EMB Ser 2,0 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 2, FEBRUARY 2021 e
o= MNE3D Prcesi

Robust Bayesian Analysis of Early-Stage
Parkinson’s Disease Progression
Using DaTscan Images

Yuan Zhou

Abstract—This paper proposes a mixture of linear
dynamical systems model for quantifying the heteroge-
neous progress of Parkinson’s disease from DaTscan
Images. The model is fitted to longitudinal DaTscans from
the Parkinson’s Progression Marker Initiative. Fitting is
accomplished using robust Bayesian inference with col-
lapsed Gibbs sampling. Bayesian inference reveals three
image-based progression subtypes which differ in progres-
sion speeds as well as progression trajectories. The model
reveals characteristic spatial progression patterns in the
brain, each pattern associated with a time constant. These
patterns can serve as disease progression markers. The
subtypes also have different progression rates of clinical
symptoms measured by MDS-UPDRS Part lll scores.

Index Terms— Parkinson’s disease, disease progression
model, DaTscans, linear dynamical system, centrosymmet-
ric matrix, t-distribution.

|. INTRODUCTION

ARKINSON’S disease (PD) is a neurodegenerative dis-

ease characterized by the loss of dopaminergic neurons
in the substantia nigra. Different individuals with PD progress
along different disease trajectories. This variability is called
progression heterogeneity, or simply, heterogeneity. Hetero-
geneity is understood in terms of progression subtypes, each
subtype being a prototypical progression trajectory.

Another characteristic of PD progression is that it exhibits
specific spatial patterns in the brain. These patterns, called
Braak stages [1], have mostly been analyzed by histology
of deceased PD patient brains. Spatial progression patterns
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in living PD patients have not yet been reported using
DaTscans.

The goal of this paper is to propose a mathematical
model and a Bayesian analysis method to (i) quantify PD
heterogeneity by identifying progression subtypes, and (ii) to
identify spatial progression patterns and their time constants
in living PD patients using longitudinal analysis of DaTscan
images, or DaTscans. DaTscans are the commercial name for
SPECT imaging with 123I-FP-CIT. DaTscans measure the
local presynaptic dopamine transporter (DAT) density. DAT
density decreases as dopaminergic neurons are lost in PD, and
this manifests as signal loss in DaTscan images [2]. In early-
stage PD, signal loss is most significant in the striatum [1],
hence we study the dynamics of PD progression using the
striatal binding ratio (SBR) [3] in the caudates and putamina.
The SBR at voxel v is defined as SBR, = (I, — i)/ u where
I, is the intensity in voxel v and u is the mean (or median)
intensity in a reference region, such as the occipital lobe, that
does not have specific ligand binding. The SBR normalizes
for radioligand dose as well as compensates for the amount
of nonspecific radioligand binding.

The model we propose is a mixture of linear dynamical
systems (MLDS). In this model, PD subjects are assigned
to different progression subtypes, where each subtype is
defined by a multivariate linear dynamical system (LDS).
The eigenvectors of the transition matrix of the dynamical
system give spatial progression patterns of DAT loss in the
brain. The corresponding eigenvalues give time constants of
disease progression along these patterns. The data used to fit
the model comes from the Parkinson’s Progression Marker
Initiative (PPMI) (https://www.ppmi-info.org/).

This paper introduces several novel techniques for PD
DaTscan image analysis, and we briefly summarize them here:
First, we model coupled progression of the disease in several
regions of interest. Second, our model is specifically designed
to capture progression heterogeneity. This is in contrast to
most previous PD SPECT or PET image analyses, which only
model a single region-of-interest (ROI) at a time (e.g. [4])
and do not model heterogeneity. Third, we identify a new
constraint called population mirror symmetry. A justification
for the constraint, based on DaTscan data, is presented in
Section II-E. Finally, we use Bayesian analysis with a robust
t-distribution to model the residues. Using the -distribution
makes the parameter estimates robust to outliers [5], [6].
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The paper is organized as follows: We begin in Section II
by a brief review of disease progression literature and of PD
progression. The MLDS model is explained in Section III.
Bayesian inference for the model is in Section IV. The results
of fitting the model to the data are reported in Section V.
Section VI contains a discussion, while Section VII concludes
the paper. Preliminary work using a Gaussian distribution to
model the noise was reported in [7].

[I. PROGRESSION MODELS, PD, AND
THE PPMI DATASET

A. Disease Progression Models

Most disease progression models (DPM) reported in the
literature are for Alzheimer’s disease. These DPMs model
the temporal progress of biomarkers such as brain MRI
regional volumes, cerebrospinal fluid measures, and clinical
scores. DPMs can be categorized as either event-based, explicit
function of time-based, or differential equation-based.

Event-based models are discrete in time; they define various
disease stages and model transitions from one disease state to
another. An example is [8], where transitions from normal to
severe atrophy in different brain regions are defined as events.
The model finds a consistent ordering of these events in a
group of subjects. Enhanced versions of this basic model, with
more events and applied to the ADNI dataset are in [9], and
with different orderings for different groups of subjects and
subject specific orderings in [10], [11].

In contrast to event-based models, explicit function models
characterize the continuous longitudinal progress of biomark-
ers by a parametric or a non-parametric function of time and
other variates. An example of parametric modeling is [12]
which regresses covariates such as time, baseline age, brain
regional volume with cognitive scores [12]. A similar scheme
with subject specific time shift is used with the PPMI data
in [13]. Non-linear models with logistic [14] or sigmoidal [15]
functions are also used. For high-dimensional data, clustering
is used to reduce the number of parameters [16]. An example
of a non-parametric model is [17] where disease trajectories
are modeled with a group-wise monotonic Gaussian process
trajectory plus an individual trajectory. In the above models,
time explicitly enters the regression. In contrast are models
where image features at different time points are regressed to
clinical scores [18], [19].

Differential equation models use a differential equa-
tion to model the longitudinal trajectories of biomarkers,
e.g. [20], [21]. Neurodegenerative diseases progress by toxic
protein transmission along neuronal pathways [22]. This sug-
gests that modeling neuronal pathways as edges in a graph
can lead to using diffusion on the graph as a model for
disease progression [23], [24]. An extension adds regional
sporadic stimulus [25] to the model. Recently, a graph-based
differential equation has been applied to MRI images of PD
relating atrophy patterns to diffusion seeded at the substantia
nigra [26].

Bayesian analysis has been used with neurodegenerative
DPMs before [8], [10], [12], [13]. However, to the best of

our knowledge, Bayesian modeling of a mixture of linear
dynamical systems has not been reported with PD DaTscans.

As mentioned above, most of the above methods are
designed for Alzheimer’s disease, and they predominantly use
MRI images. In contrast, our goal is to model Parkinson’s
disease progression using DaTscans. DaTscans do not provide
any connectivity information.

B. Early Stage Parkinson’s Disease

PD progression in DaTscans is quantified by ROI analysis
which shows that the mean SBR in the putamen and caudate
decreases exponentially with time [27], [28]. Exponential
decrease is also observed with PET (non-DaTscan) imaging
tracers [4]. The rates of SBR decrease vary widely, from
5% to 13% per annum, indicating strong heterogeneity [27].
Because the putamen is affected before the caudate in the
early stages [1], the difference between the mean SBR in the
putamen and the caudate is taken as an indicator of disease
progression [29].

Early-stage PD is also asymmetric; one brain hemisphere
is affected more than the other [30]. Asymmetry is caused
by a complex interplay of hereditary and environmental fac-
tors [31]. Initially, either brain hemisphere may be affected
with almost equal probability, but the disease becomes more
symmetric as it progresses.

C. Parkinson’s Disease Subtypes

In the PD literature, subtypes are usually derived from clin-
ical examination, i.e. from the Movement Disorders Society’s
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
scores, resulting in subtypes such as akinetic/rigid-dominant
or tremor-dominant [32]. Typically, clinical progression sub-
types are found by clustering the baseline clinical scores and
comparing the progression rates of these clusters [33], [34].
A review of these methods is available in [32]. Recently,
a complex combination of neural networks, dynamic time
warping, t-SNE embedding and k-means was used to cluster
the PPMI data into subtypes [35]. To the best of our knowl-
edge progression subtypes have not been found so far using
DaTscans.

D. The PPMI Dataset

The PPMI DaTscan dataset has 449 early-stage PD
subjects. Their demographics are as follows: 65% of the
subjects are male, 35% are female. Their ages at the time
of entry into the study are 34 — 85 years, with a median
age of 63 years. The subjects are scanned at baseline, and
then approximately at 1, 2, 4, and 5 years from baseline (the
imaging protocol for the PPMI DaTscans is documented in
http://www.ppmi-info.org/wp-content/uploads/2013/02/PPMI-
Protocol-AM5-Final-27Nov2012v6-2.pdf). Not all subjects
have a scan for all of these time points, and the scan times
for different subjects are not exactly at 1,2,4,5 years.

The PPMI dataset also has longitudinal MDS-UPDRS
scores for the subjects. We relate the image subtypes to Part I11
of the scores.
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Fig. 1. Time series of the mean SBR in the left caudate (LC), right
caudate (RC), left putamen (LP), and right putamen (RP) for 365 subjects
from the PPMI dataset. The arrows are rendered with continuously
changing colors that correspond to the 5 year period indicated by the
colorbar on the left side. The asymmetry of the disease is observable at
baseline; in approximately 45% of the subjects, the right hemisphere is
more severely affected at baseline. The left hemisphere is more severely
affected in the rest.

E. Population-Level Mirror Symmetry

There is a population-level symmetry in the PD DaTscans.
For every PD patient whose brain is asymmetrically affected
in one direction, there is another patient whose brain is
asymmetrically affected in the reverse direction. Moreover
these subjects progress in a mirror image fashion. Fig. |
illustrates this. The subfigures plot the time series of the
mean SBR in the bilateral caudates and putamina for the
PPMI subjects. The time series for every subject is plotted
as a sequence of vectors, each vector pointing from a time
point to the subsequent time point. The vectors are rendered
with continuously changing colors that denote time from the
baseline DaTscan. The relation between color and time is in
the colorbar on the left. A 45 degree line is also shown. Any
departure from this line represents asymmetry. Note that the
spread of the data exhibits mirror symmetry around the 45
degree line. That is, given a time series for a subject, its mirror
image across the 45 degree line is also a valid time series. This
implies that if we were to use a single model to describe all of
the trajectories in a population, then the model should remain

invariant if we swapped the right and left hemispheres for all
subjects. We call this property population mirror symmetry.

Ill. THE MLDS MODEL

Leaving aside the issue of subtypes for now, Fig. 1 sug-
gests a single multivariate linear dynamical system (LDS)
as a model for all disease trajectories. Suppose that the
mean SBR in the left caudate (LC), left putamen (LP), right
putamen (RP), right caudate (RC) are arranged in a vector
x = [LC, LP, RP, RC]7, then the time evolution of x can
be modeled as the LDS dx/dt = Ax, where A isa D x D
transition matrix (D = 4). This model is coupled as long
as A is not a diagonal matrix. The solution of the LDS is
x(t) = eA'x(0), where A’ is the matrix exponential and x(0)
is the initial condition. The solution has interesting, and well-
known, properties:

1) The semi-group property: Suppose X(t) is a time series
that satisfies dx(t)/dt = Ax(t). Further suppose that we
observe this time series starting from some later point
in time, i.e. suppose y(t) = x(t + T), T > 0. Then
y(z) continues to follow the same differential equation
without time shift, i.e. dy(¢t)/dt = Ay(t), an equation
that is independent of 7.

2) For a given A, the initial condition x(0) determines
the entire trajectory. Since different PD patients have
different initial conditions, the trajectory determined by
the differential equation is automatically subject-specific.

These properties suggest that as far as fitting a matrix A to a
time series goes, it is not essential to know, or to model, the
exact starting time for every patient.

Different progression subtypes can be described by different
LDSs (with different transition matrices A). This leads to the
mixture of linear dynamical systems (MLDS) model. We make
two comments about this model before we give mathematical
details:

First, a subtype in this model does not correspond to a
single speed of progress, neither does the model cluster the
time series by progression speeds. The differential equation
dx/dt = Ax expresses a relation between the values of the
SBRs (at any point in time) to the rates of change of SBRs at
that point in time. The values of SBR and its rate (speed) can
be arbitrary; all that the equation requires is that the relation
between the two be similar for subjects to be modeled by the
same equation.

Second, different subtypes modeled in this way cannot be
seen as early or late stages of a single trajectory. Suppose
dxi(t) = A1x1(¢) and dx,(t)/dt = Axxy(¢) with A| # Aj.
Then, excluding trivial initial conditions similar to x;(0) =
x2(0) = 0, there is no time shift 7 # 0 (positive or negative)
such that x1(t) = x2(t + T for all ¢.

We now give mathematical details of this model beginning
with the constraint on A due to population mirror symmetry.

A. Dynamical System With Population Mirror Symmetry

Given the arrangement of x that we use (i.e. LC, LP, RP,
RC), population mirror symmetry is mathematically equivalent
to saying that the differential equation dx/dtr = Ax remains
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invariant under a permutation that swaps the right SBRs with
the left SBRs.

Definition 1: = : RP — RP is a symmetric permutation
if (m(x)); = X)p_jy1 fori =1,---,D, for any x € RP,
where (X); refers to the kth component of the vector X.

Because of the way the SBRs are arranged in the vector x,
population mirror symmetry corresponds to applying a sym-
metric permutation to X. Applying this permutation to both
sides of dx/dt = Ax gives: (dx/dt) = dn (x)/dt = 7 (AXx).
Population mirror symmetry requires dx (x)/dt = Ax (x), i.e.
7 (AX) = An(x). It is easy to check that this constraint is
mathematically equivalent to the pre-processing procedure in
the clinical literature that relabels the two hemispheres of all
the subjects to dominant/non-dominant for analysis (hence
ignores the left/right difference and assumes a mirror-like
progression pattern) [4].

Population mirror symmetry is equivalent to A being a
centrosymmetric matrix:

Definition 2: A D x D matrix A is centrosymmetric if

7 (AX) = Az (x) for all x € RP, where © is a symmetric
permutation [36].
In terms of elements of A, centrosymmetry means that
(A)i,j = (A)p—i+1,p—j+1. Loosely speaking, centrosymmetry
means that elements which are located on the same line
through the center of the matrix, but which are on opposite
sides of the center, are equal.

Definition 3: The dynamical system dx/dt = AX has pop-
ulation mirror symmetry if A is a centrosymmetric matrix.
From now on we assume that our dynamical system has
mirror symmetry. The following properties of centrosymmetric
matrices are important for developing and interpreting our
model:

1) The set of all D x D centrosymmetric matrices is a
subspace of the vector space of D x D matrices. This
subspace has dimension [D?/2].

2) If the eigenvalues of a centrosymmetric matrix are dis-
tinct, then the corresponding eigenvectors are either sym-
metric or anti-symmetric [36].

The first property indicates that the number of parameters
used in fitting a centrosymmetric matrix is reduced by half
for even numbered D. The second property has implications
for interpreting the differential equation dx/dt = Ax.

To see the significance of interpreting a differential equation
with a centrosymmetric transition matrix, note that the solution
of the differential equation can be written as

x(t) = Z cie’l"'vi
i

where {v;:i=1,..., D} are the eigenvectors of A and
{A;} are the corresponding eigenvalues, and [c1, ..., cp]T
v-ix (0) where V [Vi,...,vp]. The eigenvectors
Vi,...,Vp are linearly independent but are not guaranteed
to be orthonormal. Hence the coefficients of x along the
eigenvectors are found by taking the inner product of x with
the dual basis of vi, ..., vp. Suppose {uy,...,up} is such a
dual basis, i.e. UTV = I where U = [uj,...,up]. We have
an exponential function for projected SBR values along each
ui, u/ x(t) = etite;.

(D

The dual basis of V are eigenvectors of A7 with the same
eigenvalues as that of A. Since A’ is also centrosymmetric,
the dual basis vectors are also either symmetric or anti-
symmetric. The symmetry/anti-symmetry of the dual basis of
the eigenvectors of the transition matrix has an interesting
interpretation. If u; is symmetric, i.e. u; = [a, 8, f, a]?, then
the projection uiTx(t) is the linear combination o x LC 4 8 x
LP 4+ f x RP + a x RC, i.e. the projection is a symmetric
measurement across the brain hemispheres. If w; is anti-
symmetric, then the projection is an asymmetric measurement.
Thus projecting on the dual basis tells us how symmetric
and asymmetric parts of the SBR vector evolve — they evolve
with the corresponding 1; as time constants. Note however,
that because the dual basis is not orthonormal, the orthogonal
projection ul.T x(t) is not the component of x(¢) along u;.
Rather it is the component of x(¢) along v;.

B. Discretization and Probabilistic Formulation

Suppose that SBRs are available for N subjects and the
ith subject has SBRs x;1, ..., X; 7, at time points 7;1, ..., Ti.T;,
where T; is the total number of time points and the time points
are not assumed to be evenly spaced. Then, the time series for
the i™ subject can be modeled by a discrete version of the
linear differential equation dx/dt = Ax as:

Xi,j+1 — Xij

Atij ij ijs

(2)
where At;j = 7; ;41 — 7;j, and €;; is the model residue. The
residue is assumed to follow a Student’s ¢-distribution, i.e.
€;~T (0, a21p, v) where o2Ip is the scale matrix and v is
the degree of freedom.

Letting x; = {x;1, ..
for subject i,

.,X;7;} denote the entire time series

Ti—1
p(xi1a, 0% v) = p i) [ p (xijilxi A, 0% 0), 3
j=1

where we assume that the probability distribution of the first
element of the time series is p (x;1) = N (x;1]0, £), and the
conditional probability distribution is

D (Xi,j+1|xij,Aa o2, U)
=7 (Xi,j+l Ixij + AtijAXij, Al‘l-sz'ZID, l)) .4

The form of the conditional distribution follows from (2) and
the r-distribution. The distribution p (x;1) = N (x;1|0, X) is
the same for every subject. It models the “spread” of initial
data x;1, which we take to be independent of A, o2, v.
Directly expressing p (Xi,j+1 Ixij, A, o2, v) as the
t-distribution causes technical problems in Bayesian
inference — there are no conjugate priors for A,o2,v.
However, a standard modification makes it possible to create
conjugate priors for A,c2, v [37], [38]. The modification
follows from the observation that a ¢-distributed random
variable can be generated by first sampling a scalar random
variable from a Gamma distribution, and then sampling from

Authorized licensed use limited to: Yale University. Downloaded on March 15,2021 at 18:55:33 UTC from IEEE Xplore. Restrictions apply.



ZHOU et al.: ROBUST BAYESIAN ANALYSIS OF EARLY-STAGE PARKINSON'’S DISEASE PROGRESSION USING DaTscan IMAGES 553

a Gaussian distribution with a covariance matrix scaled by
the Gamma distribution sample, i.e.

T x|, =, v) = //\/(xm, ¥ /w) Ga (wl% %) dw, (5)

where w is the scale parameter. To use this formulation,
we introduce latent scale variables {w;; :i =1,...,N,j =
1,.. L Ti—1) vxfith. p (.wij|v) = G? (wijl%, %), and write (4)
with a normal distribution on the right hand side:

p (Xi,j+1lxij» wij, A, ”2)
=N (Xi,j+1|Xij + AtijAxij, Atizjale/w"j) - ©

With this modification, we can rewrite (3) as

T—1
)2 (Xi|Wi,A902) = p(xi1) H p (Xi,j+l|xija wij,AaO'Z) ,
j=1
(7

where w; = (wi1, ..., wi7,—1) and p (w;[v) =[], p (wijlv).
Note that according to (5), combining p (x,-lw,-,A,az) and
p (w;|v) with w; integrated out gives the time series distri-
bution in (3). This is the discretized probabilistic version of
dx/dt = Ax with t-distributed model residues.

C. The Mixture Model

All subjects that have the same transition matrix belong
to the same subtype. To extend the model to K distinct
progression subtypes, we allow each subtype to have its own
transition matrix Az and model residue oy. Let z; be a latent
random variable taking values in {1, 2, ..., K} and indicating
the subtype of the i" subject. Given z;, the probability density
of the time series x; of the i th subject is the density of (7)
with A;; and o;; :

p (xilei Wi, (A o2}) = p (il Agu02) . ®)

The latent variable z; has a categorical distribution:

K
I(zi=k
p@ilm) = Cat (zilm) = [ [ 7,579 =z, )
k=1
where ® = (7wy,--- ,7g), such that 7; > 0 for all / and

> @ = 1. Also I(-) = 1 if the argument of I is true and zero
otherwise.

Finally, let X = {x1,...,xy}, W = {wy,...,wy}, and
z = (z1,...,zy) denote the time series, the latent variables for
the ¢-distribution, and the latent variables for the class labels.
Setting 0 = {m, A, 07 :1=1,...,K} gives

pXiaW.0) = [ (xilei> wis {Ar, o))

i=1

(10)

N N
pWh) =[]prwilv), p@)=]]rGir) D

i=1 i=1

= O U O

Xi1 X2 Xi,T;
Fig. 2. Probabilistic graphical model of the MLDS with ¢-distributed
residues. It features a standard structure of four layers: hyperparameters
(e, B, y), parameters to infer (6 = {n,Ak, O'ir, v), latent variables
(z = (z9..... zZn), W = {wq,..., wpy}), and observed data (X =

as the complete model. Note that integrating out the latent
variables W and z gives the mixture model

N K

N
pX10,v) = [T p oi16,v) = [T X mep (ilAr, o2, v)
i=1

i=1 k=1

where p (xi|Ax, o2, v) is defined in (3). We want to infer the
parameters @ and v from the observed data X.

V. BAYESIAN INFERENCE

Our Bayesian inference methodology is to use Gibbs sam-
pling, and to keep the sampling scheme tractable we use priors
that are conjugate to the conditional densities in (10) and (11):

p (mle) = Dir (|er) , (12)
[@)5 }
p(ly) x o e, v >0, (13)
r(3)

p (ak, o'k2|ﬁ) = NIG (ak, akzllto, Ao, vo, KO)
= N (alio, o2 AG") 1G (o Iv0, %0 ), (14)

where Dir(-) is the Dirichlet distribution, NIG(-) is
the normal-inverse-gamma distribution, I1G (x|a,b) =
%x_(‘”‘l)e_%, and ¢ = (a/K,...,a/K), y = {&, 10},
B = {1y, Ao, vo, xo} are hyperparameters. We define the prior
on Ay using its coordinates on a basis for centrosymmetric
matrices, i.e. vec (Ax) = Ea; where the j® column of E has
the form [...,1,...,1,...]17 where 1 only appears at the
j™ position and the (D* — j + 1)™ position and the others
are zero. The rationale for choosing (14) for p (X|z, W, 0)
and (13) for p (W]v) is provided in Supplementary Section II.

With these priors, the probabilistic graphical model is shown
in Fig. 2. We can infer the parameters by drawing samples
from the posterior p (z,0, W,v|X, a, B, y).
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A. The Gibbs Sampler

A detailed derivation of the Gibbs sampler is available
in Supplementary Section III. Here we briefly describe the
salient points of the sampler. The sampler works by sampling
z,0 and W,v in sequence conditioned on the remaining
random variables. The sampling proceeds as below:

1. Sample p(z,0|X, o, B, W) as follows:

1.1. Sample z from p(z|X, o, B, W) with @ integrated out.
This is known as collapsed Gibbs sampling [39].
Sampling z corresponds to sequentially sampling each
z; given the rest {z; : j #i}.

Sample 6 from p(f|z, X, «, B, W) by sampling =«
from a Dirichlet distribution and Ay, ak2 from a NIG
distribution.

2. Sample p(W,v|X, y,z,80) as follows:

2.1. Sample W from p(w;;|X, y,z, 8, v) by independently

sampling each w;; from a Gamma distribution.

2.2. Sample v from p(v|W, p) using adaptive rejection

sampling (ARS) [40].
A detailed version of this algorithm is in Supplementary
Section III-B. The above steps are iterated till the chain
converges and provides sufficient samples for parameter esti-
mation.

We set the hyperparameters to o K, B
(0, 10781 257, 1073, 1073), y = (1073, 1073), which cor-
responds to having weak priors. The initialization of each
sampling chain is done by assigning each z; € {1,..., K}
randomly, w;; = 1,Vi, j, v = 30. Following Section 11.4
of [41], we run 5 chains (1500 iterations each) with random
initialization, discard the first half of each chain as burn-in
samples, and split the remaining samples to calculate a ratio of
between-sequence variance and within-sequence variance of
log p (X]6,v) to check convergence. For any combination
of chains, if this ratio is close to one, we conclude that
this combination converges to the same distribution. We pick
samples from one chain of a converged combination for
analysis.

Following standard Bayesian methodology, we take the
parameter estimates to be the averages of the post-burn-in
samples of the converged chain. The estimates of the transition
matrices Ay are of particular importance, since they define
the progression subtypes. We estimate A, by the mixture
estimator [42]:

2.2.

L
Ay = %;E(AHZ =z, W=Wr_,v=v_1,X,a,8,7)
where L is the number of post-burn-in samples. The means
on the right hand side are directly available when we sample
Ay, akz. The above estimator has a lower variance than the
empirical estimator (i.e. averaging the samples) according to
the Rao-Blackwell theorem (see Section 2.4.4 in [43]).

B. Model Selection

The Gibbs sampler described above estimates model
parameters, once the number of subtypes (the number of
components of the model) is known. To find the number
of subtypes, we use cross validation and Bayesian model

selection [44], [45]. For cross validation, we divide the dataset
into 10 subsets (10-fold cross-validation). Using each subset
as test set, we use the remaining data as training set to infer
the parameters @, v. Then, the log-likelihood of each test set
is evaluated and the sum of these log-likelihood values is
considered for each K € {1,..., Knax}, where Kpnax is the
maximum number of components considered.

For Bayesian model selection, we denote ngx = {«, 8, '}
for the hyperparameters with K components, and let H =
{171, R T,Kmax}' Assuming p(K) o constant on K
1,..., Kmax, We have

p (KX, H) o p (K) p XIH, K) o< p XIH, K) = p (XIng) -

Finding the optimal K = argmaxg p (K|X, H) is equivalent
to finding the maximum of p (X|nx) which can be evaluated
by the integral

p (Xing) = [ p(XI6.v) p (0.01n) dodv. (15)
Since the Gibbs sampler has already generated samples from
p (2,0, W,v|X, 5ng), we use importance sampling with the
proposal distribution p (0, v|X, n K) to calculate the integral.
The details are in Supplementary Section IV.

V. RESULTS
A. Data Preparation

The PPMI DaTscan dataset was described earlier in
Section II-D. The DICOM headers for PPMI DaTscan images
reveal that the images have a size of 109 x 91 x 91 voxels, with
2 mm? isotropic voxels. The images are distributed by PPMI
and already registered in standard Montreal Neurological Insti-
tute (MNI) space. However, we did find some misregistered
images in the data. These were eliminated in the preprocessing
step described below. After elimination, the mean SBRs in the
caudates and the putamina were obtained using the MNI atlas,
which is also explained below.

1) Image Pre-Processing: We pre-processed the image data
in two steps. First, we eliminated all subjects that had only one
scan, since time series information cannot be gleaned from a
single scan. This led to 382 remaining subjects. Next, we elim-
inated all subjects that had misregistered images. Misregistered
images were found by taking the image sequence for every
subject and calculating the correlation coefficient of all voxels
outside the striatum between every pair of images in the series.
The smallest correlation coefficient in this set was taken as
the indicator of misregistration. If this indicator was less than
the median minus three times the mean absolute deviation of
correlation coefficients of all subjects, then the entire sequence
for the subject was removed. This step eliminated 17 such
subjects, leaving 365 subjects, which entered the analysis (id’s
of the eliminated subjects are available in the supplementary
material). Of these subjects, 45 had 2 scans, 190 had 3 scans,
127 had 4 scans and 3 had 5 scans.

Next the SBR feature vectors x;; were extracted from the
images by using a set of 3D masks for the two caudates,
two putamina, and the occipital lobe. Fig. 3 shows the masks
overlaid on a subset of the axial slices of the mean baseline
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Fig. 3. Masks for the left and right caudates (red), left and right puta-
mina (green), and the occipital lobe (blue). The background shows the
33rd - 42nd slices of the mean baseline image.

image of all subjects. The masks for the caudates and putamina
were taken from the MNI atlas, dilated by 1 voxel and
smoothed by a Gaussian filter with ¢ = 0.5 pixels to capture
the partial volume effects. The occipital lobe mask was created
manually, and is similar to the mask in [29]. Then, the median
of the occipital lobe was used as the denominator to calculate
the SBR at each voxel, and mean SBRs in the caudates and
putamina were organized as x;; as described in Section III-A.
PPMI also provides imaging dates for all subjects, and these
dates were used to calculate the time intervals At;;.

B. Simulation on Synthetic Dataset

Because Bayesian analysis is new to PD DaTscan image
analysis, we first evaluated its accuracy — especially clustering
accuracy — by creating a synthetic dataset with known class
labels. To create a synthetic dataset that is close to real
DaTscan data, we used our algorithm on the real PPMI
dataset with 3 clusters (see Section V-C) to obtain estimates of
the model parameters ({7, As, &kz}, ). Using these estimated
parameters, we created a low, medium and large noise dataset
(the noise a;’s were set to 0.1%6% with A = 2, 1, 0) by keeping
existing {x;;1} and {Az;;} and generating the remaining data
according to (4). We also set 7 = 1/K to ensure that the
data are evenly distributed across different classes.

We divided this synthetic dataset randomly into 10 subsets
where 9 subsets were retained for training and 1 subset
for testing (rotated over all subsets). This procedure was
repeated 10 times and Gibbs sampling was run on the 10 by
10 training sets. For comparison, we also ran two other
algorithms: 1. An EM algorithm that maximizes the log-
likelihood of p (X|#,v) of Section III-C, but with Gaussian
noise. 2. A simplified Gibbs sampling with Gaussian noise and
the centrosymmetric constraint [7].

We used three measures to compare clustering accuracies
of the algorithms. The first measure is purity, which measures
the percentage of overlap of estimated and true class labels.
The second measure is Rand index, which measures the
proportion of data point pairs that are in agreement with the
true labels in terms of falling in the same class or different
classes [46]. Purity and Rand index have range O - 1, where
1 represents perfect clustering. The third measure is prediction
error. We use the MLDS model to predict the SBR values

TABLE |
CLUSTERING AND PREDICTION ACCURACIES OF GIBBS SAMPLING VS.
THE EM-ALGORITHM USING A SYNTHETIC DATASET

Noise Level 0.016 0.16% Ok

Purity|Rd Id|Pr Er|Purity|Rd Id|Pr Er|Purity|Rd Id|Pr Er

Gibbs- * [1.0009 1.000{0.004 0.997 [0.996 [0.037 0.853 | 0.644 |0.393
Gibbs 1.000|1.000|0.004| 0.997 [ 0.996 [0.037 | 0.781 [ 0.642 |0.401
EM ¢ 10.988]0.938(0.022]0.988 |0.957{0.045]0.758 | 0.629 [0.408

2 The best entry in each category is boldfaced.

b Gibbs- / Gibbs is the proposed Gibbs sampling with r-distributed /
normal-distributed model residues.

¢ EM is the version that maximizes the likelihood without the centrosym-
metric constraint.
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Fig. 4.  Model selection using cross validation (a) and Bayesian (b).
The y-axis has two scales corresponding to log-likelihood value (blue
solid square) and final number of nonempty subtypes (orange dashed
star) respectively. The number of nonempty subtypes is averaged over
10 folds for cross validation.

for time points > 3 and take the prediction error to be the
difference (L1 norm) between the prediction and true values
(details in Supplementary Section V).

Table I shows the mean purity and mean Rand index over
the 10 by 10 training sets, and mean prediction error over
the 10 by 10 test sets, for the three methods. We see that the
Gibbs sampling algorithms outperform the EM algorithm for
all performance measures. The two Gibbs samplers perform
very similarly except for the large noise case, where the
t-distribution version has a higher purity and Rand index
and lower prediction error. This analysis of synthetic data
justifies the use of Bayesian analysis with z-distributions over
maximum-likelihood methods.

C. Fitting MLDS to the PPMI Data

Having established the superiority of Gibbs sampling with
synthetic data, we turn to analyzing real PPMI data. We first
determined the number of subtypes using cross-validation
and Bayesian model selection as described in Section IV-B,
and then used Bayesian analysis to explore the posterior
distribution of the parameters.

1) Determining the Number of Subtypes: The results of using
cross-validation and Bayesian model selection are shown in
Fig. 4. The number of subtypes explored was between 1 and
10 (Kmax = 10). The blue solid curve in Fig. 4(a) shows the
log-likelihood of the test sets as a function of the number
of subtypes. As the number of subtypes increases, several
subtypes turn out to be empty, i.e. no subjects are assigned
to that subtype. The orange dashed curve in Fig. 4(a) shows
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Fig. 5. Clustered time series of the mean SBR for all the PPMI subjects. The columns show the subtypes discovered by the proposed approach. The
arrows are rendered with continuously changing colors that correspond to the 5 year period indicated by the colorbar on the left side. We can see
that different subtypes exhibit different progression rates. We also show our estimated trajectory starting from a fixed point (x = [1,0.75,1,1 .5]T) and

its reflection (duration indicated by the colorbar on the right side).

the mean number of nonempty subtypes. Fig. 4(b) shows the
same two quantities for Bayesian model selection.

Fig. 4 clearly shows that the log-likelihood values for
cross-validation and Bayesian model selection behave simi-
larly. The log-likelihood increases monotonically from 1 to
3 subtypes and then appears to saturate. The number of
nonempty subtypes found by both methods is similar as well.
In the final model, we chose 3 subtypes (K = 3) for further
analysis.

2) Parameter Estimation and Interpretation: The MLDS
model with three subtypes (K = 3) was fit to the PPMI
dataset using Bayesian analysis. The clustering results are
shown in Fig. 5. The subtype label is created by cal-
culating p (z;|X, «, B, y) from the samples, and assigning
argmaxy p (z; = k|X, o, 8, y) to subject i. This gives us 46,
257, and 62 subjects in subtypes 1, 2, and 3 respectively.
As the estimated trajectories show, different subtypes progress
with different speeds with subtype 1 being the fastest and
subtype 3 being the slowest. The mean and standard deviation
of the posterior distribution of the parameters are shown in
the top half of Table II for each subtype. The bottom half
of Table II (rows indicated by 4, v, u) shows the eigenvalues,
eigenvectors and dual basis of the eigenvectors of the mean
transition matrix for each subtype.

The main characteristics of Table II are: Row 73 (mixing
coefficient) in Table II indicates that subtype 2 has the highest
occupancy; a little over half of the subjects are contained
in this subtype. Subtype 3 and 1 have sequentially smaller

15 80 20
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~ 10 — =1

c c c

3 340 310

S o o
20 5

0 0 0
0 0.2 04 06 0.8 0 0.2 04 06 0.8 0 0.2 04 06 0.8
L2 norm of starting velocity L2 norm of starting velocity L2 norm of starting velocity
Subtype 1 Subtype 2 Subtype 3

Fig. 6. Histograms of the initial speeds for subtypes 1, 2, and 3. The
median velocities are 0.36, 0.19, and 0.13 SBR/year respectively.

occupancy. All subtypes have similar values for o, suggesting
that all subtypes have similar model residues.

Different subtypes have different progression rates and
progression trajectories, i.e. the MLDS model has successfully
captured PD heterogeneity. The variability in progression
rates is apparent in the eigenvalues of the transition matrices
in Table II (row 1). All eigenvalues are real, distinct, and
negative. Checking the magnitude of the eigenvalues, we see
that subtype 1 is the fastest progressing subtype, followed by
subtype 2 and then by subtype 3. Further evidence for the
relative speeds of the subtypes can be directly found in Fig. 6,
which shows histograms of starting speeds (i.e. the magnitude
of %) of all subjects in each subtype (initial changes
are the largest and therefore present the clearest evidence in
presence of noise).

The subtypes differ not only in speed but also in the shape of
the SBR trajectories as well. This is apparent in Fig. 5 which
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TABLE Il
PARAMETERS AND EIGENSTRUCTURE ESTIMATED BY BAYESIAN INFERENCE

Estimated Parameters (mean (std))*

Subtype]] k=1 I k=2 i k=3
v 2.85 (0.21)
) 0.146 (0.036) 0.612 (0.081) 0.242 (0.076)
o 0.064 (0.007) 0.059 (0.003) 0.067 (0.005)
—0.33 (0.06)| 0.16 (0.07) [—0.10 (0.06)| 0.09 (0.05) [|—0.21 (0.02)| 0.12 (0.03) [~0.01 (0.03)| 0.04 (0.02) [[~0.09 (0.04)| 0.05 (0.05) |-0.08 (0.05)| 0.08 (0.04)
AL 0.15 (0.06) [—0.44 (0.08)| 0.09 (0.06) [—0.05 (0.05)|| 0.06 (0.02) |[—0.22 (0.03)[ 0.07 (0.02) |~0.02 (0.02)|| 0.13 (0.03) |~0.24 (0.05)| 0.03 (0.05) [~0.01 (0.04)
—0.05 (0.05)[ 0.09 (0.06) [—0.44 (0.08)| 0.15 (0.06) ||~0.02 (0.02)| 0.07 (0.02) [~0.22 (0.03)| 0.06 (0.02) ||~0.01 (0.04)| 0.03 (0.05) |—0.24 (0.05)| 0.13 (0.03)
0.09 (0.05) [-0.10 (0.06)| 0.16 (0.07) |—0.33 (0.06)|| 0.04 (0.02) |~0.01 (0.03)| 0.12 (0.03) |-0.21 (0.02)|| 0.08 (0.04) |-0.08 (0.05)| 0.05 (0.05) [-0.09 (0.04)
Estimated Eigenstructure?
A —0.71 —0.39 —0.23 —0.20 —0.37 —0.22 —0.16 —0.09 —0.37 —0.18 —0.08 —0.02
LC 0.46 0.26 0.58 0.59 0.50 0.64 0.60 0.59 0.40 0.13 0.58 0.59
" LP —0.54 —0.66 0.40 0.39 —0.50 —0.30 0.38 0.39 —0.58 0.70 0.41 0.39
RP 0.54 —0.66 —0.40 0.39 0.50 —0.30 —0.38 0.39 0.58 0.70 —0.41 0.39
RC —0.46 0.26 —0.58 0.59 —0.50 0.64 —0.60 0.59 —0.40 0.13 —0.58 0.59
LC 0.41 0.40 0.54 0.67 0.39 0.46 0.51 0.35 0.41 —0.54 0.58 0.97
u LP —0.58 —0.60 0.46 0.27 —0.61 —0.70 0.51 0.75 —0.58 0.82 0.40 —0.18
RP 0.58 —0.60 —0.46 0.27 0.61 —0.70 —0.51 0.75 0.58 0.82 —0.40 —0.18
RC —0.41 0.40 —0.54 0.67 —0.39 0.46 —0.51 0.35 —0.41 —0.54 —0.58 0.97

4 7 is the fraction of the PD subjects that are contained in each subtype. A and O’i are the transition matrix and the unscaled variance for each subtype.

b The bottom half shows the eigenvalues ()), the eigenvectors (v) and the dual basis of the eigenvectors (u) of the mean transition matrices.

shows the SBR trajectories of subjects in each subtype. The
figure also shows model trajectories (smooth curves overlaid
on raw trajectories) for two initial points. These trajectories
clearly have different speed, extent, and shape.

The spatial patterns of progression as evident in the dual
basis of the eigenvectors of the transition matrices are espe-
cially interesting. Recall from Section III-A that a symmetric
or anti-symmetric dual basis vector can be interpreted as
representing the symmetry or asymmetry of the disease across
the two brain hemispheres. Since all eigenvalues are real
and negative, symmetric/anti-symmetric dual basis vectors
capture how the symmetry/asymmetry of dopamine transporter
concentration (i.e. the mean/difference of a x Caudate + f§ x
Putamen between both hemispheres) changes as the disease
progresses.

The leading dual basis vector in every subtype in Table II
(row V) is anti-symmetric, with a, f having opposite signs.
This implies that the loss of asymmetry in the disease is the
fastest spatial progression pattern among all linear combina-
tions of SBRs. The last dual basis vector in subtype 1 and 2 is
symmetric with a, f having the same sign. This dynamical
mode clearly represents the “mean” of all four regions. Since
this mode has the smallest eigenvalue, the mean SBR is the
slowest index of disease progression in early-stage PD. Thus
Table II suggests that the rate of asymmetry change is several
times faster than the change in the mean SBR.

3) Relationto Demographics: Fig. 7 shows violin plots of the
age and sex distribution of PD subjects in the three subtypes.
The 95-percentile age range in the three subtypes is 61.0 =
18.1, 63.2+19.3, 61.5+22.2 years respectively. A t-test with
a null hypothesis of equality of means of the ages of subtype
1 vs 2,2 vs 3, 1vs 3 gives p-values of 0.14, 0.26, 0.82.
Thus the null hypothesis cannot be rejected, suggesting that
the mean ages in the subtypes are equal. The male population
is distributed in the three subtypes as 11.8%, 72.6%, 15.6%.
The female population is distributed as 14.1%, 66.4%, 19.5%.
A chi-square test, evaluating the null hypothesis that these

N
o
o

Number of subjects
) I
o o

o
o

Subtype Subtype

Fig. 7. Age and sex distribution in image-based subtypes.

distributions are equal, gives a p-value of 0.46, suggesting
that the null hypothesis cannot be rejected again. In spite of
that, the female population is slightly more dispersed with
subtypes 1 and 3 having larger fractions of the population.

D. Model Validation and Results Sensitivity

Finally, we turn to evaluating other aspects of the model:
the use of ¢-distributions for model residues, the train-test
consistency of the model residue, and the sensitivity of the
result to caudate and putamen templates.

1) Validating the Residue Distribution: We validate the model
residue distribution by using a Q-Q plot, i.e. by plotting
the quantiles of the model residues against that of a normal
distribution and a ¢-distribution for each region and each
subtype. Fig. 8 shows Q-Q plots of the putamen residues (the
caudate residues show a similar trend and are omitted to save
space) and fitted lines representing a perfect fit to a residue
model. A Q-Q plot crossing the line at a steeper slope implies
that the data have heavier tails than the assumed distribution.
It is clear from Fig. 8 that the residues in all three subtypes
have significantly heavier tails than the normal distribution.
And the t-distribution assumption appears to be a significant
improvement over the normal distribution assumption in every
subtype.
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Fig. 8. Q-Q plots of the model residue vs normal (blue cross) and vs
t-distribution (green circle) for the putamina.
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Fig. 9. Box plots of model residues from training sets and test sets in the
10-fold cross validation. The whiskers correspond to +2.70 and 99.3%
coverage if the residues are normally distributed. Residues beyond the
limit of y-axis are not shown.

2) Train-Test Consistency of the Model Residue: To test
whether our algorithm overfits the data, we also evaluated the
train-test consistency of the model residue with 10-fold cross
validation. Specifically, nine folds were taken as the training
set with K = 3 to estimate parameters @, 0. These parameters
were applied to the subjects in the remaining fold (test set)
to predict their subtypes (via arg max; p (z = k|x, (A), \3) using
Eq. (S20) in Supplementary Section V) and the norms of the
model residues ||€;;|| were calculated from the subtype Ak
according to Eq. (2).

Fig. 9 shows box plots of training and test set residues. For
clarity, only the scatter of the residues in the extreme quantiles
is shown. Fig. 9 shows that our algorithm does not overfit the
data (overfitting would lead to substantially larger test errors).

3) Sensitivity to Caudate and Putamen Masks: Partial volum-
ing and small variations in subject-specific anatomy can
potentially affect the estimated model parameters. To test
the sensitivity to these, we further dilated the caudate and
putamen masks by 1 and 2 voxels and then filtered them with
a Gaussian filter having ¢ = 0.5 pixels. We re-estimated the
parameters using Bayesian analysis with these dilated masks.
Dilating by 1 voxel increases the volume of the mask by
55% for caudate and 41% for putamen (133% and 101%
when dilating 2 voxels). Even with such large changes to the
masks, the number of subtypes (see Fig. 10) as well as the

1 4260 ¥
2 3 4 5 6 1t 2 3 4 s
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(a) Masks dilated by 1 voxel (b) Masks dilated by 2 voxels

Fig. 10. Bayesian model selection for dilated masks. The y-axis has two
scales corresponding to log-likelihood value (blue solid square) and final
number of nonempty subtypes (orange dashed star) respectively.

parameter estimates were similar to the original estimates. The
number of subtypes remained at 3, and the relative changes
in the transition matrices of the three subtypes, calculated as
1A — Adlaed) /)| A )| p, were 0.04, 0.08, 0.11 for masks
dilated by 1 voxel and 0.47, 0.19, 1.67 for masks dilated
by 2 voxels. We also calculated the Rand index between the
subtype labels in Section V-C and the labels estimated using
the dilated masks. For masks dilated by 1 voxel, the Rand
index was 0.92, while for masks dilated by 2 voxels, the Rand
index was 0.73. This implies that the progression pattern
and subtyping are not sensitive to partial volume effects or
anatomical variations.

E. Correlation With MDS-UPDRS Scores

Finally, we sought correlation between DaTscan-based pro-
gression subtypes and clinical movement scores as present in
the Part III of the MDS-UPDRS exam. In PPMI, longitudinal
scores of each patient are sampled more frequently than
DaTscan images: at 3 months intervals for the first year,
at 6 months intervals for the next 4 years, and at 1 year
intervals for the following 3 years. We retained only those
scores that corresponded to the imaging times. Part III scores
can be influenced by medication, but PPMI provides scores
for subjects in the off-medication state. We only used the
off-medication scores.

MDS-UPDRS Part III has 36 scores of which we retained
the first 33 for every subject for every imaging time. The last
three ratings (“were dyskinesias present?,” “did these move-
ments interfere with your ratings?,” “Hoehn and Yahr stage”)
were discarded either because they were non-informative (all
subjects scored the same score) or because they could be
considered a summary of other ratings (e.g. “Hoehn and Yahr
stage”).

In the PD literature, Part III scores are added to create
a single number which summarizes the state of movement
disorder for the patient. This summed score is called Total
Movement Score (TMS) [47]. Larger values of TMS reflect
worse PD symptoms. Fig. 11 shows the scatter plots of TMS
for all subjects in the three progression subtypes. The plots
in Fig. 11 also show the best-fit linear time regression to the
scores. A slope, intercept and a p-value are calculated from
the best-fit line. The p-value corresponds to testing the null
hypothesis that the slope of the best-fit line is 0. A p-value less
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Fig. 11. Linear regression to the MDS-UPDRS Part lll total scores for each subtype. The p-value is for the null hypothesis that the slope is 0.

than 0.05 indicates that the slope is not zero, at a significance
level of 0.05.

Fig. 11 shows that regressing TMS linearly with time for all
subtypes gives a positive slope with a p-value significantly less
than 0.05. Moreover, the slope for subtype 1 is bigger than the
slopes for subtype 2 and subtype 3, which is consistent with
image-based progression — subtype 1 has the fastest progres-
sion. The slope for subtype 2 is only slightly bigger than that
for subtype 3, implying that the difference in terms of clinical
symptom progression rate of TMS between subtype 2 and
subtype 3 is smaller. Thus, TMS progression is consistent with
DaTscan progression subtypes.

VI.
A. The MLDS Model

MLDS models the mean SBR from the caudates and the
putamina. This is consistent with almost all of the PD DaTscan
analysis literature, e.g. [47], [48]. In spite of its popularity,
we readily acknowledge that there are limitations to this para-
digm: the posterior-to-anterior anatomical gradient of disease
progression in the striatum cannot be captured by mean SBRs.
Moreover, extra-striatal structures such as the globus pallidus
and the thalamus are also affected by PD [49], [50], but they
are not included in the model. Clearly, what is needed is a
finer grained model which also takes striatal subregions and
extra-striatal regions into account. We plan to address this in
the future.

The MLDS model can be generalized to other longitudinal
datasets as long as the underlying progression satisfies a
linear differential equation. For example, it can be naturally
extended to high dimensional features (e.g. voxelwise SBR)
from DaTscan images by imposing a low-rank constraint on
the transition matrices. Another example is the graph diffusion
equation for modeling the progression of misfolded protein in
the brain’s connectivity network [23], where the connectivity
information can be encoded in the prior to constrain the
transition matrices.

DiscuUsSION

B. Inferred Subtypes and Progression Patterns

The subtypes found by Bayesian inference clearly capture
the progression heterogeneity as it manifests in DaTscans.
Evidence, presented in Supplementary Section VI-B, shows
that the subtypes do not represent time delayed versions of a
single progression prototype.

The subtypes have different progression speeds with sub-
type 1 having the fastest progression, subtype 2 having a
more moderate progression, and subtype 3 having the slowest
progression. The values for 7y in Table II suggest that slightly
more than half of the PD subjects belong to subtype 2,
the remaining divided between subtype 1 and 3. Thus, one
interpretation of the subtypes is that subtype 2 represents
typical progression, while subtypes 1 and 3 represent the
extremes of progression.

The presence of three progression subtypes in the
PPMI dataset is also supported by other machine learning
approaches. For example, Zhang et al. combine image and
non-image features in the PPMI dataset (SBR, clinical scores,
biospecimen exams) in a deep learning framework to find mod-
erate, mild, and rapid progression subtypes [35]. However, that
analysis does not reveal any eigenvectors or time constants.
And our analysis only uses DaTscans.

It is remarkable that the eigenvector with the fastest time
constant in all three subtypes corresponds to conversion from
asymmetry to symmetry. The decrease of asymmetry in (non-
DaTscan) PET images has been noted in the previous research
[4], [51]. What MLDS reveals is that the decrease in asym-
metry has the fastest possible time constant amongst all linear
combinations of LC, LP, RP, RC.

The correlation between image-based subtypes and
MDS-UPDRS Part IIT scores shows that at a group level,
the progression rates measured by DaTscans reflect the pro-
gression rates of clinical symptoms. Note that in the PD
literature, the reported correlations between DaTscans and
UPDRS scores are usually quite small, ranging in magni-
tude from 0.1 to 0.3. The PD literature also suggests that
correlations between changes in DaTscans and MDS-UPDRS
are not significant [47]. However, these studies do not take
subtypes into account. Our results show that TMS changes in
the subtypes are similar to the subtype progression rates.

VII. CONCLUSIONS

This paper introduced a new longitudinal model and a
Bayesian inference methodology for identifying progression
subtypes and for finding disease progression patterns and their
time constants for PD. The model is a mixture of linear
dynamical systems, and is based on identifying key properties
of PD progression. The model introduces several new ideas
to PD modeling: coupled progression of multiple regions
with population mirror symmetry, ¢-distributed model residues,
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mixtures of dynamical systems for heterogeneity, and a proper
Bayesian analysis using Gibbs sampling.

Three image-based progression subtypes are found, differ-
ing in progression speeds. Each subtype displays characteristic
spatial progression patterns with associated time constants.
The fastest progression pattern in all subtypes is the loss of
hemispheric asymmetry, while the slowest progression pattern
is the change in the mean SBR. This finding has implications
for clinical trials that assess the effectiveness of disease
modifying therapies. The DaTscan-based subtypes also have
different TMS progression rates.
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