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Abstract

Active contours that evolve in ultrasound images under gradient descent are often trapped in spurious local minima. This paper pre-
sents an evolution strategy called tunneling descent, which is capable of escaping from such minima. The key idea is to evolve the contour
by a sequence of constrained minimizations that move the contour in to, and out of, local minima. This strategy is an extension of clas-
sical gradient descent.

Because tunneling descent does not terminate at a local minima an explicit stopping rule is required. Model-based and model-free
stopping rules are presented and formulae for choosing the stopping threshold are given.

The algorithm is used to segment the endocardium in 44 short axis cardiac ultrasound images. The energy function of the active con-
tour is derived from a m.a.p. formulation. All segmentations are achieved without tweaking either the energy function or numerical
parameters. Experimental evaluation of the segmentations show that the algorithm overcomes multiple local minima to find the endo-
cardium. The accuracy of the algorithm is comparable to that of manual segmentations and significantly better than classical gradient
descent active contours. The sensitivity of the segmentation to initialization is also evaluated and it is shown that segmentations from
quite different initializations are close to each other. Finally, some limitations of the m.a.p. formulation are discussed.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Segmentation of B-mode cardiac ultrasound images
using active contours is a challenging task. There are two
reasons for this: First, ultrasound images contain speckle.
Speckle creates spurious local minima in the segmentation
energy function. An active contour that is initialized far
away from the boundary is often trapped in spurious min-
ima and gives obviously wrong segmentations.
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Second, ultrasound images sometimes exhibit dropout.
These are regions in the image where the signal is missing
or greatly attenuated, and which appear dark. Dropout
can create holes through which active contours can leak
out.

In this paper, we address the first problem – we present
a deterministic evolution strategy that lets active contours
escape from spurious local minima. We call it tunneling

descent. The key idea is to pose the contour evolution
problem as a sequence of constrained minimizations
instead of a single unconstrained minimization. The con-
straints guarantee that the algorithm can escape from
any spurious local minima, no matter how deep or how
steep its walls. Tunneling descent is especially useful in
maximum-a-posterior (m.a.p.) active contour segmentation
of the endocardium in cardiac ultrasound images.
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Tunneling descent offers other advantages too. Other
than step size (which can be fixed a priori), it does not
require any manual interaction – all segmentations
reported in this paper are achieved without any parameter
tweaking. Moreover, the segmentations offered by tunnel-
ing descent are very robust to initialization. Initializing
the active contour in very different positions gives essen-
tially the same segmentation. All of this is borne out by
the experiments in Section 8.

A level set version of tunneling descent was reported
recently (Tao and Tagare, 2005). Finally, we note that we
are only concerned with B-mode images in this paper,
and henceforth we will refer to them simply as ‘‘ultrasound
images.’’

1.1. Organization

This paper is organized as follows. Section 2 is a brief
review of the literature on active contours and ultrasound
segmentation. Section 3 introduces m.a.p. active contours
and illustrates the problem of local minima in ultrasound
images. It also introduces the terminology and notation
for the rest of the paper. Sections 4–6 introduce tunneling
descent. Section 7 contains the log-likelihood function for
ultrasound segmentation, and Section 8 describes experi-
mental results. Section 9 discusses some of the limitations
of the likelihood function. Section 10 concludes the paper.
Appendix A contains implementation and numerical
details.

2. Previous work

The literature on active contours is vast and we only
mention work that has a direct bearing on the local minima
problem. Comprehensive general reviews of active con-
tours and deformable models are available in Xu et al.
(2000) and McInerney and Terzopoulos (1996).

Previous active contour strategies for escaping from
local minima fall under two classes: multi-resolution mini-

mization and addition of extra forces. In the multi-resolu-
tion approach, the energy minimum is sought by first
smoothing the image, finding a local minimum in the
smoothed image, and then tracking the local minimum
back to the original image (Kass et al., 1987; Terzopoulos
et al., 1988; Muzzolini et al., 1993). Smoothing eliminates
spurious local minima by merging them with nearby local
maxima.

In the second approach, the active contour evolution is
modified by adding extra forces. For example, balloons

overcome local minima by adding a constant expansion
force to the active contour (Cohen and Cohen, 1991).
The idea is that the constant expansion force drags the
active contour out of small spurious local minima. Other
forces have also been proposed for extending the attraction
range (Cohen and Cohen, 1993) or for deforming the con-
tour into boundary concavities (Xu and Prince, 1998).
Multi-resolution minimization and extra forces work
well with many images, but have limitations that preclude
their use as a completely general purpose strategy. Both
approaches have free parameters which have to be carefully
set by the user. In the multi-resolution approach, the right
amount of smoothing is critical. Over-smoothing can anni-
hilate not just the spurious minima, but also the desired
minimum. And under-smoothing can leave some spurious
local minima intact, ready once more to trap gradient des-
cent. Similarly, an excessive balloon force can force the
active contour out of the desired minimum, while a weak
balloon force can prevent it from escaping a spurious min-
imum. Guessing just the right amount of smoothing or
force is difficult, even for an expert. Further, the right
amount can vary from image to image, and has to be man-
ually adjusted.

Thus there is a need for an alternate minimization strat-
egy, especially one that does not require frequent adjust-
ment of scales and forces. This is our motivation for
developing tunneling descent.

2.1. Ultrasound statistics

An ultrasound image is a record of the backscatter from
a propagating ultrasound wave. Random scatterers in the
acoustic medium give rise to speckle in the ultrasound
image and fully organized interfaces give rise to specularity.
Speckle is manifest as a spatial random process in the
image. It contributes to the ‘‘grainy’’ look of ultrasound
images.

There has been much theoretical work regarding the
statistics of speckle. These studies show that the distribu-
tion of speckle is significantly non-Gaussian. Goodman
(1975) and Butkhardt (1978) showed that the first-order
distribution of speckle is Rayleigh if the scatterers are
uniformly distributed in the acoustic medium. Wagner
et al. (1983) showed that the speckle distribution is Rician
for quasi-periodic scatterers. Jakeman and Tough (1987)
and Weng et al. (1991), suggest the K distribution for
speckle statistics, while Shankar (2000) proposed the
Nakagami distribution. Abyratne et al. (1996) and
CramBlitt and Parker (1999) proposed more complex
models for structured scatterers. A comprehensive over-
view of statistical speckle models is published by Insana
et al. (2000). These models give the statistics of speckle
at the transducer. Using these models in image processing
tasks is not always appropriate because the transducer
signal undergoes complex processing before it is displayed
as an image.

An alternative is to create empirical models for image
statistics from real-world ultrasound images, e.g. Zimmer
et al. (2000). The authors of this paper undertook such a
study in Tao et al. (2002) whose results are summarized
in Section 7. This empirical model is used to in Section
8 to segment B-mode short-axis cardiac ultrasound
images.
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2.2. Ultrasound segmentation

Because speckle makes ultrasound segmentation diffi-
cult, a number of researchers have developed speckle sup-
pression techniques by using, for instance, order
statistical filters (Belohlacek and Greenleaf, 1997), adaptive
filters (Bamber and Daft, 1986; Karaman et al., 1995), and
wavelets (Rakotomamonjy et al., 2000).

Classical computer-vision approaches, such as multires-
olution texture analysis (Muzzolini et al., 1993) and edge
and line detectors (Czerwinski et al., 1999) have also been
proposed for ultrasound segmentation.

As mentioned before, active contour models perform
poorly with ultrasound images. Many attempts have been
made to improve their performance, e.g. multi-resolution
schemes are used in Aston and Parker (1995), and point
distribution, Active Shape, and Active Appearance Models
in Parker et al. (1994), Hill and Taylor (1992), Bosch et al.
(2002). Anatomical and other expert information has been
integrated into ultrasound segmentation algorithms (Han
et al. (1991)). In a series of publications (Geiser et al.,
1998; Wilson et al., 2000; Geiser and Wilson, 1996), an
elaborate segmentation algorithm that uses knowledge of
anatomical and image features is reported. Multi-frame
spatio-temporal approaches to ultrasound segmentation
are reported in Mulet-Parada and Noble (1998), Guofang
et al. (2002), Jacob et al. (2002), and Sanchez-Ortiz et al.
(2002).

In contrast to the above approaches, we pursue an active
contour maximum-a-posteriori estimation (m.a.p.)
approach to ultrasound segmentation. The m.a.p.
approach is appealing because the ultrasound signal is a
random process and segmenting an ultrasound image can
be naturally viewed as an estimation problem.

The literature on m.a.p. segmentation is vast. We men-
tion two representative approaches, one using active con-
tours (Staib and Duncan, 1992) and the other using
Markov random fields (Winkler, 2006).

3. M.a.p. active contours

We now turn to describing m.a.p. active contours. We
begin by fixing some notation and terminology.

We denote curves in the image by capital letters such as
C,D,. . .. We assume that the curves are closed and arc-
length parameterizable. N denotes the set of all such curves
Curve C

Interior ΩC

Exterior ΩC
~

Im

Boundary
     B

Fig. 1. (a) The curve C, interior XC, exterior eXC regions. (b) The ima
in the image. Any curve C has an interior region XC

(Fig. 1a). The complement of the interior, eXC, is the exte-

rior of the curve. We consistently use this notation, so that
for a curve D, the interior and exterior regions are XD andeXD, for curve E they are XE and eXE, and so on.

3.1. Log-likelihood and energy

Suppose that the image has two regions separated by a
boundary curve B (Fig. 1b). This is the boundary we wish
to find. The gray levels in the inside and outside regions of
the boundary come from different probability models. Let
l1(IRjh1) be the log-likelihood that gray levels IR of any
region R in the image come from the region inside the
boundary and let l2(IRjh2) be the log-likelihood that IR

come from the region outside the boundary. In these for-
mulae, h1 and h2 are free parameters of the models. Then,
the conditional log-likelihood of observing the image I

assuming that C is the boundary is

LcondðI jC; h1; h2Þ ¼ l1ðIXC jh1Þ þ l2ðIeXC
jh2Þ:

If Lprior(C,h1,h2) is the log-likelihood prior of the curve
and the free parameters, then the posterior log-likelihood
of C,h1,h2 is

LðC; h1; h2jIÞ ¼ LcondðI jC; h1; h2Þ þ LpriorðC; h1; h2Þ: ð1Þ
The m.a.p. active contour uses the negative posterior log-
likelihood as its energy, i.e. the energy is E(C,h1,h2)
= �L(C,h1,h2jI). The active contour seeks to minimize its
energy, hence maximize the posterior likelihood. The usual
minimization strategy is to conduct gradient descent on the
energy function,

oC
ot
¼ �rCEðC; h1; h2Þ;

oðh1; h2Þ
ot

¼ �rh1;h2
EðC; h1; h2Þ;

ð2Þ

where $CE(C, h1, h2) is the gradient (first variation) of
E(C, h1, h2) with respect to C, and rh1;h2

is the gradient
of E(C, h1, h2) with respect to h1, h2.

Under gradient descent, the m.a.p. active contour
becomes stationary at the first local minimum it encoun-
ters. Unfortunately, this minimum may not occur at the
true boundary. Fig. 2 illustrates how serious the problem
can be. Fig. 2a and b show the result of using the m.a.p.
gradient descent active contour on a cardiac ultrasound
age
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Fig. 2. M.a.p. active contour evolving under gradient is trapped away from the endocardium. The contour is initialized as the diamond and is trapped as
the larger curve in the figure. The parts (a) and (b) show different initializations.
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Fig. 3. Extending the curve from a local minimum.
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image. Both figures contain the same image. The central
dark region in each image is the blood pool of the left ven-
tricle and the surrounding bright annulus is the myocar-

dium. The task is to find the endocardium which is the
boundary between the blood pool and the myocardium.
The a and b parts of Fig. 2 show a m.a.p. active contour
(the log-likelihood functions are given in Section 7) initial-
ized in the blood pool at two different locations as a dia-
mond shaped curve. The figures also show the local
minima where the active contour has become stationary –
in each figure, it is the larger curve surrounding the dia-
monds. It is quite clear from the figures that the contour
is trapped far from the endocardium. The figure also indi-
cates that initializing the active contour at different loca-
tions does not help – it is simply trapped at another
spurious local minimum.

4. Escaping from local minimum

To overcome this problem we need a strategy for the
active contour to escape from spurious local minima. The
following line of thought suggests one possibility:

(1) When an active contour is initialized within a region
and evolving by gradient descent, it is almost always
trapped within the region before reaching the bound-
ary. This suggests growing the active contour mono-
tonically from the local minimum to escape from the
minimum.

(2) To understand which monotonic growth makes
sense, consider Fig. 3 which shows the curve C
trapped at a local minimum and two possible fin-
ger-like monotonic extensions of C. One extension
causes the curve to penetrate through the true bound-
ary, while the other extension keeps the curve inside.
The extension that crosses the boundary adds pixels
from the outside region to XC and is likely to cause
a greater increase in the energy than the extension
that says in the region and adds pixels from within
the region. Because we do not want the curve to cross
the boundary (we want it to fill the inner region), we
choose the latter extension. In other words, from all

possible monotonic extensions at the local minima we

choose the one that gives the least increase in energy.
(3) The final step is to realize that descending into a min-

ima and climbing out of it in the least steep direction
can be realized with a single strategy. At all points in
the evolution we simply ask the curve to grow mono-
tonically with the least increase in energy. Since least
increase is mathematically equal to most decrease, the
curve will go downhill in the steepest direction into a
local minima and uphill from there in the least steep
direction. This is tunneling descent.

5. Tunneling descent

We next derive an algorithm that achieves the above by
modifying gradient descent. We consider the discrete time
version of gradient descent where it generates a sequence
of curves C1,C2,. . . from an initial curve C0.

Let v(s) be a normal vector field on C, where s is the arc-
length of C. Define a neighborhood GðCÞ of C as the set of
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all curves of the type C(s) + v(s) for which
kvk ¼

R
jvðsÞj2ds 6 D1, where D1 > 0, i.e.

GðCÞ ¼ fD 2 NjDðsÞ ¼ CðsÞ þ vðsÞ; kvk 6 D1g: ð3Þ
Discrete gradient descent generates the sequence of curves
C1,C2,. . . by choosing Cn+1 as that curve in GðCnÞ which
has the least energy (Fig. 4a).

To modify gradient descent, define two more neighbor-
hoods of C. Let AðCÞ be the set of curves whose area is
greater than the area of C by a positive quantity D2 > 0:

AðCÞ ¼ fD 2 NjAreaðXDÞ �AreaðXCÞP D2g: ð4Þ
Note that AðCÞ does not contain C.

Let DðCÞ be the set of curves which are ‘‘outside’’ C, i.e.
if D 2 DðCÞ, then XD ˚ XC,

DðCÞ ¼ fD 2 NjXD � XCg: ð5Þ
Then, MðCÞ ¼ GðCÞ

T
AðCÞ

T
DðCÞ is the set of all

curves that are (1) in the gradient descent neighborhood
of C, (2) have an area that is at least D2 greater than the
area of C, and (3) are ‘‘outside’’ C. Thus, MðCÞ is the set
of curves in GðCÞ that are monotonically larger than C

by D2.
The idea is to generate the sequence of curves by taking

Cn+1 as the energy minimizing curve in MðCnÞ, rather than
GðCnÞ. Assume for the time being that the parameters h1,h2

of the probability distributions are known, and drop the
dependence of the energy function on them. Then, starting
from the initial curve C0, we create a sequence of curves
C1,C2, . . . ,Cn, Cn+1. . . by the minimizations

Cnþ1 ¼ arg min
C2MðCnÞ

EðCÞ: ð6Þ

This is tunneling descent. A typical step of tunneling descent
is illustrated in Fig. 5a and a typical sequence in Fig. 5b.

Taking Cn+1 as the energy minimizing curve in MðCnÞ
has the following consequences:

(1) Because all curves in MðCnÞ have an area greater
than the area of Cn, the sequence of curves generated
by this is forced to grow monotonically, even at a
local minimum.
Level sets of E
Cn

Neighborhood

(a) A single step

G(C  )n

Cn+1

E Th

GGGG

Fig. 4. (a) A single step. (b) The seque
(2) Suppose Cn is not at a local minimum and MðCnÞ con-
tains curves whose energy is lower than the energy of
Cn. Then, by our strategy, Cn+1 is the curve in MðCnÞ
that has the least energy. That is, when a decrease in
energy is compatible with monotonic growth, the curve
will evolve in the direction of most energy decrease.

(3) If Cn is at a local energy minimum, then energies of
all curves in MðCnÞ are greater than the energy of
Cn. Now our strategy will ensure that Cn+1 will grow
from Cn with the least increase in energy.Thus the
sequence of minimizations of Eq. (6) gives the evolu-
tion strategy we sought in Section 4.

(4) Because the sequence of curves is required to grow
monotonically, it will ultimately fill out the inside
region and grow beyond the true boundary. A stop-

ping rule is necessary to stop the evolution when this
happens. As we show in Section 6, it is possible to
create many stopping rules.

(5) At the n + 1st iteration, define

Bnþ1 ¼ Ck; where; k ¼ arg min
i¼1;���;nþ1

EðCiÞ: ð7Þ

That is, Bn+1 is the curve with the least energy
amongst all curves C0, � � � ,Cn+1. The curve Bn+1 is
the best estimate of the boundary at the n + 1st iter-
ation. Note that since the curves C0, � � � ,Cn+1 are
monotonically increasing, Bn+1(=Ck for some
k 6 n + 1) is always inside Cn+1. Also, if i P j, then
the least energy curve Bi must have energy that is less
than or equal to the least energy curve Bj, i.e. i P j

implies E(Bi) 6 E(Bj).
5.1. Tunneling descent with parameters

Tunneling descent with parameters is simply tunneling des-
cent of Eq. (6) with parameters estimated simultaneously. The
descent is initialized with curve C0 and parameters h1,0,h2,0. It
generates the sequence of curves and parameters
{C1,h1,1,h2,1}, {C2,h1,2,h2,2}, . . .,{Cn,h1,n,h2,n}, {Cn+1,h1,n+1,
h2,n+1} according to
(b) The sequence of steps

e Space Ξ

Level sets of E

Local minimum of E
C0 C1 C2

(C  )0

G(C  )1

G(C  )2

(C  )0(C  )0(C  )0

nce of steps gradient descent in N.



Cn

G(C  )n

A(C  )n

D(C  )n

Level sets of E
Cn

Cn+1

M(C  )n
M(C  )n

E

The Space Ξ Level sets of E

Local minimum of E

(b) The sequence of steps(a) A single step

C0 C1 C2

Cn

Cn+1

M(C )
0

M(C )
1

M(C )
n

Fig. 5. (a) A single step. (b) The sequence of steps tunneling descent in N.
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Cnþ1 ¼ arg min
C2MðCnÞ

EðC; h1;n; h2;nÞ;

ðh1;nþ1; h2;nþ1Þ ¼ arg min
h1;h2

EðCn; h1; h2Þ:
ð8Þ

As before,

Bnþ1 ¼ Ck; where k ¼ arg min
i¼1;���;nþ1

EðCi; h1;i; h2;iÞ ð9Þ

is the best estimate of the boundary at the n + 1st iteration.

5.2. Behavior of the best estimate

The estimate Bn has a characteristic which is illustrated
in Fig. 6a. The figure shows a plot of the energy E(Cn) as a
Number of iterations (n).

(a) Different regimes of evolution

(b)  Cn inside the true
boundary

(c)  Cn outside the true
boundary

)  
C(

E
n

C
=  

B
n

n

C
=  

B
n

n
yranoitats  

B
n

C
=  

B
n

n

The level of
E(B  ) when 
B   is stationary.

n
n

yranoitats  
B

n

yranoitats  
B

n

True Boundary

B

C

n

n

True Boundary

B

C

n

n

Fig. 6. (a) Different regimes of evolution. (b) Cn inside the true boundary.
(c) Cn outside the true boundary. The behavior of Bn and its relation to Cn.
function of n. Initially, as the energy decreases, Bn equals
Cn, since Cn is the least energy curve until the nth iteration.
Once Cn passes through a local minimum of the energy
function, E(Cn) increases but Bn stops at the local mini-
mum (since E(Bn) cannot increase). After E(Cn) decreases
once more to E(Bn), Bn again equals Cn. Thus, the evolu-
tion has distinct regimes, depending on whether Bn = Cn

or Bn is stationary. Fig. 6a shows these regimes as regions
between vertical lines. In the regimes where Bn is station-
ary, the value of E(Bn) is shown as a gray horizontal line.

If the energy function is properly designed, then its min-
ima near the true boundary are deeper than minima else-
where. Therefore, as Cn approaches the boundary, Bn

evolves through a series of local minima each having lower
energy than the previous. But, once Cn crosses the bound-
ary, Bn no longer follows Cn; instead it tends to remain sta-
tionary near the true boundary. This behavior is useful in
designing stopping rules.

6. Stopping rules for tunneling descent

We now turn to examining stopping rules for terminat-
ing tunneling descent. Two obvious stopping rules are:
First, terminate the descent when the curve reaches the bor-
der of the entire image. Second, terminate the descent after
the area of Cn has increased past a threshold. The latter
stopping rule is useful when the approximate sizes of
organs and upper bounds on the size are known.

A stopping rule that is faster than the above rules can be
created based on the behavior of Bn discussed above:

(1) Test whether the gray levels IXCn�XBn
come from log-

likelihoods l1 or l2. If the gray levels appear to come
from l1, then Cn is still inside the true boundary. If
they come from l2, then Cn has crossed the bound-
ary. This is a model-based stopping rule, since it uses
the probability models implicit in l1 and l2 for
stopping.
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(2) Test whether the gray levels IXCn�XBn
and gray levels

IXBn
come from the same distribution. If they do, then

Cn is inside the true boundary. If not, Cn has evolved
outside. This does not require use of the likelihoods
and gives model-free stopping rules.

6.1. Model-based stopping

The classic model-based stopping rule is the generalized
likelihood ratio test (GLRT):

l2ðIXCn�XBn
jh2;nÞ � l1ðIXCn�XBn

jh1;nÞ > T ; ð10Þ

where T > 0 is a threshold, and the left-hand side is set to
be 0 if Bn = Cn (i.e when XCn � XBn is empty). If the left
hand side exceeds the threshold, then the gray levels
IXCn�XBn

come from l2, and tunneling descent is terminated.

6.2. Model-free stopping

Rosenbaum’s test (Neave and Worthington, 1988): Let
IXBn

have a maximum gray level X1 and IXCn�XBn
have a

maximum gray level X2. If X1 P X2, then the Rosenbaum
test statistic is the number of pixels in XBn with gray levels
greater than X2. If X2 > X1, then the test statistic is the
number of pixels in XCn � XBn whose gray levels are greater
than X1. The test accepts the null hypothesis when the test
statistic is less than a threshold T > 0. Else, the null
hypothesis is rejected and tunneling descent terminated.

Two-sample v2 test: This test bins the gray levels IXBn
and

IXCn�XBn
separately into histograms R and S with the same

number of bins, k. The test statistic is

v2 ¼
Xk

i¼1

ðK1Ri � K2SiÞ2

Ri þ Si
; ð11Þ

where the sum is over all bins of the histogram, Ri and Si

are the observed frequencies in the ith bins of the two his-

tograms. Also, K1 ¼
ffiffiffi
n2

n1

q
and K2 = 1/K1, where n1 and n2

are the number of pixels in XBn and XCn � XBn . The null
hypothesis is accepted when v2 < T, for a threshold
T > 0. Else, tunneling descent is terminated.

6.3. The threshold T

All of the stopping rules require a threshold T. This
threshold determines the false alarm rate of the test. We
want to set the threshold T so that this rate is low.

GLRT: A good rule of thumb for setting T for the GLRT
comes from observing an analogy between the stopping rule
of Eq. (10) and the sequential probability ratio test (SPRT)
of classical decision theory (Berger, 1980; Ghosh, 1971;
Basseville and Nikiforov, 1993). In classical SPRT, data
are incrementally added to the test statistic until the test sta-
tistic exceeds the threshold. The analogy is that the growing
curve Cn adds more data to IXCn�XBn

from the outside region
till the test statistic exceeds T. Classically, the false alarm rate
for the SPRT is estimated by Wald’s approximation, which
gives the false alarm rate, fa, as a function of the threshold T:
fa ¼ e�T : ð12Þ

This approximation is a reliable heuristic for selecting T in
the stopping rule of Eq. (10).

Rosenbaum’s test: The false alarm rate of Rosenbaum’s
test is (Neave and Worthington, 1988)

fa ¼
n1!ðn1 þ n2 � T Þ!
ðn1 þ n2Þ!ðn1 � T Þ! ; ð13Þ

where n1 is the total number of pixels in XBn , n2 is the total
number of pixels in XCn � XBn , and T is the threshold.

v2
test: The false alarm rate of the v

2
test is

fa ¼ 1�
Z T

0

v2
k�cðxÞdx; ð14Þ

where k � c is the degrees of freedom in v2 distribution
with c = 0 for unequal sample size and c = 1 otherwise,
and T is the threshold.

6.4. The complete algorithm

To sum up, the complete tunneling descent algorithm is
as follows:

(1) Initialize the curve inside the region as C0 and the
parameters as h1,0,h2,0. Set n = 0.

(2) Generate Cn+1,h1,n+1,h2,n+1 using Eq. (8).
(3) Find Bn+1 according to Eq. (9), and apply a stopping

rule. If the rule indicates termination, stop with Bn+1

as the boundary. Else, set n = n + 1 and go to 2.

6.5. Shrinking tunneling descent

So far, we assumed that the contour was initialized within
a region and monotonically grown to find its boundary.
However, there are no obstructions to creating an algorithm
that monotonically shrinks the contour instead. The contour
is now initialized outside the desired boundary and shrinks
by reducing area. We call this shrinking tunneling descent.
We do not pursue shrinking tunneling descent in this paper.
The interested reader may refer to (Tao, 2005).

6.6. Numerical techniques

Details of the numerical techniques used in imple-
menting tunneling descent are given in Appendix A.
We give a brief outline here: First, we discretize the curve
using a finite number of vertices (knot points) along the
curve. The tunneling descent constraints are expressed
using the discretization and are seen to be convex. Then,
the curve minimization in tunneling descent (Eq. (8)) is
carried out by the gradient projection algorithm which
is a classic minimization techniques for convex con-
straints. The gradient projection onto the convex con-
straints is carried out by Dysktra’s algorithm. The
parameter minimization in Eq. (8) is carried out by
ordinary gradient descent (or a closed form minimiza-
tion, if possible).



Table 1
Values of constants used in experiments

D1 D2 Stop. rule threshold T

Tun. Desc. 10 20 500
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7. Ultrasound segmentation

We now turn to our main application – segmentation of
the endocardium in short-axis cardiac ultrasound images
(Fig. 2). As mentioned in Section 2.1, we carried out an
empirical investigation of the statistics of ultrasound
images in Tao et al. (2002). The results of that study are
summarized as follows:

(1) As an approximation, the first-order gray levels in
blood and tissue in short-axis cardiac images can be
modeled by Gamma distributions. The gamma distri-
bution has two parameters, a shape parameter which
we denote by a and a scale parameter which we
denote by b. The probability density function of the
Gamma distribution is

pcðxja; bÞ ¼
xa�1

CðaÞba e
�x
b :

The shape parameters for blood and tissue can be fixed
a priori to known constants. We denote the shape
parameters of blood and tissue by a1 and a2. Empirical
evidence (Tao et al., 2002) suggests that their values are
a1 = 3.2, a2 = 7.8. The scale parameters are estimated
from the image.

(2) Inside the endocardium is the blood pool and outside
is tissue. The log-likelihood functions (as introduced
and defined in Section 3.1) for the inside and outside
of the endocardium are given by

l1ðIRjb1Þ ¼
Z

R
log pcðI ja1; b1Þda; and ð15Þ

l2ðIRjb2Þ ¼
Z

R
log pcðI ja2; b2Þda; ð16Þ

where da is the differential area, and a1, a2 and b1, b2

are the shape and scale parameters for the gamma
distributions for blood and tissue.

(3) A log-normal prior serves well for the scale parame-
ters (Tao et al., 2002). The log-likelihood of this prior
on b1, b2 is

Lpriorðb1; b2Þ ¼
�1

2r2
b

log
b1

b2

� lb

� �2

ð17Þ

where we have dropped all terms that are independent
of b1, b2, and lb and rb are constants (the mean and
standard deviation of the log normal). Based on empir-
ical evidence (Tao et al., 2002), their values were set to
lb = 2.35 and rb = 1.18.

(4) We use the standard arc-length prior on C, so that the
log-likelihood is

LpriorðCÞ ¼ �k LengthðCÞ; ð18Þ
where k > 0 is a constant. This term is more com-
monly known as the ‘‘arc-length internal energy’’ of
the active contour.
The value of k is set to 1 in all experiments.
Thus, the total log-likelihood prior for segmenting
ultrasound images is
LpriorðC; b1; b2Þ ¼ LpriorðCÞ þ Lpriorðb1; b2Þ: ð19Þ
This log-likelihood prior along with the likelihoods of
Eqs. (15) and (16) define the posterior log-likelihood
of Eq. (1).

8. Experiments

We extensively tested tunneling descent on clinical B-
mode short-axis cardiac images. The images were acquired
from different subjects with an Acuson Sequoia C256 imag-
ing system. All images with significant data drop out were
excluded; 44 images remained, which were processed.
These images were of different subjects obtained under con-
ditions that we did not have any control over (the images
themselves came from a small archive of images that had
already been created). The active contour was initialized
in the blood pool and propagated outwards by tunneling
descent. The GLRT stopping rule was used. The reason
for choosing the GLRT is explained below in Section 8.1.

The values of the tunneling descent parameters are given
in Table 1. Informal experimentation showed little depen-
dence on the performance of the algorithm with respect
to D1 and D2. A detailed study of the algorithm with respect
to T is reported below in Section 8.1.

Tunneling descent segmented all images successfully.
That is to say, in no case did the stopping rule terminate
the descent early and a visual inspection of all results
showed that the segmentation was very close to the endo-
cardium. A more quantitative evaluation of the perfor-
mance is given below in Section 8.2.

To assess the quality of results visually, Fig. 7 shows four
typical segmentation results with the active contour initial-
ized in blood. In each row, the first figure shows the image,
the initial diamond shaped contour, and the final contour
found by tunneling descent. The second figure in each row
plots the energy E(Cn, b0,n, b1,n) as a function of n. The local
minima in the energy function are indicated by vertical lines.
These figures shows that tunneling descent escaped through
multiple local minima to find the endocardium. Gradient
descent would have been trapped in any one of these.

No parameter tweaking was involved in any of the 44
segmentations. Quite literally, the same algorithm worked
on all images.

8.1. Stopping rule performance

Three different stopping rules were proposed in Section
6 and we experimentally evaluated their performance.

We evaluated stopping rules for all 44 images. The false
alarm rates were chosen as fa = 10�4, 10�6, 10�8, 10�10,
10�12 and the stopping thresholds calculated according to
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Fig. 7. Segmentation by tunneling descent.
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Eqs. (12)–(14), where we used 20 bins for v2 test. For low
values of threshold (high fa), the active contour very clearly
failed to reach the endocardium. For very high values of
threshold (low fa), sometimes the contour completely
escaped from the myocardium. These very obvious failures
were counted as such. The failure rates of the three stopping



Table 2
Failure rates of stopping rules

fa 10�4 10�6 10�8 10�10 10�12

GLRT (%) 4.5 2.3 0.0 0.0 0.0
Rosenbaum (%) 6.8 6.8 9.1 11.4 11.4
v2 (%) 4.5 2.3 4.5 6.8 9.1
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rules are shown in Table 2 as a function of fa. Note that of
the three stopping rules GLRT is the best behaved. Its fail-
ure rate monotonically decreases with decreasing fa.

For the images where the stopping rule did not fail, the
terminating Cn penetrated into the myocardium while the
terminating Bn stayed close to the boundary. We measured
the area between the terminating Cn and Bn, and called it
penetration area. This evaluated the extent to which the
stopping rule allowed Cn to penetrate into the tissue before
termination. The average and standard deviation of the
penetration area (measured in pixels) is shown in Fig. 8
as a function of fa. This figure shows that penetration of
GLRT is small (of the order of a few hundred pixels),
and is lower than the penetration of Rosenbaum’s test
and v2 test. Also the penetration area of the GLRT is stable
with respect to fa. Clearly, GLRT outperforms the other
two tests and is our choice of the stopping rule. Except
for this experiment, all tunneling descents reported in this
paper use the GLRT stopping rule.

8.2. Comparison with manual segmentation and balloons

Next, we compared the algorithm segmentation with
manual segmentation. Manual segmentations are laborious
and notoriously prone to fatigue, and multiple manual seg-
mentations of the same image are usually desirable. For a
subset of 19 images, we were able to obtain two manual
segmentations which we compared to tunneling descent.
To assess the advantage of tunneling descent over classical
gradient descent, we also created a m.a.p. active contour
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Fig. 8. Penetration area for different stopping rules.
with a balloon force which was initialized in the same loca-
tion as tunneling descent. Since it is difficult to estimate a
piori what the right amount of balloon force is, three differ-
ent balloon forces were used bracketing a value that
appeared to get the contours out of most local minima.

Thus, for each image, we had two manual segmenta-
tions, one tunneling descent segmentation, and three gradi-
ent descent m.a.p. with balloon force segmentations. The
two manual segmentations were taken as the gold standard
and other segmentations were compared with them.

Any two segmentation curves C1 and C2 were compared
by two measures. The first, denoted �, measured the relative
area of the non-overlapping regions of the curves as one
minus the ratio of the area of overlap of the two curves
to the average area of the interiors of the two curves
(Fig. 9):

� ¼ 1� AreaðXC1

T
XC2
Þ

ðAreaðXC1
Þ þAreaðXC2

ÞÞ=2
: ð20Þ

The second, denoted d, measured the maximum absolute
deviation of one curve from the other:

d ¼ maxðdðC1;C2Þ; dðC2;C1ÞÞ; ð21Þ
where d(.,.) measures the maximum distance of the curve in
the first argument from the curve in the second:

dðE; F Þ ¼ max
f2F

min
e2E
ke� f k;

where i i is the Euclidean distance.
For every image, we first measured �m, the extent of

non-overlap of the two manual segmentations. Then, for
each machine segmentation, we measured its non-overlap
� with both manual segmentations and took the average.
For tunneling descent, this average non-overlap is denoted
�t. For the three balloon active contours, the average non-
overlaps are denoted �b1, �b2, �b3.

Similarly, we measured dm between the two manual seg-
mentations. And for each machine segmentation, we mea-
sured the d with both manual segmentations and took at
the average. For tunneling descent the average is denoted
Fig. 9. Curve overlap.
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dt. For the balloon active contours, the averages are
denoted db1,db2,db3.

Fig. 10a shows the cumulative distribution of � for all 19
images. For each value of � on the x-axis, the plot gives the
corresponding fraction of segmentations for which the
measured � was less than or equal to this value. In the fig-
ures, the thick solid lines are for �m, and the thin solid lines
for �t and the other lines, dashed or dotted, for �b1, �b2 and
�b3. As seen in Fig. 10a, all manual segmentations have �m

less than 0.125. Thus, roughly speaking, all manual seg-
mentations were within 12.5% of each other. The cumula-
tive error curve of tunneling descent in Fig. 10a stays
close to �m. In fact, tunneling descent results are only
slightly less similar to the manual segmentations than the
manual segmentations are to each other. Also tunneling
descent significantly outperforms all of the active contours
with balloon forces.

Fig. 10b shows the cumulative distribution of d. Here
too it is clear that dt stays consistently close to dm. Further
dt is closer to dm than any of the balloon d’s. The only
exception occurs for the two rightmost values of db2. How-
ever this does not imply that db2 has a superior perfor-
mance to dt, because db2 is noticeably worse elsewhere.
This only shows that it is difficult to choose a good balloon
force, and that the correct balloon force can vary from
image to image.

8.3. Sensitivity to initialization

Finally, we evaluated the sensitivity of tunneling descent
segmentation to initialization. Figs. 11a–j show the same
ultrasound image with the active contour initialized as
the diamond in the central blood pool. In Fig. 11a the con-
tour is initialized in the middle of the blood pool. In Figs.
11b–e the contour with initialized at the same y co-ordinate
as Fig. 11a, but with the x coordinate varying by
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Dx = �40, �20, 20, 40 pixels, respectively. In Figs. 11d–j
the contour with initialized at the same x co-ordinate as
Fig. 11a, but with the y coordinate varying by
Dy = �40,�20, 20, 40, 60 pixels respectively (the blood
pool is slightly longer in the vertical direction than the hor-
izontal direction in the center). The larger curves in figures
are the final segmentations obtained by tunneling descent.
Inspection of Figs. 11a–j reveals that there are only minor
variations in the final segmentations.

For a more objective assessment, we turned to the mea-
sures � and d as defined in Eqs. (20) and (21). The segmen-
tations of Figs. 11b–j were compared with the
segmentation of Fig. 11a. The results are shown in Table
3. Note that all �’s are in the 1–3% range, and all the d’s
in the 6–7 pixels range. For an idea of the magnitude of
d, note that 7 pixels is the size (linear dimension) of one
grain of speckle in the images in Fig. 11, and that the
bounding box for the segmentation in Fig. 11a is 136 pixels
by 128 pixels. This confirms the informal observation that
the segmentations in Figs. 11a–j are insensitive to initializa-
tion. Experimentation with other images shows that these
numbers are typical.

9. Limitations of the likelihood function

As mentioned in Section 1, escaping from spurious local
minima is only one of many problems that have to be
addressed before a robust ultrasound segmentation algo-
rithm can be developed. In particular, dropout needs to
be addressed. Although dealing with dropout is not the
aim of this paper, it is interesting to see the performance
of tunneling descent on images with dropout. Fig. 12 shows
an example. The active contour is initialized as the small
diamond shaped curve in the center of the image. It then
evolves and terminates at the larger curve as the final seg-
mentation. In the absence of any other information, the
(b) The measure 
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Fig. 11. Sensitivity to initialization.

Z. Tao, H.D. Tagare / Medical Image Analysis 11 (2007) 266–281 277



Fig. 12. Leakage due to dropout.
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Table 3
Sensitivity to initialization

Fig. 11b Fig. 11c Fig. 11d Fig. 11e Fig. 11f

� 0.021 0.023 0.016 0.023 0.023
d (pixels) 6.71 7.00 6.33 7.07 7.00

Fig. 11g Fig. 11h Fig.11i Fig. 11j
� 0.023 0.024 0.022 0.019
d (pixels) 6.71 7.07 7.07 6.08
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segmentation of Fig. 12 into dark and bright regions is
quite good. On the other hand, anatomical knowledge
and familiarity with ultrasound imaging tells us that there
is significant dropout around the 9 o’clock region of the
endocardium and the active contour has leaked through
the dropout.

This is clearly not the fault of tunneling descent, but
of the simple likelihood function which does not model
dropout and hence is unable to understand it. The prob-
lem can be fixed by modelling the dropout as an image
multiplicative term that goes to zero in the dropout
region and by adding a shape prior (e.g. as in Chen
et al. (2002)) that informs the contour how to bridge
the dropout region. We are currently developing such a
modified likelihood function, and hope to report it in
forthcoming publications. Modifying the likelihood func-
tion has no effect on tunneling descent as the evolution
strategy.

10. Conclusions

We proposed a new strategy called tunneling descent for
evolving active contours. The strategy is based on the idea
that if a contour is evolved monotonically in such a way
that it increases its area at a non-zero rate while maximally
decreasing its energy at each step, then it will enter into a
local minimum and escape from it in the right direction.
A set of stopping rules can terminate the evolution once
the contour has grown past the true boundary.

The capacity to overcome spurious minima is evident in
experiments where the algorithm is used to find the endo-
cardium in ultrasound images. For segmenting short-axis
cardiac ultrasound images, the performance of the
algorithm is comparable to manual segmentation and supe-
rior to gradient descent m.a.p. active contours with balloon
forces. Further, tunneling descent can be used without any
parameter tweaking. Finally, tunneling descent segmenta-
tions are insensitive to initialization.
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Appendix A. Numerical techniques

A.1. Discretization

We discretize the curve as a polyhedron with k vertices
and enumerate the vertices in a clockwise manner
(Fig. 13a) with the ith vertex of a curve denoted by vi =
(xi,yi), and the entire set of vertices denoted by v =
[v1 . . . vk]T. The curve itself is denoted as C(v) to explicitly
show the dependence on v.

Moving the vertices v moves the curve. Set
w = [w1, � � � ,wk] and let v + w represent the vertices of a
curve D(v + w) that is displaced from C by w (Fig. 13a).
Then, all of the neighborhoods that define tunneling des-
cent can be expressed in terms of w as shown below. In
these formulae, all index addition and subtraction is mod-
ulo k.

[1] GðCÞ is the set of all curves D(v + w) for which

Xk

i¼1

kwik2
6 D1: ðA:1Þ

[2] AðCÞ is the set of all curves D(v + w) for which

Xk

i¼1

fðvi�1 � viþ1Þ?gTwi P D2; ðA:2Þ

where the operator ^ indicates rotation by 90� in the coun-
ter-clockwise direction. This constraint is the first-order
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approximation to Area(XD) � Area(XC) P D2, valid when
wi are small.

[3] DðCÞ is the set of all curves D(v + w) for which

fðvi � vi�1Þ?gTwi >¼ 0;

fðviþ1 � viÞ?gTwi >¼ 0
ðA:3Þ

for all i = 1, . . . ,k. This constraint expresses XC ˝ XD

(Fig. 13b).
Given the vertices v, let MðvÞ denote the set of w that

satisfy the constraints of Eqs. (A.1)–(A.3). A sufficient con-
dition for MðvÞ to be not empty is:

D2Pk
i
ðvi�1 � viþ1Þ2

6 D1: ðA:4Þ

All constraints in Eqs. (A.1)–(A.3) are convex, hence the
set MðvÞ, which is the intersection of the constraints, is also
convex.

When discretized tunneling descent is initialized at
C0(v0), it generates the sequence of the curves and param-
eter estimates (C1(v1),h1,1,h2,1), (C2(v2),h1,2,h2,2), . . . ,(Cn+1

(vn+1),h1,n+1,h2,n+1) according to

vnþ1 ¼ vn þ arg min
w2MðvnÞ

EðCðvn þ wÞ; h1;n; h2;nÞ; ðA:5Þ

ðh1;nþ1; h2;nþ1Þ ¼ arg min
h1;h2

EðCðvnþ1Þ; h1; h2Þ: ðA:6Þ

The minimization in Eq. (A.6) is unconstrained and carried
out by gradient descent. The minimization in Eq. (A.5) is
the minimization of the nonlinear function E in the convex
set MðvnÞ. There are many standard techniques for minimi-
zation in a convex set (Bertsekas, 1996); we use the gradient
projection method.

A.2. Minimization by gradient projection

The gradient projection method works as follows: start-
ing from an initial value, it proceeds in the negative gradi-
ent direction. If it hits the boundary of the convex set, it
proceeds by projecting the gradient onto the convex set.
½ui�þ2;i ¼

ui if fðvi � vi�1Þ?gTui P 0; and fðviþ1 � viÞ?gTui P 0

1� fðvi�vi�1Þ?gTui

kvi�vi�1k2

� �
ui if fðvi � vi�1Þ?gTui < 0; and fðviþ1 � viÞ?gTui P 0

1� fðviþ1�viÞ?gTui

kviþ1�vik2

� �
ui if fðvi � vi�1Þ?gTui P 0; and fðviþ1 � viÞ?gTui < 0

0 if fðvi � vi�1Þ?gTui < 0; and fðviþ1 � viÞ?gTui < 0;

8>>>>>><
>>>>>>:
The method terminates when the gradient or the projected
gradient is zero.

When applied to the minimization in Eq. (A.5), gradient
projection is initialized with w0 = 0 and generates a
sequence of wk, k = 1,. . . according to
wk ¼ wk�1 þ ð�wk�1 � wk�1Þ;
where

�wk�1 ¼ ½wk�1 � srwEðCðvn þ wÞ; h1;n; h2;nÞ�þ:

Here [Æ]+ denotes projection on the set MðvnÞ, and s is a po-
sitive scalar. The sequence terminates when
kð�wk�1 � wk�1Þk falls below a small positive number, simi-
lar to the termination of gradient descent.

Because the convex set MðvnÞ is defined by the intersec-
tion of three convex sets given by Eqs. (A.1)–(A.3), its pro-
jection operator is obtained by Dykstra’s algorithm
(Deutsch, 2000), which is a classic algorithm for projecting
onto an intersection of convex sets.
A.2.1. Dykstra’s algorithm

Given any vector u0 ¼ ½u0
1; . . . ; u0

k �, Dykstra’s algorithm
generates a sequence of iterates um that converge to [u0]+,
the projection of u0 onto MðvnÞ. Defining e�3 = e�2 =
e�1 = 0, the iterations of Dykstra’s algorithm are:

umþ1 ¼ ½um þ em�3�þðm mod 3Þ;

em ¼ ðum � em�3Þ � umþ1; for m ¼ 0; 1; 2; . . . ;

where ½��þ0 ; ½��
þ
1 ; ½��

þ
2 , denotes projections on to the convex

sets GðCvnÞ;AðCvnÞ;DðCvnÞ. The iterations are terminated
when ium+1 � umi falls below a small number.

The projection operators ½��þ0 ; ½��
þ
1 are given by

½u�þ0 ¼
u if kuk2

< D1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1Pk

i
kwik2

r
u otherwise:

8><
>: ðA:7Þ

½u�þ1 ¼
u if

Pk
i fðvi�1 � viþ1Þ?gTui P D2;

1þ D2�
Pk

i
fðvi�1�viþ1Þ?gTuiPk

i
ðvi�1�viþ1Þ2

� �
u otherwise:

8><
>: ðA:8Þ

The projection operator ½ �þ2 is obtained by applying each of
the following projection operators ½ �þ2;i to the corresponding
co-ordinate ui of u for i = 1, � � � ,k respectively:
where, as before, i + 1, i � 1 are modulo k.
Dykstra’s algorithm might appear to be computation-

ally expensive, but, in practice, we find that only a few
iterations are needed to get a numerically reliable
projection.
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A.3. Vertex deletion and insertion

To prevent the active contour from self crossing, we add
and delete the vertices dynamically during curve evolution.
This is required of all active contour implementations that
discretize the curve with knot points. In our implementa-
tion, when two neighboring vertices vi and vi+1 are greater
than 5 pixels, a vertex is added at the mid point of these
two vertices. If two vertices from a limited neighborhood
vi,vi+k with 1 6 k 6 n/2 are less than 5 pixels apart, we
delete all vertices between them.

This completes the description of the numerical algo-
rithm for tunneling descent.
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