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Abstract—The Hamilton Depression Rating Scale provides
ordinal ratings for evaluating different aspects of depression.
These ratings are usually quite noisy, and longitudinal patterns
in the ratings can be difficult to discern. This paper proposes a
hierarchical maximum-a-posteriori (MAP) method for denoising
the ordinal time series of such ratings. Real-world data from
a clinical trial are analyzed using the model. Denoising reveals
subject-specific longitudinal patterns, predicts future ratings, and
reveals progression patterns via principal component analysis.

Index Terms—Time Series, Ordinal Regression, Hierarchical
Modeling, Hamilton Depression Rating Scale.

I. INTRODUCTION

The Hamilton Depression Rating Scale (HDRS-17) [1]
is commonly used to assess depression in clinical studies.
The HDRS-17 contains 17 questions that physicians use to
assess depressed mood, agitation, sleep, and other symptoms.
Subjects are evaluated for every question using ordinal scores
0, 1, 2, 3, 4, with 0 being absence of a symptom, and 4 being
extreme severity of the symptom.

All HDRS-17 scores are usually summed into a total
score representing the severity of depression. In clinical trials,
HDRS-17 is administered at every visit, and the longitudinal
time series of the total score is used to assess the effect of a
drug or placebo on the enrolled subjects.

There are three problems with using HDRS-17 total scores
as described above. First, the total-score time series are quite
noisy (see Fig. 4). Second, subject-specific time series have
few data points because subjects can only be evaluated so
often. Fitting a statistical model to these time series is difficult.
Third, because the total score is a sum of all ratings in the
HDRS-17, it hides the more nuanced progression of different
aspects of depression (mood, work, sleep etc.).

This paper seeks to develop a method to overcome the
above problems and to reveal underlying longitudinal pro-
gression patterns in HDRS-17. We propose a hierarchical
ordinal regression model to denoise the subject-specific time
series of each question in the HDRS-17. It is developed in a
classical maximum-a-posteriori (MAP) framework. The model
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explicitly takes into account the ordinal nature of the time
series, and pools information from all subjects in the study to
overcome the time series’ short duration. The resulting subject-
specific denoised time series clearly reveals the progression of
all subjects in the study.

The real-world data we use come from a Stony Brook
University study [2] seeking to relate Fluorodeoxyglucose
Positron Emission Tomography (FDG-PET) images of the
subjects’ brains to clinical response, as described in Section
II. We use our model to denoise the longitudinal HDRS-17
ratings in the study. The results are reported in Section IV.

In [3], we proposed a more complex model for denoising
ordinal time series and applied it to clinical scores of Parkin-
son’s disease. The model used in this paper is a simplified
version of that model.

The rest of the paper is organized as follows. Section II
contains a brief literature review. The simplified model is
presented in Section III. The results of using this model are
presented in Section IV. Section V concludes the paper.

II. LITERATURE REVIEW AND BACKGROUND

A. HDRS-17

The HDRS-17, proposed in [1], is one of the standard
research assessment tools for depression. Of its 17 questions,
10 questions have ordinal scores from 0 to 4, and 7 have
ordinal scores from 0 to 2. HDRS-17 total scores have been
used in many clinical trials, e.g. [4], [5].

There has been some effort to extend the HDRS-17 analysis
beyond just using the total score by using linear models [6]–
[8]. These do not account for the ordinal nature of the data.

B. The Stony Brook Study

The Stony Brook study was approved by the Institutional
Review Board of Stony Brook University. All participants
were recruited as a community sample and provided informed
consent [2]. Briefly, the goals of the study were to determine:
(1) whether antidepressant treatment response at eight weeks
could be predicted by pretreatment imaging using FDG-PET
images of the subjects’ brains, and (2) whether changes in
FDG-PET with treatment correlated with clinical response.
The study was double-blinded and had a placebo and a978-1-6654-0126-5/21/$31.00 ©2021 IEEE
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treatment (Selective Serotonin Reuptake Inhibitor, SSRI) arm.
HDRS-17 ratings were collected every week for the 8 week
study except weeks 5 and 7. A total of 85 subjects were
enrolled in the study split between the two arms. Three
subjects from the SSRI branch and five from the placebo
branch were excluded due to excessive missing data.

III. MODEL

We now turn to explaining the model used to denoise
HDRS-17 ordinal time series. The explanation is guided by
our previous manuscript [3].

A. Ordinal Time series

Suppose y is an ordinal random variable which takes values
in {0, · · · , C − 1}. Then, the probability distribution of y can
be modeled as [9], [10] (see Fig. 1)

p(y | γ) =



F (γ1) for y = 0,
F (γ2)− F (γ1) for y = 1,

· · ·
F (γk)− F (γk−1) for y = k,

· · ·
1− F (γC−1) for y = C − 1,

(1)

where F is the cumulative distribution function (cdf) of the
standard normal density and γ = (γ1, · · · , γC−1) ∈ RC−1 is
a parameter of the distribution subject to the constraint

γ1 ≤ γ2 ≤ γ3 ≤ · · · ≤ γC−1. (2)

The constraints of equation (2) guarantee that the probabilities
in equation (1) are non-negative and sum to 1.

The constraints of equation (2) can be implicitly imposed
by a change of variables from γ = (γ1, · · · , γC−1) to u =
(u1, · · · , uC−1) as follows:

γ1 = u1 (3)

γk = u1 +

k∑
i=2

log(1 + eui), for k = 2, · · · , C − 1.

Since log(1 + ex) > 0 for all x, and is a bijection from R
to R++, the γ’s of equation (3) automatically satisfy equation
(2) for any u ∈ RC−1. Using this change of variables, we may
write equation (1) as p(y | Γ(u)) with no constraints on u.

Next, consider an ordinal time series Y = (y1, · · · , yT )
with yt ∈ {0, · · · , C − 1} for t = 1, · · · , T ∈ [0, 1]. Then, a
model for the series is

p(Y | u, v) =
T∏

t=1

p(yt | Γ(u)(1− t) + Γ(v)t), (4)

where u, v ∈ RC−1 are the parameters at t = 0 and t = 1.
This model assumes a linear change in the γ’s (equation (1))
over time. The model can be made more complex by making
the change non-linear, but for limited-duration clinical studies,
a linear change is sufficient. We set θ = (u, v) and write
p(Y | u, v) of equation (4) as p(Y | θ).
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Fig. 1. A model for a five-class ordinal random variable. Class probabilities
are F (γ1), F (γ2)−F (γ1), F (γ3)−F (γ2), F (γ4)−F (γ3), and 1−F (γ4).

Next, suppose there are N subjects, with time series Yi =
(yi,1, · · · , yi,Ti

), i = 1, · · · , N . Assuming that the ith subject
has the subject’s own parameter θi = (ui, vi), the probability
of Yi is p(Yi | θi), and that the time series of different subjects
are independent, the probability of all time series is

p({Yi} | {θi}) =
N∏
i=1

p(Yi | θi). (5)

Recall that time series in clinical studies are short—often with
the number of samples approaching the dimension of θi. Thus
θi cannot be estimated reliably from yi using equation (5).

B. Prior and Hyper-prior
Hierarchical modeling is one approach to overcoming the

problems with short time series. The idea is to allow the
estimate of any θi to draw statistical power from all other
θi’s, by using a normal prior for θi (mean µ and an isotropic
variance-covariance matrix ρµI), i.e.

p(θi | µ, ρµ) = N (µ, ρµI). (6)

This model allows the θi’s to be coupled via their mean µ.
A large variance imposes the prior very weakly; conversely, a
small variance imposes the prior more strongly.

We also assume a uniform hyper-prior on µ, and an inverse-
gamma prior on ρµ (the usual conjugate prior on the variance
of a normal distribution). Thus,

p(µ) = const.,

p(ρµ | a, b) = IG(a, b) =
ba

Γ(a)

1

(ρµ)(a+1)
e

−b
ρµ . (7)

The parameter a is set to a fixed value, while the parameter b
is found by cross-validation, as described later.

C. The full model
Grouping together all parameters to be estimated as ϕ =

({θi}, µ, ρµ), we get the posterior likelihood

p(ϕ | {Yi}) ∝ p({Yi} | ϕ)p(ϕ)

=

N∏
i=1

p(Yi|θi)p(θi|µ, ρµ)× p(µ)× p(ρµ|α, β). (8)
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TABLE I
MAP-ITERATIONS. SUPERSCRIPT [n+ 1], [n] INDICATE ITERATION

NUMBER. N = NUMBER OF SUBJECTS. D = 2C − 2, WHERE C IS THE
NUMBER OF ORDINAL CATEGORIES.

Parameter Update

θi θ
[n+1]
i = argmaxθi log p(Yi | θi)

+ log p(θi | µ[n], ρ
[n]
µ )

µ µ[n+1] =
∑N

i=1 θ
[n]
i

N

ρµ ρ
[n+1]
µ =

∑N
i=1

∥θ[n]
i

−µ
[n]
k

∥2

2
+b

DN
2

+a+1

D. MAP Estimate

A maximum-a-posteriori (MAP) estimate of ϕ is obtained
by maximizing the log of the posterior likelihood:

log p(ϕ | {Yi}) =

N∑
i=1

(log p(Yi|θi) + log p(θi|µ, ρµ))

+ log p(ρµ | a, b), (9)

ϕ̂ = argmax
ϕ

log p(ϕ | {Yi}). (10)

We have dropped the logarithm of the prior, log p(µ), in the
above equations since it is a constant. The maximization is
carried out iteratively. Within each iteration {θi}, µ, and ρµ
are optimized one at a time. The iterative updates are shown
in Table I. The θi’s are updated numerically using Adam [11].
The updates of µ and ρµ have closed form solutions. The
iterations are carried out till convergence.

E. Denoising

The MAP estimate θ̂i = (ûi, v̂i) gives the estimated mean
and variance for the ith subject’s time series as:

m̂i(t) =

C−1∑
yt=0

yt × p(yt|Γ(ûi)(1− t) + Γ(v̂i)t) (11)

ŝ2i (t) =

C−1∑
yt=0

(yt − m̂i(t))
2 × p(yt|Γ(ûi)(1− t) + Γ(v̂i)t).

The estimated mean is the denoised time series.

F. Determining Hyper-prior Parameters

There are two parameters in the hyper-prior: a and b.
Numerical experimentation shows that parameter estimates
and the estimated denoised time series are not sensitive to
the value of a. We simply set a = 2. The parameter b is found
by cross validation as follows:

Given a data-set of ordinal time series for multiple subjects,
90% of the series are used as training data and 10% as test
data. For each training series, 10% of the data points are set
aside for cross-validation, and 10−fold cross validation is used
to determine b. The log-likelihood of the cross-validation data
are assessed using equation (4) for the value of t corresponding
to the cross-validation time points. The value b maximizing the
validation log-likelihood is chosen.

G. From Denoising to Prediction

The model can also be used for extrapolation. In section
IV we assess the ability of the model to make predictions.
Specifically, we leave out the last time point from every time
series (this is the data point to be predicted). We fit the model
to all of the remaining data in the time series. Then, using the
estimated θ̂i for each subject, we calculate the estimated mean
m̂i(t) where t is the time of the left-out data point.

H. Comments

Some salient features of the model are:
1) Equation (1) allows for “noise” in the data without

assuming that the data belongs to a vector space.
2) The change of variables in equation (3) allows for priors

whose support is all of RC−1, such as our normal prior.
3) The time series is not required to be evenly sampled

in time, nor are all subjects required to have the same
number of samples.

4) When the model is applied to a study, all time points in
the study are scaled so that the start of the study is time
0 and the end of the study is time 1.

5) Ground truth is not available for real-world data to
compare the denoised time series with. Because of this,
in [3] we carried out detailed simulations to show that
the denoised time series does estimate the simulation
ground truth closely, even when the data are noisy.

IV. RESULTS

We have four goals in applying the model to the Stony
Brook University study: 1) to understand the behavior of the
raw data and the denoised data, 2) to understand the difference
between the placebo and SSRI arms, 3) to predict time series
using the strategy in section III-G, and 4) to understand the
coupled progression of all HDRS-17 questions using PCA.

Before presenting the results, we fix some terminology.

A. Terminology

Recall that the HDRS-17 has 17 questions. Our model
can be fit to the ordinal time series of any one of
these questions. Slightly extending our notation, let Yi,j =
{yi,j,1, yi,j,2, · · · , yi,j,T } denote the time series for the jth
HDRS-17 question for subject i. Then, the total score time
series of subject i is

17∑
j=1

Yi,j = {
17∑
j=1

yi,j,1,

17∑
j=1

yi,j,2, · · · ,
17∑
j=1

yi,j,T }.

The mean total score time series over all subjects is

1

N

N∑
i=1

17∑
j=1

Yi,j = { 1

N

N∑
i=1

17∑
j=1

yi,j,1, · · · ,
1

N

N∑
i=1

17∑
j=1

yi,j,T }.

By analogy, we can also define a standard deviation of total
score time series (formula not shown).

Turning to the denoised version, for a fixed j (fixed HDRS-
17 question) we use all observed time series Yi,j , i =
1, · · · , N of N subjects to estimate θ̂i,j from which the
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Fig. 2. Ordinal time series for three HDRS-17 scores. Top row: SSRI. Bottom
row: Placebo. Solid lines are raw data. Gray lines are denoised data. Gray
regions are standard deviations of denoised data.

denoised time series m̂i,j(t) is calculated. As above, the
denoised total score time series of subject i is

∑17
j=1 m̂i,j(t),

and the study-wide mean denoised total score time series
is 1

N

∑N
i=1

∑17
j=1 Yi,j . Similarly, we can define a standard

deviation denoised total score series.

B. Raw and Denoised Data
Fig. 2 shows examples of ordinal time series for Depressed

Mood, Guilt, and Agitation questions from the Stony Brook
University study.

The model from Section III was fit independently to the
time series of each question for the placebo and SSRI arms
separately. For each model fit, we used the cross-validation
procedure described in section III-F to find the optimal b
parameter. Then, the iterative MAP algorithm was used to
denoise each subject-specific time series.

Fig. 2 shows the subject-specific denoised time series in
gray along with the estimated standard deviation of the de-
noised estimate. The figure shows the ability of the model to
deal with ordinal “noise”, and the utility of the hierarchical
structure to give good estimates despite the short length of the
time series.

C. SSRI vs. Placebo
Next, we analyzed whether the subjects in the SSRI and

placebo arms behaved similarly. Fig. 3 shows violin plots
of total scores (dark gray) and denoised total scores (light
gray) for placebo and SSRI arms for weeks 0, 4, and 8. The
distribution of total scores for the placebo and SSRI arms
are similar, as are the distributions of denoised total scores,
suggesting similar progression in the two arms.

Table II provides further evidence, showing the mean and
standard deviations of total scores and denoised total scores
for placebo and SSRI arms for all weeks. Note that the
placebo and SSRI means for all weeks are within one standard
deviation of each other. Taken together with Fig. 3, this
suggests that the SSRI and placebo arms of the study behave
similarly. This fact has been observed in other studies as well,
e.g. [12], [13]. Given this, from now on, we pool all subjects
into a single group.

TABLE II
POPULATION MEANS AND STANDARD DEVIATIONS OF PLACEBO AND

SSRI GROUPS FOR BOTH TOTAL SCORE AND DENOISED TOTAL SCORE.

Week 0 1 2 3 4 6 8
Total Score
Placebo Mean
(StDev)

16.8
(3.7)

14.4
(3.3)

14.4
(4.7)

12.9
(5.2)

12.5
(6.1)

10.4
(5.8)

9.7
(5.5)

SSRI Mean
(StDev)

18.3
(5.7)

15.3
(5.4)

14.8
(5.9)

13.4
(6.5)

11.8
(6.7)

12.4
(6.7)

11.2
(6.7)

Total Denoised
Score
Placebo Mean
(StDev)

15.5
(2.8)

15.0
(2.8)

14.6
(2.8)

14.2
(2.8)

13.5
(2.7)

12.7
(2.8)

12.3
(2.8)

SSRI Mean
(StDev)

16.3
(4.1)

15.8
(4.2)

15.1
(4.2)

15.0
(4.1)

14.2
(4.0)

13.7
(4.1)

13.2
(4.1)

TABLE III
TOTAL SCORES AND DENOISED TOTAL SCORES FOR EACH WEEK AFTER

POOLING PLACEBO AND SSRI SUBJECTS.

Week 0 1 2 3 4 6 8
Total Score
Mean (StDev) 17.8

(5.0)
15.0
(4.5)

14.6
(5.5)

13.2
(5.9)

12.1
(6.3)

11.5
(6.5)

10.5
(6.2)

Denoised Total
Score (8 Weeks)
Mean (StDev) 16.0

(3.4)
15.2
(3.4)

14.4
(3.4)

13.9
(3.3)

13.0
(3.1)

11.4
(3.2)

9.7
(3.1)

D. Pooled Denoising

After pooling the subjects into a single group, we re-
estimated the hyper-parameter b using cross validation, and
used b to denoise the time series of every subject for each
HDRS-17 question. Fig. 4a-b shows the total scores and
denoised total scores for 38 randomly selected subjects. Note
that the denoised total scores indicate progression far more
clearly. This improvement is even more striking in Fig. 4c-d
which show the change in the total score from baseline. The
changes in the total score in Fig. 4c are obscured by noise,
but are quite clear in the denoised series in Fig. 4d.

For a more detailed analysis, Fig. 5 shows a scatter plot
of total denoised scores vs. total score for all subjects for all
weeks. The correlation coefficient between the two is high,
being 0.8.

E. Study-wide effect

Table III assesses the effect of denoising on study-wide
statistics. The Table shows means and standard deviations for
all subjects for each week. The first row shows total scores;
the second row shows denoised total scores. Note that the
denoised total score means are within one standard deviation
of the total score means, showing that the effect of denoising
on study-wide statistics is small.

F. Denoised Prediction

The high correlation between denoised total scores and
total scores suggests that the denoised total scores can predict
total scores. To investigate this, we followed the procedure in
Section III-G: we fit the model to all data from week 0 to
week 6, and used the model to predict the score for week 8.
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Fig. 3. Violin plots of the standard and denoised total scores for Week 0 till Week 8 for the total scores (dark gray) and the denoised total scores (light
gray). The means of the placebo and SSRI groups were not found to be different for any of the weeks in the study when compared with a t-test. The resulting
p-values were: 0.37 (Week 0), 0.27 (Week 4), and 0.23 (Week 8).
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Fig. 4. Total scores for 38 randomly selected subjects. (a) Time series of total
score. (b) Time series of denoised total scores. (c) Time series of change in
total score (baseline subtracted). (d) Time series of change in denoised total
score (baseline subtracted)

TABLE IV
CORRELATION COEFFICIENTS BETWEEN TOTAL SCORE AND TOTAL
DENOISED SCORE FOR ALL SUBJECTS WEEK-BY-WEEK. DENOISED

SCORES WERE OBTAINED USING ONLY 6 WEEKS OF DATA. DENOISED
SCORES FOR WEEK 8 WERE PREDICTED.

Week 0 1 2 3 4 6 8(est.)
Correlations 0.75 0.73 0.81 0.81 0.81 0.76 0.70

Fig. 5 shows the scatter plot of the estimated week 8 denoised
total scores vs. the measured total scores. Table IV shows the
correlation coefficients between denoised total scores and total
scores for all subjects in the study. The correlation coefficients
for Week 0− 6 are in the range 0.73− 0.81. The correlation
coefficient between the predicted Week 8 and the measured
total scores is 0.70, only marginally outside the range of the
coefficients from Weeks 0 − 6. This demonstrates model’s
capacity for prediction.

G. Principal Component Analysis (PCA)

We next explored the relation between different HDRS-
17 questions via PCA. We carried out PCA of the raw time
series and of the denoised time series in the following way.

Total Score

To
ta

l D
en

oi
se

d 
Sc

or
e

Fig. 5. Scatter plot of total score vs. denoised total score for every subject
at every visit. Denoised scores learned from 8 weeks of data (black dots).
Estimated denoised scores at week 8 learned from first 6 weeks of data (blue
stars). A 45 degree line is shown in blue. The best linear fit is shown in black.

For each subject, we took the scores of all questions for
a visit as a 17-component vector. The vectors for all visits
and subjects were gathered together in a data set and then
PCA was carried out. Separate PCA’s were performed for raw
scores and for denoised scores. Fig. 7 shows the percentage
variance explained by the principal components. Clearly, the
first component is very significant.

Fig. 6a-b shows the PCA-loadings for the raw scores and
the denoised scores for the first two principal components. The
two sets of loadings are quite similar, again illustrating that
study-wide statistics are not influenced by denoising. Fig. 6c-d
shows the corresponding mean ± one standard deviation of the
first two principal components. The first principal component
corresponds to changes in Anxiety (Somatic, Psychic), Sui-
cide, Guilt, General Somatic Symptoms, Insomnia, Work and
Activities, and Depressed Mood (Figs. 6a and c). All loadings
are positive. The second principal component (Figs. 6b and d)
has significant loadings for Genital Symptoms and Insomnia
(which are negative).

Fig. 6e-f shows the trajectories of individual subjects in
the principal component space. The start of each trajectory is
indicated by a black dot. The trajectories of raw data are not
easily interpretable. On the other other hand, the trajectories of
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Fig. 6. (a) Principal component (PC) 1 calculated from raw ordinal scores (gray) and denoised data (black). (b) PC 2 calculated from raw ordinal scores
(gray) and denoised data (black). (c) Mean denoised scores +/- PC 1. (d) Mean denoised scores +/- PC 2. (e, f) Subject-specific trajectories of HDRS-17
scores in Principal Component space. (e) Raw trajectories, (f) Denoised trajectories.

Principal Component

Va
ria

nc
e 

Ex
pl

ai
ne

d 
(%

)

Fig. 7. Percent of variance explained by each principal component for raw
ordinal data (grey) and denoised data (black).

denoised data provide useful information. The first component
seems to decrease monotonically with time indicating that
Depressed Mood, Suicide, Guilt etc. decrease as the study
progresses. The second component converges towards a value
slightly below 0. This suggests that any differences among the
subjects in the second principal component scores decrease as
the study progresses.

V. CONCLUSIONS

The hierarchical model proposed in this paper is effective
in denoising HDRS-17 time series. This is clear in the results
of Fig. 5 and in the principal component results of Fig. 6e-f.
The denoised time series also has predictive capacity.

One limitation of the method is that it requires an entire
time series before denoising can occur. We hope to develop
an “on-line” method in the future.

Ordinal scores are also used to rate many other neurological
diseases/disorders, e.g. Parkinson’s disease [14]. Models, such
as ours, can be quite useful in analyzing such studies.
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