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Structural heterogeneity of particles can be investigated by their three-dimensional principal compo-
nents. This paper addresses the question of whether, and with what algorithm, the three-dimensional
principal components can be directly recovered from cryo-EM images. The first part of the paper extends
the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and
hence the principal components, of a heterogeneous particle can indeed be recovered from
two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for recon-
structing the principal components directly from cryo-EM images without the intermediate step of cal-
culating covariances. This algorithm is based on maximizing the posterior likelihood using the
Expectation–Maximization algorithm. The last part of the paper applies this algorithm to simulated data
and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G
(EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal
component of the 70S ribosome data set reveals the expected conformational changes of the ribosome
as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conforma-
tional change in the two dimers of the RdRP.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The three-dimensional principal components of heterogeneous
particles are, loosely speaking, the primary ‘‘modes’’ of structural
change in those particles. Principal components are biologically
quite relevant. Each principal component informs us about parts
of the structure that vary together in a coordinated manner. A
key question in single particle electron cryo-microscopy
(cryo-EM) is whether the principal components of heterogeneous
three-dimensional structures can be reconstructed directly from
the two-dimensional cryo-EM images. The goal of this article is
to address this question from a theoretical as well as a practical
and algorithmic point of view.
Classical cryo-EM reconstruction methods can be used to obtain
principal components indirectly: these methods are used to recon-
struct a number of different structures from the cryo-EM images.
Then, the covariance of the reconstructed structures is taken as
an estimate of the true three-dimensional covariance of the hetero-
geneous particle, and principal components are calculated as
eigenvectors of the covariance. The difference between various
reported methods lies in the reconstruction step. One approach
assumes that the heterogeneous sample is a mixture of particles
with a finite number of different structures. The particles in the
mixture are recovered using the Expectation–Maximization algo-
rithm (the EM algorithm). This approach is employed by several
cryo-EM packages, e.g. Xmipp (Scheres et al., 2007), RELION
(Scheres, 2012a,b), and FREALIGN (Lyumkis et al., 2013). Another
approach employs the bootstrap (Penczek et al., 2011). It samples
the cryo-EM images with replacement, and reconstructs a large
number of three-dimensional structures from the bootstrapped
samples.
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A more recent method to understand heterogeneity uses
Laplacian eigenmaps to organize cryo-EM images into a low
dimensional manifold from which an energy landscape is obtained
(Dashti et al., 2014). 2D movies of the heterogeneity are created
along a trajectory in the energy landscape. These movies are
generated for paths corresponding to different orientations and
patch information from different orientations is compiled into a
3D movie.

A different approach to understanding heterogeneity bypasses
the reconstruction step and directly models and estimates the
covariance of the structures. In Zeng et al. (2012) and Wang et al.
(2013), for example, this approach is used to estimate the covari-
ance matrix of the structure, assuming that the covariance matrix
has a diagonal form. This gives the voxel-wise variance of the
structures, but not the principal components. Another approach
attempts to reconstruct the covariance structure by a form of
interpolation (Anden et al., 2015; Katsevich 2015). Because the
covariance matrix is quite large, this approach is limited to small
volumes.

Heterogeneity can also be investigated via normal mode analy-
sis (Brooks and Karplus, 1985; Chacon et al., 2003). Normal modes
are eigenvectors of the Hessian of the potential function of the
atomic displacements of a molecule. Normal modes, especially
the low-spatial-frequency normal modes, provide insight into pos-
sible heterogeneity of the particle due to bending and rotation of
different parts of the molecule. Recent work (Jin et al., 2014) has
shown how normal modes can be used to understand heterogene-
ity in images. Normal mode analysis is useful in its own right, but
in the context of principal components it can provide very informa-
tive priors. In the future, it may be possible to combine the
strengths of both approaches into a unified whole.

In this paper, we consider the problem of directly and sequen-
tially reconstructing the principal components from cryo-EM
images. By ‘‘directly’’ we mean that the principal components are
recovered without the intermediate step of reconstructing multi-
ple structures or their covariances. By ‘‘sequentially’’ we mean that
the principal components are reconstructed one at a time. This has
the dual advantage of efficient memory utilization, because large
covariance matrices are not needed, and of computational effi-
ciency, because the principal components are recovered one at a
time. Our approach is based on a generative model, and various
complications of cryo-EM imaging such as variable image noise,
different number of images in different projection directions, and
even the contrast transfer function (CTF) can be incorporated into
the model.

We also discuss a fundamental problem in covariance and prin-
cipal component estimation that is often overlooked in the concern
over algorithms and practical results. A priori, it is not clear at all
whether, and how much of, the three-dimensional covariance
(and hence the principal components) of a heterogeneous particle
can be recovered from the two-dimensional cryo-EM projection
images. Potentially, some information may be lost because the rela-
tion between images that are projected in different directions is not
available in cryo-EM. However, it does turn out that the
three-dimensional covariance can be recovered exactly without
the knowledge of this relation. There is a Fourier slice theorem for
covariances, which shows how the three-dimensional covariance
of a structure can be recovered exactly from two-dimensional
covariances of images. In Section 3, we present and explain this the-
orem. This theorem is as fundamental to heterogeneous particle
reconstruction as the usual Fourier slice theorem is to single parti-
cle reconstruction. A similar result has also been reported in
Katsevich et al. (2015).

A direct implementation of the Fourier slice theorem for covari-
ances turns out to be cumbersome; the three-dimensional covari-
ance is too large a data structure to calculate and hold in computer
memory. A more practical alternative is to directly calculate the
principal components and principal values of the covariance. The
second part of this article contains our algorithm for directly recov-
ering the principal components of the three-dimensional covari-
ance from cryo-EM images. Simulations and experiments with
real cryo-EM data show that the algorithm performs well with
noisy data. Because the algorithm recovers principal components
rather than a discrete set of structures, continuously variable struc-
tures are represented well by the method.

The theory and the algorithm in this paper are based on the
following assumptions: We assume that if a single structure is
reconstructed from a heterogeneous sample using classical recon-
struction algorithms, then that structure is the mean (average)
structure of the heterogeneous sample. We also assume that the
heterogeneity is not excessive, so that during reconstruction each
particle image is associated with the correct projection direction
at the correct alignment. The latter assumption is not strict.
Some mismatches and misalignments are not detrimental to the
algorithm. Note that these two assumptions are also commonly
made in other attempts to characterize structural heterogeneity
(e.g. Penczek et al., 2011; Katsevich et al., 2015). Finally, we
assume that the cryo-EM images can be CTF-corrected after align-
ment. This assumption is made only for conceptual simplicity; we
want to address the heart of the problem – estimating the principal
components – without the added complexity introduced by the
CTF. The assumption is very easily relaxed.

We begin in Section 2 with a brief discussion of continuous
space and discrete space models of heterogeneity. Section 3
addresses the question of whether the three-dimensional covari-
ance can be recovered at all from cryo-EM images. Here, we
explain how the Fourier slice theorem extends to covariance func-
tions. A more mathematical explanation is in Appendix. Section 4
formulates the problem of directly estimating the principal compo-
nents. Section 5 proposes a practical algorithm for the problem. As
shown in that section, a version of the classic Expectation–Maxi
mization algorithm (the EM algorithm) can be used to directly
reconstruct the principal components from cryo-EM images.
Section 6 contains results of using this algorithm to recover princi-
pal components from simulated and real cryo-EM data sets.
Section 7 contains a discussion and concludes the paper.
2. Models for heterogeneous particles

Classic single particle reconstruction uses a ‘‘continuous space’’
and a ‘‘discrete space’’ model of the particle; the former is used to
establish the Fourier slice theorem and the latter to derive practical
algorithms. The continuous space model regards the structure
(density) of the particle as a function s on a continuous
three-dimensional space. The discrete space model takes the struc-
ture s to be a set of numbers on the vertices of a V � V � V lattice.
The discrete structure can also be thought of as a V3 � 1 vector.

The continuous space model for a heterogeneous particle is a
random process s defined on 3d space. That is, sðuÞ is a random
variable for any point u in 3d. The mean ls is a deterministic func-
tion in 3d taking value lsðuÞ ¼ E½sðuÞ� at u, and the covariance Rs is
a deterministic function of any pair of points u;v in 3d, with
Rsðu;vÞ ¼ E½ðsðuÞ � lsðuÞÞðsðvÞ � lsðvÞÞ�. Samples drawn from s
represent heterogeneous particles.

The discrete space model for a heterogeneous particle is a
V � V � V or a V3 � 1 valued random variable s. Its mean
ls ¼ E½s� is a V � V � V or a V3 � 1 vector, and its covariance Rs is

a V3 � V3 matrix. The principal components and principal values
of s are the eigenvectors and eigenvalues of Rs.

Bayesian and likelihood approaches to principal component
analysis use the following generative model for s (Tipping and
Bishop, 1999; Basilevsky, 1994):



1 The vector n is unique if x1;x2 are linearly independent. If x1;x2 are linearly
dependent, then there is more than one such n. All that is required for the theorem is
that there exist at least one such n.
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s ¼ ls þ z1l1 þ z2l2 þ � � � þ znln; ð1Þ

where, l1; . . . ;ln are orthogonal vectors, i.e. lT
i lj ¼ 0 for i – j. The

norm (length) of lk is the square root of the kth principal value of
s (klkk ¼

ffiffiffiffiffi
kk
p

), and lk=klkk ¼ ek, the kth principal component of
s. Finally, z1; � � � ; zn are independent scalar random variables that
are normally distributed with density Nð0;1Þ. This model can be
rewritten with simplified notation by defining a V3 � n matrix l
whose columns are lk:

l ¼

..

. ..
. ..

. ..
.

l1 l2 � � � ln

..

. ..
. ..

. ..
.

26664
37775;

and a vector valued random variable z whose components are zk,

z ¼

z1

z2

..

.

zn

266664
377775

and which has densityNð0; IÞ, where I is the identity matrix, so that

s ¼ ls þ lz: ð2Þ

This model is used in Section 5 to derive the EM algorithm for esti-
mating principal components.

3. The Fourier slice theorem for covariances

Having defined the basic quantities that we will use for describ-
ing heterogeneous particles, we turn to describing the Fourier slice
theorem for covariances. This theorem mirrors the classic Fourier
slice theorem in single particle reconstruction. We adopt the ‘‘con-
tinuous space’’ point-of-view of the classic theorem. Detailed cal-
culations and justifications for all of the formulae in this section
are given in Appendix.

Let the heterogeneous particle s be a random process in three
dimensions. Project s tomographically onto a two-dimensional
plane as follows: With the understanding that the north hemi-
sphere of a unit sphere includes the equator, pick a point in the
north hemisphere. This point defines a unit length vector n. If Pn

is the two-dimensional plane perpendicular to n containing the
origin, then for any point a 2 Pn,

ynðaÞ ¼
Z

sðaþ nrÞdr ð3Þ

is the line integral along the normal ray through a, with r being the
distance along the ray. This makes yn a two-dimensional stochastic
process defined on Pn. It is the random image generated by the
tomographic projection of s. Its mean and covariance are easily
shown to be (see Appendix):

Mean : lyn
ðaÞ ¼ E½ynðaÞ� ¼

Z
lsðaþ rnÞdr

Covariance : Ryn
ða; bÞ ¼ E ðynðaÞ � lyn

ðaÞÞðynðbÞ � lyn
ðbÞÞ

h i
¼
ZZ

Rs aþ r1n; bþ r2nð Þdr1dr2:

We will call Ryn
the projected covariance function.

As with the classic Fourier slice theorem we will assume that
projection images are available in all projection directions. That
is, lyn

and Ryn
are available for all projection directions n.

Below, we will need Fourier transforms of the covariance func-
tions. They are:
F sðx1;x2Þ ¼
ZZ

e�iðxT
1u1þxT

2u2ÞRsðu1;u2Þdu1du2; and ð4Þ

~F yn
ðm1; m2Þ ¼

ZZ
e�iðmT

1v1þmT
2v2ÞRyn

ðv1; v2Þdv1dv2: ð5Þ

In the above equations x1;x2 are a pair of three-dimensional fre-
quencies while m1; m2 are a pair of two-dimensional frequencies.
The terms xT

1u1;xT
2u2; mT

1v1; mT
2v2 are inner products. The integral

in Eq. (4) is six-dimensional and the terms du1 and du2 are the
differential volumes. Similarly, the integral in Eq. (5) is
four-dimensional, and the terms dv1 and dv2 are differential areas.
If the Fourier transform F sðx1;x2Þ is known for every pair of
three-dimensional frequencies x1;x2, then the transform can be
inverted to recover the covariance function Rs.

Notice that when the Fourier transform is written as in Eqs. (4)
and (5) the frequencies themselves can be interpreted as vectors in
the spatial domain. To be clear, this means that we treat any x
simultaneously as a vector in the Fourier domain as well as in
the spatial domain. Thus, given any non-zero x, there is a plane
in the Fourier domain perpendicular to x. Similarly, there is also
a plane in the spatial domain perpendicular to x (defined by the
set all points u such that xT u ¼ 0). These two planes are parallel
to each other.

Now recall the classic Fourier slice theorem: let n be a vector in
the three-dimensional Fourier domain and let P0n be a plane in a
three-dimensional Fourier domain perpendicular to n. Similarly
let Pn be the plane in the spatial domain perpendicular to n
(Fig. 1a). If x is a three-dimensional frequency in P0n, then, x is
also contained in Pn, and we may think of x as a
two-dimensional frequency vector in Pn. The classic Fourier slice
theorem shows that if we tomographically project a
three-dimensional function onto Pn, then the Fourier coefficient
of the projection at any (two-dimensional) frequency x is equal
to the Fourier coefficient of the three-dimensional function at
(the three-dimensional) x in P0n. That is, all Fourier coefficients
of the tomographic projection on Pn are equal to the correspond-
ing coefficients of the three-dimensional Fourier transform in the
plane P0n.

The Fourier slice theorem for covariances shows that a similar
argument holds for covariance functions. If x1;x2 are a pair of vec-
tors in the three-dimensional Fourier space, then there is at least
one vector n in the north hemisphere in the Fourier domain1

(Fig. 1b) such that the plane P0n perpendicular to n contains
x1;x2. Let Pn be the plane in the spatial domain perpendicular to
this n. Then x1;x2 can be thought of as two-dimensional frequen-
cies in Pn. It turns out that the Fourier coefficient of the projected
covariance function in Pn evaluated at the (two-dimensional) fre-
quency pair x1;x2 is identical to the Fourier coefficient of the
three-dimensional (unprojected) covariance function at the
(three-dimensional) frequency pair x1;x2 in P0n, i.e.

~F yn
ðx1;x2Þ ¼ F sðx1;x2Þ: ð6Þ

A proof of this claim is available in Appendix.
This theorem shows how the three-dimensional covariance can

be recovered exactly from projected two-dimensional covariances.
For any x1;x2 in the three-dimensional Fourier domain find the
vector n and evaluate F sðx1;x2Þ ¼ ~F yn

ðx1;x2Þ. Since this can be
done for any, hence every, x1;x2, the entire Fourier transform
F s can be calculated. Taking the inverse Fourier transform of F s,
gives the covariance Rs. Thus, the covariance, and therefore the



Fig. 1. The classic Fourier slice theorem and the Fourier slice theorem for covariances. (a) The planes P0n and Pn are perpendicular to n. A three-dimensional frequency x in
P0n can be thought of a two-dimensional frequency. The classic Fourier slice theorem says that the Fourier transform of the tomographic projection of a function on Pn at (the
two-dimensional) frequency x is equal to the Fourier transform of the function at the three-dimensional frequency x in P0n . (b) The covariance Fourier slice theorem says that
the Fourier transform of a projected covariance function at the pair of (two-dimensional) frequencies x1;x2 in Pn is equal to the Fourier transform of the unprojected
covariance function at the pair of (three-dimensional) frequencies x1;x2 in P0n .
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principal components, of s can be recovered from the covariances
of the images.

The Fourier slice theorem for covariances makes a number of
idealizations that have to be relaxed to develop a practical algo-
rithm: (1) The images are not available in continuous space, but
rather on a two-dimensional lattice. (2) The images are not avail-
able for all projection directions, but only for finitely many direc-
tions. (3) The number of images varies quite widely for different
projection directions, and for some projection directions the num-
ber of images may not be large enough to get a good estimate of
the image covariance. (4) The images are quite noisy, as is typical
of cryo-EM. (5) The amount of noise may vary from image to
image, since it depends on the quality of the micrograph that the
image comes from.

These factors suggest developing an algorithm with a discrete
space image model, which does not assume that a reliable image
covariance is available and which explicitly takes image noise into
account.
4. The estimation problem

Returning to the generative discrete space model of Eq. (2) of
Section 2, suppose that the random structure s is tomographically
projected onto a plane by a tomographic projection operator A. The
result is a random image (size V � V or V2 � 1) given by I ¼ Asþ �,
where � is additive noise. Samples of this random variable are
images that are present along the projection direction correspond-
ing to A.
More generally, several images Ij; j ¼ 1; . . . ;N are available and
are obtained from s by projections from different directions.
Image Ij has a corresponding projection operator Aj. Assuming that
the images Ij are aligned with the correct projection direction at
the correct rotation and translation,

Ij ¼ Ajsþ �j ¼ Ajðls þ lzjÞ þ �j; j ¼ 1 . . . ;N ð7Þ

where zj are i.i.d. random variables, each zj distributed identically to
z, and �j is additive noise with density Nð0;rjÞ (each image can
have a different noise level).

Since ls and Aj are known, Eq. (7) can be simplified further as

Ij � Ajls ¼ AjðlzjÞ þ �j; j ¼ 1 . . . ;N: ð8Þ

The term Ajls is just the projection of the mean structure by Aj, and
Ij � Ajls is the image formed by subtracting out the projected mean
structure from Ij. Since ls and Aj are known this is straightforward
to do. From now on, all images are assumed to be mean-subtracted
so that Eq. (8) can be written simply as

Ij ¼ AjðlzjÞ þ �j; j ¼ 1 . . . ;N: ð9Þ

The images Ij are indexed by j, but later it will be convenient to use
a double index. Assuming that there are a limited number of projec-
tion directions 1; . . . ;R and that after alignment the rth direction has
Nr images, the images can be indexed by the joint index r; t with
r ¼ 1; � � � ;R and t ¼ 1; . . . ;Nr . Thus the Ij can also be referred to as
Ir;t .

Our problem is to use the information in Eqs. (2) and (9) to esti-
mate the l’s. We solve this problem sequentially. That is, we first
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estimate l1, then l2, follwed by l3; . . . and so on. The estimate for
any lk assumes that l1; . . . ;lk�1 are known.

To reduce the propagation of noise into the estimate of ln, we
will assume the standard smoothness prior for ln. This prior has
the log density

log pðlnÞ / �ckrlnk
2
; ð10Þ

wherer is the discrete three-dimensional finite-difference gradient
operator and k k is the norm. The constant c > 0 is the regularization
constant. In practice, c is determined by cross validation.

The random variables zj are the latent variables of the problem;
there is no interest in estimating them. The EM algorithm
(McLachlan and Krishnan, 2008) can be used to estimate ln while
marginalizing (i.e. integrating out) these latent variables. The EM
algorithm uses several conditional densities, and these are calcu-
lated now.

Recall that we are assuming that l1; . . . ;ln�1 are known. We
take ln and r1; . . . ;rN (the image noise variances) as the parame-
ters to be estimated and set H ¼ ðln;r1; . . . ;rNÞ. Then, using the
fact that image noise and zj are normally distributed:

pðIjjzj;HÞ¼
1

ð2pÞV
2=2ðrjÞV

2 exp �kIj�Ajlzjk2

2r2
j

 !
; and ð11Þ

pðIj;zjjHÞ¼ pðIjjzj;HÞ�pðzjjHÞ¼ pðIjjzj;HÞ�pðzjÞ

¼ 1

ð2pÞV
2=2ðrjÞV

2 exp �kIj�Ajlzjk2

2r2
j

 !
� 1

ð2pÞn=2 exp �kzjk2

2

 !
: ð12Þ

A straightforward but tedious calculation gives the result that

pðzjjIj; hÞ is distributed normally as Nðq̂j; R̂jÞ, where

q̂j ¼
1
r2

j

I þ 1
r2

j

lT AT
j Ajl

 !�1

lT AT
j Ij; and ð13Þ

R̂j ¼ I � 1
r2

j

I þ 1
r2

j

lT AT
j Ajl

 !�1

lT AT
j Ajl: ð14Þ

The matrix I þ 1
r2

j
lT AT

j Ajl is n� n. Typically n is not bigger than 5, so

that the matrix inverse is tractable. Also note that q̂j is an n� 1 vec-
tor, which by definition is

q̂j ¼ E½zj� ¼

E½z1
j �

E½z2
j �

..

.

E½zn
j �

2666664

3777775; ð15Þ

where E½ � is the expectation with respect to zjjIj; h. Similarly, by def-

inition R̂j is the covariance matrix

R̂j ¼

E½z1
j z1

j � � � � E½z1
j zn

j �
E½z2

j z1
j � � � � E½z2

j zn
j �

..

. ..
. ..

.

E½zn
j z1

j � � � � E½zn
j zn

j �

2666664

3777775: ð16Þ
5. The EM algorithm

Using the conditional densities of the previous section, the Q
function (McLachlan and Krishnan, 2008) of the EM algorithm is:

QðH;H½k�Þ ¼
XN

i¼1

E log pðIj; zjjHÞ
� �

� ckrlnk
2
; ð17Þ
where the expectation is with respect to zjjIj;H
½k�, and the second

term is the log prior for ln. Using Eq. (12) and dropping all terms
that do not depend on H, gives

QðH;H½k�Þ ¼
XN

i¼1

E �kIj � Ajlzjk2

2r2
j

� V2 logrj �
kzjk2

2

" #
� ckrlnk

2
: ð18Þ

The EM algorithm proceeds by alternately maximizing Q with
respect to ln subject to the constraint that ln is orthogonal to
l1; . . . ;ln�1, and then with respect to r1; . . . ;rn.

5.1. Maximization with respect to ln

Simplifying the Q function by dropping terms that do not
depend on ln gives (after some algebraic manipulations):

QðH;H½k�Þ ¼
XN

j¼1

1
r2

j

 !
ðAT

j IjÞ
T
lnE½zn

j � �
X
i<n

lT
i AT

j AjlnE½zi
jz

n
j �

(

�1
2
lT

nAT
j AjlnE½ðzn

j Þ
2�
�
� ckrlnk

2
: ð19Þ

Notice that the Q function is quadratic with respect to ln. The
M-step requires us to maximize the Q function with respect to ln

subject to the constraint that ln is orthogonal to l1; . . . ;ln�1. This
maximization is straightforward to carry out: simply minimize
�Q with the conjugate gradient algorithm using the negative of
the gradient of Q with respect to ln projected on the subspace
orthogonal to spanðl1; . . . ;ln�1Þ.

Taking the gradient of Q with respect to ln,

rln
Q ¼

XN

j¼1

1
r2

j

AT
j ðIjE½zn

j � �
Xn

i¼1

AjliE½zi
jz

n
j �Þ � 2cr2ln; ð20Þ

wherer2 is the three-dimensional finite-difference Laplacian oper-
ator. The projection of the gradient on the subspace orthogonal to
spanðl1; . . . ;ln�1Þ is

Pðrln
QÞ ¼ rln

Q �
Xn�1

i¼1

lT
i

klik
rln

Q : ð21Þ

There is one last simplification using the dual indexing scheme for
images: Recall that if there are r ¼ 1; . . . ;R projection directions
with Nr images aligned to the rth projection direction, then the
image index j can be replaced by the double index r; t. Since Aj

depends only on r

rln
Q ¼

XN

j¼1

1
r2

j

AT
j IjE½zn

j � �
Xn

i¼1

AjliE½zi
jz

n
j �

 !
� 2cr2ln

¼
XR

r¼1

AT
r
eIr �

Xn

i¼1

Arlib
i;r

 !
� 2cr2ln; where; ð22Þ

eIr ¼
XNr

t¼1

1
r2

r;t
Ir;tE½zn

r;t � ð23Þ

bi;r ¼
XNr

t¼1

1
r2

r;t
E½zi

r;tz
n
r;t�: ð24Þ

E½zn
r;t� is available as the nth component of qj (Eqs. (13)–(15)) and

E½zi
r;tz

n
r;t� as the ith component of the last column of Rj (Eqs. (14)–

(16)).
The gradient calculation of Eq. (22) has an intuitively appealing

interpretation. The term eIr is the weighted average of all images
aligned to projection direction r. The term

Pn
i¼1Arlib

i;r is the
weighted sum of the projections of all l’s, which represent the
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current guess of the principal components and values. Thus,

ðeIr �
Pn

i¼1Arlib
i;rÞ is the information in the image that is not yet

explained by the projections of the principal components and val-
ues. The operator AT

r back projects this information, and the sum of
all the back projections gives the gradient, i.e. the direction, along
which the current estimate of ln should be updated to incorporate
this information.

In summary, the maximization of Q with respect to ln is done
with a conjugate gradient algorithm using the projected gradient
as follows:

Calculation of projected gradient:

1. Using the given l1; . . . ;ln�1 and the current estimate of ln, cal-
culate for every image index j, the values of qj and rj according
to Eqs. (13) and (14).

2. For every projection direction index r, calculate eIr according to
Eq. (23) and bi;r according to Eq. (24).

3. Calculate the gradient according to Eq. (22), and project this
gradient according to Eq. (21). Use �Pðrln

QÞ as the gradient
for the conjugate gradient step.

5.2. Maximization with respect to rj

The maximization of Q with respect to rj has the closed form
solution:

rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V2 IT
j Ij � 2IT

j AjlE½zj� þ
Xn;n

i1¼1;i2¼1
lT

i1
AT

j Ajli2
E½zi1

j zi2
j �

� �s
ð25Þ
5.3. The complete algorithm

Thus, the EM algorithm for estimating ln and r1; . . . ;rN is:

1. Input: Mean subtracted images Ij, initial value of ln;r1; . . . ;rN .
2. Iterate: Iterate the following until convergence
� Maximize w.r.t. ln using conjugate gradient minimization

with the projected gradient.
� Maximize w.r.t. rj; j ¼ 1; . . . ;N using Eq. (25).

The above assumes that the value the regularization constant c
is known. In practice, it is determined by a cross-validation
method, a procedure that is analogous to the Fourier Shell
Correlation method for determining resolution. First, the set of
images is split into two halves. Then a set of values of c are chosen.
In practice, it is sufficient to estimate c up to its order of magni-
tude, so this set typically contains only a few values. For every
value of c, the vector l1 of both halves of the set of images is deter-
mined independently. When the images have a high
signal-to-noise ratio, we expect the two l1’s to be almost equal.
As the noise increases, some noise propagates into the estimate
of the l1’s and they deviate from equality. The closeness of the
two l1’s can be determined by calculating the magnitude of the
component of the each l1 along the other, and summing the mag-
nitudes. The c at which this sum is the maximum is the c at which
the two l1’s are most similar and is taken as the estimate of c. This
estimate is then used to reconstruct the principal components
from the entire set of images.
5.4. Comments

Now that we have described the model and the algorithm, we
comment on both:
1. The image formation (Eq. (9)) does not assume that the noise in
every image has the same variance. This assumption takes care
of the fact that different micrographs do not have identical
noise.

2. The algorithm directly uses every image to calculate the princi-
pal components. This is in contrast to an approach which relies
on the covariance of the images. The latter approach requires a
sufficient number of images along every projection direction to
reliably calculate the image covariance. The EM approach does
not.

3. In many problems, the EM algorithm can get trapped in local
minima. For some problems, the EM algorithm has to be run
from multiple initializations to get a good estimate of the
parameters. Our experience with simulated and real data is that
the algorithm appears to converge reliably from a single ran-
dom initialization.

4. Two practical issues arise when the EM algorithm is applied to
real cryo-EM data: first, some noise from the background inevi-
tably propagates into the estimate of the principal component.
To prevent this, a mask can be created loosely around the mean
structure and the 3D principal components estimated only in
the mask. Second, contrast between the particle and the solvent
can be different in different images, and these give rise to a
‘‘contrast principal component’’. This principal component usu-
ally appears as a change in the amplitude of the mean structure.
To avoid this component, the reconstructed principal compo-
nents can be constrained to be orthogonal to the mean struc-
ture. This is easily done by modifying Eq. (21) to
Pðrln
QÞ ¼ rln

Q �
Xn�1

i¼0

lT
i

klik
rln

Q ; ð26Þ

where l0 ¼ ls is the mean structure.

6. Experimental results

The performance of the EM algorithm for determining principal
components was evaluated with simulations and with two real
cryo-EM datasets. In all cases, first, the regularization constant
was determined by the cross-validation procedure, and then the
EM algorithm was used to estimate the principal components.
The algorithm was implemented in MATLAB and run on a single
desktop computer. The forward and back projection operations
were parallelized, i.e. Aj and AT

j were implemented in parallel, with
6 MATLAB workers. The rest of the algorithm was not parallelized.
The execution times per principal component for the algorithm for
the three data sets is shown in Table 1.

We adopt the following convention to present results of the EM
algorithm: the mean structure �2

ffiffiffiffiffi
kk
p

ek are structures that are �2
standard deviations away from the mean structure along the kth
principal component. We present all estimated principal compo-
nents as this pair of structures in a figure. In addition, principal
components that are estimated from real cryo-EM data are visual-
ized by creating a movie that cyclically morphs from mean struc-
ture þ2

ffiffiffiffiffi
kk
p

ek to mean structure �2
ffiffiffiffiffi
kk
p

ek in a linear fashion. The
morph tool in Chimera (Pettersen 2004; CHIMERA) can be easily
used to do this. The movie is available as Supplementary
Information.

6.1. Principal components of simulated data

For simulations, the atomic structure (3VG9) of the human ade-
nosine A2A receptor with an allosteric inverse-agonist antibody
was downloaded from the PDB (Hino et al., 2012). Systematic
changes were made to the structure to simulate heterogeneity.



Table 1
Execution times for the algorithm per principal component. The algorithm was implemented in MATLAB, with the forward and back
projection operators implemented in the spatial domain in parallel by 6 MATLAB workers. The rest of the algorithm was not parallelized.

Data set Num. images Image size Num. Proj. Dirs Time per component (min)

Simulation (3VG9) 19,264 70� 70 301 4.7
70S ribosome 10,000 130� 130 309 40.9
RdRP 30,000 128� 128 1126 96.1

Fig. 2. The structure 3VG9 used in the simulation. (a) The ribbon structure of 3VG9. ‘‘A’’ is the receptor, ‘‘B’’ is the antibody fragment. The two are separated by the plane ‘‘P’’.
(b) The simulated density of 3VG9 as surface rendering and slices. The density is obtained by simulating a solvation model, followed by low pass filtering to simulate a 2.5 Å
cubed voxel, and then high pass filtering to simulate contrast with the solvent. (c) The antibody fragment B rotated around the axis shown in the figure by �20� in eight steps
(only the extreme positions are shown). The eight densities obtained thus were duplicated and (d) an extra density added to the duplicated densities. The resulting 16
volumes were used in the simulation.
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These changes are described in detail below. The changes to the
structure are not biologically motivated, but instead are meant to
represent uncorrelated stoichiometric and conformational
changes. Our hope is to recover the uncorrelated changes as dis-
tinct principal components.
The structure of 3VG9 is shown in Fig. 2a. It contains a receptor
(A) and an antibody fragment (B) which are approximately sepa-
rated by a plane (P). Conformational heterogeneity was simulated
by rotating the antibody fragment B around the rotational axis
shown in Fig. 2a. Eight rotations, uniformly spaced in the range



Fig. 3. The images used in the simulation. (a) Typical radially-averaged noise spectral density in the simulation. Noise was added before and after applying the CTF. (b) and (c)
Typical low and high defocus noisy images in the simulation. (d) and (e) are the underlying noise-free images corresponding to (b) and (c).
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�20�, were applied to the atomic coordinates of the antibody frag-
ment. A density map was created for each volume by using a sim-
ulator of solvated protein (Shang and Sigworth, 2012). Then the
volumes were low pass filtered to simulate limited resolution
(voxel size: 2.5 Å cubed). Finally, the d.c. component of the volume
was eliminated by high pass filtering to mimic solvent contrast.
This resulted in eight volumes, each of size 70� 70� 70, repre-
senting purely conformational change. To model stoichiometric
change, a volume was masked out of the rigid receptor structure.
This volume was shifted and added near the receptor to a copy
of the eight volumes. The entire set of the original eight volumes
without the extra density plus the new eight volumes with the
extra density were taken as sixteen volumes of a heterogeneous
particle. Note that in this collection, there is a pair of volumes for
every rotation of the antibody fragment – one volume without
the extra density and one volume with the extra density. That is,
the stoichiometric and conformational changes in this set are
uncorrelated.

Fig. 2b–d illustrates the volumes. Fig. 2b shows the original
3VG9 volume after applying the solvation model, low pass filtering,
and solvent contrast filtering. Fig. 2c shows the extreme �20� rota-
tions of the antibody fragment, and Fig. 2d shows the same vol-
umes with the extra density near the top.

The 16 volumes were projected along 301 projection directions
in the north hemisphere to produce 70� 70 images of pixel size
2.5 Å. Assuming a voltage of 300 kV, four CTFs were simulated with
defocus values of 1.2, 1.45, 1.7, and 2.0 lm respectively. Each CTF
was applied to every projection image. Equal amounts of noise
was added to the projection images before and after the CTF was
applied. Fig. 3a shows a typical spectrum of noise in one of the
images. The spectrum clearly shows a CTF-filtered noise compo-
nent on top of a white noise component (Zeng et al., 2007). A num-
ber of simulations were carried out at different signal-to-noise
ratios. For brevity, here we report only the results of the
lowest signal-to-noise ratio. This signal-to-noise ratio is
SNR ¼ 0:03� 1=2, where ‘‘�1=2’’ term represents that fact that
noise (corresponding to SNR ¼ 0:03) was added before applying
the CTF as well as after applying the CTF. Fig. 3b and c shows
typical noisy low- and high-defocus images. Fig. 3d and e shows
the underlying non-noisy CTF-filtered images. These images are
included only to visually assess the amount of the noise in
Fig. 3b and c. The entire simulation resulted in
16ðvolumesÞ � 301ðprojectionsÞ � 4ðCTFsÞ ¼ 19;264 images.

Finally, the mean volume and the ‘‘ground-truth’’
three-dimensional principal components were calculated from
the sixteen volumes (without noise). Fig. 4a shows the mean vol-
ume. Fig. 4b and c shows the mean volume �2

ffiffiffiffiffi
k1
p

e1 where k1

and e1 are the first principal value and component. Fig. 4d and e
shows the mean volume �2

ffiffiffiffiffi
k2
p

e2 where k2 and e2 are the second
principal value and component. The first principal component cap-
tures the presence/absence of the extra density without capturing
any associated rotation of the antibody fragment. The second



Fig. 4. The ‘‘ground truth’’ from the simulated volumes. (a) The mean of sixteen volumes, l. (b) The mean volume �2
ffiffiffiffiffi
k1
p

e1. (c) The mean volume þ2
ffiffiffiffiffi
k1
p

e1. (b) and (c) show
that the first principal component captures the presence/absence of the extra density without capturing any associated rotation of the antibody fragment. (d) The mean
volume �2

ffiffiffiffiffi
k2
p

e2. (e) The mean volume þ2
ffiffiffiffiffi
k2
p

e2. (d) and (e) show that the second principal component captures the rotation of the antibody fragment without any change in
the extra density. (f) and (g) are slices through the volumes of e1 and e2 respectively.

Table 2
Ground truth and estimated principal values.

1st Prin. Val. 2nd Prin. Val.

Ground truth 14.45 7.20
Estimated 12.61 9.95

H.D. Tagare et al. / Journal of Structural Biology 191 (2015) 245–262 253
principal component captures the rotation of the antibody frag-
ment without any change in the extra density. Thus the stoichio-
metric and conformational changes are captured in separate
principal components. Fig. 4f and g shows slices through the vol-
umes of the first and second principal components. The slices are
arranged raster-wise with the top left being the top slice and the
bottom right being the bottom slice.

Next, the noisy 19,264 images were CTF-corrected using Wiener
filtering, and the CTF-corrected images used with the EM algorithm
to estimate the three-dimensional principal components and prin-
cipal values. Table 2 shows the principal values estimated by the
algorithm as well as the ‘‘ground truth’’ principal values. Loosely
speaking, the principal values are the amount by which
heterogeneity extends along a corresponding principal component.

Fig. 5a and b shows the mean volume �2
ffiffiffiffiffi
k̂1

q
ê1 where k̂1 and ê1 are

the estimated first principal value and component. Similarly,

Fig. 5c and d shows the mean volume �2
ffiffiffiffiffi
k̂2

q
ê2 where k̂2 and ê2

are the estimated second principal value and component. Fig. 5c
and d shows slices through ê1 and ê2 respectively. Comparing the
estimated principal component slices with those in Fig. 4f and g
reveals that the estimated components correspond very well with
the ground truth components, although some noise has propagated
into the ‘‘background’’ in spite of the regularization term. This is
expected, since the regularization term reduces noise propagation
but does not eliminate it entirely.

How similar an estimated principal component is to the
‘‘ground truth’’ principal component can be evaluated by simply
calculating the absolute value of the inner product between the
two. That is, if êk is the estimated principal component and ek

the ‘‘ground truth’’ principal component, then their similarity is
measured by jeT

k êkj. Since êk and ek are unit norm, the inner product
is just the cosine of the angle between them. Furthermore, the



Fig. 5. Estimates from the EM algorithm. The estimated principal values and components are k̂k and êk for k ¼ 1;2. (a) and (b) show the mean volume �
ffiffiffiffiffi
k̂1

q
ê1. Similar to the

ground truth, this estimated first principal component captures the presence/absence of the extra density without any motion of the antibody fragment. (c) and (d) show the

mean volume �
ffiffiffiffiffi
k̂2

q
ê2. The estimated second principal component captures the rotation of the antibody fragment without any change in the extra density. (e) and (f) show

the slices through the estimated first and second principal components respectively. These are similar to the slices shown in Fig. 4f and g; however, some noise has
propagated into all of the slices.

Table 3
Absolute values of inner product between ground truth and estimated principal
components.

1st Prin. Comp. 2nd Prin. Comp.

Raw 0.91 0.89
Masked 0.95 0.95
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absolute value compensates for the sign ambiguity of the principal
components. The performance measure jeT

k êkjtakes values between
0 and 1 with high values reflecting greater similarity.
Fig. 6. Sensitivity of the estimated principal components to the amount of heterogeneity.
and the ground truth principal component as a function of the extent of antibody fragme
component and the ground truth principal component as a function of the percentage o
The first row Table 3, labeled ‘‘Raw’’, shows the above perfor-
mance measure for the estimated principal components. The noisy
backgrounds of the estimated principal components reduces their
similarity to ground truth. To demonstrate this, we attempted to
calculate the performance measure after eliminating the noisy
background as follows: the ground truth principal component
was thresholded to produce a mask whose voxels took a value 1
when the absolute value in the corresponding voxels of the compo-
nent were greater than 5 % of the largest absolute value in all vox-
els, else the mask voxel was set to 0 (that is, the mask m has value
mðuÞ ¼ 1 at voxel u, if the ground truth principal component
ekðuÞ > 0:05�maxujekðuÞj, else mðuÞ ¼ 0). This produced a binary
(a) Absolute value of the inner product between the estimated principal component
nt rotation. (b) Absolute value of the inner product between the estimated principal
f extra density. The antibody fragment rotation in the range �20� .



Fig. 7. Two separate reconstructions from images containing the 70S ribosome with and without EF-G. The volumes are displayed with the stalk in the vertical position and
the 30S in the plane of the paper. In this orientation, (a) the presence and (b) the absence of the EF-G is clearly visible. The ratcheting of the 30S is also visible. Cross hairs are
added to fixed pixel locations to make it easier to visualize the ratcheting. The motion of the L1 is also visible. The difference between these two reconstructions is likely to be
similar to the 1st reconstructed principal component.

Fig. 8. Estimated first principal component from the 70S data shown as mean�2
ffiffiffiffiffi
k̂1

q
ê1. This principal component clearly captures the binding and unbinding of the EF-G. The

principal component also captures associated conformational changes. They are presented below in Figs. 9 and 10.
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mask in which the background was completely suppressed. The
mask was then applied to the ground truth and to the recon-
structed principal components. The masked components were
scaled to have a unit norm, and the performance measure recalcu-
lated with these components. The second row of Table 3, labeled
‘Masked’, shows the masked performance measures, and it is clear
that with the background masked out, the components are much
more similar, with absolute value of the inner product close to 1.

Next, we carried out simulations in which we investigated the
sensitivity of the estimated principal components to the amount
of heterogeneity. Recall that in the simulation discussed above,
the antibody fragment density was rotated by �20�. Now, we cre-
ated three additional volume sets (sixteen volumes per set) with
antibody fragment rotation in the ranges �10�; �5�; �2:5� respec-
tively. The extra density was added in an uncorrelated manner as
above. Thus, these sets of volumes contain different amount of con-
formational heterogeneity with a fixed amount of stoichiometric
heterogeneity. Noisy images at the four CTFs mentioned above
were generated from each volume set at SNR ¼ 0:03� 1=2, also
as above. The principal components were recovered using the EM
algorithm for each set. Fig. 6a plots the absolute value of the inner
product of the estimated rotation principal component and the
ground truth rotation principal component vs. the extent of anti-
body fragment rotation. Raw and masked inner products are
shown. Results from the �20� rotations, which are available from
the simulation discussed above, are also added to the figure. The
masked results in Fig. 6a clearly show that the algorithm is able
to recover the relevant principal component even as the conforma-
tional change becomes smaller.

Finally, we created volume sets in which the antibody fragment
rotation was set fixed in the range �20�, but the extent of extra
density was reduced to 50% and 25% of the simulation above.
Again noisy images at the four CTFs mentioned above were gener-
ated at SNR ¼ 0:03� 1=2, and principal components were recov-
ered using the EM algorithm. Fig. 6b shows the absolute value of
the inner product of the recovered principal component which



Fig. 9. The ratcheting of the 30S subunit with respect to the 50S subunit is captured by the first principal component. (a) and (b) show the mean �2
ffiffiffiffiffi
k̂1

q
ê1 densities from an

angle that visualizes the 30S subunit straight on. The cross-hairs in (a) and (b) are in fixed spatial positions and can be used to assess the motion of the underlying density. (b)
also contains arrows suggesting the apparent direction of motion of the densities under the cross hairs. (c) and (d) show the mean �2

ffiffiffiffiffi
k̂1

q
ê1 densities from an angle that

visualizes the 50S subunit straight on. The 50S subunit is apparently stationary. Thus the first principal component captures the ratcheting of the 30S subunit with respect to
the 50S subunit.
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modeled the extra density and the ground truth principal compo-
nent as function of percentage extra density. Raw and masked
inner products are shown. The 100% extra density results are from
the simulation above. Fig. 6b suggests that the algorithm is able to
recover the relevant principal component as the mass change
becomes smaller.

6.2. Principal components of the 70S ribosome

Next we evaluated the performance of the algorithm using real
cryo-EM data. The data set used in this experiment is a subset of
the data reported in (Agrawal et al., 1999) and is publicly available.
The subset contained 10,000 images, half of which were cryo-EM
images of the 70S ribosome with Elongation Factor-G (EF-G) and
half without Elongation Factor-G. The images, which are
130� 130 pixels, were pre-processed in two steps. First, they were
Wiener-filtered to obtain CTF-corrected images. Next, the images
were low-pass filtered at 15 Å to improve the SNR. This cutoff
frequency was similar to the reported resolution of 17.5–18.4 Å
in (Agrawal et al., 1999).

To start, two 3d reconstructions were obtained from the images
using cryo-EM reconstruction package SPIDER(Shaikh et al., 2008).
The first 3d reconstruction was from the 5000 images of the ribo-
some with EF-G and the second reconstruction was from the 5000
images of the ribosome without EF-G. The two reconstructions are
shown in Fig. 7. The presence and absence of EF-G is clearly visible
as is the ratcheting of the 30S. These two reconstructions are used
to evaluate the results of the principal component algorithm.

Next, the 10,000 images were pooled together and a single par-
ticle was reconstructed using 309 projection directions in the north
hemisphere. Then, the class mean for each projection direction was
subtracted from the images aligned to that direction, and the mean
subtracted, aligned images used with the EM algorithm. Initial
experimentation with reconstructing the first five principal com-
ponents showed that only the first two components were mean-
ingful, the remaining components showed no biologically



Fig. 10. The motion of the L1 subunit captured by the first principal component. (a) and (b) show the mean �2
ffiffiffiffiffi
k̂1

q
ê1 densities from an angle that visualizes the L1 protein

subunit (which is contained in the red circle in (a) and (b)). The cross-hairs are spatially fixed, and the translational motion of the L1 is quite apparent when compared to the
cross-hairs. The particle is viewed after the rotation as shown from the positions in Fig. 8. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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plausible changes and were discarded. The first two principal com-
ponents are discussed in detail below.

Almost all of the structural changes captured by the first two
principal components are best visualized by orienting the ribo-
some such that its stalk is vertically upwards, and then rotating
the ribosome around the stalk. This is how the results are pre-
sented below.

6.2.1. The first principal component

Fig. 8a and b shows the mean �2
ffiffiffiffiffi
k̂1

q
ê1 structures. The figure

clearly shows that the first principal component captures the bind-
ing/unbinding of the EF-G. Notice the close similarity of the struc-
tures in Fig. 8a and b to the structures in Fig. 7.

In addition to the binding/unbinding of the EF-G, the first prin-
cipal component also captures associated conformational changes
of ribosome. The following conformational changes are clearly
apparent:

1. The most significant conformational change is the ratcheting of
the 30S subunit with respect to the 50S subunit. Fig. 9a and b

shows the mean �2
ffiffiffiffiffi
k̂1

q
ê1 structures from an angle that visual-

izes the 30S subunit straight on. Cross-hairs are added to the
figures in fixed spatial position. The density immediately below
the cross hairs corresponds to the 30S subunit, so that the 30S
motion can be assessed with reference to the cross hairs.
Arrows are also added to the figures illustrating the apparent
movement of the 30S from Fig. 9a and b. The 30S seems to
rotate clockwise around an axis that is perpendicular to the
page, and which passes approximately through the center of
the particle.
Fig. 9c and d assesses the movement of the 50S subunit. The
viewing angle in Fig. 9 is the polar opposite of that of Fig. 9.
In effect, if Fig. 9a-b are the ‘‘front’’ images, then Fig. 9c-d are

the ‘‘back’’ images of the mean �2
ffiffiffiffiffi
k̂1

q
ê1 densities. Here too,

cross-hairs are added to the figure to aid comparison, and
density immediately under the cross-hairs is the 50S subunit.
When compared with the cross-hairs, it is clear that the 50S
subunit does not exhibit any rotation.
Thus, the ratcheting motion of the 30S subunit with respect to
the 50S subunit is captured by the first principal component.

2. An equally significant conformational change is the motion of
the L1 subunit towards and away from the main body of the
ribosome. Fig. 10 shows that this change is also captured by
the first principal component. This motion of the L1 subunit is
also apparent in the separate reconstructions of Fig. 7a and b.

3. Finally, there is a thinning-thickening of the ribosome stalk as
the EFG binds and unbinds to the ribosome. The first principal
component captures this clearly, as also seen in Fig. 9a and b.

All of these conformational changes are known to be associated
with the binding-unbinding of the EF-G to the ribosome (Agrawal
et al., 1999).

The above observations can be made more precise and quanti-
tative. Recall that the two reconstructions, Fig. 7a and b, are
obtained from images with and without EF-G. The difference
between these two reconstructions should capture the
binding-unbinding of the EF-G as well as any conformational
changes accompanying it. Comparing the first principal component
with this difference should reveal how much of the difference is
captured by the component. Fig. 11a shows slices through the dif-
ference between the two reconstructions, and Fig. 11b shows slices
through the first principal component. The similarity between the
two is quite clear in the figure.

If the difference between the reconstructions of Fig. 7a and b is
scaled to have a unit norm, then the absolute value of the inner
product between it and the principal component should evaluate
their similarity in a quantitative manner. As with the simulated
data above, there is the problem of the noise in the background,
but unlike the simulation it is now unclear what threshold to
choose for masking out the background. The strategy we adopt is
the following: We first scale the difference density to have a unit
norm. The absolute values of the voxels of the scaled difference



Fig. 11. Comparing the difference between the two reconstructions in Fig. 7 with the principal component. (a) shows slices through the difference between the two
reconstructions in Fig. 7. (b) shows slices through the first principal component. (c) is the plot of the absolute value of the inner product between the masked and normalized
difference in the reconstructions (normalized to have a unit norm) and the masked and normalized principal component as a function of the mask threshold t. The mask is
obtained by thresholding the difference volume at t times the maximum absolute voxel value. (d) The mask at the threshold 0.15.
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are thresholded at t times the maximum absolute value of all vox-
els. This mask is applied to the difference density as well as to the
principal component and the masked volumes are rescaled to have
a unit norm. The absolute value of the inner product between the
masked and rescaled volumes is plotted as function of t. The plot is
shown in Fig. 11c. The plot reveals that the absolute value of the
inner product is higher than 0.9 for t > 0:15. Slices through the
mask at t ¼ 0:15 are shown in Fig. 11d. The mask captures most
of the ‘‘foreground’’ in the difference image of Fig. 11a while sup-
pressing much, but not all, of the background. This analysis pro-
vides strong evidence that most of the difference density is
captured very well by the first principal component.
6.2.2. The second principal component

Fig. 12a and b shows mean �2
ffiffiffiffiffi
k̂2

q
ê2 densities along the second

principal component. There is no real ratcheting apparent in this
principal component. Instead this component seems to capture
contrast variations that have some residual correlation with the
binding/unbinding of the EF-G: Densities in Fig. 12b seem to be
‘‘thicker’’ than densities in Fig. 12a. Fig. 12c shows slices through
the second principal component. Note the dissimilarity with the
slices of the difference density and with the slices through the first
principal component (Fig. 11a-b).

In summary, it appears that for this dataset the first principal
component captures the stoichiometric change of the EF-G bind-
ing/unbinding to the ribosome as well as correlated conforma-
tional changes in the ribosome.

6.3. Principal components of the influenza virus RNA polymerase
complex

The second cryo-EM data set contains images of the influenza A
RNA-dependent RNA polymerase (RdRP) (Chang et al., 2015). RdRP



Fig. 12. The estimated second principal component shown as (a) mean þ2
ffiffiffiffiffi
k̂2

q
ê2 and (b) mean �2

ffiffiffiffiffi
k̂2

q
ê2. This component seems to capture the residual correlation between

the contrast variation and the EF-G binding/unbinding. (c) shows slices through the principal component. Note the dissimilarity with the slices through the first principal
component (Fig. 11b).
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is a hetero-trimer with a molecular weight of 250 kDa. In (Chang
et al., 2015), a tetrameric assembly state of the hetero-trimer
was revealed to adopt a squarish shape with an approximate size

of 180� 150� 70 Å
3

having an empty space in the center. A data
set, containing images with defocus values from 1.0 to 3.0 lm,
was used in that study to create five classes using 3D classification
in RELION. Details of the five classes are available in figure S1 of the
supplemental information of Chang et al. (2015).

We investigated the principal components of the RdRP by ana-
lyzing a subset of images belonging to the class labelled III in the
supplemental information of Chang et al. (2015). The subset we
chose had 30,036 images with defocus values between 1.0 and
2.0 lm. The images were downsampled from 256� 256 pixels
(pixel size 1.32 Å) to 128� 128 pixels and CTF-corrected by
Wiener filtering. A single mean volume was reconstructed from
the 30,036 images using 1126 projection directions, which were
approximately uniformly distributed on a sphere (appx. 6� spac-
ing). A gold standard FSC analysis suggested that our reconstructed
mean volume had a resolution of 14.7 Å. The class mean for each
projection direction was subtracted from the images aligned to
that direction, and the mean subtracted, aligned images used with
the EM algorithm.

The mean volume is shown in Fig. 13 and is similar to a higher
resolution version of the structure reported in (Chang et al., 2015).
The four subcomplexes of the tetramer are labeled A, B, C, D in
Fig. 13. The empty space in the middle of the tetramer is clearly
visible. A groove, located in each subcomplex towards the tetramer



Fig. 13. The mean density of the RdRP at gold standard FSC resolution 14.7 Å. The
RdRP has four subcomplexes labeled A, B, C, D. AB and CD are dimers. A groove and a
hole is present in each subcomplex. The groove in the subcomplexes B and C is in
the back and is not shown. There is evidence in (Chang et al., 2015) that the RdRP
has conformational heterogeneity. The two dimers rock with respect to each other
by changing the angle between their long axes.

Fig. 14. The first principal component of RdRP. (a) and (b) Mean �2
ffiffiffiffiffi
k̂1

q
ê1. The

cross-hairs are in stationary position in the figure. In the side view of the particle,
the front dimer rotates clockwise when going from mean �2

ffiffiffiffiffi
k̂1

q
ê1 to mean

þ2
ffiffiffiffiffi
k̂1

q
ê1. The dimer in the back rotates counterclockwise. (c) Slices through the

first principal component.
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center is visible in Fig. 13 for subcomplexes A and D. This groove is
also present for subcomplexes B and C in the back (not shown). A
hole in the center of the subcomplexes A,B,C,D is also visible. The
pairs of subcomplexes AB and CD are referred to as dimers in
(Chang et al., 2015). The length of each dimer is larger than the dis-
tance between dimers.

Before proceeding, it is useful to comment on the five RELION
classes reported in the supplementary information of Chang
et al. (2015). Classes I through IV very clearly have a tetramer
structure similar to that of Fig. 13 (see Fig. S1 in the supplement
to Chang et al. (2015)). One key difference between the classes I–
IV is that the long axes of the two dimers are at different angles
with respect to each other. The angle is schematically illustrated
on the right in Fig. 13. That is, the two dimers appear to rock
with respect to each other. The presence of dimer rocking in
classes I–IV strongly suggests that the RdRP is heterogeneous.
If this heterogeneity is ‘‘continuous’’, i.e. if the relative angle
between the dimer long axes varies continuously, then it is likely
that this heterogeneity is also present in just the images of class
III and principal component analysis should reveal it. Class V is
qualitatively different from classes I–IV. The density for class V
also has the form of a tetramer, but the density of one of the
dimers is dramatically reduced. This suggests that there were
some dimers in the sample preparation that had not assembled
into a tetramer, and that class V captured many of the dimers
along with a few tetramers. If class III images contained any such
unassembled dimers, then perhaps a principal component might
reveal density change in one of the two dimers in the tetramer.
By coincidence, this situation is similar to the simulation of
Section 6.1; the dimer rocking is a continuous conformational
heterogeneity, the tetramer-dimer mixture is a stoichiometric
heterogeneity.

Preliminary analysis of the selected class III images with the
EM algorithm revealed that the background noise (noise in the
solvent region of the images) and particle-solvent contrast
changes had a strong influence on the principal components. To
reduce these effects, we create a loose soft mask around the mean
volume and reconstructed the principal components using the
soft mask and the variant of EM algorithm discussed on comment
4 of Section 5.4. The first two principal components found by the
EM algorithm appear to be biologically interpretable and are dis-
cussed below. Continuous morphing of 3D densities along these
principal components are contained in the movie referred to in
Section 6.2.
6.3.1. The first principal component
Fig. 14a and b shows the first principal component as mean vol-

ume �2
ffiffiffiffiffi
k̂1

q
ê1 densities. Cross-hairs are added to the figures to aid

visual comparison. The rocking of the two dimers with respect to
each other is clearly evident in the side view of the particle in
Fig. 14. Also evident in the figure are changes to the groove geom-
etry, as well changes in the holes in the center of the subcom-
plexes. Slices through the first principal component are shown in
Fig. 14c. Note the lack of noise propagation into the background
because of soft masking.

The first principal component clearly appears to capture the
rocking of the dimers and suggests that this may be a continuous
conformational change.



Fig. 15. The second principal component of RdRP. (a) and (b) Mean �2
ffiffiffiffiffi
k̂2

q
ê2. The

density of the dimer on the right appears to thicken and thin along this principal
component, while the density of the dimer on the left is relatively stable. The
change in density is visually apparent in the locations that the arrows point to.
Further, there is no rocking of the dimers apparent in the side view. This principal
component appears to capture the tetramer-dimer mixing in the sample. (c) Slices
through ê2.
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6.3.2. The second principal component
Fig. 15 shows the second principal component as mean volume

�2
ffiffiffiffiffi
k̂2

q
ê2 densities. The most significant change in the principal

component is the relative thinning of the density of one dimer
(the one on the right) as indicated in the figure. A comparison of
the two dimers in the side view of the particle shows that there
is no rocking of the two dimers. Therefore, the second principal
component appears to capture the dimer presence in the sample.
However, the relative thinning of the dimer in this component does
not appear to be as dramatic as that in class V of Chang et al.
(2015). This suggests that most of the dimer images are captured
in class V, with comparatively far fewer dimer images in class III,
the class analyzed here.
In summary, the first two principal components of the RdRP
reconstructed by the EM algorithm suggest a conformational
change due to the rocking of the dimers and a stoichiometric change
due to the presence of unassembled dimers in the tetramer sample.

7. Discussion and conclusions

The processing of simulated and real cryo-EM data with the
proposed algorithm suggests that the algorithm can reconstruct
principal components of macromolecules from noisy cryo-EM
data. The signal in the principal components is typically weaker
than the signal in the mean structure, and some amount of noise
inevitably percolates into the principal component estimate. The
estimation technique could further benefit from selective sup-
pression of the background noise in the component. One possi-
bility is to use an adaptive basis technique such as in
(Kucukelbir et al., 2012). Another challenge is to account for con-
trast variation in the images. This is particularly important when
negative staining is used. The range of contrast variation for neg-
ative staining is larger than the range for cryo-EM, and incorpo-
rating a more sophisticated contrast model in the generative
model for principal components is likely to help with negative
staining.

The principal components that we found so far have been bio-
logically meaningful. But, occasionally, the interpretation of princi-
pal components can be tricky. Then, a rotation of the principal
components within the subspace spanned by the principal compo-
nents can be helpful. The classical principal component analysis lit-
erature contains many criteria for rotating principal components.
Most of these criteria attempt to rotate the principal components
so that they contain large and small loadings (loadings are the
coordinates of the data on the principal component axes), making
it easier to interpret the components. The popular varimax crite-
rion, for example, achieves this by maximizing the sum of vari-
ances of the squared loadings. A detailed discussion of the
different criteria, and their advantages and limitations, can be
found in chapter 11 of Jolliffe et al. (2002). It would be interesting
to explore this idea in the context of heterogeneous particles. For
example, if a set of principal components turn out to be biologically
difficult to interpret, perhaps they could be rotated in a way that
their interpretation becomes easier.

There are other alternatives to principal component analysis.
For example, independent component analysis finds components
along which the data are independent rather than just uncorre-
lated (Hyvarinen et al., 2001). Sparse approximations to the covari-
ance structure are also tractable (Bien et al., 2010). In spite of these
more sophisticated alternatives, principal component analysis is
often the first choice of method to understand covariance in the
data.
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Appendix A. The Fourier slice theorem for covariances

This appendix contains the mathematical details of the Fourier
slice theorem for covariances.

Recall that s is a random process in three dimensions with a
mean ls and a covariance function Rs. The process s is projected
on PN as
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ynðaÞ ¼
Z

sðaþ nrÞdr ð27Þ

by a the line integral along the normal ray through a. This makes yn

a two-dimensional stochastic process defined on Pn. The mean and
covariance of yn are

Mean : lyn
ðaÞ ¼ E½ynðaÞ� ¼ E

� Z
sðaþ rnÞdr

	
¼
Z

E½sðaþ rnÞ�dr

¼
Z

lsðaþ rnÞdr; and

Covariance : Ryn
ða; bÞ ¼ E ðynðaÞ � lyn

ðaÞÞðynðbÞ � lyn
ðbÞÞ

h i
¼ E

Z
sðaþ r1nÞdr1 �

Z
lsðaþ r1nÞdr1


 ��
�
Z

sðbþ r2nÞdr2 �
Z

lsðbþ r2nÞdr2


 �	
¼ E

Z
ðsðaþ r1nÞ � lsðaþ r1nÞÞdr1Þ

�
�
Z
ðsðbþ r2nÞ � lsðbþ r2nÞÞdr2Þ

	
¼
ZZ

E ðsðaþ r1nÞ � lsðaþ r1nÞÞðsðbþ r2nÞ
�

�lsðbþ r2nÞÞ
�
dr1dr2

¼
ZZ

Rsðaþ r1n; bþ r2nÞdr1dr2:

The Fourier transforms of the covariance functions are:

F sðx1;x2Þ ¼
ZZ

e�iðxT
1u1þxT

2u2ÞRsðu1;u2Þdu1du2; and

~F yn
ðm1; m2Þ ¼

ZZ
e�iðmT

1v1þmT
2v2ÞRyn

ðv1;v2Þdv1dv2:

Let x1;x2 be two frequencies in the three-dimensional Fourier
domain and n be a vector perpepndicular to x1;x2. Let P0n be the
plane perpendicular to n, so that P0n contains x1;x2 (Fig. 1b).
Further, let Pn be a plane perpendicular to n in the spatial domain,
and let v1 and v2 be two points in Pn. Set u1 ¼ v1 þ r1n and
u2 ¼ v2 þ r2n, and set the differential volumes du1 and du2 to
du1 ¼ dv1dr1 and du2 ¼ dv2dr2. Then,

F sðx1;x2Þ ¼
ZZ

e�iðxT
1u1þxT

2 :u2ÞRsðu1;u2Þdu1du2

¼
Z

. . .

Z
e�iðxT

1ðv1þr1nÞþxT
2ðv2þr2nÞÞRsðv1 þ r1n;v2

þ r2nÞdv1dr1dv2dr2

¼
Z

. . .

Z
e�iðxT

1v1þxT
2v2Þe�iðr1xT

1nþr2xT
2nÞÞRsðv1 þ r1n; v2

þ r2nÞdv1dr1dv2dr2:

But, xT
1n ¼ 0 and xT

2:n ¼ 0 because n is orthogonal to w1 and w2,
giving

F sðx1;x2Þ ¼
ZZ

e�iðxT
1v1þxT

2v2Þ
ZZ

Rsðv1 þ r1n;v2 þ r2nÞdr1dr2

� �
dv1dv2

¼
ZZ

e�iðxT
1v1þxT

2v2ÞRyn
ðv1;v2Þdv1dv2 ¼ ~F yn

ðx1;x2Þ:

This establishes:
Theorem 1. (Fourier slice theorem for covariances) Let x1;x2 be
any two points in three-dimensional Fourier space. If n is a unit length
vector in the north hemisphere perpendicular to x1 and x1, then

~F yn
ðx1;x2Þ ¼ F sðx1;x2Þ:
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jsb.2015.05.007.
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