

2 |

and

ψnk ⇀ ψ∗ in H1(Ω) as k →∞.
Then, we can easily obtain that ‖ψ∗‖∞ ≤M and

F(u∗1, u∗2, ψ∗) ≤ lim
k→∞

F(φnk
1 , φnk

2 , ψnk),

which means that (u∗1, u∗2, ψ∗) solves (4.1). From (4.2) and [5], [13], we can see that

F(u∗1, u∗2, ψ∗) = F(φ∗1, u∗2, ψ∗),

where φ∗1 is a binary function taking values 0 and 1 such that F1
u∗2,ψ∗(φ∗1) = min0≤φ≤1 F1

u∗2,ψ∗(φ).

With the same argument, (4.3) and [5], [13] imply

F(φ∗1, u∗2, ψ∗) = F(φ∗1, φ∗2, ψ∗),

where φ∗2 is a binary function taking values 0 and 1 such that F2
φ∗1 ,ψ∗(φ∗2) = min0≤φ≤1 F2

φ∗1,ψ∗(φ).

Therefore, (φ∗1, φ∗2, ψ∗) solves (4.1) and φ∗1, φ∗2 are binary functions taking values 0 and 1 and
ψ∗ is an H1(Ω) function.

Variational Algorithm 1. The minimization problem in (4.1) can be solved via the following
procedure.

1. Set n = 0, and initialize φ01 and φ02 as characteristic functions.
2. Find (u∗, ω∗) such that 0 ≤ u∗ ≤ 1,

(4.5) F(u∗, φn2 , ω∗) = min
0≤u≤1,ψ

F(u, φn2 , ω),

and set φn+1
1 = u∗.

3. Find (v∗, ψ∗) such that 0 ≤ v∗ ≤ 1,

(4.6) F(φn+1
1 , v∗, ψ∗) = min

0≤v≤1,ψ
F(φn+1

1 , v, ψ),

and set φn+1
2 = v∗ and ψn+1 = ψ∗.

4. n← n+ 1 and go to 2.
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We would like to point out that ω∗ obtained in (4.5) is not explicitly used for the next step
in (4.6). Nevertheless, it is important to compute ω∗ for a proper u∗ in (4.5). In the numerical
computations, ω∗ is taken as an initial guess for computing ψ∗ in (4.6). When solving (4.5),
we will alternate between

min
0≤u≤1

F(u, φn2 , ω) ⇔ min
0≤u≤1

F1
φn2 ,ω

(u)

and

min
ω
F(u, φn2 , ω) ⇔ min

ω
F3
u,φn2

(ω).

Similarly, when solving (4.6), we will also alternate between

min
0≤v≤1

F(φn+1
1 , v, ψ) ⇔ min

0≤v≤1
F2
φn+1
1 ,ψ

(v)

and

min
ψ
F(φn+1

1 , v, ψ) ⇔ min
ψ
F3
φn+1
1 ,v

(ψ).

Therefore, we will analyze the three subproblems corresponding to the three supplemental
functionals

min
0≤u≤1

F1
ϕ1,ϕ2

(u) and min
0≤u≤1

F2
ϕ1,ϕ2

(u) and min
u
F3
ϕ1,ϕ2

(u).

From now on, the sequence {(φn1 , φn2 , ψn)}∞n=1 will be referred to as the one obtained by
the Variational Algorithm. The following theorems from [5] and [13] can help us minimize
F1
φn2 ,ψ

and F2
φn+1
1 ,ψ

.

Theorem 4.3. Let h ∈ L2(Ω). Let φ∗ be a minimizer of

(4.7) min
0≤φ≤1

{∫
Ω
|∇φ|+ λ

∫
Ω
h(x)φ(x)dx

}
.

Then for a.e. μ ∈ [0, 1], the function 1Σµ is also a minimizer of (4.7), where

Σμ = {x ∈ Ω : φ∗(x) > μ}.

Proof. This is the same as Theorem 2 of [5].
It is easy to see that φ∗ = 0 is a unique minimizer of (4.7) if h ≥ 0 a.e. and h �= 0. Hence,

we are only interested in a datum h such that

{x ∈ Ω : h(x) < 0}

has positive Lebesgue measure.
Theorem 4.4 (Theorem 4 of [13]). Let h ∈ L2(Ω) be such that {x ∈ Ω : h(x) < 0} has

positive Lebesgue measure. We consider the following problem:

(4.8) min
ω

{∫
Ω
|∇ω|+

∫
Ω

(
ω(x) +

λ

2
h(x)

)2

dx

}
.
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Then, there exists a unique minimizer ω∗ of (4.8). Moreover, Σ∗ = {ω∗ > 0} is a minimizer
of

(4.9) min
Σ⊂Ω

{∫
Ω
|∇1Σ|+ λ

∫
Σ
h(x)dx

}
.

In addition, (4.9) has a unique minimizer if and only if {ω∗ = 0} has Lebesgue measure 0.
Otherwise, {ω∗ > 0} and {ω∗ ≥ 0} are the minimal and the maximal solutions of (4.9).

Theorems 4.3 and 4.4 solve (4.9) and imply that the convex constrained problem (4.7)
can be solved by the strictly convex unconstrained problem (4.8). We can see from the
examples provided in [13] that (4.7) presents uncertainty in computing a minimizer in the
sense that we cannot tell which minimizer would be computed when there is more than one
minimizer. On the other hand, (4.8) always presents the minimal and the maximal solutions
of (4.9). Therefore, any minimization problem of the form (4.7) will be approached via (4.8)
throughout the paper, and we will compute the minimal solution of (4.9) as far as (4.8) is
concerned. This is summarized in Proposition 4.5 below.

Proposition 4.5. Let h ∈ L2(Ω) and ψ ∈ H1(Ω) with ‖ψ‖∞ ≤ M and φn+1
1 , φn2 ∈ BV (Ω)

with 0 ≤ φn+1
1 , φn2 ≤ 1. Then,

(4.10) min
0≤u≤1

F1
φn2 ,ψ

(u)

can be solved by (4.8) with λ and h replaced by λ
2 |α|2 and

φn2

[(
h− ψ

α1

)2

−
(
h− ψ

α3

)2
]
,

respectively. Moreover, the minimizer u∗ of (4.10) obtained via Theorem 4.4 is a characteristic
function 1Σ∗ ∈ BV (Ω) that is also a solution of

min
Σ⊂Ω

{
P(Σ;Ω) +

λ

2
|α|2

∫
Σ
φn2

(
h− ψ

α1

)2

+
λ

2
|α|2

∫
Ω\Σ

φn2

(
h− ψ

α3

)2
}
.

Likewise,

(4.11) min
0≤φ2≤1

F2
φn+1
1 ,ψ

(φ2)

can be solved in the same way using (4.8) with λ and h replaced by λ
2 |α|2 and[

φn+1
1

(
h− ψ

α1

)2

+ (1− φn+1
1 )

(
h− ψ

α3

)2
]
−
(
h− ψ

α2

)2

,

respectively. Then, the minimizer u∗ of (4.11) obtained via Theorem 4.4 is also a characteristic
function 1Σ∗ ∈ BV (Ω) that is a solution of

min
Σ⊂Ω

{
P(Σ;Ω) +

λ

2
|α|2

∫
Σ

[
φn+1
1

(
h− ψ

α1

)2

+ (1− φn+1
1 )

(
h− ψ

α3

)2
]

+
λ

2
|α|2

∫
Ω\Σ

(
h− ψ

α2

)2}
.
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Proof. All we need to check is that

φn2

[(
h− ψ

α1

)2

−
(
h− ψ

α3

)2
]
∈ L2(Ω)

and [
φn+1
1

(
h− ψ

α1

)2

+ (1− φn+1
1 )

(
h− ψ

α3

)2
]
−
(
h− ψ

α2

)2

∈ L2(Ω),

which are equivalent, respectively, to

2

(
1

α3
− 1

α1

)
hψ +

(
1

α2
1

− 1

α2
3

)
ψ2 ∈ L2(Ω)

and

2

[
1

α2
−
(
φn+1
1

α1
+

(1− φn+1
1 )

α3

)]
hψ +

(
φn+1
1

α2
1

+
(1− φn+1

1 )

α2
3

− 1

α2
2

)
ψ2 ∈ L2(Ω).

These can be easily confirmed by ψ ∈ L∞(Ω) and h ∈ L2(Ω) and 0 ≤ φn+1
1 , φn2 ≤ 1. The rest

can be easily observed from Theorems 4.3 and 4.4.
We note that for each n = 1, 2, . . . , φn1 and φn2 are obtained by minimizing F1 and F2 using

the method described in Theorem 4.4, which implies that they are characteristic functions that
are minimal solutions of the corresponding problems in the form of (4.9) in our algorithm. So
we may assume that φn1 and φn2 are characteristic functions for all n ≥ 1. Then, ψn+1 satisfies

F(φn+1
1 , φn+1

2 , ψn+1) = min
ψ
F3
φn+1
1 ,φn+1

2
(ψ)

= min
ψ

{
Rβ,M (ψ) +

λ

2
|α|2

∫
Ω
(Φn+1(x)ψ(x) − h(x))2dx

}
,

where

Φn+1 =
1

α1
φn+1
2 φn+1

1 +
1

α3
φn+1
2 (1− φn+1

1 ) +
1

α2
(1− φn+1

2 )

=

⎧⎪⎨
⎪⎩

1
α1

on {φn+1
1 = 1, φn+1

2 = 1},
1
α3

on {φn+1
1 = 0, φn+1

2 = 1},
1
α2

on {φn+1
2 = 0}.

The following proposition applies to most applications and it shows that the condition

‖ψn+1‖∞ ≤M

does not impose any computational burden on the algorithm.
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Proposition 4.6. Let h ∈ L∞(Ω). If M > α3‖h‖∞, then the solution ψn+1 of the problem

min
ψ
F3
φn+1
1 ,φn+1

2
(ψ) = min

ψ

{
Rβ,M (ψ) +

λ

2
|α|2

∫
Ω
(Φn+1(x)ψ(x) − h(x))2dx

}

satisfies

‖ψn+1‖∞ ≤ α3‖h‖∞.
Proof. Simply speaking, the maximum principle applies, i.e.,

‖Φn+1ψn+1‖∞ ≤ ‖h‖∞.

Since α1 < α2 < α3, we obtain that

‖ψn+1‖∞ ≤ α3‖h‖∞.

Proposition 4.6 implies that Rβ,M (ψ) and

β

∫
Ω
|∇ψ(x)|2dx

play the same role with M > α3‖h‖∞. The following convergence result also holds.
Theorem 4.7. The sequence {(φn1 , φn2 , ψn)}∞n=1 obtained from the Variational Algorithm sat-

isfies

F(φn+1
1 , φn+1

2 , ψn+1) ≤ F(φn1 , φn2 , ψn) for all n = 1, 2, . . . ,

and possesses a limit point (φ∗1, φ∗2, ψ∗) such that

F(φ∗1, φ∗2, ψ∗) ≤ inf
n
F(φn1 , φn2 , ψn).

Proof. Note that for each n = 1, 2, . . . we have from the Variational Algorithm that

F(φn+1
1 , φn+1

2 , ψn+1) ≤ F(φn+1
1 , φn2 , ω

∗) ≤ F(φn1 , φn2 , ψn).

Remark 1. Just as with other alternating minimization methods, it is difficult to see
whether a limit point from Theorem 4.7 can serve as a minimizer in Theorem 4.2. How-
ever, we can make sure that our algorithm produces a convergent sequence decreasing the
functional F .

5. Theory for the general case (K ≥ 2). Having dealt with the K = 3 case, we now
briefly mention the general K ≥ 2 case. The same analysis as the K = 3 case can be carried
over to any K ≥ 2.

Theorem 5.1. Let Ω ⊂ R
N be open and connected, N ≥ 1. Suppose that a given function h

on Ω is a product of two unknown functions f and g through h = f · g. Suppose g is positive
and continuous in Ω and f is positive and piecewise constant with K ≥ 2, i.e.,

f = μ11Σ1 + · · · + μK1ΣK
,



INTENSITY NONUNIFORMITY CORRECTION 543

where μ1 > · · · > μK and the partition Ω = Σ1 ∪ · · · ∪ ΣK is unknown. Suppose that the
following K − 1 ratios

ρi =
μi
μi+1

, i = 1, 2, . . . ,K − 1,

are given. Then, there exist α1, . . . , αK in R depending only on ρ1, . . . , ρK−1 such that the set
X defined by {

u : Ω→ R : u(x) ∈ {α1h(x), . . . , αKh(x)}
}
,

contains a continuous function g̃, which is a constant multiple of the unknown function g.
Moreover, g̃ is a unique continuous function in X and h/g̃ is a constant multiple of the
unknown function f .

The constants αi in the above theorem are determined for ρ1, . . . , ρK−1 by

αi =

⎛
⎝∏
j �=i

μj
μi

⎞
⎠

1
K

=

⎛
⎝
⎛
⎝∏
j<i

i−1∏
k=j

ρk

⎞
⎠
⎛
⎝∏
j>i

j−1∏
k=i

ρ−1
k

⎞
⎠
⎞
⎠

1
K

and the proof is the same as that of Theorem 4.1 In addition, the minimization problem (4.1)
can be extended to any K ≥ 2 as follows:

min
0≤φ1,...,φK−1≤1,

ψ

F(φ1, . . . , φK−1, ψ),

where if K ≥ 2 is an even number, then

F(φ1, . . . , φK−1, ψ) =
K−1∑
i=1

∫
Ω
|∇φi|+Rβ,M (ψ)

+
λ

2
|α|2

⎧⎨
⎩
∫
Ω

⎡
⎣
⎧⎨
⎩
K/2−1∑
i=1

⎛
⎝K/2+i−1∏
j=K/2+1

(1− φj(x))
⎞
⎠ φK/2+i(x)

×
(
φi(x)

(
h(x)− ψ(x)

αi

)2

+ (1− φi(x))
(
h(x)− ψ(x)

αK+1−i

)2)⎫⎬
⎭

+

⎛
⎝ K−1∏
j=K/2+1

(1− φj(x))
⎞
⎠(φK/2(x)

(
h(x)− ψ(x)

αK/2

)2

+ (1− φK/2(x))
(
h(x)− ψ(x)

αK/2+1

)2)⎤⎦ dx
⎫⎬
⎭ ,
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whereas if K > 2 is an odd number, then

F(φ1, . . . , φK−1, ψ) =
K−1∑
i=1

∫
Ω
|∇φi|+Rβ,M(ψ)

+
λ

2
|α|2

⎧⎨
⎩
∫
Ω

⎡
⎣
⎧⎨
⎩

(K−1)/2∑
i=1

⎛
⎝(K−1)/2+i−1∏

j=(K+1)/2

(1− φj(x))
⎞
⎠ φ(K+1)/2+i−1(x)

×
(
φi(x)

(
h(x)− ψ(x)

αi

)2

+ (1− φi(x))
(
h(x)− ψ(x)

αK+1−i

)2)⎫⎬
⎭

+

⎛
⎝ K−1∏
j=(K+1)/2

(1− φj(x))
⎞
⎠(h(x)− ψ(x)

α(K+1)/2

)2
⎤
⎦ dx

⎫⎬
⎭ ,

where we use the convention that
∏k
j=m sj = 1 if k < m.

For the purpose of illustration, we consider the case when K > 1 is an odd number. This
applies to the case of an even number K > 1 in exactly the same way. For

f = μ11Σ1 + · · · + μK1ΣK
,

where μ1 > · · · > μK and the partition is Ω = Σ1 ∪ · · · ∪ΣK , we would like to pair up Σi and
ΣK+1−i, i = 1, 2, . . . , (K − 1)/2, and represent them by

Σi =

⎧⎨
⎩x ∈ Ω :

(K−1)/2+i−1∏
j=(K+1)/2

(1− φj(x)) = 1 and φ(K+1)/2+i−1(x) = 1

⎫⎬
⎭ ∩ {x ∈ Ω : φi(x) = 1},

and

ΣK+1−i =

⎧⎨
⎩x ∈ Ω :

(K−1)/2+i−1∏
j=(K+1)/2

(1− φj(x)) = 1 and φ(K+1)/2+i−1(x) = 1

⎫⎬
⎭

∩ {x ∈ Ω : φi(x) = 0}.

As for i = (K + 1)/2, we represent Σ(K+1)/2 by

Σ(K+1)/2 =

⎧⎨
⎩x ∈ Ω :

K−1∏
j=(K+1)/2

(1− φj(x)) = 1

⎫⎬
⎭ .

6. Numerical techniques. We now provide specific numerical algorithms to solve (4.2),
(4.3), (4.4). Among the many available algorithms, we use the algorithm by Chambolle
[3] for (4.2) and (4.3) and the Gauss–Seidel method provided in [11] for (4.4). Details are
given below. We chose Chambolle’s algorithm [3] because it was reported in [13] that this
algorithm is simple and efficient for (4.9) due to the particular stopping criterion that we
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impose. Any other efficient algorithms for solving (4.8) should work. One can use those
algorithms provided in [4] for all of (4.2), (4.3), (4.4). However, in our experiments, we
observed better performances in using [3] than [4] with comparable computational speed as
was reported in [13]. Note that (4.5) is approached via alternation between (4.2) and (4.4)
and (4.6) is approached via alternation between (4.3) and (4.4).

In fact, we can borrow the detailed setting for Chambolle’s algorithm with the new stop-
ping criterion from [13] to solve (4.9): For a given ε > 0 and for each k = 1, 2, . . . , we compute

(6.1) pk+1
i,j,l =

pki,j,l + τ(∇(div(pk) + λh))i,j,l

1 + +τ |(∇(div(pk) + λh))i,j,l|

and stop when

|Σk+1ΔΣk| = |Σk+1 \Σk|+ |Σk \Σk+1| < ε,

where

Σk =

{
(i, j, l) : ωki,j,l = −

λ

2
hi,j,l − 1

2
(div(pk))i,j,l > 0

}
.

For all the experiments, we used ε = 1, i.e., we stopped the iteration when Σk+1 ≡ Σk, which
was considered to be exact recovery in [13], to make sure of the accuracy of our algorithm. In
fact, we checked this stopping criterion at every 10th iteration. And we simply replace λ and
h in (6.1) by those given in Proposition 4.5 accordingly to compute (4.2) and (4.3).

As for (4.4), since the input data h are bounded in practice, Proposition 4.6 allows us to
solve

(6.2) min
ψ

{
β

∫
Ω
|∇ψ|2 + λ̃

2

∫
Ω
(Φ(x)ψ(x) − h(x))2dx

}
,

where

Φ =
1

α1
φ2φ1 +

1

α3
φ2(1− φ1) + 1

α2
(1− φ2)

=

⎧⎪⎨
⎪⎩

1
α1

on {φ1 = 1, φ2 = 1},
1
α3

on {φ1 = 0, φ2 = 1},
1
α2

on {φ2 = 0}

with λ̃ = λ|α|2. Note that φ1, φ2 that we use for (4.4) will be obtained from (4.2) and (4.3),
i.e., they are binary functions, which permits Φ to take three values as above. Strict convexity
of (6.2) implies that there exists a unique minimizer ψ∗ of (6.2) that satisfies

(6.3) (λ̃Φ2 − 2βΔ)ψ∗ = λ̃h · Φ.

The three-dimensional version of the Gauss–Seidel method in [11] for (6.3) reads as follows:
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with ω = Φ2 and f = h · Φ,

ψk+1 = {Gki,j,l} =
{

2β

λ̃ωi,j + 12β

(
ψki+1,j,l + ψki−1,j,l + ψki,j+1,l + ψki,j−1,l + ψki,j,l+1 + ψki,j,l−1

)

+
λ̃

λ̃ωi,j + 12β
f

}
.

We will use three-dimensional masks for the brain data sets in all the experiments to describe
the boundaries and consider Dirichlet boundary conditions. We will stop this iteration when

‖ψk+1 − ψk‖22 =
∑
i,j,l

∣∣∣Gki,j,l −Gk−1
i,j,l

∣∣∣2 < ε1.

The algorithm in [4] can also serve as an alternative to solve (4.4). The parameters for our
algorithm are set to λ = 0.02, τ = 0.1, β = 4, ε1 = 0.5. The most influential parameter turns
out to be β, in fact, λ

β , which determines the smoothness of the smooth and slowly varying
function. When it comes to real MR images, we found that β = 4 provided reasonable and
reliable results when all the other parameters were fixed. In real data sets, β ≈ 2 started to
capture local structures whereas β ≈ 6 resulted in oversmoothing. For synthetic data, β ≈ 1
worked better than β = 4. We believe that this is due to the fact that the synthetic data
sets are prepared from a truly piecewise constant function f . Moreover, the smaller β is, the
faster our algorithm runs. As for alternating between (4.5) and (4.6), we iterate (4.2) and
(4.4) three times for (4.5) and iterate (4.3) and (4.4) three times for (4.6), which worked well
enough in practice. During these iterations, we always check to make sure that the functional
is decreasing at every iteration. As for terminating the Variational Algorithm, we run it until
it reaches a steady state solution when dealing with synthetic MR images, where our theory
is truly applicable. With real MR images, we can terminate the algorithm at n = 2; in other
words, the smooth and slowly varying function that we obtained in our experiments with real
MR images was all ψ2 since we did not observe any significant improvement in the subsequent
iterations. It is also important to have a good initial guess for φ01 and φ02. We always used φ01
densely defined in Ω with φ02 ≡ 1. More detailed explanations will come in section 8.

7. Adaptation. What has been discussed so far is based on the assumption that accurate
estimates of the the ratios (ρ1, ρ2) are available. As we show below in section 8, the algorithm
is not sensitive to this assumption, especially with real MR images. Nevertheless, to further
improve robustness of the algorithm, we propose an adaptive version where the ratios (ρ1, ρ2)
are updated in an outer loop.

Adaptive Variational Algorithm 1. Given estimated ratios (ρ1, ρ2), do the following.
1. Use the Variational Algorithm with estimated (ρ1, ρ2) to compute ψ. As a by-product,

obtain estimates of the indicator functions 1Σ1 , 1Σ2 , and 1Σ3 of the three regions.
2. We divide the input h by ψ to estimate the underlying true signal f . Then obtain the

three average values μ1 > μ2 > μ3 in the estimated regions.
3. Set ρ1 = μ1/μ2, ρ2 = μ2/μ3.
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This automated procedure will be adopted for nonuniformity correction with real MR
images in the next section, where accurate estimates of the ratios are not available.

8. Simulations and experiments with real MR images.

8.1. Overview. We tested the algorithm with simulations and real MR images, and in
this section, we report the results of these tests. In the simulations, the data were generated
according to the model (1.1), so that the “ground truth” inhomogeneity was known. The
accuracy of the algorithm was assessed by the following criteria.

1. Ideally, the estimated nonuniformity ψ is proportional to g, the true nonuniformity. In
practice, the two may depart from strict proportionality because of noise, numerical
error, or the algorithm being trapped in a local minimum. We measured departure
from proportionality in the following way: First, we normalized (scaled) g/ψ to have
a maximum value of 1. Then, we created a histogram of the normalized g/ψ values
in the brain region. Ideally, this histogram should have a spike at the value of 1,
but loss of proportionality will cause the spike to spread out. We use the variance of
the histogram of normalized g/ψ as a performance measure. Smaller variances imply
better performance. We refer to this variance as the normalized variance.

2. We use some secondary performance measures as well. These are not as important
as the normalized variance, but they do assess whether the assumptions of the theory
hold. Because the algorithm depends on segmenting the image, we measured the ac-
curacy of the segmentation relative to the ground truth in the simulations. As another
secondary performance measure, we compared the ρ values in the final segmentation
and compared them to the ground truth ρ values.

The simulation experiments were carried out in three steps. First, the algorithm was tested
on a noise-free data set to test the intrinsic accuracy of the algorithm. Next the algorithm was
tested on noisy data. In both of these simulations the ρ values were assumed to be known.
In the final simulation, we discarded this assumption, and used the adaptive algorithm which
was initialized at incorrect vales of ρ.

8.2. Simulations. The synthetic data set we used was the simulated scan with gradient
available from the Center for Morphometric Analysis at Massachusetts General Hospital at
http://www.cma.mgh.harvard.edu/ibsr/. The original size of the data is 256×256×55 (voxel
size), which we reduced to 118 × 116 × 47 by trimming out the background region and by
discarding the first and the last few slices. Then, we added one extra slice at each of the
two ends of the brain region in each dimension to take care of the boundary conditions and
prepared a mask for the brain region as well. The GM/WM/CSF regions were very clearly
separable using their intensity values, and this produced the segmentation ground truth for
the regions Σ1,Σ2,Σ3. The three intensity values in Σ1,Σ2,Σ3 were μ1 = 65, μ2 = 45, μ3 = 25,
respectively.

Therefore, the model for the ground truth f that we used in all our simulations was

f = 65 · 1Σ1 + 45 · 1Σ2 + 25 · 1Σ3 .

Figure 2 shows f , an inhomogeneity function g, a nonnoisy corrupted image h = f.g, a noisy
corrupted image h̃ = h+ η, and histograms of h and h̃. To save space, the figure only shows
every other z-slice (we adopt this convention for all figures).

http://www.cma.mgh.harvard.edu/ibsr/
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Figure 2. Left column: ground truth signal f and true nonuniformity function g; middle column: corrupted
image h = f · g and noisy corrupted image h̃ = h+ η; right column: histograms of h and h̃.

For this simulated data, the true ρ values are

ρ1 =
65

45
= 1.4444, and ρ2 =

55

25
= 1.8.

8.2.1. Noise-free case. We first estimated the nonuniformity function for the noise-free
case, where h = f · g using the true ratios (ρ1, ρ2) = (1.4444, 1.8). We set β = 1 and λ = 0.02
and stopped the Variational Algorithm at n = 15.

Figure 3 shows the estimated nonuniformity function ψ and the histogram of normalized
g/ψ. The normalized variance of g/ψ is 0.001 (mean = 0.9301) which compares well with the
expected variance of 0 in ideal recovery.

Figure 4 also confirms our algorithm’s performance using secondary performance measures.
From left to right, the corrupted image h, the corrected image h/ψ, the histogram of h, and the
histogram of h/ψ are shown. It is clear, visually and numerically, that ψ is accurate enough to
recover the unknown regions Σ1,Σ2,Σ3 as well. In fact, the estimated segmentations Σ1,Σ2,Σ3

using φ1, φ2 were perfect. The ratios between the average values of h/ψ in the three regions
are

ρ̃1 =
average value in Σ1

average value in Σ2
= 1.4736 and ρ̃2 =

average value in Σ2

average value in Σ3
= 1.7268,

which compare well with the true ρ1, ρ2.
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Figure 3. Left: estimated nonuniformity ψ; right: histogram of normalized g/ψ. This has a normalized
variance of 0.001 (mean 0.9301).

Figure 4. From left to right: corrupted image h, corrected image h/ψ, histogram of h, and histogram of h/ψ.

8.2.2. Noisy case. Next, we added Gaussian white noise to the corrupted image h of the
previous section, to have h̃ = h + η. The amount of noise added to a noise-free image was
measured by the SNR (signal-to-noise ratio), which is defined by

SNR = 10× log10

(
variance of noise-free image

variance of noise

)
db,

and we used SNR = 10 db. Even though noise in MR images follows a Rician distribution, we
consider additive Gaussian noise because the Gaussian noise model approximates the Rician
noise model well when the noise level is low (SNR is relatively high), which is the case we are
interested in. Hence, the focus of this section is to evaluate how well our formulation performs
in estimating nonuniformity in the presence of Gaussian noise.

The result of using the algorithm with the noisy image is shown in Figure 5, where the
estimated nonuniformity function ψ̃ and the histogram of normalized g/ψ̃ are displayed. The
normalized variance of g/ψ̃ is 0.0018 (mean = 0.9150).

Figure 6 also provides the same analysis between h̃ and h̃/ψ̃ as Figure 4 from the noise-free
case. The main cause for the spread in the histogram of h̃/ψ̃ is noise. This simulation with
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Figure 5. Left: estimated nonuniformity ψ̃ for noisy data; right: histogram of normalized g/ψ̃. The
normalized variance of g/ψ is 0.0018 (mean= 0.9150).

Figure 6. From left to right: noisy corrupted image h̃, corrected image h̃/ψ̃, histogram of h̃, and histogram
of h̃/ψ̃. Nonuniformity together with the unknown regions was measured well. The source of the spread in the
histogram of h̃/ψ̃ is noise.

noise clearly shows the robustness of our algorithm for estimating the nonuniformity in the
presence of noise.

Not only was our algorithm able to correctly measure the nonuniformity, but also it esti-
mated the unknown regions Σ1,Σ2,Σ3 reasonably well. Even though our emphasis is not on
the segmentation and we don’t expect the segmentations to be as accurate as in the noise-free
case, Figure 7 shows that the estimates are quite reasonable in this noisy case as well. To be
more precise, in this simulation the differences between the true and the computed regions
for Σ1 and Σ2 were less than 1%. As for Σ3, the difference was about 50%, which is mainly
because the true Σ3, representing the CSF, is small in size and a slight modification to the
region by a type of speckle noise seen in the figure, yielded this difference. To be consistent
with the analysis from the previous noise-free case, we provide the ratios between the average
values of h̃/ψ̃ in the three regions:

ρ̃1 =
average value in Σ1

average value in Σ2
= 1.4783 and ρ̃2 =

average value in Σ2

average value in Σ3
= 1.7066.
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Figure 7. One slice was chosen for comparison between the true and the estimated regions in the noisy
case. Top row: the true regions Σ1,Σ2,Σ3 in the chosen slice; bottom row: corresponding estimated regions.

(0.9ρ1, 0.9ρ2) (0.9ρ1, 1.1ρ2) (1.1ρ1, 0.9ρ2) (1.1ρ1, 1.1ρ2)

Figure 8. Histograms of normalized g/ψ̃ obtained by applying the Adaptive Variational Algorithm with two
outer iterations. Each histogram corresponds to the ratios above it.

8.2.3. The adaptive variational algorithm. Next, we explored the performance of the
Adaptive Variational Algorithm with the noisy data of the previous section. The algorithm
was initialized to inaccurate ρ values as

ρ̃1 = (1± 0.1)ρ1 and ρ̃2 = (1± 0.1)ρ2.

We kept the same parameters from the previous experiments except for β, which is now set
to β = 0.5. This allowed the nonuniformity function ψ̃ to have greater flexibility in finding
the correct shape. We first observed that the Variational Algorithm itself with these inaccu-
rate ratios produced satisfactory estimations implying the algorithm is somewhat insensitive
to inaccurate ratios. Moreover, the Adaptive Variational Algorithm produced even better
estimates, as was expected.

We omit displaying the estimated ψ̃ for these cases, and instead directly display in Figure 8
the histograms of the estimated normalized g/ψ̃, which were obtained with the Adaptive
Variational Algorithm with two outer iterations. Each column in Figure 8 corresponds to
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Table 1
The mean values and the variances of the histograms in Figure 8 obtained by the Adaptive Variational

Algorithm.

Given ratios (0.9ρ1, 0.9ρ2) (0.9ρ1, 1.1ρ2) (1.1ρ1, 0.9ρ2) (1.1ρ1, 1.1ρ2)

Mean value 0.8691 0.9186 0.9246 0.9398

Variance 0.0019 0.0009 0.0013 0.0010

Figure 9. Left: real MR images h of size 197× 154× 25 provided by Magnetic Resonance Research Center,
School of Medicine, Yale University; middle: corrected image h/ψ obtained with the ratios updated once; right:
estimated nonuniformity function ψ. The total time elapsed for each application of the Variational Algorithm
in the Adaptive Variational Algorithm was approximately 11 minutes.

each of these four cases indicated at the top of the columns. Table 1 provides the mean values
and the variances of g/ψ̃ shown in Figure 8.

The simulations above imply that our algorithm initialized with inaccurate ratios yields re-
liably good nonuniformity estimates. Moreover, the Adaptive Variational Algorithm improves
the nonuniformity estimates.

As far as the degree of inaccuracy of the initial ratios is concerned, the performance
becomes poor when the given ratios are off by 20% from the true ones, i.e., for ((1 ± 0.2)ρ1,
(1 ± 0.2)ρ2). Therefore, as long as the given ratios are close to the true ones, the Adaptive
Variational Algorithm will work well.

8.3. Real MR images. We have processed over 50 3 T T1-weighted brain MR images
with our algorithm. The algorithm converged without any manual intervention or tweaking
of parameters in all cases.

For real MR images, the Variational Algorithm turned out to be quite insensitive to the
initial value of (ρ1, ρ2). The algorithm gave reasonable answers for ψ even at n = 2. With
λ = 0.02 fixed, we found that β ≤ 2 allows the nonuniformity function ψ to pick up local
structures of the brain, and β ≥ 6 makes ψ too smooth. Hence, we used β = 4. Even though
the variational algorithm is not sensitive to (ρ1, ρ2) with real MR images, we used the Adaptive
Variational Algorithm of section 7. The initial values for all images were ρ1 = 1.4444, ρ2 = 1.8.

The main difficulty in reporting the results of these images is that we do not know the
true inhomogeneity g, and hence it is not possible to measure the normalized variance of g/ψ.
Nevertheless, we show results from a typical case in Figure 9.
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In Figure 9 the inhomogeneity seems to create brighter intensities in the frontal regions
of the brain, and as the estimated ψ̃ shows, this has been clearly captured by the Adaptive
Variational Algorithm.

8.4. Comparison results with the N3 method. We now compare the results of our al-
gorithm with the N3 method [14] as available in the N3 package, hosted at the NITRC
(Neuroimaging Informatics Tools and Resources Clearinghouse, http://www.nitrc.org). For
data, we use the synthetic data sets with and without noise that are displayed in Figure 2,
and the real MR image data set displayed in Figure 9.

Because the nonuniformity is estimated only up to a scale factor, we measure the perfor-
mance of our method and the N3 method as follows: In simulations, where the true nonuni-
formity g is known, we compute the normalized histogram H of g−min(g)

max(g)−min(g) with m bins,

i.e., H : {1, . . . ,m} → N. Then, we set the discrete probability P to

p[i] =
H(i)∑m
l=1H(l)

.

Next, we compute the normalized histograms of the nonuniformity function estimates of our
method and of the estimate from the N3 method in the same way. We denote the normalized
histograms as Q1 for our method and Q2 for N3. We measure the closeness of Qi, i = 1, 2, to
P by the Kullback–Leibler distance KL(P,Qi) (KL distance) defined by

KL(P,Qi) =

m∑
j=1

p[j] ln

(
p[j]

qi[j]

)
,

where P = {p[1], . . . , p[m]}, Qi = {qi[1], . . . , qi[m]} are two discrete probability distributions.
Below we report the KL distances for bin sizes, m =20, 50, and 100.

Figure 10 compares the true nonuniformity of synthetic, noise-free data with the estimated
nonuniformity by our method and by the N3 method. The first row of the figure shows the
true and estimated nonuniformity functions. The second row shows histograms of the nonuni-
formity functions using 20 bins. The KL-distance values for the histograms are displayed in a
table below the second row for 20, 50, and 100 bins. For all bins, KL-distance values for our
method are at least an order of magnitude smaller than for N3, clearly indicating that the
nonuniformity estimate from our method is much closer to the true nonuniformity than the
estimate from N3. We remark that KL(P,Q2) =∞ for m =100 bins, which happens because
there are a few bins where the Q2 histogram takes values equal to zero.

To ensure that the performance measures in Figure 10 are not sensitive to the specific
nonuniformity function chosen in this example, we provide comparative evaluation of our
method and N3 for another nonuniformity function in Figure 11. Here too, we can draw the
same conclusion as we did through Figure 10.

Next, we test the performance of our method with that of N3 using the noisy synthetic
data set in Figure 6. Figure 12 compares the histograms of the two methods just as in
Figure 10. Here too the KL distances from our method are at least an order of magnitude
smaller than the KL distances of N3. It is easily observed that our method is able to estimate
the nonuniformity better than N3 quantitatively as well as qualitatively.

http://www.nitrc.org
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True Nonuniformity (P ) Our Estimate (Q1) N3 Estimate (Q2)

# of bins 20 50 100

KL(P,Q1) 0.0023 0.0026 0.0028

KL(P,Q2) 0.0240 0.0608 ∞
Figure 10. Comparing results of our algorithm with N 3 using the noise-free synthetic data in Figure 4.

Histograms are shown with 20 bins. Left: histogram of the true underlying nonuniformity; middle: histogram
of the estimated nonuniformity by our method; right: histogram of the estimated nonuniformity by N 3. The
KL distance shows that Q1 is much closer to P than Q2 is to P .

In Figure 13, we compare our method to N3 using the real MR data set shown in Figure 9.
The left two subfigures are the result of our method, presented in Figure 9, and the right two
subfigures are what N3 computed with the same real data set. The real nonuniformity of
this data set is not available for comparing the histograms. However, the figure clearly shows
that N3 is rather strict in applying its assumption that the histogram of the nonuniformity
function is Gaussian.

Finally, we present the typical convergence behavior of the Variational Algorithm in Fig-
ure 14. The results presented in Figure 14 were obtained by running the algorithm with the
real MR data set until steady state. The figure shows the value of the objective functional
of the algorithm as a function of n, the outer iteration index in the Variational Algorithm.
Each outer iteration of the algorithm contains two to three inner iterations of (4.5) followed
by two to three inner iterations of (4.6). The values of the objective functional at these inner
iterations are also plotted in Figure 14 in-between integer values of n. For example, there
are six values of the objective functional plotted from n = 0 and n = 1. These represent
the values of the objective functional at the end of three iterations of (4.5) followed by three
iterations of (4.6), all of which constitute the outer iteration from n = 0 to n = 1. Figure 14
shows quite clearly that the algorithm converges rapidly in a few outer iterations.
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True Nonuniformity (P ) Our Estimate (Q1) N3 Estimate (Q2)

# of bins 20 50 100

KL(P,Q1) 0.0097 0.0145 0.0506

KL(P,Q2) 0.0821 0.0983 0.1500

Figure 11. Another example of comparing estimates of our algorithm to N 3 with noise-free data. His-
tograms are shown with 20 bins. Left: histogram of the true underlying nonuniformity; middle: histogram of
the estimated nonuniformity by our method; right: histogram of the estimated nonuniformity by N 3. The KL
distance table shows that Q1 is much closer to P than Q2 is to P .

True Nonuniformity (P ) Our Estimate (Q1) N3 Estimate (Q2)

# of bins 20 50 100

KL(P,Q1) 0.0055 0.0064 0.0066

KL(P,Q2) 0.0240 0.0608 ∞
Figure 12. Comparison of the two methods using the noisy data set in Figure 6. The estimated nonunifor-

mity by N 3 in this noisy case appears to be very similar to that by N 3 in the noise-free case.
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Figure 13. Left two: the same data as the one in the middle in Figure 9 and histogram of the estimated
nonuniformity by our method; right: nonuniformity corrected data and histogram of the estimated nonuniformity
by N 3. The fact that N 3 estimates nonuniformity by using a Gaussian distribution is evident in the histogram
as discussed in the introduction.

Figure 14. Typical convergence of the algorithm. All the functional values for (4.2), (4.3), (4.4) are
recorded. The x-axis represents the number of repeats of (4.5) and (4.6), which can be thought of as the total
number of iterations, n, in the Variational Algorithm.

9. Conclusion. We proposed a new formulation of the intensity nonuniformity estimation
problem using variational principles. The key idea behind our formulation is this: if the true
image is piecewise constant and if the ratios of the values of this image are known, then
the intensity nonuniformity can be estimated by a segmentationlike variational procedure.
We showed in detail how this procedure works when there are three regions in the image.
Compared to other existing methods, our formulation involves only one free parameter, and
its value is relatively insensitive to data. The convergence and correctness of the procedure was
established rigorously. We also extended the algorithm to make it adaptive in the absence
of exact prior knowledge. Experimentation with MR images showed good recovery of the
inhomogeneity in 3 T T1-weighted brain images.
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