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Deformable 2-D Template Matching
Using Orthogonal Curves

Hemant D. Tagare,Member, IEEE

Abstract— In this paper a new formulation of the two-
dimensional (2-D) deformable template matching problem
is proposed. It uses a lower-dimensional search space than
conventional methods by precomputing extensions of the
deformable template along orthogonal curves. The reduction
in search space allows the use of dynamic programming to
obtain globally optimal solutions and reduces the sensitivity of
the algorithm to initial placement of the template. Further, the
technique guarantees that the result is a curve which does not
collapse to a point in the absence of strong image gradients
and is always nonself intersecting. Examples of the use of
the technique on real-world images and in simulations at low
signal-to-noise ratios (SNR’s) are also provided.

Index Terms—Active contours, segmentation, template match-
ing.

I. INTRODUCTION

I NTERACTIVE template matching is the first step in quan-
titative analysis of many medical images. Most interactive

template matching algorithms require the user to place a
template (a closed curve) approximately in the right position
and orientation. Then the algorithm systematically adapts the
template to fit the image gradient.

The template contains prior geometric information about
the organ which is being segmented. Many studies can be
analyzed by maintaining a database of a few useful templates
[4], [18]. For those images where the shape of an organ does
not conform to the prior information, active contour algorithms
such as “snakes” [8] can be used.

During the template fitting stage of a deformable template
algorithm, the deformed template is parameterized as a curve

( is not necessarily the arc length),
external and internal energies are associated with it, and
functions are sought which minimize a weighted
sum of the internal and external energies [2], [8], [11], [17],
[22], [23]. The energies associated with the curveare of
the form

(1)

Quite often only the image of the optimal curve is of interest
and its parameterization is irrelevant. The external and internal
energies of such curves are formulated to be independent of
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Fig. 1. Smooth orthogonal curves.

the parameterization. For such energies, it can be shown (see
Appendix) that if the optimal deformation is small, then it need
be only normal to the template.

The main aim of this paper is to extend the strategy of
deforming the template along normals over larger regions
while avoiding singular points (points at which the extended
normals intersect). The key idea, which is illustrated in Fig. 1,
is to extend the normals as curves rather than as straight lines.
These curves are perpendicular to the template and are called
orthogonal curves. Given the orthogonal curves, the template
is deformed by restricting every point on the template to move
only along its orthogonal curve. The resulting deformation of
the template is uniquely identified by a single function which
expresses the distance that each point of the template moves
along its orthogonal curve.

If the template is constructed beforehand, then the orthogo-
nal curves can be precomputed. Precomputing the orthogonal
curves and using them to deform the template has a number
of advantages. First, every deformation is defined by a single
function, so the optimization procedure uses a smaller search
space. It is often feasible to find the global minimum. In
contrast, deformations in conventional techniques are defined
by a pair of functions and have a much bigger search space.

Second, using orthogonal curves it is easy to express the
prior knowledge that smoothly deformed shapes close to the
template are more desirable than jagged shapes which are
farther away from the template. The prior is formulated as
a sum of proximity and smoothness energies. Since each
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orthogonal curve intersects the template at a single point
(called the base point of the orthogonal curve, Fig. 1), the
proximity of the deformed point to the template is defined as
the Euclidean distance between it and the corresponding base
point. The smoothness of the deviation is defined as the change
of the Euclidean distance along the deformed curve. The exact
formulations are given in Section III.

Third, by controlling the amount of extension from the
template, explicit control over the region of deformation can
be obtained.

Finally, the curve resulting from the deformation is guaran-
teed to be closed and nonself intersecting.

The use of orthogonal curves has some limitations. Since
orthogonal curves decrease the degrees of freedom used to
deform the template (by using one function rather than two),
in theory, the set of possible deformations of the template is
smaller. Restriction to a smaller set of possible deformations is
not a major limitation in processing medical images since tem-
plates with simple shapes fit a large variety of medical objects.
For example, in [18], deformations of a single circular template
along radial directions were successfully used to obtain a
number of outlines of wrist bones in computed tomography
(CT) images. The study [4] also used deformations of a single
circular template to model a number of anatomical objects in
medical images.

In the computer vision literature, search along normals
has been used in a number of algorithms, for example,
it is used in rigid-template-matching algorithms to estimate
the location and pose of an object [9]. It is also used in
registration of images obtained from different modalities [6],
[14]. The algorithm presented in this paper can be viewed as
an extension of these algorithms to nonrigid templates and to
larger regions of convergence.

An initial version of the current algorithm was reported in
[18]. It relied exclusively on a circular template and a heuristic
was used to guarantee closure of the deformed curve. Both of
these restrictions are removed in the algorithm presented here.

II. TEMPLATES, ORTHOGONAL

CURVES, AND THE DEFORMED CURVE

In this section, we define orthogonal curves and use them
to find an expression for the deformed curve. An intermedi-
ate step, which shows that orthogonal curves exist for any
template, is postponed till Section IV.

Suppose that the template is a closed curvewhich
does not intersect itself. In a coordinate frame attached to
the template, the template is described by its arc length
parameterization . Further suppose that
the region over which the template can be deformed is bounded
by two curves and , where is located inside
and is located outside (Fig. 2).

Let be the orthogonal curve passing through the base
point on the template. We assume the following:

1) Each begins on the curve , orthogonally intersects
at the base point, and ends at the curve .

2) Each has a continuous tangent.
3) No two orthogonal curves intersect.

Fig. 2. Region of deformation in template and image coordinates.

If is parameterized by its arc length(which is zero at
the base point of , increases as proceeds outwards, and
decreases as proceeds inwards), then can be written in
the template coordinate system as

where the functions and give the position of
with respect to the base point and

.
If the template is deformed into a curve by moving

template points along the orthogonal curves, thenis given
by

where gives the displacements of the template points
along the orthogonal curves.

The placement of the template on the image is given by
a mapping from the template coordinate system to the image
coordinate system. We assume that the template is placed on
the image by a translation and rotation. Hence, the set of
curves in the image obtained by deforming the template can
be expressed as

(2)

where are the coordinates of in the im-
age coordinate frame, is a rotation matrix, and is the
translation vector.

From (2) it is easy to show that any is closed and nonself
intersecting.
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Fig. 3. Discrete orthogonal curves.

A. Discrete Orthogonal Curves

Discrete versions of orthogonal and deformed curves are
used in formulation of template matching. The family of
orthogonal curves is discretized by sampling the template
curve uniformly along the arc length at base points. From
each of the base points the orthogonal curves are traced
inwards and outwards and each orthogonal curve is sampled
uniformly along its arc length at points (Fig. 3).

The points thus obtained are denoted by, ,
and (Fig. 3). The index refers to the
orthogonal curve that the point belongs to, and the index
refers to the location along the orthogonal curve. All points

belong to the th orthogonal curve and the base point of
the th orthogonal curve is .

When the template and the orthogonal curves are placed on
the image, are transformed into points on the image by

(3)

where and are the rotation matrix and the translation
vector.

The deformed curve is discretized as an-sided polygon
(Fig. 3). The th vertex of the polygon, , is constrained to
lie on the th orthogonal curve

(4)

The entire polygon is denoted by .
Below, to simplify the equations for the energy we refer to

the first vertex as the vertex and also as . Similarly,
we refer to the first base point as and also as .

III. I NTERNAL AND EXTERNAL ENERGIES

The internal energy associated with the deformed curve is
the weighted sum of a proximity energy and a smoothness
energy.

The proximity energy measures the displacements of
the vertices from the base points

(5)

where is the Euclidean distance.
The smoothness energy measures the dissimilarity of

distances of consecutive vertices from their base points

(6)

The external energy is the net component of the
image gradient along the outward pointing normals of each
side of the polygon, i.e.

(7)

where is the outwards pointing normal and is the length
of the side joining vertex to . The integrand in the
above expression is the inner product between the outwards
normal and the image gradient. The constantis set to 1 if
we seek a dark to white transition along the outwards normal
and 1 for a white to dark transition.1

The net energy associated with the deformed curve is given
by

(8)

where the ’s are nonnegative weights.
Given an image and a template with its orthogonal curves,

we seek the deformed curve that minimizes the net energy.
This is the formulation of a deformable template matching
problem using orthogonal curves.

IV. ORTHOGONAL CURVES AND CONFORMAL MAPS

Before we proceed to seek an algorithm that gives the
optimum deformation, we settle the existence of orthogonal
curves. We do this for the continuous case. The discrete case
is just a finite sampling of the continuous case.

We begin by considering a specific recipe for generating
orthogonal curves. The key idea is to imagine , , and

as contours of a two dimensional (2-D) function which is
continuous in the region betweenand and also between

and ; and to realize that the gradient trajectories of
the function are orthogonal to the contours everywhere and
therefore are admissible as orthogonal curves.

More precisely, consider the region between and .
Suppose we have a function defined in this region

1The external energy can be easily modified if the nature of the transition
(white-to-dark or dark-to-white) is not known by using the magnitude ofrI

from vk to vk+1 instead of the component ofrI along the normal. This
change does not alter the algorithm.
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such that
on

on
(9)

with . If has well-defined gradients, then the gra-
dient direction at any point is given by .
Starting from a base point on the template, the
gradient trajectory is given by the solution of
the coupled differential equations

(10)

with the boundary condition

(11)

By construction, this trajectory is orthogonal to and is
admissible as an orthogonal curve extending inwards from.
By repeating this procedure for all points of, the entire set of
orthogonal curves extending inwards fromcan be obtained.

If there exists more than one which can give curves
that are orthogonal to , we would like to use the smoothest.
Measuring the smoothness of by ,
the smoothest is given as the solution to the corresponding
Euler–Lagrange equation, with the boundary
conditions of (9).

Therefore, is a harmonic function within the region
bounded by and . From harmonic function theory, we
know that the gradient trajectories of may be thought of
as contours of the conjugate harmonic function. Furthermore,
the function and the conjugate harmonic function define
a conformal mapping of the region betweenand on to
an annulus (Fig. 2).

The existence of such a conformal map for any closed
nonintersecting curves and is guaranteed by the theory
of conformal mappings [7], [13]. It is also known that the
conformal mapping is nonsingular in the region of interest
and the inverse map exists, is conformal, and nonsingular. If
a standard circular grid is created in the annulus, the image of
the grid under the inverse conformal map gives an orthogonal
grid in the template space such that the inner and outer circles
of the annulus are mapped onto and . The image of
the radial grid lines are the desired orthogonal curves between

and .
This argument applied to the region between and

gives orthogonal curves in that region. Since the mappings are
conformal, the two sets of orthogonal curves are guaranteed to
be normal to at all points. Therefore, the orthogonal curves
in the two regions can be joined atto obtain curves that have
a continuous tangent vectors and extend from to .

This establishes the existence of orthogonal curves for a
general template .

The numerical procedure for obtaining the grid directly fol-
lows from the above discussion. First, the harmonic equation is
solved between and and independently between and

by a standard finite-difference successive-overrelaxation
method. As mentioned before, points are placed uniformly
along and from each point the inwards and outwards
gradient trajectories are obtained by solving (10) by finite

TABLE I
PARTIAL ENERGY FUNCTIONS AND THEIR MINIMA

differences. The two curves are joined at the base point and
the combined curve is uniformly sampled at points.

V. OPTIMIZATION

We return to the problem of minimizing the net energy and
observe that the energy in (8) can be written as

(12)

where is

(13)

Since has this form, its global minimum can be found by
using dynamic programming. To illustrate this, consider the
case for , where

(14)

Suppose we fix and find that give the minimum
for that choice of . From the form of and the dynamic

programming principle we know that each partial energy on
the left-hand side of Table I is minimized by the set on the
right-hand side of the table. Hence, for a given, we may
proceed to find the minimum as follows.

1) For every , tabulate the that minimizes .
2) For every , tabulate the that minimizes

where is the minimum
value of with respect to for a given .

3) For every , tabulate the that minimizes

.

4) Find the that minimizes .
This is the optimum for the given , and the values
of that minimize for the optimal
value of give the optimal deformation.

Repeating the above procedure for different values of
gives the global minimum.

The algorithm used in the general case is a straightforward
extension of the above.

1) Select a from the set .
2) For the given , tabulate the value of

that minimizes the partial energy

for every .
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Fig. 4. Some templates and orthogonal curves.

3) For all , tabulate the
that minimizes the partial energy

for every .
4) Finally, evaluate the energy for all values of

by

5) The minimum value of in the above set is the desired
optimum value for the given , and the values of

which minimize the partial energies
for this give the optimally deformed curve.

6) Repeat steps 1)–5) for all possible values ofto find
the global minimum and the corresponding deformed
curve.

The number of evaluations of in the above procedure
is . Although this may appear to be computationally
expensive, it is in fact quite feasible as long as is not
excessively high. In all of the experiments reported in this
paper and were 10 and 25, respectively, and the minima
was found under 10 s. on a SUN SPARC Station 2. The time
was independent of the quality of the image and the initial
position of the template.

For high-resolution images, may be large and the above
dynamic programming procedure may not be feasible. In that
case, either a faster dynamic programming procedure or a
heuristic minimization procedure [3] can be used. Multires-
olution or adaptive resolution strategies can also decrease the
computational burden.

VI. EXPERIMENTAL RESULTS

First, we check that the orthogonal curve generation proce-
dure gives usable curves for a variety of shapes. Fig. 4 shows
some examples of templates, inner, outer, and orthogonal
curves generated by the technique.

The next set of experiments show the results of deformable
template matching. As with any variational formulation of de-
formable template matching or active contours [8], the appro-
priate weights for external and internal energy are determined
after some experimentation. However, once the weights are de-

TABLE II
ALGORITHM PARAMETERS

termined two properties of the algorithm can be demonstrated
by using real-world and simulated images. First, because the
algorithm finds the global minima within the search space, it
is relatively insensitive to the initial position of the template.
Consequently, the same template can be propagated through
many slices in a three-dimensional (3-D) stack to obtain
boundaries of an organ. Second, since the algorithm does not
get trapped in local minima, it performs well with respect to
noise.

The first property is illustrated in Fig. 5. The figure shows
three images from a 3-D wrist CT image (transverse distance
between consecutive slices 1.5 mm). The three images
correspond to slice one, three, and five in the 3-D image stack.
Fig. 6 shows the initial placement of the left-most template of
Fig. 4 on the wrist CT images. Fig. 7 shows the optimally
deformed curves produced by the algorithm. The values of all
parameters used in the algorithm are given in Table II.

The stability of the algorithm with respect to the gradient,
proximity, and smoothness weights is shown in Figs. 8–10.
The stability was investigated in the following way. The
three weights were changed one at a time. Each weight was
decreased to 50% of the value shown in Table II and then
increased to 200% of the value with the other two weights
fixed. For each such combination, the optimal curve was found
for slice one with the initial placement of Fig. 6. Fig. 8 shows
the result with the gradient weight varied from 50% to 200%.
Fig. 9 shows the result with the proximity weight varied from
50% to 200%. Fig. 10 shows the result with the smoothness
weight varied from 50% to 200%. It is clear from figures that
the algorithm is stable over these range of weights for this set
of images.

Of course, the weights in Table II are not universally useful.
Other images may require a different set of weights and the
stability ranges might be different.
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Fig. 5. Images from a 3-D wrist CT stack.

Fig. 6. Initial placement of the template.

Fig. 7. The deformed template.

The algorithm has been successfully used in other modal-
ities. Fig. 11 shows an example of the use in magnetic
resonance imaging (MRI) images. The figure shows the initial
placement of the middle template of Fig. 4 on a cardiac MRI
image and the optimal deformed match of the template to the

aortic arch. The weights in Table II were used in this example
too.

The next experiment assessed the performance of the opti-
mization algorithm with respect to noise and placement error.
The assessment is carried out by simulations. In the first
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(a) (b)

Fig. 8. Stability with respect to the gradient weight: (a) weight= 50% of nominal and (b) weight= 200% of nominal.

(a) (b)

Fig. 9. Stability with respect to the proximity weight: (a) weight= 50% of nominal and (b) weight= 200% of nominal.

simulation, an image of a circle (radius 21 pixels) with
a gray level value of ten, was placed on a background of gray
level zero. Gaussian noise having zero mean and standard
deviations of 0.0, 1.0, 2.5, 5.0, and 10.0 was added to the
image.

If the signal-to-noise ratio (SNR) is defined as 20-(gray-
level step size at the edge/noise standard deviation) dB then
the SNR’s of the simulations are , 20, 12, 6, and 0 dB.

For each value of the standard deviation, a circular template
was positioned on the image and the optimal deformation
sought using the algorithm of Section V. The circular template
had the same radius as the circle in the image. The orthogonal
curves of the circular template are radial lines. All parameters
of the simulation had the same value as that shown in Table II,
except that the gradient weight was set to 10.0 to compensate
for the lower contrast of the circle against the background. The
deformed curve obtained after optimization was compared to
the original circle and the relative error in estimating the circle

was computed as

relative error
root mean square radial error

discretization step size in the radial direction

The root mean square radial error is simply the root mean
square deviation of the deformed curve measured radially
outwards from the true position of the circle in the image
(Fig. 12).

The same simulation was repeated with the initial placement
of the circular template shifted to the right of the true circle.
Shifts of 0%, 25% and 35% of the radius were used.2 Fig. 13
shows a plot of the error as a function of the SNR for different
initial placements (the data are also reported in Table III).
The relative error does not increase appreciably beyond the

2Note that a shift of 50% of the radius would place the boundary of the
circle outside of the region of deformation of the template.
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(a) (b)

Fig. 10. Stability with respect to the smoothness weight (a) weight= 50% of nominal and (b) weight= 200% of nominal.

(a) (b)

Fig. 11. Deformable template match to an MRI image.

discretization step size. The robustness of the optimal curve
to initial placement is clearly seen in the figure.

VII. CONCLUSION

A new formulation of deformable 2-D template matching
is proposed. The formulation uses precomputed orthogonal
curves to deform the template. The optimal deformation is
found by dynamic programming. The optimal curve is guar-
anteed to be closed and nonself intersecting.

Demonstrations and simulations show that the algorithm
is robust with respect to noise and initial placement of the
template on the image.

There are a number of places in the algorithm where
modifications can be made. First, more sophisticated numerical
techniques of conformal mapping may be considered. These
are discussed in [7] and [21]. Second, it may be possible to
create more elaborate criteria for constructing the orthogonal
curves leading to nonconformal grids such as those discussed
in [1], [12], [16] and [20]. The use of Riemannian manifolds
may be an attractive alternative to conformal mapping [16]. On
the other hand, a major complication in using nonconformal

mappings is that of establishing existence— it is often not clear
if a particular class of nonconformal orthogonal grids can be
constructed for all closed curves. Third, adaptive discretization
strategies for forming the discrete grid can be explored. The
current algorithm creates base points uniformly along the
circumference of the template. In some situations it may be
appropriate to adaptively sample the circumference so that
there are more base points in the high curvature segments
of the template.

Finally, efficient storage of templates in libraries and their
quick retrieval can be considered. Initial results seem to
indicate that classical techniques of indexing such as Kd-trees
can be adapted for this purpose [15].

APPENDIX

Here, we will see that if the energy is independent of curve
parameterization, and if the optimum deformed curve is close
to the template, then the search for the optimum curve need
be conducted only along the normal.

In the following discussion, the template is assumed to be
available as arc length parameterized . If
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Fig. 12. Simulation.

Fig. 13. Sensitivity to noise.

are the tangent vectors and the
normal vectors to the curve, then any deformed curve can be
expressed as

for some functions and . Since is closed and
continuous, are periodic and continuous. We also
assume that and have continuous derivatives and
that and exist.

We shall see that when and are “small enough,”
has no effect on the energy, i.e., we will embed in

a family of curves given by

TABLE III
RESULTS OF SIMULATION

and show that

at .
We begin by finding an expression for at

. Since

we have

But from the expression for we have

Similarly

Thus
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This is the required expression. We now proceed to show that
it is equal to zero.

This is done in the following way. is embedded into
another family of curves , indexed by the variable , and
having the property that is a continuous reparameterization
of when is in a neighborhood of zero. Then, the expression

at is shown to be identical to the right-hand side
of (14). Since is just a reparameterization near , and
the energy is independent of parameterization, must
be zero. Thus, the expression on the right-hand side of (14)
is zero.

The new family is given by

where is a continuous function with a continuous and
bounded derivative. The function is specified below. We pro-
ceed by assuming that is a continuous reparameterization
in a neighborhood of . The assumption is shown to hold
below.

As before, we note that

Similarly

Evaluating we get

Noting that and , and setting
we see that

Now it remains to show that is a continuous repa-
rameterization of near . From the expression for

we see that it is sufficient to demonstrate that
is a diffeomorphism near a neighborhood of .

The differential of the transformation is and for
the differential is invertible. Hence, there is

a neighborhood of for which the transformation is a
continuous reparameterization.
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