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Abstract We define the space of affine shapes of k points in
Rn to be the topological quotient of (Rn)k modulo the nat-
ural action of the affine group of Rn. These spaces arise nat-
urally in many image-processing applications, and despite
having poor separation properties, have some topological
and geometric properties reminiscent of the more familiar
Procrustes shape spaces �k

n in which one identifies configu-
rations related by an orientation-preserving Euclidean simi-
larity transformation. We examine the topology of the con-
nected, non-Hausdorff spaces Shk

n in detail. Each Shk
n is a

disjoint union of naturally ordered strata, each of which is
homeomorphic in the relative topology to a Grassmannian,
and we show how the strata are attached to each other. The
top stratum carries a natural Riemannian metric, which we
compute explicitly for k > n, expressing the metric purely
in terms of “pre-shape” data, i.e. configurations of k points
in Rn.

Keywords Shape space · Affine shape

1 Introduction

Procrustes shape spaces �k
n of k labeled points (“land-

marks”) in Rn [5, 11, 12, 22] have proven useful in many sta-
tistical and non-statistical applications. Several authors have
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suggested an extension of Procrustes shape spaces to affine-
shape spaces [15, 18, 21, 23], which we denote Shk

n. These
are spaces of configurations of k labeled point-landmarks
in Rn modulo the action of Aff(n), the affine group of Rn.
Affine-shape spaces arise very naturally in many image-
processing applications. Assuming a pinhole camera model,
images are formed under a perspective transformation. If an
object is distant from the camera, the perspective transfor-
mation can be approximated closely by an affine transfor-
mation [8]. Hence, many problems involving object recog-
nition or shape statistics of object landmarks in images are
naturally posed in an affine-shape space. For example, cre-
ation of image mosaics and panoramas from individual im-
ages [15, 24], the recognition of object boundaries and sil-
houettes [1–3, 14, 25, 26], and the estimation of structure
from motion [4] can benefit from the mathematical frame-
work of affine shapes [10]. Statistical analysis on manifolds
[9, 19] that attempts to compensate for affine transforms can
also benefit from this analysis. In medical image analysis,
affine transformations are often used to model the fitting of
an anatomical template (or an atlas) to an image [6, 13, 20].
By creating a distance in an affine-shape space of landmarks
that are common to the template and the image, it should be
possible to evaluate the quality of the assumption that the
affine transform is suitable for the task.

Motivated by these applications we turn to analyz-
ing affine-shape spaces. Some properties of these spaces
are already known or are mentioned by other authors
[15, 18, 21, 23]. In particular, it is known that each affine-
shape space is a disjoint union of a naturally ordered strata,
each of which is homeomorphic in the relative topology to
a Grassmannian. However, these spaces are non-Hausdorff,
and their topology does not appear to have been analyzed
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in detail,1 which we do in this paper. The top stratum also
carries a natural Riemannian metric which provides a dis-
tance between affine-shapes. This intrinsic Riemannian met-
ric coincides (up to a constant factor) with the extrinsic
Riemannian metric used in [18], but in this paper we pro-
vide explicit formulas for the metric directly in terms of
pre-shape data rather than in terms of an embedding of the
Grassmannian into a Euclidean space.

In spite of the differences between the affine-shape
spaces Shk

n and Procrustes shape spaces �k
n (the former are

not even Hausdorff, while the latter are not just Hausdorff,
but cell complexes; see [12]), the Shk

n have some topological
and geometric properties that are reminiscent of the �k

n . At
the topological level, both carry a natural stratification by the
dimension of the affine span of a configuration that repre-
sents a given shape (see [12] for the Procrustes case). There
are also natural embeddings �k

n ↪→ �k+1
n and Shk

n ↪→ Shk+1
n

given by appending to a configuration its centroid. These
stratifications and embeddings are preserved by the natural
projections �k

n → Shk
n. At the geometric level, the way in

which we produce a metric on the top stratum of Shk
n is by

Riemannian submersion, analogously to what one does on
the nonsingular part of �k

n . Later (Remark 4.3) we will see
that there is another geometric similarity. Some additional
comparisons between the Shk

n and �k
n are given in the latter

part of Sect. 4.

2 Notation and Preliminaries

For n ≥ 1 let GL(n) = GL(n,R) be the group of invertible
n × n real matrices, and GL+(n) the subgroup of matrices
with positive determinant. To avoid extra notation, we will
often identify elements of GL(n) with the associated linear
transformations of Rn. We denote by Aff(n) the group of
invertible affine transformations of Rn, and by Aff+(n) the

1As we shall see, Shk
n can be naturally identified with a quotient space

that arises from a “bad” linear action of the group GL(n,R). Under-
standing such quotients, at least when the group is SL(n,C) acting on
complex projective space, is a central problem in Geometric Invariant
Theory, a subfield of algebraic geometry. These quotients arise in con-
structions much more general than the one in this paper; cf. [17]. Strat-
ification is an omnipresent phenomenon, and the Geometric Invariant
Theory literature shows that the strata carry beautiful structures—e.g.
they are projective varieties, as are the strata of Shk

n. However, it is
not easy to tell from the geometric-invariant theorists’ elegant presen-
tation of their framework, which uses tools and language from both
algebraic and differential geometry, just which facts about Shk

n follow
directly from what is in this literature. In particular it is not easy to
extract information about how the strata are glued together, and the
topology community does not seem to be aware of the work done by
the algebraic geometers in this area. In this paper we provide a direct,
self-contained derivation of the topology on Shk

n, without appealing to
any abstract machinery with which workers in the shape-space field
may be unfamiliar.

subgroup group of Aff(n) whose elements preserve orienta-
tion. (Thus Aff(n) is generated by GL(n) and translations;
for Aff+(n) the group GL+(n) replaces GL(n).)

For k ≥ 1 and n ≥ 0, the space of affine pre-shapes of k

labeled points in Rn is simply (Rn)k := Rn ×Rn ×· · ·×Rn,
the space of lists of k points in Rn. Any transformation
T : Rn → Rn acts on such a list by simultaneous motion of
the points in the list: T (v1, . . . , vk) := (T (v1), . . . , T (vk)).
In particular, Aff(n) and Aff+(n) act on (Rn)k . We de-
fine the space of affine shapes (respectively, oriented affine
shapes) of k points in Rn to be the quotient space Shk

n :=
(Rn)k/Aff(n) (resp., ˜Sh

k

n := (Rn)k/Aff+(n)), endowed with
the quotient topology. Note that in contrast to what is usu-
ally done for Procrustean shape spaces, we do not exclude
lists (v1, . . . , vk) in which all the vi are identical, which in
each quotient Shk

n and ˜Sh
k

n become a single point that we
denote 0. In the Procrustean case, it is necessary to exclude
this singular point in order to get a nice shape-space, but in
the case of affine shapes, this singular point fits quite sys-
tematically into the general picture we will present.

The first step in determining the topology of Shk
n and

˜Sh
k

n is to quotient (Rn)k by the translation subgroups of
Aff(n) and Aff+(n). Let Hn,k := {(v1, . . . , vk) ∈ (Rn)k |
∑

i vi = 0}, an n(k − 1)-dimensional subspace of (Rn)k

that is preserved by the action of GL(n) and but is not
preserved by any nontrivial translation. For every v =
(v1, . . . , vk) ∈ (Rn)k there exists a unique translation Tv

for which Cen(v) := Tv(v) ∈ Hn,k , and the map v → Tv

is continuous. (The centering map Cen is simply the map
(v1, . . . , vk) �→ (v1 − v0, . . . , vk − v0), where v0 is the “cen-
ter of mass” (

∑

i vi)/k.)
Thus there is a natural 1-1 correspondence between

Shk
n and Hn,k/GL(n), and similarly between ˜Sh

k

n and
Hn,k/GL+(n). Using the continuity of v �→ Tv, it is not hard
to show that these correspondences are homeomorphisms.
Thus

Shk
n

∼= Hn,k/GL(n), ˜Sh
k

n
∼= Hn,k/GL+(n) (2.1)

(throughout this paper, in the context of topological spaces
“∼=” means “homeomorphism” or “is homeomorphic to”).

The actions of GL(n) and GL+(n) on Rn are not proper
(there exist orbits that are not closed subsets of Rn). Quo-
tient spaces of non-proper group actions are notoriously ill-
behaved. We recall the reason: suppose a group G acts on a
topological space X, that p ∈ X is a point whose orbit Op

is not closed in X, and that q ∈ X lies in the closure of Op

but not in Op itself. Then, letting p̄, q̄ denote the images
of p,q in the quotient X/G, every open neighborhood of q̄

contains p̄. In particular X/G is not Hausdorff. This gen-
eral fact applies to spaces of affine shapes (or oriented affine
shapes) in Rn for all n ≥ 1. As we will see later, every shape
p̄ represented by a pre-shape p contained in a proper affine
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subspace of Rn is a singular point of shape space, in the
sense that there are points q̄ in shape space for which every
open neighborhood of p̄ contains q̄ .

To describe the nonsingular points of Shk
n and ˜Sh

k

n we in-
troduce the following notation: Rn,k∗ := {v = (v1, . . . , vk) ∈
(Rn)k | � affine subspace of Rn of dimension < n contain-
ing all the vi}, H

n,k∗ := Hn,k ∩ Rn,k∗ , Shk
n,∗ := Rn,k∗ /Aff(n),

˜Sh
k

n,∗ := Rn,k∗ /Aff+(n). The reader may easily verify the
following facts:

1. The following are equivalent: (i) (v1, . . . , vk) ∈ Rn,k∗ ;
(ii) for each fixed j ∈ {1, . . . , k} the vectors {vi − vj }ki=1
span Rn; and (iii) the vectors {vcen

i }ki=1 span Rn, where
(vcen

1 , . . . , vcen
k ) = Cen(v).

2. H
n,k∗ = {(v1, . . . , vk) ∈ Hn,k | � proper subspace

of Rn containing all the vi

(equivalently, the {vi} span Rn)}
3. Since the affine span of the vectors {vi} comprising an

element v ∈ Rn,k is of dimension at most k − 1, if k ≤ n

then the sets Rn,k∗ and H
n,k∗ are empty.

4. The centering map induces homeomorphisms Shk
n,∗ ∼=

H
n,k∗ /GL(n), ˜Sh

k

n,∗ ∼= H
n,k∗ /GL+(n).

We will see in Sect. 3 that Shk
n,∗ and ˜Sh

k

n,∗ are smooth man-
ifolds in a natural way; we think of them as the sets of

“smooth points” of Shk
n and ˜Sh

k

n,∗. We define the singular

set Singk
n ⊂ Shk

n (respectively, ˜Sing
k

n ⊂ ˜Sh
k

n) to be the com-
plement of Shk

n,∗.
Before determining the topology of Shk

n for general k,n

it is instructive to work out a simple example:

Example 2.1 (Shapes in R1) Since GL(1) = R∗ := R − {0},
if k ≥ 2 we have Shk

1,∗ = H
k,1∗ /R∗ ∼= RPk−2, since the di-

mension of Hk,1 is k −1; if k = 1 then Shk
1,∗ is empty. Singk

1

consists only of the 1-point shape 0. Thus, as a set

Shk
1 = {0}

∐

{∅ if k = 1,

Shk
1,∗ ∼= RPk−2 if k ≥ 2.

(2.2)

The induced topology on the subset Shk
1,∗ (for k ≥ 2) is the

usual topology on RPk−2. Furthermore for every v̄ ∈ Shk
1,∗

there exists an open neighborhood U(v̄) that excludes 0,
since for any centered pre-shape v ∈ H

k,1∗ there exists an
open neighborhood U(v) that excludes the pre-shape 0.
However, since 0 is in the closure of every orbit of GL(1) on
Hk,1, every open neighborhood of {0} includes every point
of Shk

1,∗. Said another way, the only open neighborhood of 0
in Shk

1 is the entire space Shk
1.

Similarly, we find

˜Sh
k

1 = {0}
∐

{∅ if k = 1,

˜Sh
k

1,∗ ∼= Sk−2 if k ≥ 2
(2.3)

(where Sk−2 is the (k − 2)-sphere) with the same sort of
topology that Shk

1 has. Observe that for this value of n the

natural projection ˜Sh
k

n → Shk
n is two-to-one on the smooth

set and one-to-one on the singular set. We will see later that
this is the case in general.

Remark 2.2 Of course ˜Sh
k

1,∗ is the same as the Procrustes
shape space �k

1 , since the group of orientation-preserving,
origin-preserving, similarity transformations of R1 is ex-
actly GL+(R1).

3 The Smooth Sets Shk
n,∗, ˜Sh

k

n,∗ for General n

The space (Rn)k can be naturally identified with Rn,k , the
space of real n × k matrices. Rather than introduce nota-
tion for this natural isomorphism, we will simply regard el-
ements v ∈ (Rn)k as living simultaneously in Rn,k , and re-
gard Rn,k∗ and H

n,k∗ as subspaces of Rn,k . However, when we
wish to emphasize characteristics of an element v ∈ (Rn)k

as a matrix rather than as a list of vectors, we will write
vmat for the associated matrix. Temporarily using “·” to de-
note the action of GL(n) on (Rn)k , for A ∈ GL(n) we have
(A · v)mat = Avmat, i.e. the action carries over into simple
matrix-multiplication. Therefore we will henceforth simply
write “Av” instead of “A · v”.

For all v ∈ Rn,k , let Wv ⊂ Rk denote the row space
of vmat. A more abstract characterization of Wv that will
be conceptually useful later is as follows. For any finite-
dimensional vector space Z let Z∗ denote the dual space
Hom(Z,R). Then there are natural isomorphisms Zk ∼= Z⊗
Rk ∼= Hom(Z∗,Rk). Let L : Zk → Hom(Z∗,Rk) denote the
composite isomorphism, and for v ∈ Zk write Lv = L(v);
thus Lv is a map Z∗ → Rk . Taking Z = Rn, the row space
Wv is simply image(Lv), and if v = (v1, . . . , vk) then Lv

is given explicitly by Lv(z) = (〈z, v1〉, . . . , 〈z, vk〉), where
〈·, ·〉 denotes the dual pairing between Z∗ and Z.

Let Rk
0 ⊂ Rk be the subspace consisting of all vectors

whose components sum to 0; thus dim(Rk
0) = k − 1. As-

sume for now that k > n, so that H
n,k∗ is nonempty. If

v ∈ Hn,k , then every row of vmat lies in Rk
0. If v ∈ H

n,k∗ ,
then the columns of vmat span an n-dimensional space,
hence so do the n rows (equivalently, image(Lv) ⊂ Rk

0 is
n-dimensional); thus they are a linearly independent set
in Rk

0. Since left-multiplication by an invertible matrix does
not change the row space, we have WAv = Wv for all A ∈
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GL(n). For any linear transformation Rn → Rn (respec-
tively, any n × n matrix B), letting B∗ : (Rn)∗ → (Rn)∗
denote the map dual to B (resp., the dual of the map “left-
multiplication by B”), we have LBv = Lv ◦ B∗. In our cur-
rent situation, since A is an isomorphism so is A∗, and there-
fore image(LAv) = image(Lv).

Recall that for any finite-dimensional vector space X,
the (generalized) Stiefel manifold Vn(X) of n-frames in X

(n ≤ K := dim(X)) is the set of linearly independent n-
tuples2 of vectors in X, topologized as a subset of Xn, in
which it is open. For each n-frame q ∈ Vn(X), let Sq ⊂ X

be its span—an n-dimensional subspace having q as a ba-
sis. The group GL(n) acts on Vn(X) in an obvious way, and
for A ∈ GL(n) we have SAq = Sq (A just changes the ba-
sis of Sq ). The assignment q �→ Sq is a map from Vn(X)

to Gn(X), the Grassmannian of n-dimensional subspaces of
X, and exhibits Gn(X) as the quotient Vn(X)/GL(n).

Thus the map that assigns to v ∈ H
n,k∗ its n-tuple of

rows is a diffeomorphism H
n,k∗ → Vn(Rk

0), and induces a

smooth map τ k
n : H

n,k∗ → Gn(Rk
0), τ k

n (v) = Wv, that sat-
isfies τ k

n (Av) = τ k
n (v). Hence τ k

n induces a well-defined
map τ̄ k

n : Shk
n,∗ = H

n,k∗ /GL(n) → Gn(Rk
0) that one can eas-

ily check is a homeomorphism. This homeomorphism, to-
gether with the natural smooth structure of the Grassmanian
Gn(Rk

0), endows Shk
n,∗ with the structure of a smooth man-

ifold; thus τ̄ k
n becomes a diffeomorphism Shk

n,∗ → Gn(Rk
0).

Any isomorphism Rk
0 → Rk−1 then gives rise to a diffeo-

morphism Shk
n,∗ → Gn(Rk−1), a manifold of dimension

n(k − 1 − n). Note that G1(Rk−1) = RPk−2, the space seen
earlier in Example 2.1.

We can do a similar analysis for ˜Sh
k

n,∗. In this case we

consider the manifold Ṽn(Rk
0) of oriented frames, introduc-

ing an equivalence relation on Vn(Rk
0) in which two frames

are equivalent if and only some element of GL+(n) car-
ries one to the other. This divides Vn(Rk

0) into two dis-
joint sets labeled by orientation. Letting ˜Gn(Rk

0) denote the
Grassmannian of oriented n-planes in Rk

0 (a double-cover
of Gn(Rk

0)) we have ˜Gn(Rk
0) = Ṽn(Rk

0)/GL+(n). Thus τ k
n

induces a homeomorphism τ̃ k
n : ˜Sh

k

n,∗ = H
n,k∗ /GL(n) →

˜Gn(Rk
0), which we use to endow ˜Sh

k

n,∗ with the structure
of a manifold.

Thus we have now proven the following theorem:

Theorem 3.1 If k > n then Shk
n,∗ is naturally diffeomorphic

(via τ̄ k
n ) to Gn(Rk

0), and ˜Sh
k

n,∗ is naturally diffeomorphic
(via τ̃ k

n ) to ˜Gn(Rk
0).

Remark 3.2 The approach we have taken so far has one
inelegant feature: it seems to rely on a choice of lin-

2We use the convention of [16, §12], in which the frames are not re-
quired to be orthonormal.

ear coordinate system in Rn, despite the fact that the
shape space itself is independent of such choices, as evi-
denced by our final identifications of Shk

n,∗ with Gn(Rk
0).

At the cost of abstraction, one can avoid this inelegance
as follows. Replace Rn with Zaff, an n-dimensional real
affine space with underlying vector space Z. An affine
pre-shape of k points is then any element of (Zaff)

k . Let
Hk(Z) = {(v1, . . . , vk) ∈ Zk | ∑

i vi = 0}, and Hk∗ (Z) =
{(v1, . . . , vk) ∈ Hk(Z) | span{vi} = Z}. There is a natural
“centering map” (Zaff)

k → Hk(Z) that is completely inde-
pendent of any choice of origin in Zaff. The shape space
Shk(Z), defined as Zk

aff/Aff(Zaff), is then homeomorphic
to Hk(Z)/GL(Z), where Aff(Zaff) is the group of invertible
affine transformations of Zaff and GL(Z) the group of invert-
ible linear transformations of Z. For v ∈ Hk(Z) define Lv :
Z → Rk as before. Then image(Lv) ⊂ Rk

0, and if v ∈ Hk∗ (Z)

then Lv is injective, so that dim(Wv) = n. Thus the map
τ : v �→ image(Lv) sends Hk∗ (Z) to Gn(Rk

0). For any A ∈
GL(Z), let A∗ denote the dual map in GL(Z∗); by our ear-
lier argument image(LAv) = image(Lv ◦ A∗) = image(Lv).
Thus τ̂ descends to a map τ̄ : Hk∗ (Z)/GL(Z) → Gn(Rk

0).
One can again check that this map is homeomorphism, and
then proceed as before to endow Shk∗(Z) := Hk∗ (Z)/GL(Z)

with the smooth structure of Gn(Rk
0).

4 Stratification of Shk
n

We have already “reduced” the quotient (Rn)k/Aff(n) to
Hn,k/GL(n), by first modding out by translations, and will
be using further reductions to analyze the singular sets in

Shk
n and ˜Sh

k

n. Because we are dealing with a non-proper
group action, it may be worthwhile to remind the reader that
only a very minimal set of hypotheses is needed to ensure
that such reductions are not merely bijections, but homeo-
morphisms:

Lemma 4.1 (Reduction Principle) Suppose a group G acts
on a topological space X by continuous transformations and
that there is a subset Y ⊂ X with the following properties:

1. For all x0 ∈ X, there exists an open neighborhood Ux0 of
x0 and a (not necessarily unique or continuous) function
g(x0) : Ux0 → G such that the map x �→ g(x0)(x) · x is a
continuous map Ux0 → Y .

2. For all y ∈ Y , if g ∈ G satisfies g ·y ∈ Y , then there exists
gy ∈ GY with gy · y = g · y, where GY = {h ∈ G | h ·
Y ⊂ Y }.

Then the assignment x �→ g(x)(x) · x induces a well-defined
map φ : X/G → Y/GY , independent of choices of the maps
g(x), given by φ(G · x) = GY · (g(x) · x), and φ is a homeo-
morphism with respect to the quotient topologies.
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Proof Left to reader, with the reminder that quotient maps
for group-actions are always open maps. �

The complement Singk
n of Shk

n,∗ in Shk
n is the quotient

by GL(n) of the set of elements v = (v1, . . . , vk) ∈ H
n,k∗ for

which dim(span{vi}) ≤ n − 1, and hence for which the {vi}
are contained in some (n − 1)-dimensional subspace P ⊂
Rn. Every such P can be carried by some AP ∈ GL(n) to
a fixed copy of P0 of Rn−1 ⊂ Rn, which we will take to be
the subspace given by the condition “last coordinate = 0”
and, in a small enough neighborhood of P in Gn−1(Rn), AP

may be chosen to depend continuously on P . The subgroup
of GL(n) preserving this fixed Rn−1, hence preserving Y :=
Hn,k ∩ (P0)

k ⊂ Hn,k , is

GY =
{(

A′ b

0 c

)

| A′ ∈ GL(n − 1), b ∈ Rn−1, c ∈ R∗

}

.

(4.1)

Given v = (v1, . . . , vk) ∈ Y and A ∈ GL(n) for which Av ∈
Y , there exists Av ∈ GY for which Avv = Av (choose a basis
{zi}m1 of span{v1, . . . , vk}, extend to a basis {zi}n1 of Rn with
zi ∈ P0 for i < n, and define Avzi = Azi for i ≤ m, Avzi =
zi for i > m). In the notation of (4.1), the action on P0 of
the element of GY is simply left-multiplication by A′ (after
identifying P0 with Rn−1 by dropping the last coordinate).
Thus using Lemma 4.1 we obtain a natural homeomorphism

σk
n,n−1 : Singk

n = Hk,n−1/GL(n − 1) → Shk
n−1. (4.2)

By definition, we have Shk
n = Shk

n,∗
∐

Singk
n, and we ex-

press certain aspects of the topology of this decomposition
by writing

Shk
n

∼=′ Shk
n,∗

∐

Singk
n (4.3)

∼=′ Shk
n,∗

∐

Shk
n−1 (4.4)

∼=′ Gn(Rk
0)

∐

Shk
n−1 (4.5)

where “∼=′” means only that the left-hand side is a disjoint
union of sets, each of which, in the relative topology, is
homeomorphic to one of the sets on the right-hand side. As
already seen in Example 2.1 with j = 1, Shk

j is not homeo-

morphic to Singk
j

∐

Shk
j−1 topologized as the union of inde-

pendent topological spaces.
For 0 ≤ j ≤ n let us define

H
n,k
j = {v ∈ Hn,k | rank(vmat) = j},

Shk
n,j = H

n,k
j /GL(n) ⊂ Shk

n

(so H
n,k
n and Shk

n,n are now alternative names for H
n,k∗

and Shk
n,∗). The discussion above leads us to the follow-

ing theorem, part (a) of which (minus the indicated maps)
is stated without proof as Theorem 2.1 in [18].

Theorem 4.2 Let k ≥ 1, n ≥ 0. (a) If k > n then

Shk
n

∼=′ Shk
n,n

∐

Shk
n,n−1

∐

· · ·
∐

Shk
n,1

∐

Shk
n,0 (4.6)

� id. � σk
n,n−1 � σk

n,1 � σk
n,0

∼=′ Shk
n,∗

∐

Shk
n−1,∗

∐

· · ·
∐

Shk
1,∗

∐

Shk
0 (4.7)

� τ k
n � τ k

n−1 � τ k
1 � τ k

0

∼=′ Gn(Rk
0)

∐

Gn−1(Rk
0)

∐

· · ·
∐

G1(Rk
0)

∐

G0(Rk
0) (4.8)

� � � �
∼=′Gn(Rk−1)

∐

Gn−1(Rk−1)
∐

· · ·
∐

G1(Rk−1)
∐

G0(Rk−1) (4.9)

where σk
n,j : Shk

n,j → Shk
j,∗ is obtained by iterating the pro-

cedure giving the decomposition (4.3)–(4.4), and where all
of the maps indicated with “�” are homeomorphisms from
the upper space to the lower space. The natural projection
˜Sh

k

n → Shk
n restricts to a double-cover ˜Sh

k

n,∗ → Shk
n,∗, and

to a bijection ˜Sing
k

n → Singk
n. Hence ˜Sh

k

n has a decomposi-
tion similar to (4.7)–(4.9), the only difference being that the
first spaces appearing on the right-hand sides are replaced

by ˜Sh
k

n,n
∼= ˜Sh

k

n,∗ ∼= ˜Gn(Rk
0)

∼= ˜Gn(Rk−1).

(b) If k ≤ n then ˜Sh
k

n = Shk
n

∼= Shk
k−1, “=” meaning that

the natural projection ˜Sh
k

n → Shk
n is a bijection.

Proof (a) Equation (4.6) is a tautology. In the procedure
used above to analyze Singk

n, let R be the map that carried
the complement of H

n,k∗ in Hn,k to Y . Then R(v) is obtained
from v by multiplying by an invertible matrix, which does
not change the rank (rank((R(v))mat) = rank(vmat)). Drop-
ping the last coordinate of points in P0 maps (R(v))mat to
an (n − 1) × k matrix by dropping a row of zeroes, which
again does not change the rank. Thus the subset of Shk

n

which the homeomorphism σk
n,n−1 identifies with Shk

n−1,∗
is exactly Shk

n,n−1. Iterating, we get the statement that for all

j ≤ n−1, σk
n,j is a homeomorphism Shk

n,j → Shk
j,∗. The as-

sertion that the maps τ k
j are homeomorphisms follows fol-

low from iterating (4.3)–(4.5); the passage to (4.9) is then
obvious since Rk

0
∼= Rk−1.

We have already seen in Theorem 3.1 that ˜Sh
k

n,∗ is nat-
urally homeomorphic to ˜Gn(Rk

0), and tracing through our

identifications it is clear that the natural projection ˜Sh
k

n,∗ →
Shk

n,∗ induces the canonical covering map ˜Gn(Rk
0) →

Gn(Rk
0).

The analysis of the singular set ˜Sing
k

n proceeds almost
identically to the analysis of Singk

n preceding the theorem.
Every (n − 1)-dimensional subspace of Rn can be carried
by GL+(n) to our fixed copy P0 of Rn−1 ⊂ Rn, but the sub-
group GY+ of GL+(n) preserving P0 is the subgroup of
GY , the group in (4.1), for which sign(det(A′)) = sign(c),
so both signs of det(A′) can occur. Thus the residual action
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of GY+ on Rn−1 is that of the full group GL(n − 1), so the
orbit of any v ∈ Hn,k ∩Y k under GY+ is the same as its orbit

under GY . Hence the natural projection ˜Sing
k

n → Singk
n is a

canonical bijection.
(b) For k ≤ n, every v ∈ Hn,k lies in some (k − 1)-

dimensional subspace of Hn,k . Thus the same analysis as
for the singular sets in the case k > n now leads to a
homeomorphism Shk

n → Shk
k−1 and to a canonical bijection

˜Sh
k

n → Shk
n. �

Of course, Theorem 4.2 does not tell us the full topology
of Shk

n, since it says nothing about how the strata are glued
together. That discussion we postpone till the next section.

Remark 4.3 The homeomorphisms σk
n,j and τ k

j in Theo-
rem 4.2 are canonical, independent of any choices, whereas
the homeomorphisms taking us from (4.8) to (4.9) depend
on a choice of isomorphism Rk

0 → Rk−1. This is com-
pletely analogous to the situation for the Procrustes shape-
spaces �k

2 , which are canonically identifiable with P(Ck
0)

(the complex projectivization of Ck
0) and non-canonically

identifiable with CPk−2. In the Procrustean case, this is geo-
metrically significant: the Procustes-Riemannian metric (see
[12]) comes from the metric on Ck

0 as a subspace of Ck . Any
isometry Ck

0 → Ck−1 will carry �k
2 isometrically to CPk−2

with a Fubini-Study metric, but there is no canonical isome-

try; from a geometric standpoint one must avoid the tempta-
tion to use the non-isometric isomorphisms Ck

0 → Ck−1 ob-
tained by dropping a coordinate. In Sect. 6, when we discuss
metrics on the Shk

n,∗, the same principle will be important;
we must use the natural identification Shk

n,∗ ∼= Gn(Rk
0) and

not an unnatural identification with Gn(Rk−1).

Remark 4.4 One can get the false impression from (4.9) that
Shk

n is not connected and that the strata, each of which is
compact in the relative topology, are its connected compo-
nents. However, Shk

n is connected, being the image of the
connected space Hn,k under a continuous map.

In view of the identification of the strata in (4.7) in terms
of matrix ranks, it is natural to order the strata by declar-
ing Shk

n,n > Shk
n,n−1 > · · · > Shk

n,1 > Shk
n,0 (similarly for the

˜Sh
k

n,j ); thus we refer to Shk
n,∗ as the top stratum of Shk

n and

to Shk
n,0 as the bottom stratum, and the meaning of “higher”

and “lower” when relating strata to each other is clear. In
the same vein, for v̄ ∈ Shk

n, define the level of v̄, written
level(v̄), to be that j for which v̄ ∈ Shk

n,j ; thus v̄ lies in a
higher stratum than w̄ ⇐⇒ level(v̄) > level(w̄). We make
some observations:

1. For a fixed k, the largest n < k is k − 1. Thus the strati-
fications (4.7)–(4.9) are contained in the stratification of
Shk

k−1, for which we have the following picture:

Shk
k−1

∼=′Gk−1(Rk−1)
∐ · · ·∐ Gj(Rk−1)

∐ · · ·∐ G1(Rk−1)
∐

G0(Rk−1)

dimensions: 0 j (k − 1 − j) 1(k − 2) 0
(4.10)

The dimensions of the strata are symmetric relative to
the middle stratum or two middle strata, depending on the
parity of k, and are maximal in the middle. Thus the top
stratum is not always the stratum of largest dimension: if
n > k/2, there is always a singular stratum of dimension
greater than that of the smooth set; if n = k/2 then the
smooth stratum and the top singular stratum have equal
dimensions. Note that the next-to-lowest stratum is just
RPk−2, as seen in Example 2.1, written in different nota-
tion.

In the case of Procrustes shape-spaces, the rank-
stratification of Hn,k as

∐

jH
n,k
j also produces a cor-

responding stratification of �k
n as

∐

j�
k
n,j . In contrast

to the “dimensional anomaly” that we see for strata in
the affine case for k ≤ 2n, the top Procrustes stratum
�k

n,max(n,k−1)
always has the largest dimension, and the

dimensions of the strata strictly decrease as j decreases

from max(n, k − 1) to 1. For 1 ≤ j ≤ max(n, k − 1),
the union of the strata up through level j form a cell-
subcomplex of the cell-complex �k

n .
2. The bottom stratum of Shk

n always consists of a single
point, namely 0 ∈ Shk

n. While this shape is excluded in
the definition of Procrustes shape-spaces, we see that it
fits quite naturally into the discussion of spaces of affine
shapes; indeed, (4.7)–(4.9) and (4.10) would seem in-
complete without it.

One can, of course, define an “augmented Procrustes
shape space” ̂�k

n as the quotient-space obtained by letting
rotations and dilations of Rn act on all of Hn,k rather
than just on Hn,k − {0}, thereby including the single-
point shape 0 into Procrustean analysis. However, while
̂�k

n = �k
n

∐{0} as a point-set, this decomposition is not a
homeomorphism: the only open neighborhood of 0 is the
whole space ̂�k

n . Thus, including the single-point shape
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Table 1 Decomposition of Shk
2

and ˜Sh
k

2 for 1 ≤ k ≤ 5. The
strata are listed in decreasing
order; the first is the smooth set.
For k > 2, since the singular
strata are the same for Shk

2 and
˜Sh

k

2, we list only the top stratum

of ˜Sh
k

2. The identifications of
˜G2(R4) with S2 × S2 and of
G2(R4) with (S2 × S2)/Z2,
where the nontrivial element of
Z2 acts by the antipodal map
simultaneously on each S2, are
well-known facts that can be
proven by examining the action
of the unit quaternions on R4

k Shk
2

˜Sh
k

2,∗

1 point same as Sh1
1

2 Sh2
2
∼= Sh2

1
∼=′ G1(R1)

∐

G0(R0)

∼=′ point
∐

point

dimensions : 0 0

same as Sh2
2

3 G2(R2)
∐

G1(R2)
∐

G0(R2)

∼=′ point
∐

RP 1 = circle
∐

point

dimensions : 0 1 0

˜G2(R2) ∼= two points

4 G2(R3)
∐

G1(R3)
∐

G0(R3)

∼=′ RP2 ∐

RP2 ∐

point

dimensions : 2 2 0

˜G3(R2) ∼= S2

5 G2(R4)
∐

G1(R4)
∐

G0(R4)

∼=′ (S2 × S2)/Z2
∐

RP 3 ∐

point

dimensions : 4 3 0

˜G2(R4) ∼= S2 × S2

into the Procrustes picture drastically alters the topology:
the (new) bottom stratum is attached to all higher strata
very differently from the way the higher strata are at-
tached to each other, and no union of strata that includes
the bottom stratum is a cell complex. �k

n is a metric space
while ̂�k

n is not. In contrast, if we delete the point 0 from
Shk

n, the topology of what remains is no more nicely be-
haved than the topology of the full space Shk

n (unless
k = 2, in which case what remains is a single point).

To add to our list of concrete examples, Table 1 lists
the spaces Shk

2 for small values of k. Note that in general
˜Sh

k

n − {0} is a quotient of the Procrustes shape-space �k
n .

In particular, ˜Sh
3
2 − {0} is a quotient of �3

2
∼= S2, which at

first seems impossible looking at the table entry for ˜Sh
3
2, un-

til one remembers that the quotient is not Hausdorff. In the
model of �3

2 as CP1 ∼= S2, the equator RP1 corresponds
to collinear configurations, the open northern hemisphere
corresponds to triangles in one orientation class, and the
open southern hemisphere to triangles in the other orienta-
tion class. Under the projection �3

2 → Sh3
2, each open hemi-

sphere gets mapped to one of the points in ˜G2(R2), while the
equator gets mapped bijectively to the stratum Sh3

2,1
∼= RP1.

5 Gluing the Strata Together

For simplicity, in this section and the next we confine our

analysis to the spaces Shk
n; for ˜Sh

k

n the reader can easily
make the necessary minor adjustments, which of course are
only relevant to the top stratum.

To discuss how the strata of Shk
n are attached to each

other, we make the following definition.

Definition 5.1 Let X be a topological space. For all p ∈ X,
define blur(p) to be the intersection of all open neighbor-
hoods of p in X. Call p blurry if blur(p) �= {p}. (b) For
Y ⊂ X, define blur(Y ) = ⋃

p∈Y blur(p).

In other words, blur(p) consists of those points in X that
cannot be separated from p by an open set containing p. The
authors have searched in vain for pre-existing terminology
for this concept. However, recall that a topological space X

is said to be T0 if, given two distinct points in X, for at least
one of the points there exists an open set containing that
point while excluding the other; X is said to be T1 if, given
distinct points in X, for each point there exists an open set
containing that point but excluding the other. In a T1 space,
blur(p) = {p}, so “blur” is worth defining only for spaces
that have very poor separation properties—which, as we will
see, is the case for the spaces Shk

n.
Blurs and closures are intimately related to each other. As

(5.1) below shows, for points the notions of blur and closure
are in some sense dual to each other. This duality does not
hold for sets; the implication in part (a) of the lemma be-
low is only one-directional, metric spaces providing simple
counterexamples to the other direction.

Lemma 5.2 Let X be a topological space.

(a) For all Y ⊂ X, closure(Y ) ⊃ {q ∈ X | blur(q) ∩ Y �=
∅}. Hence if Y,Z ⊂ X, then blur(Z) ∩ Y �= ∅ ⇒ Z ∩
closure(Y ) �= ∅.

(b) For all p,q ∈ X, closure({p}) = {q ∈ X | p ∈ blur(q)}.
In other words

p ∈ blur(q) ⇐⇒ q ∈ closure({p}). (5.1)
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Proof

(a) Let Y ⊂ X. Using “prime” to denote complementation,
q ∈ closure(Y )′ ⇒ q ∈ U for some open set U not inter-
secting Y . Hence blur(q) ⊂ U ⊂ Y ′, so blur(q)∩Y = ∅.
Therefore closure(Y )′ ⊂ {q ∈ X | blur(q) ∩ Y = ∅}, so
the first the assertion of part (a) lemma follows. The sec-
ond assertion follows easily from the first.

(b) If q ∈ X and p /∈ blur(q) then there exists an open
neighborhood of q not containing p, and hence q ∈
closure({p})′. Thus closure({p})′ ⊃ {q ∈ X | p /∈ blur(q)},
so closure({p}) ⊂ {q ∈ X | p ∈ blur(q)}; but from (a),
closure({p}) ⊃ {q ∈ X | p ∈ blur(q)}. �

In the stratified space Shk
n, blurs and closures stratify as

well; for 0 ≤ j ≤ n we define blurj (p) := blur(p) ∩ Shk
n,j

and closurej (p) := closure(p) ∩ Shk
n,j .

In a stratified Hausdorff space, the way that the strata are
attached is determined by intersections of strata with the clo-
sures of other strata. In a space that is not even T1, blurs
as well as closures are needed to describe how the strata
are attached (under any intuitively reasonable definition of
“attached”). We shall see below that for p ∈ Shk

n, blur(p)

connects p to all higher strata but no lower ones, while for
closure({p}) the behavior is exactly the opposite.

We now describe explicitly the blurs of points and strata
in Shk

n. For k > 1 and n ≥ 0 let ι : Shk
n → ∐

0≤j≤max(n,k−1)

Gj (Rk
0) be the map given by ι(v̄) = image(Lv) = row-space

of v, where v ∈ Hn,k is a representative of v̄ ∈ Shk
n. For 0 ≤

j ≤ max(n, k −1) let ιkn,j := ι|Shk
n,j

: Shk
n,j → Gj(Rk

0). Each

map ιkn,j is always a homeomorphism: if k > n then, in the

notation of in Theorem 4.2, ιkn,j = τ k
j ◦ σk

n,j , while if k ≤
n then ιkn,j is the map τ k

j ◦ σk
k−1,j precomposed with the

homeomorphism Shk
n,j

∼= Shk
k−1,j given by Theorem 4.2(b).

(In fact each ιkn,j is a diffeomorphism, by our definition of
the smooth structure on each stratum.)

Lemma 5.3 Let k ≥ 1, n ≥ 0, and let v̄, w̄ ∈ Shk
n. Then the

subspace ι(w̄) ⊂ Rk
0 contains the subspace ι(v̄) ⊂ Rk

0 if and
only if there exists a linear transformation A : Rn → Rn,
not necessarily invertible, such that v = Aw for some (and
hence all) representatives v,w of v̄, w̄.

Proof If v = Aw for some representatives v,w of v̄, w̄ and
some A ∈ Hom(Rn,Rn), then, as discussed in Sect. 3, we
have Lv = Lw ◦ A∗, and hence image(Lv) ⊂ image(Lw),
i.e. ι(v̄) ⊂ ι(w̄).

Conversely, suppose that ι(v̄) ⊂ ι(w̄); i.e. image(Lv) ⊂
image(Lw) for representatives v,w of v̄, w̄. Then if {yi}
is a basis of (Rn)∗, there exist {y′

i}n1 such that Lv(yi) =
Lw(y′

i ),1 ≤ i ≤ n. Define a linear map A∗ : (Rn)∗ → (Rn)∗
by declaring A∗(yi) = y′

i and extending linearly. Then Lv =

Lw ◦ A∗. But if A : Rn → Rn is the map dual to A∗, we
also have LAw = Lw ◦ A∗. Hence Lv = LAw, implying that
v = Aw. �

As a consequence of Lemma 5.3, we have the following:

Proposition 5.4 Let k ≥ 1, 0 ≤ j ≤ n, 0 ≤ i ≤ n, and let
v̄ ∈ Shk

n,j . Let w̄ ∈ Shk
n and let v,w ∈ Hk,n be representa-

tives of v̄, w̄. Then w̄ ∈ blur(v̄) if and only if there exists a
linear transformation A : Rn → Rn (not necessarily invert-
ible) carrying w to v, and we have

ι(bluri (v̄)) = {P ∈ Gi(Rk
0) | the i-plane P

contains the j -plane ι(v̄)}. (5.2)

Thus if j = level(v̄), then blurj (v̄) = {v̄}, and blur(v̄) inter-
sects all higher strata—those with level greater than j—and
no lower strata. In particular, no point in the top stratum is
blurry, every point not in the top stratum is blurry, and

blur(v̄) ⊂ {v̄}
∐

(

∐

i>level(v̄)

Shk
n,i

)

. (5.3)

Proof Let w̄ ∈ Shk
n,i and let Ov̄, Ow̄ ⊂ Hk,n be the GL(n)-

orbits representing v̄, w̄. Then w̄ ∈ blur(v̄) if and only if the
closure of Ow̄ in Hk,n intersects Ov̄, i.e. if and only if there
exists w ∈ Ow̄ and a sequence {Am} in GL(n) with {wm :=
Amw} converging to a point v ∈ Ov̄. (Note that we do not
assume that the sequence {Am} itself converges.)

First suppose that there is such a sequence {Am}. Then
the image of Lwm is the m-plane ι(w̄), independent of i.
Hence if y ∈ (Rn)∗, Lwm(y) ∈ ι(w̄) for all i, so
limi→∞(Lwm(y)) ∈ ι(w̄). But the linear maps Lwm converge
to the linear map Lv, so Lv(y) ∈ ι(w̄). (In terms of matrices,
the foregoing says simply that the row space of the n×k ma-
trix Aiw is the same for all i, so the rows of the limit matrix
lie in this subspace as well.) Thus ι(v) = image(Lv) ⊂ ι(w̄);
i.e. the m-plane ι(w̄) contains the j -plane ι(v).

Conversely, suppose ι(w̄) ⊃ ι(v̄). By Lemma 5.3, v =
Aw for some A ∈ Hom(Rn,Rn). For ε �= 0 sufficiently
small, A + εI is invertible (the characteristic polynomial
of A has only finitely many roots). Thus there exists a se-
quence εm tending to 0, with A + εmI invertible ∀i. Then
limi→∞(A + εmI)w is a sequence in Ow̄ whose limit is
v ∈ Ov. Hence w̄ ∈ blur(v̄). Since ι is a homeomorphism
Shk

n,i → Gi(Rk
0), every P ∈ Gi(Rk

0) is ι(w̄) for some w̄ ∈
Shk

n,i , and (5.2) follows. �

Corollary 5.5 Let v̄ ∈ Shk
n,j . For 0 ≤ j ≤ i ≤ max(k−1, n),

bluri (v̄) is homeomorphic to Gi−j (Rk−1−j ); for other val-
ues of i, bluri (v̄) is empty.
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Proof Let V be a finite-dimensional vector space, let H ⊂
V be a subspace of dimension j , and let X be the set of i-
dimensional subspaces of V containing H . Then there is a
natural bijection X ↔ Gi−j (V/H). If we give X the rela-
tive topology as a subset of the Grassmannian Gj(V ), it is
not hard to show that this bijection is a homeomorphism. If
dimV = k − 1, an isomorphism V/H ∼= Rk−1−j then yields
a homeomorphism from X to Gi−j (Rk−1−j ). Applying this
with V = Rk

0, the result follows from Proposition 5.4. �

Remarks 5.6

(1) It is clear from (5.2) that blur(blur(v̄)) = blur(v̄) for all
v̄ ∈ Shk

n, and hence that blur(blur(U)) = blur(U) for all
U ⊂ Shk

n. This property, reminiscent of closures, is a
general feature of quotients by group actions; (5.2) just
illustrates this principle.

(2) The blur of the bottom stratum Shk
n,0 = {0} is the en-

tire space Shk
n (this is clear even without the analysis in

this section, but again (5.2) provides a nice illustration).
More generally, it follows from (5.2) that for each stra-
tum Shk

n,j ,

blur(Shk
n,j ) =

∐

i≥j

Shk
n,i . (5.4)

Consequently, the only open set in Shk
n that contains

Singk
n is the entire space Shk

n.
(3) From (5.2), we can also immediately compute blur(v̄)∩

blur(w̄) for any v̄, w̄, and (from Corollary 5.5) see that
its intersection with any Shk

n,j , if nonempty, is yet an-
other Grassmannian. Grassmannians truly abound in
Shk

n.
(4) For the special case n = 2, if k > 2 we always have

exactly three strata (cf. Table 1). In this case it is pro-
jective spaces that abound: for all v̄ in the stratum
Shk

2,1
∼= RPk−2, we have blur(v̄) = {v̄} ∪ (blur2(v̄)), and

blur2(v̄) = blur(v̄) ∩ Shk
2,2

∼= RPk−3.

Another corollary of Proposition 5.4 is the following.

Corollary 5.7 For all k ≥ 2 and n ≥ 1, Shk
n is T0 but not T1.

Proof As noted earlier, in a T1 space X blur(p) = {p}
∀p ∈ X. However, in Shk

n—which has at least two points
since k ≥ 2 and n ≥ 1—blur({0}) = Shk

n. Thus Shk
n is not T1.

Now let v̄, w̄ be distinct points in Shk
n; without loss of

generality assume level(v̄) ≥ level(w̄). Let v,w ∈ Hn,k be
representatives of v̄, w̄, and first assume level(w) < level(v).
Since for all j , the set {u ∈ Hn,k | rank(u) ≥ j} is open,
there is an open set U ⊂ Hn,k that contains v but not w.
If level(w) = level(v), then again there exists an open set
U ⊂ Hn,k containing v but not w. In either case the image
Ū of U in Shk

n is an open set in the quotient topology (since

quotient maps by group-actions are open maps) containing
v̄ but not w̄. Hence Shk

n is T0. �

An amusing fact is that the two-point space Sh2
1 is a nat-

urally occurring instance of the simplest topological space
that is T0 but not T1.

Having analyzed the blurs of interest in Shk
n, we move on

to closures.

Proposition 5.8 Let k ≥ 1. Then the following are true.

(a) For 0 ≤ i ≤ n,0 ≤ j ≤ n, and all v̄ ∈ Shk
n,j ,

ι(closurei (v̄)) = {P ∈ Gi(Rk
0) | the j -plane ι(v̄)

contains the i-plane P }. (5.5)

Hence

closure({v̄}) ⊂ {v̄}
∐

(

∐

i<level(v̄)

Shk
n,i

)

, (5.6)

“opposite” to the stratification of blur(v̄) (cf. (5.2) and
(5.3)).

(b) For 0 ≤ j ≤ n,
∐

i≥j Shk
n,i is open; equivalently, for 0 ≤

j ≤ n,
∐

i≤j Shk
n,i is closed.

(c) For 0 ≤ j ≤ n, closure(Shk
n,j ) = ∐

i≤j Shk
n,i (again “op-

posite” to the corresponding relation for blurs, (5.4)).
In particular, for j > 0, although Shk

n,j
∼= Gj(Rk−1) is

compact in the relative topology it is not closed as a
subset of Shk

n.
(d) {0} is closed, and is the only closed point in Shk

n. No
point in Shk

n is open.
(e) For all v̄ ∈ Shk

n, boundary{v̄} = closure({v̄}).

Proof

(a) This follows from (5.1), (5.2), and the fact that ιkn,i :
Shk

n,i → Gi(Rk
0) is bijective.

(b)
∐

i≥j Shk
n,i is the image, under the quotient map Hn,k →

Shk
n, of the open set {v ∈ Hn,k | rank(v) ≥ j}, hence is

open in the quotient topology.
(c) Using Lemma 5.2(a) and Proposition 5.4,

closure(Shk
n,j ) ⊃ {w̄ ∈ Shk

n | blur(w̄) ∩ Shk
n,j �= ∅}

⊃
∐

i≥j

Shk
n,i .

But by part (b)
∐

i≥j Shk
n,i is closed, so we have the op-

posite inclusion as well.
(d) The second statement in part (b), with j = 0, im-

plies that Shk
n,0 = {0} is closed. For every other v̄ ∈

Shk
n, level(v̄) > 0, and hence ι(v̄) contains some lower-

dimensional subspace. It then follows from (5.5) that
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closure({v̄}) is strictly larger than {v̄}. It is easily seen
that no orbit of GL(n) in Hn,k is an open set, and hence
no point of Shk

n is open in the quotient topology.
(e) Since {v̄} is not open, the closure of {v̄}′ is the entire

space Shk
n, so boundary{v̄} = closure({v̄}). �

6 Geometry of Shk
n

Since the space Shk
n is not even T1 it is very far from be-

ing metrizable. However, thinking of the top stratum Shk
n,∗

as representing “most” of Shk
n—which, for dimensional rea-

sons, one should only do if k > 2n (see (4.10) and the sur-
rounding discussion)—it is certainly reasonable to try to put
a “nice” distance function on Shk

n,∗, or, as we will do, a Rie-
mannian metric. Of course, since each stratum is a perfectly
nice manifold one could do this with the lower strata as well,
but there seems little point since the strata cannot be joined
in a metrically compatible way.

We assume for the rest of this section that k > n.
There is at least one natural Riemannian metric we can

put on Shk
n,∗, namely the one induced by the natural identifi-

cation Shk
n,∗ ∼= Gn(Rk

0) and the standard Riemannian met-
ric on this Grassmannian. Before diving in, however, we
pause to review the very different roles played by Rn and
Rk in Shk

n. As we have already observed, Rn can be re-
placed by any n-dimensional affine space without changing
the canonical identification (4.9) of Shk

n with a disjoint union
of Grassmannians Gj(Rk

0). Choices of origin of the affine n-
space and basis of the underlying vector space do not affect
this identification. No metric or inner-product structure on
Rn entered the identification, so certainly no such structure
should be reflected in a natural metric on Shk

n,∗.
However, Rk , in contrast to Rn, does not enter the shape-

space picture as any old k-dimensional vector space; it
comes to us specifically as Rk . Thus any object naturally
associated with Rk induces an object naturally associated
with Shk

n. In particular this applies to the standard inner
product on Rk and to the Riemannian metric that it induces,
in a standard way we now review, on Gn(Rk

0).
Let E be a finite-dimensional inner-product space and let

n ≤ dim(E). The standard Riemannian metric g on Gn(E)

is constructed as follows. For X ∈ Gn(E) there is a nat-
ural identification TXGn(E) ∼= Hom(X,X⊥), which arises
because every Y ∈ Gn(X) sufficiently close to X is the “or-
thogonal graph over X” of a unique linear map S : X → X⊥.
(Here by “orthogonal graph over X” we mean {α + Sα |
α ∈ X}.) The inner product on E also induces an inner
product on Hom(X,X⊥); given two elements S1, S2 of this
space, their inner product is gX(S1, S2) := tr(S†

1S2), where

S
†
1 : X⊥ → X is the adjoint of S1 with respect to the in-

ner products on X and X⊥ inherited from E. An alternative
characterization of the inner product gX is that the squared

norm of S : X → X⊥ is the sum of the squares of the ma-
trix coefficients of S, where the matrix is taken with re-
spect to orthonormal bases in both X and X⊥. When E =
Rm with the standard inner product, the Riemannian met-
ric g coincides, up to scale, with the metric on Gn(Rm) ∼=
O(m)/(O(n)×O(m−n)) induced by Riemannian submer-
sion from the standard bi-invariant Riemannian metric on
the orthogonal group O(m) (the invariant metric coinciding
at the identity with the negative of the Killing form). This
is reminiscent of the situation for the smooth subsets of Pro-
crustes shape spaces, where the Procrustes-Riemannian met-
ric is also determined by Riemannian submersion; cf. [12].
However, in the Procrustean context, the conformal structure
of Rn, rather than just its affine structure, enters the metric
(through the identification of the shape-spaces as quotients
of spheres), in contrast to the affine-shape context.

Although a formula for g on Gn(Rk−1) can be written
down with relative ease, it is important now to remember
that Shk

n,∗ is not canonically Gn(Rk−1), because there is no
canonical isomorphism Rk

0 → Rk−1. In order to pull back to
Gn(Rk

0) the metric on Gn(Rk−1) written in terms of coordi-
nates on Rk−1, we would need an isometry Rk

0 → Rk−1, and
again there is no canonical choice. Therefore our goal will
be to produce a formula for the metric (which we will still
call g) on Gn(Rk

0) purely in terms of pre-shape data. We will
do this via the description of g above, taking E = Rk

0 with
the inner product inherited from the standard inner product
on Rk , after performing some preliminary computations for
general E.

Notation 6.1

(i) Let (·, ·) denote the inner product on E.
(ii) For X ∈ Gn(E) let projX⊥ : E → X⊥ ⊂ E denote

orthogonal projection onto X⊥. Also let PX⊥ be the
k × k matrix, with respect to the standard basis of Rk ,
of the orthogonal projection Rk → X⊥ ⊂ E, and for
w ∈ Hn,k define projn

X⊥(w) = wPX⊥ . Since PX⊥ is

symmetric, projn
X⊥(w) is the matrix in Hn,k whose ith

row is the image of the ith row of w under projX⊥ .
(iii) For any m ≥ 1, given two lists of vectors α := {αi}mi

and β := {βi}m1 in E, let Mα,β be the m × m matrix
whose entries are given by

(Mα,β)ij = (αi, βj ). (6.1)

Given X ∈ Gn(E), any linear maps S1, S2 : X → E, and
any basis α of X, we can compute the matrix B of S

†
1S2 with

respect to α as follows:
∑

k

Bkiαk = S
†
1S2αi

⇒
(

αj ,
∑

k

Bkiαk

)

= (αj , S
†
1S2αi)
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⇒ (Mα,αB)ji = (S1αj ,S2αi) = (MS1α,S2α)ji

⇒ B = (Mα,α)−1MS1α,S2α (6.2)

where Siα := (Siα1, . . . , Siαn). Thus the inner product gX

on TX(Gn(E)) = Hom(X,X⊥) is given by

gX(S1, S2) = tr((Mα,α)−1MS1α,S2α) (6.3)

for any basis α of X.
We will express this in terms of shape-space data us-

ing the standard inner product on the exterior powers of
the inner-product space E. This inner product, defined by
declaring {ei1 ∧ ei2 ∧ · · · ∧ eim | i1 < i2 < · · · < im} to be an
orthonormal basis of

∧m(E), where {ei} is an orthonormal
basis of E, satisfies

(α1 ∧ α2 ∧ · · · ∧ αm,β1 ∧ β2 ∧ · · · ∧ βm)

= det(Mα,β) (6.4)

where α = (α1, . . . , αm),β = (β1, . . . , βm). Thus for a basis
α of X ∈ Gn(Rk

0), we have

det(Mα,α) = ‖α1 ∧ α2 ∧ · · · ∧ αn‖2. (6.5)

Also note that if {αi}m1 , {βi}m1 are arbitrary vectors in a sub-
space X ⊂ E, and η1, η2 are arbitrary vectors in X⊥, then

(α1 ∧ · · · ∧ αm ∧ η1, β1 ∧ · · · ∧ βm ∧ η2)

= (α1 ∧ · · · ∧ αm,β1 ∧ · · · ∧ βm)(η1, η2). (6.6)

Now take E = Rk
0 and let π : H

n,k∗ → Gn(Rk
0) be the

canonical projection (the map that takes v ∈ H
n,k∗ to the row

space of vmat). Let v ∈ H
n,k∗ , let X = π(v) ∈ Gn(Rk

0), and
let α1, . . . , αn be the rows of vmat (a basis of X). Also let
w ∈ Hn,k , let {βi}n1 be the rows of wmat, let ηi = projX⊥(βi),
and let u = projn

X⊥(w). Consider the curve t �→ π(v+ tw) ∈
Gn(Rk

0). For small t , {αi + tβi} is a basis of the n-plane
π(v + tw); hence so is {αi + tηi}. Therefore π(v + tw)

is the orthogonal graph over X of the unique linear map
Sv,w,t : X → X⊥ determined by Sv,w,t (αi) = tηi . Note that
Sv,w,t = Sv,projn

X⊥ (w),t = Sv,wP
X⊥ ,t . Writing Sv,w = Sv,w,1

and letting π∗vw ∈ TX(Gn(Rk
0)) denote the image under π

of the tangent vector d
dt

(v + tw)|t=0 ∈ TvH
n,k∗ , we therefore

have

π∗vw = Sv,wP
X⊥ = π∗v(wPX⊥). (6.7)

It follows that if w′ is a second matrix in Hn,k then

gX(π∗vw,π∗vw′) = gX(π∗v(wPX⊥),π∗v(w′PX⊥))

= gX(Sv,wP
X⊥ , Sv,w′P

X⊥ ). (6.8)

Proposition 6.2 Let v,w,w′, {αi}, {βi}, {ηi} be as above.
Also let β ′

i be the ith row of w′, and η′
i = projπ(v)⊥(β ′

i ),
1 ≤ i ≤ n. Then

gπ(v)(π∗vw,π∗vw′)

=
∑

i,j (α1 ∧ · · · ∧ ηi ∧ · · · ∧ αn,α1 ∧ · · · ∧ η′
j ∧ · · · ∧ αn)

‖α1 ∧ · · · ∧ αn‖2

(6.9)

= 1

‖α1 ∧ · · · ∧ αn‖4

×
{

∑

i,j

(−1)i+j (α1 ∧ · · · α̂i · · · ∧ αn,α1 ∧ · · · α̂j · · · ∧ αn)

× (α1 ∧ · · · ∧ αn ∧ βi,α1 ∧ · · · ∧ αn ∧ β ′
j )

}

(6.10)

where the hats in (6.10) denote omission, and where α1 ∧
· · · ∧ ηi ∧ · · · ∧ αn in (6.9) means α1 ∧ · · · ∧ αi−1 ∧ ηi ∧
αi+1 ∧ · · · ∧ αn.

Proof (a) Using (6.4), (6.5), and the usual “cofactor” for-
mula for the inverse of a matrix, we have

(Mα,α)−1
ij

= (−1)i+j (α1 ∧ · · · α̂i · · · ∧ αn,α1 ∧ · · · α̂j · · · ∧ αn)

‖α1 ∧ α2 ∧ · · · ∧ αn‖2
.

(6.11)

Using (6.3) and (6.8), we then obtain

gπ(v)(π∗vw,π∗vw′)

= 1

‖α1 ∧ · · · ∧ αn‖2

×
{

∑

i,j

(−1)i+j (α1 ∧ · · · α̂i · · · ∧ αn,α1 ∧ · · · α̂j · · · ∧ αn)

× (ηi, η
′
j )

}

. (6.12)

Since ηi, η
′
i ∈ span({αi})⊥, (6.6) reduces (6.12) to (6.9).

Next, observe that the right-hand side of (6.10) does not
change if we replace βi,β

′
j by ηi, η

′
j . But after making this

replacement, (6.6) reduces the right-hand side of (6.10) to
the right-hand side of (6.12). �

We have included both formulas (6.9) and (6.10) since
the second formula is expressed directly in terms of pre-
shape space data, with no need for an orthogonal projection,
while the first has the advantage of being simpler.

Using the Riemannian metric g, one can obtain a dis-
tance-function on the stratum Shk

n,∗ the usual way, but we
have not found a closed-form expression as simple as the
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formulas in Proposition 6.2. We can, however, write down a
less explicit formula, making use of a known formula for the
geodesic-distance function on Grassmannians, as presented
in [7], p. 337. For two points X,Y ∈ Gn(Rk), let v,w ∈ Rn,k

be n × k matrices representing X,Y respectively, with the
columns of each of v,w assumed orthonormal. Then the
diagonal matrix in a singular-values decomposition of the
n × n matrix vwt is of the form diag(cos θ1, . . . , cos θn),
where 0 ≤ θi ≤ π/2, and the geodesic distance between X

and Y in Gn(Rk) is

d(X,Y ) = d(πn,k(v),πn,k(w)) =
(

∑

i

θ2
i

)1/2

(6.13)

where πn,k : Rn,k∗ → Gn(Rk) is the natural projection.
Next, observe that for any finite-dimensional inner-

product space E and any subspace E0 of dimension ≥ n,
it follows from our definition of Riemannian metrics on
Gn(E0) and Gn(E) that the embedding Gn(E0) ↪→ Gn(E)

is isometric. (This can also be seen directly at the level of
distance-functions: writing E = E0 ⊕ E⊥

0 and choosing an
adapted orthonormal basis of E, if all the columns of v,w
lie in E0 and v̂, ŵ are the corresponding n× dim(E0) matri-
ces, then v̂ŵt = vwt .) In particular this holds with E0 = Rk

0

and E = Rk . Thus, given arbitrary pre-shapes v′,w′ ∈ H
n,k∗ ,

letting v,w be representatives of the same shapes but with
orthonormal columns (obtained e.g. by Gram-Schmidt), the
distance in Shk

n,∗ between π(v′),π(w′) is given by (6.13).
In closing we note, once again, that there does not exist

a distance function on any open set in the full space Shk
n

compatible with the quotient topology, since this space is
not even T1.
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