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AbstractÐA precise analysis of an entire image is computationally wasteful if one is interested in finding a target object located in a

subregion of the image. A useful ªattention strategyº can reduce the overall computation by carrying out fast but approximate image

measurements and using their results to suggest a promising subregion. This paper proposes a maximum-likelihood attention

mechanism that does this. The attention mechanism recognizes that objects are made of parts and that parts have different features. It

works by proposing object part and image feature pairings which have the highest likelihood of coming from the target. The exact

calculation of the likelihood as well as approximations are provided. The attention mechanism is adaptive, that is, its behavior adapts to

the statistics of the image features. Experimental results suggest that, on average, the attention mechanism evaluates less than 2

percent of all part-feature pairs before selecting the actual object, showing a significant reduction in the complexity of visual search.

Index TermsÐAttention, object recognition, visual search.
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1 INTRODUCTION

OBJECT recognition, or visual search, is the task of finding a
known object, called the target, in an image. Object

recognition algorithms work by selecting regions (or features)
of an image and verifying whether the target is present in
them. We call the strategy for choosing image regions an
ªattention strategy.º

The attention strategy has significant influence on the
speed of the algorithm. A poor attention strategy is likely to
investigate many regions of the image that do not contain
the object and, thus, waste computation. Conversly, a good
attention strategy is likely to choose the right region early
on and terminate the search quickly.

A useful attention strategy can be developed as follows:
First, perform some computationally inexpensive measure-
ments of the image. Then, use the measurements to reorder
the image search so that promising regions are explored
first. We explore this idea in this paper. We call the fast
measurements preattentive features. They are obtained by a
preattentive module in the recognition system. The subse-
quent slower and more detailed search is carried out by a
postattentive module. The attention strategy mediates
between the two in order to terminate the search quickly.

Our attention strategy is based on the maximum-
likelihood (ML) decision rule. The strategy has two important
properties: First, it can be used with different preattentive
features (color, edges, corners, etc.) and with different
postattentive modules without modification. Second, it
adapts to image content. The adaptive nature of the strategy

is the key to its success. To understand the adaptive nature,
consider the possibility of using color as a preattentive
feature. Suppose we are interested in finding an object which
has a red part. Then, we might measure pixel color and begin
our search on those image regions which have the appro-
priate hue of red. This will work well unless the image has
other red objects besides the target. In that case, it may be
better to choose regions with some other color, say blue,
provided that target has a blue region but the other objects
don't. The point is that, to be effective, the attention strategy
should adaptÐits behavior should be dependent on the total
amount of red or blue in the image. The ML attention strategy
demonstrates this behavior, as we show in Section 5.

As we mentioned above, we assume that the recognition
system is composed of three subsystems (Fig. 1): 1) a
preattentive system, 2) an attention mechanism, and 3) a
postattentive system. The preattentive system is a fast feature
detector. It operates over the entire image and detects
simple image features (color regions, edges, corners, etc.).
We call these preattentive features. Some of the features come
from parts of the target, the rest come from other objects in
the image, called distractors. We do not assume that the
preattentive features are complete or even that they can
distinguish the target from the background by themselves.

The role of the attention mechanism is to choose a feature,
pair it with a target part, and hypothesize that this pairing is
due to the presence of the target in the image. This hypothesis
is passed to the postattentive system, which uses full
geometric knowledge of the target and explores the image
around the feature to find the target. The postattentive system
is just a traditional object recognition algorithm. It indicates to
the attention mechanism whether the hypothesis is valid or
not. If the hypothesis is not valid, then the attention
mechanism takes this into account and proposes the next
hypothesis. The postattentive system now focuses on a new
region of the image. The process terminates either when the
target is found or when all features in the image have been
exhausted.

There is one subtle aspect of this. It is important that the
attention mechanism work with parts of the target rather

490 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 5, MAY 2001

. H.D. Tagare is with the Department of Diagnostic Radiology, Department
of Electrical Engineering, Yale University, New Haven, CT 06520.
E-mail: hemant.tagare@yale.edu.

. K. Toyama is with Microsoft Research, Redmond, WA 98052.
E-mail: kentoy@microsoft.com.

. J.G. Wang is with Credit Suisse First Boston, 11 Madison Ave., New York,
NY 10010. E-mail: jonathan.wang@csfb.com.

Manuscript received 4 Dec. 1998; revised 11 July 2000; accepted 3 Aug. 2000.
Recommended for acceptance by H.I. Christensen.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 108397.

0162-8828/01/$10.00 ß 2001 IEEE



than the entire target. If the target has many parts, then the
attention mechanism has the freedom to choose the part
that is used in the pairing. As we shall see in Section 5, this
is the reason why the attention mechanism adapts to the
image content. If there are many red features in the images
and only a few blue features, the attention mechanism
chooses to explore the pairing of a blue part with a blue
feature rather than a red part with a red feature. Without
the capacity to work with parts of the target, the attention
mechanism would not have this property.

We also assume that:

1. All features detected by the preattentive system are
available to the attention mechanism all the time.
This is simply another way of saying that the
preattentive system is fast enough to process the
entire image before a detailed search with the
postattentive system begins.

2. The attention mechanism only uses the values of the
features detected by the preattentive system. It does
not evaluate geometric constraints between features.
Evaluating geometric constraints between pairs,
triples, etc., of features is computationally expensive
and we wish to avoid this expense.

3. The attention mechanism is greedy. At every stage, it
chooses that part-feature pair which has the highest
likelihood of coming from the target in the image.
The likelihood is evaluated after taking into account
all previous pairs rejected by the postattention
mechanism.

We make no other assumptions. In particular, we do
not assume any specific pre and postattentive systems.
The strategy that we derive can be used with a range of
user-supplied modules. We demonstrate this in our
experiments, where we use corner detectors as well as
color detectors as preattentive systems.

In this paper, we only address 2D object recognition and
we have kept the formulation as simple as possible. This is
by design. We want to emphasize basic ideas and certain
approximations. The theory in this paper can be made more
sophisticated: by adding more features, by considering
multiple spatial resolutions, by clustering features, etc.
These alternatives are not pursued here.

1.1 Human Visual Attention

Human vision is known to have an attention strategy that is
very effective [14], [22], [28]. Cognitive scientists do not yet
have a complete understanding of human visual attention,
but some partial understanding has emerged. Many models
proposed by cognitive scientists are similar to our model of
Fig. 1 [22], [28]. In these models, the preattentive system is
fast and capable of extracting ªprimitiveº image features
(such as color, edge smoothness, and size). The postattentive
system is slower, but can analyze image regions in detail.
The human attention mechanism uses primitive features
produced by the first system to direct the second.

The behavior of human visual attention in two conditions,
called ªpop-outº and ªcamouflage,º is particularly interest-
ing. If an image contains a target whose primitive features are
sufficiently different from the distractor features, then the
time required to find the target is independent of the number
of distractors in the image [22]. This is the ªpop-outº
condition. In this condition, the target just seems to pop out
of the image. On the other hand, if all target features are
similar to the distractors, then the time required to find the
target grows linearly with the number of distractors. We call
this the ªcamouflageº condition.

In Section 5, we show that ªpop-outº and ªcamouflageº
are emergent properties of our algorithm. In Section 6, we
confirm this experimentally.

1.2 Relation to Previous Work

Other researchers have presented strong cases for using
attention in vision algorithms [23], [24]. Some researchers
have proposed specific computational mechanisms that
model what is known about human visual search [10],
[11]. Others have proposed search algorithms for specific
cues: parallel-line groups [17], color [5], [18], texture [19],
prominent motion [25], ªblobsº in scale space [12], or
intermediate objects [27]. Some authors have considered
attention for scene interpretation [16]. Others have applied it
to passive tracking [21] and to active vision systems [2], [15].

Our aim is quite different from these studies. We do not
want to implement a specific biology-based attention
algorithm or one that is tailored to a particular cue. Instead,
we ask whether it is possible to derive an attention strategy
from first principles which can be applied to a range of cues.

Finally, we wish to address a source of confusion. Our
algorithm is sometimes compared to the interpretation tree
algorithm for object recognition [1], [6], [7]. The confusion
arises from an apparent similarity between the two: Both
attempt to match target parts to the image. However, this
similarity is only superficial. There are substantial differ-
ences between the two algorithms:

1. The two algorithms operate at different levels. We
are concerned with interaction between pre- and
postattentive modules, rather than organizing the
geometric comparison of parts and features. Inter-
pretation trees are concerned with the latter.

2. Interpretation trees attempt to match the entire
target to the edges in the image. Our algorithm is
concerned with evaluating the likelihood of a single
part matching a single feature, given that the target
is present in the image.

TAGARE ET AL.: A MAXIMUM-LIKELIHOOD STRATEGY FOR DIRECTING ATTENTION DURING VISUAL SEARCH 491

Fig. 1. Attention in visual search.



3. The interpretation tree is an explicitly geometric
algorithmÐits purpose is to systematically evaluate
geometric relations between image edges. On the
other hand, our attention mechanism is not con-
cerned with geometric relations. It works for
arbitrary feature types, many of which do not
enforce any geometric constraints.

These comments are not meant as a criticism of
interpretation trees, but are simply meant to show that the
two have different goals. In fact, the two can be used,
together with the interpretation tree serving as the post-
attentive system capable of fully recognizing the target.

1.3 Organization of the Paper

This paper is organized as follows: Section 2 contains the
definitions and the notation. Section 3 contains the like-
lihood calculations. The calculation of the exact likelihood is
computationally expensive and Section 4 contains
approximations to it. Section 5 analyzes the behavior of
ML attention strategy and demonstrates its ªadaptiveº
nature. Section 6 contains experimental results and Section 7
concludes the paper.

2 DEFINITIONS

2.1 Features and Parts

We begin by defining preattentive features. By a preatten-
tive feature, or simply a feature, we mean a primitive
element of an image, such as color, corner, etc., that can be
found by simple feature detectors. A feature has a value
(the RGB triple of color, the angle of a corner, etc.) which
belongs to some feature space V. The set of all features in
the image is F . We will refer to the value of the kth feature
by fk. Some of the features in the image come from the
instance of the target we want to detect. These are target
features. Others come from other objects in the image; these
are distractor features.

The target to be recognized has M parts, Sj; j � 1; . . . ;M.
The set of all parts is P. Parts need not be defined in a
geometric way. The only requirement is that the union of all
parts is the entire target. A part may be visible or may be
completely occluded in an image. The prior probability that
part Sj is visible in the image is Pj (the probability of
complete occlusion of the part is 1ÿ Pj). We assume that
each visible part gives rise to a single feature in the image.
Thus, multiple parts cannot contribute to a feature and a
part cannot give rise to multiple features. If a part is visible,
it may still be partially occluded and its feature value may
change due to partial occlusion. We model this by saying
that, if the jth part is visible, then its feature value is a
random variable with the probability density function pj�f�.

We assume that distractor feature values are realizations
of a uniform Poisson process in the feature space V. We
make this assumption because we do not have any
knowledge of distractors and would like to treat their
values as being ªuniformlyº distributed in V. The prob-
ability density of obtaining n distractor feature values
f1; � � � ; fn is given by

pd�f1; � � � ; fn� � ��V �
neÿ�V

n!
; �1�

where � is the process intensity and V is the feature space

volume.

2.2 The Attention Mechanism

The attention mechanism is iterative and it works as follows:

During each iteration, the mechanism chooses that part-

feature pair which is most likely due to the target. This choice

is passed on to the postattentive system, which evaluates

whether the pairing is really due to the occurrence of the

target. If it is due to the target, then the target has been found

and the search terminates. If it is not, then the attention

mechanism takes this information into account and suggests

the next most likely pair.
We will denote the pairing of part Sm with feature fn as

�Sm; fn�. Since the set of all parts of the target is P and the

set of all image features is F , the set of all possible part-

feature pairings is P � F . We will refer to any pair �Si; fk�
which has been declared incorrect by the postattention

mechanism as a rejected pair. The set of all rejected pairs

until the jth iteration of the algorithm is denoted by Rj.

Thus, in the jth iteration, the set of all part feature pairs that

have not been rejected is P � F ÿ Rj. With this notation, the

pseudocode for the attention algorithm is:

1. Preprocess: Extract F, the set of image

features.

2. Initialize: Set j � 1, R1 � ;, the empty set.

3. Loop condition: The set of pairs that remain

to be tested at the jth iteration is

P � F ÿRj. If this set is empty, terminate

the iteration and declare that the target

is not present in the image.

4. Candidate selection: From the set P � F ÿ Rj

choose the pair �Sm�j�; fn�j�� which has the

greatest likelihood of coming from the

target in the image:

�Sm�j�; fn�j�� � arg max
�Sm;fn�2P�FÿRj

p��Sm; fn� j P;F ; Rj�;

�2�
where p��Sm; fn� j P;F ; Rj� is the likelihood

that the pair �Sm; fn� comes from the target

in the image given the set of parts P, the

set of image features F, and the set of

rejected pairs Rj.

This is the ML decision.

5. Object verification: Pass the selected pair to

the postattentive system for verifica-

tion. If the hypothesis is correct, the

target has been found. Terminate the

search.

Else ...

6. Bookkeeping: Set Rj�1 � Rj [ f�Sm�j�; fn�j��g. Set

j � j� 1. Go to Step 3.

3 THE LIKELIHOOD

We need a formula for p��Sm; fn� j P;F ; Rj� to execute the

above algorithm. We begin with a simple calculation.
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3.1 All Parts Visible

Assume for the moment that there are no rejected pairs and
that all parts of the target are visible, i.e., the prior probability
Pj � 1 for all j. Suppose that there areN features in the feature
set F . We first evaluate the likelihood that a specific set of
M features came from the M target parts, with the rest of
the features being distractors. To describe the pairing
of parts with features, we introduce a part mapping function
� : f1; � � � ;Mg ! f1; � � � ; Ng (��i� 6� ��j�, if i 6� j) from the
indices of the parts to the indices of features. The function
says that the parts S1; � � � ; SM are mapped to features
f��1�; � � � ; f��M�. The likelihood of this with the rest of the
feature set accounted for as distractors is:

Y
i�1;���;M

pi�f��i��
 !

� pd F ÿ ff��1�; � � � ; f��M�g
ÿ �

:

Expressions such as the above occur frequently in our
analysis and we use a special notation for them. We denote
the expression by ��g1; � � � ; gM;H�,

��g1; � � � ; gM;H� �
Y

i�1;���;M
pi�gi�

 !
� pd�H�;

where g1; � � � ; gM are the features to be matched with
S1; � � � ; SM , respectively, and H is the set of distractor
features. In this notation, the above likelihood is
��f��1�; � � � ; f��M�;F ÿ ff��1�; � � � ; f��M�g�.

Now, the likelihood that the single pair �Sm; fn� comes
from the target is the sum of all likelihoods in which the
parts are paired with features with the restriction that part
Sm is always paired with part fn. This isX

�;��m��n
� f��1�; � � � ; f��M�;F ÿ ff��1�; � � � ; f��M�g
ÿ �

;

where the over all sum is � functions which satisfy ��m� � n.
Next, suppose that the set of rejected pairs Rj is not

empty. To calculate the likelihood that �Sm; fn� is due to the
target, we must avoid summing over those part mappings
which give rise to a rejected part-feature pair. We will say
that a part mapping � : f1; � � � ;Mg ! f1; � � � ; Ng is compatible
with the set Rj if �Si; f��i�� =2 Rj for i � 1; � � � ;M. Using this
notion, we can write the likelihood p��Sm; fn�;P;F ; Rj� as

p �Sm; fn� j P;F ; Rj
ÿ � �X
�;��m��n

� f��1�; � � � ; f��M�;F ÿ ff��1�; � � � ; f��M�g
ÿ �

; �3�

where the sum is over all part of mapping functions that are
compatible with Rj and which satisfy, ��m� � n.

3.2 Occluded Parts

Next, consider the possibility that some parts may be
completely occluded (the prior probabilities Pj are not
necessarily equal to 1). To take this into account, we
introduce additional features called null features. When a
part is mapped to a null feature, we say that it is completely
occluded.

We augment the feature set F by adding M null features
to it. The feature set now has N �M elements. The
likelihood p��Sm; fn� j P;F ; Rj� can be expressed as before:

p �Sm; fn� j P;F ; Rj
ÿ � �X
�;��m��n

� f��1�; � � � ; f��M�;F ÿ ff��1�; � � � ; f��M�g
ÿ �

; �4�

where, as before, the sum is over all compatible part

mapping functions, but the function � is now given by

��fg1; � � � ; gM;Hg� �
Y

j�1;���;M
qj�gj�

( )
� h�H�; �5�

in which qj and h evaluate the likelihood that feature values

come from parts and from distractors taking into account

the prior probability of occlusion and null features:

qj�gj� � Pjpj�gj� if gj is not a null feature
�1ÿ Pj� if Pj is a null feature

�
�6�

and

h�H� � ��V �
N1eÿ�V

N1!
; �7�

where

N1 � number of nonnull features in H:

So far, we have ignored the fact that we do not know the

intensity � of the distractor process (� is required in (7)).

However, we can estimate l from the data as follows: Since

Pi; i � 1; . . . ;m is the probability that part Si is visible, the

average number of visible parts is
P

i Pi. Thus, the average

number of distractors is N ÿPi Pi and this number must be

equal to �V , which is the average number of distractors

derived from the Poisson distribution. That is,

�V � N ÿ
X
i

Pi

or

� � N ÿPi Pi
ÿ �

V
: �8�

Equations (4), (5), (6), (7), and (8) completely define the

likelihood.

4 APPROXIMATIONS TO THE LIKELIHOOD

Equations (4), (5), (6), (7), and (8) are computationally

expensive to evaluate because they contain the combina-

torics of mapping M ÿ 1 parts to N ÿ 1 features. In this

section, we propose two approximations. The first involves

using the normal approximation to the Poisson distribution.

This allows us to simplify the expression for the likelihood

by eliminating some terms. The second, and the more

radical approximation, involves using a reduced number of

parts. That is, we consider smaller targets formed by taking

r-tuples of parts from the original target and we calculate

the likelihood that a part-feature pair comes from at least

one of the simpler targets.
We find that the simple case of r � 2 gives very

satisfactory results in practice and we use this approxima-

tion in all our experiments.
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4.1 The Normal Approximation

The Poisson distribution can be approximated by a normal

distribution when the number of distractors is large [8].

Recall that each term being summed in (4) has a factor h�H�
arising from (5). In the Appendix, we show that if N is the

number of null features mapped onto the parts, then h�H�
can be approximated as:

h�H� ' 1

2�
����������������������
N ÿPi Pi

p exp ÿM
2

2N
ÿM

P
i Pi

N

� �YN
j�1

exp
M

N

� �
;

� C
YN
j�1

exp
M

N

� �
;

�9�
where, C is the part of the expression that is independent

of N .
Referring back to (5), we can see that the term C is a

common factor in all � terms and need not be evaluated if

we are only interested in finding the part-feature pair that

maximizes the likelihood of (4). With this, the likelihood

becomes:

p �Sm; fn� j P;F ; Rj
ÿ � �X
�;��m��n

� f��1�; � � � ; f��M�;F ÿ ff��1�; � � � ; f��M�g
ÿ �

; �10�

where the function � is now given by

��fg1; � � � ; gMg; H� �Y
j�1;���;M

qj�gj�
( )

�
YN�g1;���;gM �

j�1

exp
M

N

� �
� C �

Y
j�1;���;M

rj�gj�;

�11�
where N�g1; � � � ; gM� is the number of null features in

g1; � � � ; gM and

rj�gj� � Pjpj�gj� if gj is not a null feature
�1ÿ Pj� exp M

N

ÿ �
if gj is a null feature:

�
�12�

In the last step of (11), we dropped the C term and included

the exp M
N

ÿ �
term in the definition of rj.

4.2 Matching Simpler Models

We now proceed to the second approximation. In this

approximation, we consider all simpler targets formed by

the part Sm and rÿ 1 tuples of other parts and evaluate the

likelihood that �Sm; fn� comes from at least one the simpler

targets.

4.3 Approximate Likelihood for r � 1

For r � 1, we have M simplified targets, each being exactly

one of the parts. The likelihood that the pair �Sm; fn� comes

from at least one of these simpler targets is equal to the

likelihood that it comes from the target having Sm as its

single part. The likelihood is just

rm�fn�: �13�

4.4 Approximate Likelihood for r � 2

In this case, we have M simplified targets, each target

having two partsÐthe part Sm and one other part and we

calculate the likelihood that the pair �Sm; fn� comes from at

least one of these simpler parts.
Let Si �i 6� m� be another part. Then, using (10), (11), and

(12), the joint likelihood that the pair �Sm; fn� =2 Rj comes

from this simplified target isX
�;��m��n

rm�f��m��ri�f��i��;

where, the sum is over all part mapping functions � which

1) map the part index set fm; ig into the feature index set,

2) are compatible with Rj, and 3) satisfy ��m� � n. The

functions rm; ri are defined by (12). This expression can be

easily rewritten as

X
�;��m��n

rm�f��m��ri�f��i�� � rm�fn�
X

k;k6�n;�Si;fk� =2 Rj

ri�fk�
0@ 1A;

where, on the righthand side, the sum is over all feature

indices k for which k 6� n and the pair �Si; fk� is not in Rj.
Therefore, the joint likelihood that the pair �Sm; fn�

comes from one or more of the 2-part targets is the sum of

the above likelihood over all i; i 6� m:

p �Sm; fn� j P;F ; Rj
ÿ � � rm�fn�X

i6�m

X
k;k 6�n;�Si;fk� =2 Rj

ri�fk�
0@ 1A:

�14�
The computational complexity of this expression is

O�NM�.
4.5 Higher Order Approximations

Now, consider the likelihood that the pairing �Sm; fn� 2
P � F ÿ Rj is due to at least one simplified target formed

by the part Sm and rÿ 1 other parts of the original target.
The expression for this likelihood is messy. To simplify

its presentation, we adopt the following convention: We let

I � fi1; � � � ; irg represent an ordered set of r indices such

that fSi1 ; � � � ; Sirg is one simplified target. Two different sets

of the type I represent two different combinations of r parts

from the target.
Repeating the calculation for (14), we get

p �Sm; fn� j P;F ; Rj
ÿ � � X

I;im�m

X
�;��im��n

Y
i 2 I

ri�f��i��
 !

;

�15�
where the first sum is over all I which have im � m, the
second sum is over all part mapping functions � (which
map I to the feature index set) which are compatible with
Rj and for which ��im� � n. The complexity of evaluating
the likelihood of (15) is O�CNÿ1

rÿ1 �.
The calculations in (13), (14), and (15) give us likelihoods

which can, in practice, be used with the attention algorithm.
This completes the description of the algorithm. Next, we
turn to investigate the adaptability of the attention algorithm.
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5 ADAPTATION, POP-Out, AND CAMOUFLAGE

5.1 Adaptation

To understand the adaptive behavior of the algorithm,
consider the following simple case:

1. The model has only two parts, S1 and S2. Neither
part is ever completely occluded (i.e., P1 � P2 � 1).

2. The feature space is one-dimensional and the parts
have uniform feature distributions over disjoint
intervals, �1 and �2, respectively, of equal lengths
(length = L). That is, the probability density that S1

occurs with a feature value f is

p1�f� �
1
L if f 2 �1

0 otherwise:

�
Similarly, the probability density that S2 occurs with
a feature value f is

p2�f� �
1
L if f 2 �2

0 otherwise:

�
Consider two situations in which there are six features

in the image. In the first case, five of the six features,
f1; � � � ; f5, occur in �1 and the sixth feature, f6, occurs in
�2 (illustrated in Fig. 2). In the second case, the situation
is reversed. The five features, f1; � � � ; f5, occur in �2, and
the sixth feature, f6, occurs in �1.

In the first case, the likelihood that S2 matches f6 is a sum
of five terms. Each term corresponds to S2 matching f6, with
S1 matching one feature in ff1; � � � ; f5g, and the rest of the
features being distractors. Each term is

1

L2
pd�4�

and, hence, the likelihood of �S2; f6� is

5

L2
pd�4�:

Now, consider the likelihood of �S1; f1�. It has a single
term corresponding to S1 matching f1, S2 matching f6, and
f2; � � � ; f5 being distractor features. Its likelihood is

1

L2
pd�4�:

The likelihood that S1 matches any other feature occurring
in �1 is the same as this.

Clearly, the likelihood that S2 matches f6 is greater than
the likelihood that S1 matches f1 or any other feature in �1

and the attention mechanism chooses the former.
We can simply repeat the above calculation when the

five features f1; � � � ; f5 are in �2 and feature f6 is in �1.
Again, we get the likelihood of part S1 matching the feature
f6 as

5

L2
pd�4�;

while the likelihood of S2 matching any of the features in
�2 is

1

L2
pd�4�:

The former is clearly greater than the latter.
If �1 and �2 were ranges of red and blue colors, then the

two cases can be interpreted as follows: The target has two

parts, one colored red and the other blue. In the first case,

we have an image with one blue feature and five red

features and, in the second case, we have an image with one

red feature and five blue features. The attention algorithm

chooses to investigate the blue feature in the first case and

the red feature in the second case. Thus, the algorithm

ªadaptsº to the distribution of features in the image and

chooses to investigate that feature which is least like the

distractor features. This is precisely the behavior we want

for the attention algorithm and the above calculation shows

that the ML decision imparts it to our algorithm.
It is easy to check that, if we use the r � 1 approximation in

the above calculation, the algorithm will not adapt. In fact, it is
easy to check, in general, that adaptation is possible if r � 2.

Finally, recall that pop-out and camouflage are conditions
under which the human visual system finds the target in
constant time and in time that grows linearly with the number
of distractors. Pop-out is achieved if the target has some
feature that is sufficiently different from the distractors.
Camouflage occurs when all target features are similar to
distractor features. The adaptive behavior discussed above
demonstrates pop-out since the ML attention mechanism
always chooses that feature which is least like the distractors.
In contrast, if the target and distractor had similar
featuresÐsay that there were three features in �1 and �2

Ðthe likelihoods of all part-feature pairs would be identical
and there would be no reason to prefer one over the other. In
this case, the search would proceed without any strong bias
toward choosing a particular pair and the time to find the
target will be similar to a blind serial search. It will grow
linearly with the number of distractors. This is camouflage.

Thus, it appears that the ML attention mechanism can
emulate pop-out and camouflage.

6 EXPERIMENTAL RESULTS

Having investigated approximations and properties of the
ML attention mechanism we now report its performance in
experiments with real images. We have three aims for the
experiments: First, we want to demonstrate the perfor-
mance of the ML attention strategy in real world experi-
ments. Second, we want to demonstrate that pop-out and
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Fig. 2. Maximum-likelihood explanation of pop-out.



camouflage occur with the ML strategy. Finally, we want to
show that the attention strategy can be used with different
preattentive features.

We conducted four sets of experiments. Table 1
summarizes the salient features of all four. Real images
were used in all experiments. In the first two experiments,
the preattentive features were corners + their arms
(described in detail below). In the last two experiments,
the preattentive features were RGB values of colors. The
ML attention mechanism was used with all prior probabil-
ities Pj set to 1 and with the r-tuple approximation for
r � 1; 2; 3. It was easily determined in the first experiment
that the approximation with r � 2 was the best compromise
between speed, efficiency, and adaptability and r � 2 was
adopted for all subsequent experiments. In all experiments,
the postattentive system was a manual checkÐthat is, each
part-feature hypothesis suggested by the attention mechan-
ism was manually evaluated for correctness and the
decision was fed back to the attention mechanism.

For each image in the experiment, we calculated the total
number of part-feature pairings (the size of the set P � F ).
The ratio of the number of part-feature pairings examined
until the target was found to the total number of part-
feature pairings was taken to be the performance measure
for the attention mechanism. Finally, for visual display, the
consecutive features in the part-feature pairs suggested by
the attention mechanism were plotted on the image and
joined by arrows (for example, see Fig. 6). This gives a vivid
visualization of the decisions made by the attention
mechanism.

The details for each experient are as follows.

6.1 Experiment 1: Performance Evaluation

The aim of this experiment is to evaluate the performance of
the attention mechanism. The target used in the experiment
is shown in Fig. 3Ða cardboard cut-out of a fish. Fifty
images containing the target were produced by placing the
model in a 30 cm x 30 cm area. Commonly occurring
laboratory tools were tossed on the model. Images were
taken in such a way that the model had a scale range
between 0:5 and 2:0. In all cases, the model was partially
occluded in the image. The model was so heavily occluded
in two of the 50 images that none of its corners were visible.
These images were discarded and the algorithm was tested

on the remaining 48 images. Fig. 4 shows two of the
48 images.

The preattentive features were taken to be corners + arms
of the edge contours in the image. Corners were defined as
points of local maxima of curvature of the edge contour.
The two arms of the corner are the edge paths from the
corner to the previous and next corner of the contour
(Fig. 5). Corners and arms were extracted from the images
automatically by edge detection followed by edge linking
and curvature calculation. Each corner + arm feature was
parameterized by a vector of two parameters: the length of
the shorter arm, L~ , and the average angle of deviation
between the two arms, � (see Fig. 5).

The target was easily seen to have six corners. Each corner
of the target and its arms constitutes a part and gives rise to
one feature in the image. The distribution of feature values for
each part was calculated as follows: Each target corner was
occluded (in software) such that the smaller arm length after
occlusion was 100 percent, 80 percent, and 60 percent of the
length before occlusion. For each partial occlusion, the feature
value ��;L~ � was calculated. These values represent samples
of the distribution of ��;L~ � under partial occlusion
at unit magnification. The process was duplicated by
changing the magnification (in software) of the model to
2:0; 1:707; 1; 0:8; 0:5. The set of ��;L~ � obtained in this way
was fed to a standard nonparametric density estimator to
obtain the probability distribution of corner parameters for
each part.

Results. That approximate ML decision rule was used
with r set to 1, 2, and 3, respectively. Fig. 6 shows a typical
result of ML visual search with r � 2. The figure shows the
sequence of corners that the algorithm analyzed in turn
until it suggested the target. The corner at the successful
match is also shown in the figure. Similar behavior was
obtained for r � 1 and r � 3.

As mentioned above, to evaluate the effectiveness of the

ML attention mechanism, we measured the average
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Summary of Experimental Conditions

Fig. 3. The model.



percentage of hypotheses that were processed until the

correct hypothesis was suggested. On average, the r � 1

approximation processed 4.67 percent of the possible

hypotheses, the r � 2 approximation processed 1.97 percent

of the possible hypotheses, and the r � 3 approximation

processed 2.73 percent of the possible hypotheses. Without

an attention mechanism, on average 50 percent of the

possible hypotheses would have to be processed to find the

target. Clearly, all three approximations work well, but the

latter two outperform the first. Since the r � 1 approxima-

tion does not exhibit adaptation (as discussed in Section 5),

it was dropped from further consideration. Further, since

r � 2 and r � 3 performed similarly, but the r � 3 approx-

imation was slower in execution, the r � 2 approximation

appears to be a good compromise between effectiveness,

ability to adapt, and computational complexity. Fig. 7

shows a histogram of the percentage of hypotheses

processed by this approximation to find the correct match.

The r � 2 approximation was adopted for all subsequent

experiments.

6.2 Experiment 2: Pop-Out and Camouflage

In the second experiment, we examined the performance
of the ML attention mechanism under pop-out and
camouflage conditions. As mentioned above, we used
the approximate likelihood with r � 2.

To simulate pop-out and camouflage conditions, we

created similar and dissimilar distractors. Dissimilar dis-

tractors were triangular pieces of cardboard. Similar

distractors were created by duplicating the target model

and cutting the duplicates in half along random lines. Fig. 8

shows an image where the model is present along with the

triangular dissimilar distractors. This is the pop-out condi-

tion. Fig. 9 shows the camouflage condition. Multiple

images were obtained in the pop-out and camouflage

conditions by increasing the number of distractors.
Figs. 8 and 9 also show typical sequences of image

features that were searched until the target was suggested

in pop-out and camouflage conditions. Fig. 10 shows the

number of hypotheses processed until the target was found,

as a function of the total number of features in the image. In

the pop-out case, the first hypothesis was always the correct

one, while, in the camouflage case, the average number of

hypotheses increased monotonically with the number of

features in the image.

6.3 Experiment 3: Preattentive Color Features

The aim of the third experiment was to evaluate the

performance of the attention mechanism with an alternate

preattentive feature. In this experiment, the target was Luiz

Ronaldo, a member of the Brazilian soccer team. The

preattentive feature was the RGB values of color of pixels

within a region. The target was assumed to have two parts

corresponding to the yellow and blue of the team's

uniform. Color distributions were estimated by taking a

sample of each color from several images of the subject,
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Fig. 4. Example images.

Fig. 5. Features used in experiments. Fig. 6. Attentive search for the object.



histogramming the samples in a coarse (323) RGB cube,

smoothing, and normalizing.
Fifty images containing Ronaldo were gathered from the

Internet, with images of varying sizes. Some images were

acquired from frames of MPEG movies. The criteria used to

select the images were 1) the subject in uniform should be

visible in the image and 2) the images should not be close-

ups (in which case, the task would be much too easy). The

scale of the subject varied in height, in a range between 5 to

100 pixels. Fig. 11 shows two of the 50 images.
We used single pixels as image features. From each

image, N � 1; 200 pixels were sampled at grid points of the

image. In five instances, this allowed the player to fall

between gaps in the sampling and, so, sampling was

quadrupled to N � 4; 800 pixels. Although this suggests

that there were as many as 4; 800� 2 hypotheses in any

image, in reality, most of the selected pixels had RGB values

that could not be produced by either color distribution.

Those pixels were discarded from the count of potential

hypotheses.

Results. For this experiment, only 0.86 percent of the

possible hypotheses were evaluated by the attention algo-

rithm, on average, before the correct hypothesis was found.

Fig. 11 shows the extreme examples of pop-out and camou-

flage. In Fig.11a,Ronaldo'sshirt is theonlyyellowobject in the

image and it immediately pops out against a largely green

background. In Fig. 11b, he is camouflaged by his teammates,

who offer equally good matches to the color distributions.

6.4 Experiment 4: Color Features

As a final example, we evaluated the effectiveness of

ML attention on the well-known Where's Waldo gameÐa

children's book series in which the goal is to find the title

character in pages filled with highly detailed illustrations. A

similar attempt was also reported in [13].

The same implementation described above was used

with color densities from Waldo's shirt and shorts. Because

Waldo is a small figure in the image, pixels were sampled at

full resolution (610 x 338). Of the 194,380 x 2 hypotheses,

only 28 (0.007 percent) were examined before the algorithm

suggested the target location for Waldo. The total time for

the entire search process, aside from manual evaluation,
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Fig. 7. Histogram of percentage hypothesis evaluated until recognition.

Fig. 8. Search under pop-out.

Fig. 9. Search under camouflage.

Fig. 10. Number of hypotheses evaluated vs. image features.



took only 0.18 seconds on a 266MHz single-processor

Pentium II. In Fig. 12, the search sequence for finding

Waldo is overlaid on top of the image.1

7 CONCLUSIONS

In this paper, we proposed a maximum-likelihood techni-

que for directing attention. The technique uses simple

features found by a fast preattentive module to direct a

slower, but more accurate postattentive module. The

attention mechanism recognizes that the target is made up

of parts and attempts to find that pairing of target part and

image feature which is most likely to come from the target

in the image. The exact likelihood calculation is computa-

tionally expensive and we proposed approximations to it

using r-tuples of target parts. The resulting attention

strategy was shown to be adaptive for r � 2. Its choice of

the part-feature pair depends on the image content.

Furthermore, the attention strategy demonstrates ªpop-

outº and ªcamouflage,º which are two important properties

of human visual attention. In experiments with real world

images, the attention strategy significantly reduces the

number of hypotheses that are required to be evaluated

before target is found.

APPENDIX

APPROXIMATION FOR THE DISTRACTOR DISTRIBUTION

In this appendix, we drive the approximation for the

distractor distribution. Recall that:

N is the total number of features in the image;

M is the total number of model parts;

O is the number of model parts that

are completely occluded:

Let � be the distractor rate and V be the volume of the

feature space. Let Pi; i � 1; � � � ;M be the probability that

part Si is visible. The average number of parts that are

visible is
P

i Pi. Thus, the average number of distractors is

N ÿPi Pi. The distractor rate can be estimated by

�V � N ÿ
X
i

Pi:

Assuming that N is large, and using the Gaussian

approximation to the Poisson distribution, the likelihood of

the distractors is
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Fig. 11. Search paths for two Ronaldo images. In (a), Ronaldo was found immediately. In (b), Ronaldo is squatting at the lower left.

Fig. 12. Where's Waldo?

1. This particular image can be found at http://www.findwaldo.com/
city/city.asp.
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where C is the term that is independent of O.
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