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Hierarchical Denoising of Ordinal Time Series of
Clinical Scores

Jonathan Koss , Sule Tinaz , and Hemant D. Tagare, Senior Member, IEEE

Abstract—Clinical scores (disease rating scales) are or-
dinal in nature. Longitudinal studies which use clinical
scores produce ordinal time series. These time series tend
to be noisy and often have a short-duration. This paper pro-
poses a denoising method for such time series. The method
uses a hierarchical approach to draw statistical power
from the entire population of a study’s patients to give
reliable, subject-specific results. The denoising method
is applied to MDS-UPDRS motor scores for Parkinson’s
disease.

Index Terms—Time series analysis, Parkinson’s disease,
machine learning, clinical neuroscience.

I. INTRODUCTION

C LINICAL symptoms of neuropsychiatric and neurode-
generative disorders are often evaluated using ordi-

nal ratings, or scores. For example, in Parkinson’s Disease
(PD), patients exhibit several motor disabilities, and each dis-
ability is rated using the ordinal scores: Normal, Slight,
Mild,Moderate, Severe.

In longitudinal clinical studies, ordinal scores are collected at
periodic intervals, producing one ordinal time series per symp-
tom per patient. These time series are a rich source of information
about how the disease is progressing, but their analysis is quite
challenging. There are several reasons for this:

First, the time series are usually very noisy. Noise is partly due
to the stochastic nature of the symptoms, and partly because it is
difficult to differentiate between neighboring categories such as
Slight,Mild, and Moderate [1]. Noise can be so severe that
it masks the underlying progression of the disease. Real-world
examples of this are given in Section V.

Second, the data in the time series are ordinal. Thus, com-
monly used vector space techniques, such as additive noise
models, cannot be used for creating denoising algorithms [2].
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Third, the time series are short because most longitudinal
studies have a limited time duration. A typical time series
might have 10 samples. Fitting a statistical model to such a
short time series becomes problematic, especially as the num-
ber of parameters in the model approaches the number of
samples.

Finally, the time series are unevenly spaced and often have
missing data.

A fine-grained and nuanced understanding of disease pro-
gression is possible if a method can be developed to denoise
the ordinal time series of each symptom, taking all of the
above-mentioned concerns into account. The goal of this paper
is to propose such a denoising method.

The statistical model behind our method accounts for all of the
above-mentioned characteristics of clinical scores. It explicitly
takes the ordinal nature of the time series into account by
using ordinal time regression. Further, the time regression is
situated in a hierarchical framework, so that patients whose time
series proceed similarly draw statistical power from each other,
overcoming the limitation of the short duration of each series.
And the model allows for uneven time spacing and missing
data. In Section V, we show that using this model to denoise
clinical time series helps substantially with understanding the
progression of symptoms.

There is another important aspect of disease progression:
Disease progression is often heterogeneous. That is, different
patients progress along different trajectories at different rates.
Heterogeneity is usually understood in terms of progression
subtypes, which are prototypes of different trajectories of pro-
gression. The hierarchical design of our model automatically
provides progression subtypes.

We evaluate the performance of our method by using synthetic
data and also by applying the method to real-world PD data. The
PD data come from the Parkinson’s Progression Marker’s Ini-
tiative (PPMI). Details of the PPMI data are given in Section II.

This paper is meant to be methodological. Our goal is to
report a new denoising method and to demonstrate its utility by
applying it to some aspects of PD. In forthcoming publications,
we hope to report more comprehensive insights into PD and
other diseases using our method.

The rest of the paper is organized as follows: Section II
contains a literature review and background information on PD;
Sections III and IV describe our model; Section V contains
results of applying our method to synthetic and real-world data;
Section VI contains a discussion and a conclusion.
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II. BACKGROUND AND LITERATURE REVIEW

A. Ordinal Regression Models

Ordinal regression models have a long history, originating
with the Cox model [3] from over 50 years ago. A complete re-
view of ordinal regression models can be found in [4]. Textbooks
such as [5] and [6] contain detailed explanations of ordinal data
analysis.

Modern ordinal models can be divided into three cate-
gories [4]. In the first category are naive approaches which do not
account for the ordinality of the data. They either treat clinical
scores as cardinal numbers or as classes but without any order.
These approaches then apply a traditional regression technique
such as support vector machines (SVM) [7], [8]. Methods like [9]
use a categorical classification technique but then alter the cost
function to assume label distances corresponding to the cardinal
values of the categories.

The second category of models decomposes the ordinal-
regression problem into several binary regression problems
which can be solved separately with multiple models, typi-
cally using SVMs [10] or using a single multi-output model
such as a neural network [11], [12]. Common choices for
decomposing the problem are comparing all pairs of neigh-
boring categories, e.g. for ordinal classes c1, . . . , c4 compar-
ing {c1 VS c2}, {c2 VS c3}, {c3 VS c4}, or comparing a sin-
gle category with all the following (or previous) categories
{c2 VS c1}, {c3 VS c1,2}, {c4 VS c1,2,3}.

The last category of ordinal-regression models treat the ordi-
nal variable as originating from a continuous underlying latent
variable, which is divided into categories by a set of thresholds.
One of the early and prominent threshold techniques is the
proportional odds model [13], which is also the basis of our
model. The proportional-odds model and other related models
are discussed immediately below. Other threshold-based mod-
els like [14], [15] utilize SVMs while [16], [17] offer neural-
network-based approaches.

Proportional Odds Model: The proportional odds model ex-
tends the linear logistic model [3] to handle more than two cat-
egories. For an ordinal response variable Y ∈ {0, 1, . . .C − 1}
and an explanatory variable X , the proportional odds model
assumes that the log-odds ratio varies linearly with X:

log
(P (Y ≤ c)

P (Y > c)

)
= αc + βX, (1)

which in turn implies

P (Y ≥ c) =
1

1 + exp (−αc − βX)
(2)

where αc and β are scalar parameters learned from the data.
In the proportional odds model, β is independent of the

category, c [18]. If the data do not meet this assumption, then the
partial proportional odds model is likely to be more useful [19],
[20].

Partial Proportional Odds Model: The partial proportional
odds model takes the form

P (Y ≥ c | X) =
1

1 + exp (−αc − βX − γcX)
. (3)

In this model, the β term of the proportional odds model is
effectively set to β + γc, where γc is category dependent. If all
γc ≈ 0, then (3) simplifies to the proportional odds model.

The generalized ordered logit model [21] offers a model with
similar properties.

B. Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder that
manifests with motor and non-motor symptoms. In the early
stages of the disease, the motor symptoms tend to be promi-
nent [22]. The current standard for clinically assessing disease
severity in PD is the Movement Disorder Society’s Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) [23]. The
MDS-UPDRS has four parts, each consisting of a set of items
scored on an ordinal scale of 0, 1, 2, 3, 4 which correspond to
Normal, Slight, Mild, Moderate, and Severe ratings. In the first
two parts of the MDS-UPDRS, patients and/or caregivers rate
symptoms associated with non-motor and motor aspects of daily
living, respectively. Part 3 is the motor examination portion of the
MDS-UPDRS, where a physician observes a patient performing
a number of motor tasks and scores each on an ordinal scale. Part
3 contains 33 ordinal scores, which mainly focus on the cardinal
motor features of PD including tremor, rigidity, bradykinesia
(slowness of movement), and axial symptoms (e.g., gait impair-
ment, postural instability). Part 3 scores are usually summed to
create a total movement score. Higher total movement scores
indicate greater overall motor severity. Part 4 assesses motor
complications including dyskinesia and motor fluctuations in
response to medication.

In this paper we focus on Part 3 scores. Rather than summing
up the scores into a total movement score, we analyze scores of
the cardinal PD symptoms independently.

PD is a heterogeneous disease with distinct clinical subtypes
and progression trajectories [24]. These subtypes are tradition-
ally determined by clinical observations (e.g., tremor-dominant
or postural instability/gait difficulty subtypes) [25]. More recent
data-driven clustering methods identify the following subtypes:
1) young-age onset and old-age onset subtypes with the latter
progressing relatively faster than the former, but both progress-
ing slowly 3) tremor-dominant, and 4) dominance of bradyki-
nesia, rigidity, and postural instability/gait difficulty [26].

C. Parkinson’s Progression Markers Initiative (PPMI)

The MDS-UPDRS data that we use comes from the de novo
PD cohort of the Parkinson’s Progression Markers Initiative
(PPMI), a longitudinal study with the goal of finding biomarkers
for PD (www.ppmi-info.org) [27].

PPMI contains MDS-UPDRS data for 423 patients who were
observed for 8 years after the initial PD diagnosis. MDS-UPDRS
scores are available for these patients for up to 17 visits. At
the start of the study, visits are scheduled every three months,
decreasing in frequency to every six months, and then to once
a year. During the visits, MDS-UPDRS scores are gathered in
the off-medication state, which is defined as the condition where
the patient has not taken medication for ≥ 6 hours, so that their
symptoms are not masked by medication.
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Fig. 1. (a) Ordinal time series sampled from probabilities (p(c|t, θ), c = 0, . . . , 3) which vary over time along with the mean signal (m(t)) and an
estimated mean (m̂(t)) and standard deviation (ŝi(t)) shaded around it. (b) Overview of the hierarchical model proposed in this paper. Yi is an
ordinal time series for subject i and θi is its subject-specific set of parameters. The prior and the hyper-prior allow the model to draw statistical
power from all subjects.

III. DENOISING AN ORDINAL TIME SERIES

When a time series takes values in a vector space, noise is
usually assumed to be additive and Gaussian. Given a prior for
the underlying signal, noisy measurements of the time series
are used to calculate the posterior distribution of the signal, and
the mean of the posterior distribution is taken as the denoised
estimate of the signal.

This vector space idea does not carry over to ordinal time
series in a straightforward manner because ordinal time se-
ries do not belong to a vector space and there is no simple
additive noise model for such series. Nevertheless, there is a
sense in which generalization is possible. The idea is illus-
trated in Fig. 1. Assuming 4 ordinal categories for the mo-
ment, Fig. 1(a) shows how the probabilities of observing an
ordinal category change with time as the disease progresses.
The probability of observing ordinal category y = 0, 1, 2, 3
at time t is p(y|t, θ), where θ is a set of parameters. Thus,
p(0|t, θ) is initially large, followed by p(1|t, θ) being large, etc.
The progress of the disease can be summarized by the mean
m(t) =

∑3
y=0 yp(y|t, θ), which we may take as the underlying

“signal” [See Fig. 1(a)]. Any realization of the time series is a
sequence of ordinal values at times t1, t2, · · · , drawn from the
probabilities p(y|t, θ).

Assuming a prior on θ, we may estimate its value θ̂ from the
observed time series, and use the estimate to obtain a denoised
estimate m̂(t) =

∑3
y=0 yp(y|t, θ̂) of the mean. This is the sense

in which we can denoise an ordinal time series of clinical
symptoms.

As mentioned in Section I, if the time series is short, we may
not get a reliable estimate of θ. To ameliorate this problem,
we use a hierarchical model in which θi for the time series of
the ith subject is assumed to have a mixture of normals prior
[see Fig. 1(b)]. All subjects with similar underlying disease
progression are assumed to come from a single component of
the mixture. Simultaneously estimating θi’s and the parameters
of the mixture allows the θi’s to draw statistical power from
similarly progressing subjects.

TABLE I
DESCRIPTIONS OF VARIABLES USED IN OUR MODEL

It is not uncommon in mixture models to have some compo-
nents with only a few data points. To estimate these components
reliably, we draw statistical power from the remaining compo-
nents by introducing a hyper-prior which relates all components
to each other [Fig. 1(b)].

The θi’s of individual subjects, and parameters of the mixture
prior, and of the hyper mixture prior, form the total set of param-
eters to be estimated from the set of all time series of a symptom
for all subjects. After estimating the parameters, the time series
for subject i is denoised as m̂i(t) =

∑C−1
y=0 yp(y|t, θ̂i).

IV. MODEL

We now explain mathematical details of the model. A glossary
of variables used in this section can be found in Table I.

A. Ordinal Random Variables

Suppose y is an ordinal random variable taking values in
ordinal categories {0, . . . , C − 1}. A common model [19], [21]
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Fig. 2. Probabilities for an ordinal variable taking four values. The
probabilities are created by partitioning [0,1] using a cdf and three
thresholds {γ1, γ2, γ3} which vary over the time interval, [0,1].

for the probability distribution of y is

p(y | γ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F (γ1) for y = 0
F (γ2)− F (γ1) for y = 1
· · ·
F (γk)− F (γk−1) for y = k
· · ·
1− F (γC−1) for y = C − 1,

(4)

where F is the cumulative distribution function (cdf) of the
standard normal density and γ = (γ1, . . . , γC−1) ∈ RC−1 is a
parameter of the distribution and is subject to the constraint

γ1 ≤ γ2 ≤ γ3 ≤ · · · ≤ γC−1. (5)

Fig. 2 illustrates the model. F (γ1), . . . , F (γC−1) are thresh-
olds which divide the interval [0,1] into subintervals representing
the probabilities of y. The constraints of (5) guarantee that the
probabilities satisfy p(y|γ) ≥ 0 for all y and

∑C−1
y=0 p(y|γ) = 1.

The set of γ satisfying the constraints of (5) form a proper
subset Ω ⊂ RC−1. The boundary of Ω corresponds to one or
more of the inequalities in (5) being exact. The interior of Ω,
denoted int(Ω), is not empty. It corresponds to all γ that satisfy
(5) with strict inequalities.

For reasons that will become clear below, it is useful to implic-
itly impose the constraints of (5) by a change of variables. Define
a map Γ : RC−1 → int (Ω) which maps u = (u1, . . . , uC−1) ∈
RC−1 to γ = (γ1, . . . , γC−1) ∈ int (Ω) as follows:

γ1 = u1

γk = u1 +
k∑

i=2

log(1 + eui), for k = 2, . . . , C − 1. (6)

Since the function log(1 + ex) > 0 for all x, and is a bijection
from R to R++, the γ’s on the left hand side of (6) automatically
satisfy (5) for any u ∈ RC−1. Thus, we may write the ordinal
probability model of (4) as p(y | Γ(u)) with no constraints on
u.

B. Ordinal Time Series

The above model extends easily to a time-series model. Sup-
pose Y = (y1, . . . , yT ) is a discrete ordinal time series with

yt ∈ {0, . . . , C − 1} for t = 1, . . . , T ∈ [0, 1]. Then, the model
for the time series is

p(Y | u, v) =
T∏

t=1

p(yt | Γ(u)(1− t) + Γ(v)t), (7)

where u, v ∈ RC−1 generate the thresholds γ that divide the
probabilities at the start and end of the time interval [0,1]. This
model effectively assumes a linear change over time of the u
value used in p(y | Γ(u)). The model can be made more complex
by making the change non-linear, but for slowly progressing
diseases such as PD, a linear change is sufficient. Note that
although theu’s change linearly with time, the probability values
themselves change non-linearly with time, because the cdf is a
nonlinear function. Also note that (7) does not assume t is evenly
spaced allowing for uneven time sampling and missing data.

We define θ = (u, v). Since u and v have dimension C − 1,
θ has dimension D = 2C − 2.

C. Multiple Time Series

Suppose there are N subjects, with time series Yi =
(yi,1, . . . , yi,Ti

), i = 1, . . . , N . Assuming that the ith subject
has the subject’s own parameter θi = (ui, vi),

p(Yi | θi) =
Ti∏
t=1

p(yi,t | Γ(ui)(1− t) + Γ(vi)t) (8)

D. Prior on θi

As mentioned above, we set the prior forθi to a normal mixture
with K components. To limit the number of parameters in the
model, all components of the mixture are assumed to have the
same diagonal covariance matrix ρμI , with ρμ > 0. Letting zi
be the latent variable used to identify which component of the
mixture θi comes from, the prior is given by

p(θi | zi = k, {μk}, ρμ) = N (μk, ρμI), (9)

where zi = k indicates that θi belongs to the kth component.
The set of means {μk} and ρμ are the parameters of the prior
distribution. The dimension of μk is D.

As is standard with mixture models, we set the prior on the
latent variable zi to p(zi = k | {αk}) = αk, where αk ≥ 0, and∑

k αk = 1. Here αk’s are the mixing coefficients.
Each component of the normal mixture has support over all

of RD. The change of variables proposed in (6) allows us to use
such infinite support priors, which is the reason for introducing
that change of variables.

E. Hyper-Prior on {μk} and ρμ

We set the hyper-prior on {μk} to a normal distribution, and
the hyper-prior on ρμ to an inverse-gamma distribution:

p(μk | ζ, ρζ) = N (ζ, ρζI), (10)

p(ρμ | a, b) = IG(a, b) =
ba

Γ(a)

1

(ρμ)(a+1)
e

−b
ρμ . (11)
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The hyper-prior parameters a, b, ρζ are fixed and set by a pro-
cedure described later. This normal-inverse-gamma hyperprior
is conjugate to the components of the normal mixture.

F. The Full Model

Grouping together all parameters to be estimated as φ =
({θi}, {μk}, ρμ, {αk}, ζ), we get:

p({Yi}{zi}|φ) =
N∏
i=1

p(Yi|θi)p(θi|zi, {μk}, ρμ)

×
(

K∏
k=1

p(μk|ζ, ρζ)
)

× p(ρμ|α, β)×
N∏
i=1

p(zi|{αk}). (12)

Marginalizing out the latent variables {zi} gives

p({Yi} | φ) =
K∑

z1=1

· · ·
K∑

zN=1

p({Yi}{zi} | φ), (13)

from which the maximum-likelihood estimates ofφ are obtained
as φ̂ = argmaxφ log p({Yi} | φ). The maximum-likelihood es-
timates are easily calculated by the EM-algorithm whose details
are given below.

The maximum likelihood estimates of θ̂i = (ûi, v̂i) give the
estimated mean and variance:

m̂i(t) =
C−1∑
y=0

yp(yt|Γ(ûi)(1− t) + Γ(v̂i)t)

ŝ2i (t) =
C−1∑
yt=0

(yt − m̂i(t))
2p(yt|Γ(ûi)(1− t) + Γ(v̂i)t).

(14)

The estimated mean is the denoised signal.

G. The EM Algorithm

The Q-function for the EM algorithm which maximizes the
log-likelihood for the model of (13) is:

Q(φ | φ[n]) =

N∑
i=1

logP (Yi|θ[n]i )

+
N∑
i=1

K∑
zi=1

log p(θi, zi|{μk}[n], ρ[n]μ )

p(zi|θ[n]i , {μk}[n], ρ[n]μ )

+

K∑
k=1

log p(μk|ζ [n], ρ[n]ζ ) +K log p(ρμ | a, b),

(15)

TABLE II
EM-ITERATIONS SUPERSCRIPT θ

[n]
i INDICATES THE VALUE OF θi AT

ITERATION n

where

p(zi | θ[n]i , {μk}[n], ρ[n]μ ) =
p(θi, zi = k|{μk}[n], ρ[n]μ )∑K
k=1 p(θi, zi | {μk}[n], ρ[n]μ ))

= w
[n]
i,k, (16)

and the superscript [n] refers to values at the nth iteration.
The iterations of the EM algorithm are given in Table II.

All updates have closed form solution except those of θi.
The θi updates are obtained by numerical gradient ascent using
Adam [28] on those terms of the Q-function that depend on θi.
The EM updates are iterated until convergence.

H. Initialization

To initialize the EM algorithm, the parameters θi = (ui, vi)
are estimated for each subject by maximizing the log-likelihood
log p(Yi|θi) of (8) using Adam. That is, the hierarchical structure
is ignored. Then the k-means algorithm is used to group the esti-
mates {θ̂i} into K clusters whose means and isotropic variance
are taken as initial estimates of μk and ρμ. The hyperparameters
ζ and ρζ are initialized as

ζ̂ =
1

N

N∑
n=1

θ̂i, and ρ̂ζ =
1

N

N∑
n=1

(ζ̂ − θ̂i)
2. (17)

I. Cross Validation

We set the hyper parameter a = 2.0 (informal experimenta-
tion showed that the results are insensitive to changes ina). Then,
the number of clusters K and the parameter b are determined
by cross-validation. The number of clusters varies from 0 to 5.
The 0 cluster corresponds to ignoring the prior and fitting (8)
individually to each subject.

Given a data-set of ordinal time series of a symptom for
multiple subjects, 90% of the time series are set aside as training
data and 10% set aside as test data. For each series in the training
data, 10% of the data points are set aside for cross-validation,
and 10−fold cross validation is used to determine K and b. The
log-likelihood of the cross-validation data are assessed using
(8) for the value of t corresponding to the cross-validation
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Fig. 3. Bernstein polynomials of degree 3 over the interval [0,1]. u and
v are selected from the gray regions for map 1 and map 2.

time points. The values of K and b maximizing the validation
log-likelihood are chosen.

J. Denoising

After the EM iterations converge, the ûi, v̂i estimates (ob-
tained from θ̂i estimates) are used to calculate the denoised time
series and its variance from (14).

K. Processing the Test Set

After all parameters are estimated from the training set, the
estimated prior and hyperprior parameters are fixed and used
with the test set. 10% of the data points in the test set are set
aside to evaluate the performance of the model. The θi’s for the
test set, which are subject specific, are estimated via the update
rule shown in Table II, using Adam.

L. Evaluating the Model

Note that 10% of the data are left out in the training set and in
the test set. After fitting the model to the training and the test set
as described above, we evaluate the performance of the model
by calculating the log likelihood of the left-out data (using (8)
on the left-out data) for both sets. This gives a fair comparison
of how well the model fits the data, irrespective of whether the
prior is used (K = 0) or not (K > 0).

V. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our hierarchical model
we apply it to two data sets. The first is a simulated data set,
which allows us to test the model’s performance against ground
truth. The second data set comes from PPMI MDS-UPDRS Part
3 scores.

A. Simulated Data

The idea behind the simulation is to create ordinal time series
with two progression subtypes: one in which the probability of
observing higher ordinal classes increases with time, and one
in which the probability decreases with time. To achieve this,
we used Bernstein polynomials of degree three defined over
I = [0, 1] as shown in Fig. 3 [29]. The polynomials, denoted
b0, . . . , b3 have the property that they are non-negative over [0,1]
and at every point in I they sum to 1.

TABLE III
CROSS VALIDATION RESULTS FOR THE SIMULATION AND ALGORITHM

EXECUTION TIMES

K is the number of clusters in the mixture prior (K = 0 represents no prior). b is a
parameter of the inverse-gamma hyperprior. �train, �test are the log-likelihood of
the probability model of left-out data from (8). fMSEtrain and fMSEtest are
the normalized mean squared error values From the ground truth for the training and
test sets. performance of linear regression is also included as a benchmark. the column
with k = 2 is in bold font because it has the highest training and test Log-Likelihood.

The polynomials were converted into the two types of ordinal
time series by mapping t ∈ I into the interior of I by one of two
affine maps φ:

φ(t) =

{
u(1− t) + vt (map 1) or,
v(1− t) + ut (map 2),

(18)

where u is randomly chosen from [0.1,0.25] and v is randomly
chosen from [0.75, 0.9]. Thus map 1 maps I to the interior of I in
monotonically increasing fashion, while map 2 maps in a mono-
tonically decreasing fashion. Therefore pi(t) = bi(φ(t)), ˜i =
0, . . . , 3 are ordinal class probabilities where the chances of
observing higher ordinal classes increase with time for map 1,
and decrease with time for map 2. Finally t ∈ [0, 1]was sampled
at 11 uniform points and the probabilities pi at these points are
used to generate the ordinal time series.

A total of 300 ordinal time series were used to train our model
with 150 time series coming from each map. Another 50 time
series from each map were used as a test set.

Results from cross-validation are given in Table III. The ltrain
row shows the log-likelihood of the left-out data in the training
set. The ltest row shows the the log-likelihood of the left-out data
in the test set. Note that ltest is similar to ltrain showing that
the model does not overfit for any K. The maximum value of
ltrain is obtained for K = 2, showing that the method correctly
identifies the number of progression subtypes.

Using K = 2 and the corresponding b value, the EM-
algorithm was used to estimate the rest of the parameters from
the training set. Then, the prior and hyper-prior parameters
({μk}, ρμ, {αk}, ζ) were fixed to their estimates from the train-
ing set, and θi determined for the test set. Fig. 4 shows two
typical ordinal time series from the simulation, their true and
estimated probabilities, true and estimated mean, and true and
estimated standard deviation.

The algorithm results were evaluated further for the model
with the best K and b from cross-validation. First, we evaluated
in detail whether the model overfit the training data. For this,
we calculated the L1 norm between the true and the estimated
probabilities pi for the left-out points in the training and test sets.
Fig. 5 shows the histogram of theL1 norms. Clearly, the two his-
tograms are quite similar. Second, we calculated the histograms
of the log-likelihood of the left-out points. These histograms are
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Fig. 4. Trajectories and probabilities of simulated time series. (a, c)
Comparison of the synthetic time series with the expected ground truth
trajectory, the denoised trajectory, and a linear fit. The shaded regions
represent the standard deviation of the ordinal time series and ŝi(t), the
standard deviation of the estimated ordinal probabilities, m̂i(t). (b, d)
Comparison of the learned probabilities (black) and the true probabilities
(gray).

Fig. 5. (a) L1 norm between estimated and real probabilities for the
left-out points in the simulated training and test sets. (b) Log-likelihood
as calculated from (8) for the left-out points in simulated training and test
sets.

shown in Fig. 5(b). The training and test histograms are similar
as well, showing that the model does not overfit the data.

Third, we evaluated the relative accuracy of our model by
comparing it to linear regression as a control. To do this, we
fit a linear regression model to each ordinal time series. Then
we calculated the fractional mean-square-error of our model
and of the linear regression. The fractional mean-square-error
(fMSE) is defined as the ratio of the mean-square-error of the
model-based denoised mean, or the linear regression, to the
true mean divided by the L2 norm square of the true mean

(
∑10

t=0 ‖μ(t)− ˆμ(t)‖2
∑10

t=0 ‖μ(t)‖2 ). The training and test fMSEs for the left-out

points are given in Table III. As the table shows, our model with
the optimal K and b values has an average fMSE of 0.027 for
the training set and 0.021 for the test set, each corresponding to
a nearly 60% reduction in error compared to linear regression.
Fig. 4 shows linear fits to two simulated time series.

Fig. 6. Each point represents a θ embedded in 2-dimensional space
using multi-dimensional scaling. Black points correspond to time series
drawn from map 1 while black points are drawn from map 2. The shape
of the points represent whether they are training or test time series. Gray
stars indicate the values of μk, the means of the mixture prior, after
multi-dimensional scaling.

Finally, we evaluated the model’s ability to capture the two
subtypes of ordinal time series. For this, we took the estimated
θ̂i’s for each time series and embedded them in a 2-dimensional
space using multi-dimensional scaling [30]. Fig. 6 shows the
embedded θ̂i’s shaded with the type of map (of (18)) that the
series was generated with. Clearly, the estimated θ̂i’s have cap-
tured the “bi-modality” of the simulated data generation. Fig. 6
also shows that the estimated means, (μ̂1, μ̂2) of the mixture
of normals prior lie within the two clusters indicating natural
progression subtypes for the time series.

B. Parkinson’s Disease

Next, we analyzed data from PPMI. We used motor exam
scores from MDS-UPDRS Part 3. After excluding patients with
fewer than four visits, there were 377 PD patients with 10.4±
3.1 (mean ± stdev.) visits. Instead of summing all scores into
a total movement score, we separately analyzed the time series
of one symptom for each of the three cardinal symptoms of
PD (rigidity, tremor, and bradykinesia). We analyzed scores for
left-arm rigidity, right-leg rest tremor amplitude and right-leg
agility (a measure of bradykinesia). Since PPMI data focuses on
early-stage PD patients, scores of 4 were uncommon, and thus
we combined categories 3 and 4 into a single category named 3.

Cross validation revealed optimal values of K = 2 and b =
1167 for left-arm rigidity, K = 2 and b = 750 for right-leg rest
tremor amplitude, and K = 1 (single mixture component) and
b = 950 for right-leg agility. Using the cross-validated parame-
ters, the model was fit to the training set for each question. After
training, we retained the trained prior and hyperprior parameters,
and the model was again fit to the test set. The algorithm
typically converged in 50-100 EM iterations, which took less
than a minute for a MATLAB implementation. Fig. 7(a,c,e)
show histograms of the log-likelihoods of the training left-out
data and of the test data. The histograms indicate that there is
no overfitting.

Fig. 7(b, d, f) show scatter plots of training and test θ̂i’s along
with the prior means μ̂k all projected via multi-dimensional
scaling onto a 2-dim plane. Note that the θ̂i’s have a greater
dispersion between the clusters than the simulated data. Because
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Fig. 7. (a, c, e) Comparisons of the distributions of log-likelihood of left-
out data for training and test data. (b, d, f) θis embedded in 2-dim space
with multi-dimensional scaling. (a, b) Right-Leg Rest Tremor Amplitude.
(c, d) Left-Arm Rigidity. (e, f) Right-Leg Agility.

Fig. 8. Example ordinal time series (black) and their corresponding
estimated means, m̂i(t) (gray). The shaded region represents the stan-
dard deviation of the estimated ordinal probabilities, ŝi(t).

the cluster variance is estimated using the data by our method,
such dispersion is handled automatically.

Fig. 8 shows typical time series along with their estimated
means and standard deviations. It is clear from the figure that
the denoised time series capture the progression of the symptom.
Some patients appear to progress more rapidly compared to
others.

The patterns revealed by denoising are displayed in
Figs. 9–11. The (a) part of Fig. 9 shows raw left-arm rigidity
scores of 20 randomly chosen subjects. Any disease progression

Fig. 9. Time series of left-arm rigidity scores for 20 randomly selected
patients. (a) Ordinal time series. (b) Estimated means, m̂i (gray dashed
lines), and estimated trajectories of the prior means, μ̂k (black lines).
(c) Change from baseline using raw scores. (d) Change from baseline
using denoised scores.

Fig. 10. Time series of right-leg rest tremor amplitude scores for
20 randomly selected patients. (a) Ordinal time series. (b) Estimated
means, m̂i (gray dashed lines), and estimated trajectories of the prior
means, μ̂k (black lines). (c) Change from baseline using raw scores. (d)
Change from baseline using denoised scores.

pattern in this cohort is difficult to discern. The (b) part of the
figure shows denoised scores for the same subjects along with
trajectories corresponding to the means of the two components
in the mixture prior. The latter are the progression subtypes
for this score. The disease progression is quite clear in the de-
noised scores. Also, the subtypes clearly show that this symptom
steadily progresses with one group of subjects starting at a higher
value relative to the other.

The effect of denoising is even more striking when we analyze
the changes in the score from baseline. For each subject, the
change from baseline at time t is the score at time t minus the
score at baseline. For a steadily progressing disease, such as PD,
the change from baseline should be positive for all t. Fig. 9(c)
shows the change from baseline for raw left-arm rigidity scores
for the subjects whose scores are plotted in Fig. 9(a). Note that
the noise in the scores overwhelms the perception of any pattern.
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Fig. 11. Time series of right-leg agility scores for 20 randomly selected
patients. (a) Ordinal time series. (b) Estimated means, m̂i (gray dashed
lines), and estimated trajectories of the prior means, μ̂k (black lines).
(c) Change from baseline using raw scores. (d) Change from baseline
using denoised scores.

TABLE IV
RATIO OF THE MEAN TO THE STANDARD DEVIATION OF THE

CHANGE-FROM-BASELINE SCORES ACROSS THE POPULATION

Fig. 9(d) shows the change from baseline for denoised scores.
The progression of the disease is quite clear in Fig. 9(d).

Fig. 9(c) and (d) suggest that the denoised change-from-
baseline scores are more useful to understand the underlying
progression patterns than the raw change-from-baseline scores.
This suggestion can be quantitatively evaluated as follows: Sup-
pose we calculate the ratio of the mean to the standard deviation
(across all subjects) of the change-from-baseline scores. If this
ratio is higher, it is easier to quantitatively detect disease pro-
gression. The top two rows of Table IV show the change-from-
baseline mean to standard deviation ratio for raw and denoised
left-arm rigidity scores. Note the significantly larger ratios for
denoised scores, clearly pointing to the utility of denoising.

The results for right-leg rest tremor amplitude and right-leg
agility are similar. Fig. 10(a) and (b) show the raw and denoised
scores for right-leg rest tremor amplitude for 20 randomly
selected subjects. Again, progression patterns are difficult to
discern in the raw scores. Denoising reveals that most patients’
trajectories are relatively flat over time, while there is a small
group for whom tremor typically begins a little higher and
rises more rapidly. This is also reinforced by the trajectories

of the prior component means (subtypes), μ̂k, ˜k = 1, 2. The
raw and denoised change from baseline [Fig. 10(c) and (d)]
behave similar to that of left-arm rigidity. The raw change from
baseline does not indicate any pattern, while the denoised change
from baseline shows mild progression. The mean to standard
deviation ratios of change from baseline in Table IV (middle
two rows) show quantitative improvement due to denoising.

Right-leg agility results (raw scores, denoised scores, raw
change from baseline, denoised change from baseline) are shown
in Fig. 11 for 20 randomly selected subjects. The denoising
of the time series shown in Fig. 11(b) suggests that for most
patients, this symptom gradually increases with time following
the trajectory of the single prior mean, μ̂1. Variation from
this prior seems evenly distributed above and below the mean
trajectory. Gradual progression with time is also evident in the
denoised change-from-baseline in Fig. 11(d). The last two rows
of Table IV show the improved mean to standard deviation ratio
due to denoising.

VI. DISCUSSION AND CONCLUSION

The experimental results with simulated data clearly show that
the hierarchical model is able to closely estimate the ground
truth signal and does not overfit data. The number of clusters
in the hierarchical model was successfully determined through
cross-validation and matches the number of underlying clusters
in the simulated data. The denoised mean provided by the model
was similar to the ground truth. The mixture prior means, μ̂1, μ̂2,
provide a good indication of a prototypical trajectory from each
progression subtype (map).

The experimental results also show that the EM algorithm
converges reliably in spite of the multi-level hierarchy for
both the simulated data and the MDS-UPDRS data. For the
MDS-UPDRS data, the hierarchical model also does not overfit,
providing similar results on both training and test examples.

Analysis of the MDS-UPDRS data clearly shows the power
of the method to elucidate underlying patterns in noisy time
series of real-world clinical scores. The patterns exposed by the
denoised series are more informative than those in the raw series.
This is significant given the large number of studies which gather
such data.

Identification of clinical subtypes and disease progression
patterns in neuropsychiatric and neurodegenerative disorders is
important for research and clinical trials. Different clinical sub-
types may have different underlying pathological mechanisms
and may respond to therapeutic interventions differently. Our
methodology identifies disease progression subtypes from noisy
real-world clinical data and is a promising tool for use in clinical
studies.

Our model has some limitations which we discuss now: First,
the model requires the entire ordinal time series before denoising
is attempted. Thus, in its current form, the model cannot be used
in an on-line fashion to update the estimate of the denoised series
as the data arrive. However, it is not too difficult to modify the
model to create such an on-line algorithm. Second, the mixture
prior has some limitations. If the θi parameters have a very wide
spread, then some other form of a prior with a wider support may
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be necessary. While processing the simulated and MDS-UPDRS
data, we have not noticed the need for wider-support priors.
However, if the need arises, the Gaussian components may be
replaced with heavier-tailed t-distributed or other wide-support
components. Finally, we note that there may be reason to use
methods other than cross-validation to determineK, the number
of components in the prior. For example, in some applications,
it may be useful to just useK = 1 if there is reason not to cluster
the θi’s.

In conclusion, we have reported a method for denoising noisy
ordinal time series of clinical scores which are common not only
in PD but also in studies of other neurological diseases such as
multiple sclerosis [31], [32], and in psychiatric conditions such
as depression [33], [34] and anxiety [35], [36]. The method
explicitly takes the ordinal nature of time series into account
and draws statistical power from similarly progressing time
series to overcome the short duration of the series. When applied
to real-world clinical data, the method clarifies the underlying
progression patterns.
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