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critical because local resolution tests are repeated at many points 
in the volume. Additionally, there is data dependency between 
neighboring points that windowed FSC does not account for.

We propose a mathematical theory and an efficient algorithm 
for measuring local resolution that address all of the above limi-
tations. The theory (Online Methods) is based on the following 
idea: a λ-Å feature exists at a point in the volume if a three- 
dimensional (3D) local sinusoid of wavelength λ is statistically 
detectable above noise at that point. A likelihood-ratio hypothesis 
test of the local sinusoid versus noise can detect this feature at a 
given P value (typically P = 0.05). We define the local resolution at 
a point as the smallest λ at which the local sinusoid is detectable, 
and we account for multiple testing with an FDR procedure.

Our algorithm, named ResMap, implements this theory. 
ResMap begins by initializing a local-sinusoid model at λ = 2µ,  
where µ is the voxel spacing in Å. Likelihood-ratio tests are 
conducted at all voxels in the volume, with explicit FDR control 
that accounts for data dependency. Voxels that pass the test are 
assigned resolution λ, whereas those that fail are tested at a larger λ.  
The algorithm produces a local-resolution map with a number 
assigned to every voxel in the density map (Fig. 1a). There are no 
algorithm parameters to tune, and local resolution may be defined 
unambiguously at the given P value.

In ResMap, local sinusoids of wavelength λ are approximated 
by a set of functions called H2. This set is derived from Gaussian 
windowed second-order Hermite polynomials9,10, with win-
dow size proportional to the wavelength λ (Fig. 1b and Online 
Methods). ResMap results with H2 are specifically denoted as 
ResMap-H2. H2 functions are steerable, so their linear combina-
tion can locally model any arbitrarily oriented local sinusoid in 
three dimensions (Supplementary Note 1).

At a fixed wavelength λ, the standard likelihood-ratio test11 can 
detect whether a local sinusoid is present in the steerable func-
tion approximation. The test requires an estimate of the noise 
variance, which we obtain from the region surrounding the par-
ticle. The likelihood-ratio test does not depend on how this vari-
ance is estimated. Other noise estimates, such as those obtained 
by analyzing split–data set density maps, can also be used. The 
smallest λ at which the likelihood-ratio test passes at a given  
P value defines the resolution. We control for false discoveries 
using a method that takes into account the dependencies between 
tests12 (Online Methods).

We first evaluated ResMap using a simulated density map of a 
radially symmetrical ‘chirp signal’ whose wavelength decreased 
with radius. We added white and non-white noise with two differ-
ent variance levels (Supplementary Fig. 1). ResMap-H2 estimates 
show an intuitive relation to the underlying signal features (Fig. 1c).  
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We propose a definition of local resolution for three-dimensional 
electron cryo-microscopy (cryo-EM) density maps that uses 
local sinusoidal features. Our algorithm has no free parameters 
and is applicable to other imaging modalities, including 
tomography. By evaluating the local resolution of single-
particle reconstructions and subtomogram averages for four 
example data sets, we report variable resolution across a  
4- to 40-Å range.

Various resolution measures for cryo-EM have been proposed 
in the past three decades1. Unlike the classical ‘Rayleigh’ resolu-
tion that characterizes instruments, these measures characterize 
features present in the data. A commonly used cryo-EM resolu-
tion measure is the Fourier shell correlation (FSC) procedure.  
It quantifies the strength, relative to noise, of sinusoidal features 
across the entire density map. FSC produces a single resolution for 
the entire density map. FSC cannot assess locally varying resolu-
tion, which may be caused by sample heterogeneity and image 
processing errors2. Our goal was to overcome this limitation of 
FSC by presenting a definition of local resolution that can assess 
variable resolution across the density map.

As a resolution measure, FSC has other limitations. FSC uses 
split data sets, that is, the images are grouped into two halves each 
contributing to a separate density map. The resolution is mea
sured using both density maps. The computational stage at which 
the data are split can affect the FSC resolution3. Further, calculat-
ing the resolution from FSC requires a threshold, whose value 
and interpretation has been debated1. Alternative approaches4,5 
address some of these shortcomings but do not define  
local resolution.

Recent structural studies6,7 have used windowed FSC for local 
resolution8. Windowed FSC masks the split–data set density maps 
with a window and calculates FSC resolutions as the window moves 
through the map. This requires a window size parameter, whose 
value is often arbitrary. Although this approach implicitly conducts 
multiple tests on the density map, it does not control the false dis-
covery rate (FDR) in the thresholding of the FSC. FDR control is 
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Further, increasing the noise worsens the resolution at every 
point. ResMap-H2 results for this simulation exhibit a ripple  
in the transitions between the peaks and valleys of the signal.  
This is because transitions have more energy in the higher 
frequencies and are thus detectable with local sinusoids of  
smaller scale.

We then tested ResMap with four different density maps rang-
ing from near-atomic single-particle reconstructions (~4 Å) to  
typical subtomogram averages (~40 Å). All results were obtained 
with a P value of 0.05. We compared ResMap-H2 results to regular 
and gold-standard3 FSC plots and to windowed FSC maps.

First, we analyzed a single-particle 80S ribosome reconstruction 
(EMDataBank: EMD-2275)13. The original publication estimated 
a resolution of 4.5 Å (gold-standard FSC at 0.143) and noted the 
blurring from the heterogeneity in the 40S subunit (Fig. 2a). Our 
ResMap-H2 resolution estimates fall between 4.5 and 5.5 Å in the 
60S subunit and between 4.5 and 9 Å in the 40S subunit. Some 
parts of the 40S are just as resolved as the 60S, which ResMap-H2 
results show in the portion of 40S adjacent to 60S. The median 

ResMap-H2 resolutions in the 40S and 60S subunits are 6.5 and 
5 Å, respectively, which agree with a map–versus–atomic model 
FSC plot (Fig. 3J in the original publication13). Our ResMap-H2 
results additionally point to a decrease in resolution near the 
edges of the particle. This may be due to image alignment errors 
or the interaction of the ribosome with the solvent.

Second, we analyzed a single-particle Tulane virus recon-
struction (EMD-5529)14. The original publication estimated a  
6.3-Å (gold-standard FSC at 0.143) resolution for the entire  
particle and highlighted the considerable flexibility of the pro-
truding domains of the virus. Our ResMap results corroborate 
these findings, estimating the resolution of the shell as between  
6 and 7 Å and the resolution of the protruding domains as between 
7 and 9 Å (Fig. 2b).

Third, we analyzed a subtomogram average of GroEL  
(EMD-2221)15. The original publication reported an 8.4-Å (FSC 
at 0.5) resolution. Our ResMap-H2 estimates suggest that many 
α-helices are resolved up to 7.5 Å (Fig. 2c). This is evident in the 
close-up rendering that displays the central part of a helix at 7.5 Å  
but the end and adjoining loop at ~9.5 Å. These results are cor-
roborated in Supplementary Video 1, in which the central part of 

Figure 1 | Local resolution. (a) The ResMap algorithm. Wavelength λ 
is initialized to twice the voxel spacing. Likelihood-ratio tests decide 
whether the local-sinusoid model is detectable at each voxel. Voxels that 
pass the test are controlled for false discoveries. Voxels that fail the test 
are tested again after λ is increased (Online Methods). (b) Cosine- and 
sine-like H2 functions oriented along an axis. White and black indicate 
negative and positive parts, respectively (Supplementary Note 1).  
(c) Left, slice through noisy simulated density maps with voxel spacing  
of 1 Å. Right, radial plots. ResMap-H2 resolution estimates show a  
steady improvement as the simulated signal becomes more finely varying. 
Bottom, corresponding results for 1/f noise display robustness against 
non-white noise (Supplementary Fig. 1). σ2, variance.
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Figure 2 | ResMap-H2 results using experimental density maps. Color  
bars apply to both volumes and slices. 3D visualizations are rendered 
using UCSF Chimera17. White dotted lines in color bars indicate FSC 0.143 
and 0.5 thresholds from the original publications. (a) 80S ribosome  
(EMD-2275). ResMap-H2 results indicate a decreased resolution within  
the 40S subunit and near the edges of the particle. (b) Tulane virus  
(EMD-5529). ResMap estimates lower resolutions in the protruding 
domains, whereas the shell appears well resolved. (c) Subtomogram  
GroEL (uncropped version of EMD-2221). ResMap-H2 results show an  
α-helix with varying levels of resolution (Supplementary Video 1).  
(d) Subtomogram ATP synthase dimer (uncropped version of  
EMD-2161). ResMap delineates the central dimer as better resolved  
than the neighboring dimers and membrane.
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the helix is shown to maintain its tubular structure under a range 
of surface threshold values.

Finally, we analyzed a subtomogram average of ATP synthase 
dimers (EMD-2161)16. The original publication estimated a  
37-Å (FSC at 0.5) resolution. Our ResMap-H2 resolution esti-
mates are between 30 and 42 Å in the central dimers, which  
are better resolved than the neighboring dimers and membrane 
(Fig. 2d). The edges of the central dimers appear to be at a higher 
resolution than the cores. This is likely due to the strong dark 
bands surrounding the particle, as is typical in particles recon-
structed without contrast transfer function correction.

ResMap results are consistent with windowed FSC but dif-
fer in some important aspects. Windowed FSC results appear 
to be sensitive to the fixed size of the user-defined window 
(Supplementary Fig. 2). Too large a window size may include 
the solvent in the FSC computation and lead to underestimation 
of resolution (Supplementary Fig. 3). ResMap does not suffer 
from this effect because the localization uncertainty in the joint 
spatial-frequency domain is minimized by the use of the H2 func-
tions. The behavior of ResMap for typical P values is shown in 
Supplementary Figure 4. Moreover, windowed FSC can be slow, 
taking anywhere between 25 min and 4 h to compute, depending 
on the window size; ResMap usually requires a few minutes.

For all cases above, ResMap-H2 local resolutions within the 
reconstructed particle were almost always between the 0.5 and 
0.143 threshold of the FSC in the original publications. This  
is consistent with the idea that the 0.5 threshold may be too  
conservative and that the 0.143 threshold may be too optimis-
tic3,13. Moreover, ResMap-H2 results agree with published  
flexibility analyses and also visually match the level of detail in 
the density maps.

ResMap is available as a cross-platform executable package with 
a simple graphical user interface (Supplementary Fig. 5). The 
software and test data are publicly accessible (Supplementary 
Software; http://resmap.sourceforge.net/). Users can also apply 
ResMap to other fields by choosing features other than local sinu-
soids. For instance, a 2D Gaussian feature may be appropriate 
for optical nanoscopy, whereas rotated 2D arcs may be of use in 
radio telescopy.

The anticipated2 recent increase in heterogeneity studies6,7,13 
highlights the pressing challenge of evaluating the local resolution 
of cryo-EM density maps. We believe that this local-resolution 
method is both statistically rigorous and practical and therefore 

provides a critical step in enabling researchers to assess the quality 
of cryo-EM density maps.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
This section presents mathematical details of the theory and algo-
rithm. The mathematical formulation is in three dimensions, but 
actual computations are performed on column vectors, where the 
elements in three dimensions are inserted in order into the vector. 
To highlight this difference, 3D variables are displayed in ordinary 
type (A) and their vectorized counterparts in bold type (A).

Modeling the signal locally. We first describe how the density 
map can be approximated locally by any basis. Then we introduce 
the 3D sinusoid-like feature basis used in our algorithm.

The 3D density map S is in a V × V × V voxel array. The voxels are 
indexed by discrete-valued coordinates x, y, z. We refer to a voxel 
in the array as v = (vx, vy, vz) where vx, vy, vz are its coordinates.  
The vectorized density map of S is a V3 × 1 column vector S.

Suppose Wv,α is a spherically symmetric Gaussian function 
centered at voxel v with scaling parameter α
W x y z x v y v z vv x y z, ( , , ) exp( [( ) ( ) ( ) ])a

a= − − + − + −2
2 2 2

and that ϕk
v,α , k = 1, …, K are basis functions centered at v.  

We then have

W S Wv v v, , ,a a a b hD D= +F

which locally approximates the density map S by basis functions 
ϕk

v,α. Here √WD
v,α is a diagonal matrix with √Wv ,α along the 

principal diagonal; Φv,α is a matrix whose columns are the basis 
functions ϕk

v,α; β is a column vector of the coefficients of the 
basis functions; and η is zero-mean Gaussian noise with variance 
σ2. Note that the weighting function Wv,α determines the spatial 
extent of the local model.

To fit the local model to S, we minimize the weighted residual 
sum of squares (WRSSv, α)

WRSS T D

D

v v v v

v v

, , , ,

, ,

( ) ( )

( )

a a a a

a a

b b

b

= − −

= −

S W S

W S

F F

F
2

with respect to β. The minimizing coefficient vector is denoted as b̂.

3D sinusoid-like features. A natural basis for density maps 
is one containing rotated 3D sinusoids with wavelength λ Å. 
Unfortunately, describing all orientations in 3D requires an infinite 
number of basis functions. A computationally tractable alternative 
is to use steerable filters9,10, which we refer to as ‘steerable func-
tions’. Steerable functions are a finite set of functions with the prop-
erty that every 3D rotation of any of the functions is produced by 
linear combinations of the functions9 (Supplementary Note 1).

The steerable functions we use are the second-order Hermite 
polynomial and its approximate quadrature, multiplied by a 
Gaussian function. We call this set H2. The elements of H2 match 
cosine and sine functions up to their second-order Taylor expan-
sion terms. They can also be scaled such that their spectral peak 
occurs at any desired wavelength. The H2 steerable functions are 
constructed from a pair of functions

G x y z P x y z W x y z

x v W x

v Gv v

x v

, , ,

,

( , , ) ( , , ) ( , , )

[ ( ( )) ] ( ,

a a a

aa

=

= − −4 22 yy z

H x y z P x y z W x y z

x v

v Hv v

x

, )

( , , ) ( , , ) ( , , )

[( ( )) .

, , ,a a a

a

=

= − −3 2 254(( ( ))] ( , , ),a ax v W x y zx v−

(1)(1)

(2)(2)

(3)(3)

(4)(4)

where Gv,α is the cosine-like function and Hv,α is the sine-like 
function. The scalar α controls the peak frequency and the  
width of the Gaussian function. Setting α = 2π/λ × √2/√5  
gives a spectral peak for Gv,α and Hv,α at wavelength λ 
(Supplementary Note 2).

The functions in equation (4) are each composed of the 
Hermite polynomial (PGv,a ) or its quadrature (PHv,a ) multi-
plied by Wv,α , the spherically symmetric Gaussian weighting 
function. Their spectral peak occurs on the x axis of the frequency 
domain because the functions are oriented along the spatial  
x axis. Rotating Gv,α and Hv,α so that their spectral peaks occur 
along the vertices and faces of an icosahedron respectively gives 
6 + 10 3D steerable functions. The linear combination of these 16 
functions produces all possible rotations of Gv,α and Hv,α in three 
dimensions10, thereby covering a shell in the 3D Fourier domain 
(Supplementary Note 1).

We denote the rotated Hermite polynomials as PGv
i
,a , i = 1, …, 6 

and PHv
j
,a , j = 1, …, 10. These polynomials and the constant function 

1 are our local-sinusoid signal model. Because the weighting func-
tion Wv,α appears outside of the basis matrix Φv,α in equation (2),  
the Φv,α matrix need only contain the vectorized polynomials

Fv Gv Gv Hv Hv, , , , ,

| | | | | | |

| | | | | | |

a a a a a=


















1 P P P P1 6 1 10 



where the boldface denotes vectorization.

Likelihood-ratio testing. Testing whether the data in the neigh-
borhood of voxel v support the local-sinusoid model is equivalent 
to testing the two hypotheses
H

H
0 0 1 16

1

0: ,

:

The constant term is unconstrained but

All of

b b b
b

= = =

00 1 16, , ,b b are unconstrained

where the null hypothesis H0 states that the data do not support 
the local-sinusoid model (the coefficients of all local-sinusoid 
terms are 0). The alternate hypothesis H1 allows the coefficients 
to take on any finite value.

The likelihood-ratio test11 is a standard procedure for compar-
ing such hypotheses. For this test, we calculate the βs that maxi-
mize the likelihood (probability) under each hypothesis and then 
use the logarithm of the ratio of the maximized likelihoods. The βs 
that maximize the likelihood are found by minimizing the WRSS 
from equation (3) under H0 and H1, respectively. Many common 
statistical tests such as the Pearson χ2 test and the F-test are derived 
from the likelihood-ratio test (Supplementary Note 3).

A simple calculation shows that the negative logarithm of the 
log-likelihood ratio, called the likelihood-ratio statistic (LRS), 
is given by

ˆ ( ; , ) ( ˆ ) ( ˆ), , ,aLRS D D

T

S W S 1 W Sv v v va b bs a a a= − − −










=

1
2 0

2 2
F

S (( )G G0 − S
s 2

where

G

G F F

0
1= −

= −

−W W W W

W W W

v v v v

v v v v

, , , ,

, , , ,

( )

(

a a a a

a a a a

D D T D T D

D D T

1 1 1 1

vv v v v, , , ,)a a a a
D T DF F−1 W

(5)(5)

(6)(6)

(7)(7)
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The LRS is a difference of weighted residuals between the 
null model fit and the local-sinusoid model fit. It takes large  
values when the local-sinusoid model is a better fit than the  
null model.

The likelihood-ratio test is applied by comparing the LRS to  
a number c, defined by

Pr
( )S ST

0G G−
<













= −
s 2 1c p

for some P value p, usually 0.05. If LRS < c, then the data  
do not support the model and we accept the null hypothesis. 
Otherwise, we accept the hypothesis that the local-sinusoidal 
model fits the data.

Calculating the threshold c requires the statistical distribution 
of the LRS. Unfortunately, because of the weighting function 
Wv,α , the LRS does not have a closed-form statistical distribu-
tion. However, ST(Γ0 – Γ)S asymptotically tends to a weighted 
sum of χ2 random variables Σrγrχ2, where γr are the eigenvalues18 
of Γ0 – Γ. Fast and accurate numerical methods are available to 
compute such distributions19.

The LRS computation requires the value of the noise variance 
σ2. We estimate this variance accurately by taking nonoverlapping 
cubes of voxels from the region of the density map surround-
ing the particle. We use the following variance estimator recom-
mended for local-signal modeling18

ˆ ( )

( )
s 2 1 0

0
1

= −
−=∑B

b
T

b
b
B C CG G

G Gtrace

where Cb is a cube of voxels from the background and B is 
the number of nonoverlapping cubes that are available in the 
background. This estimator is robust to non-white noise as it 

(8)(8)

(9)(9)

only requires the noise spectrum to be relatively flat within the  
shell in 3D Fourier space that the local-sinusoid model, implicitly 
indicated by Γ, is approximating.

The noise variance may also be estimated from the difference 
map between split–data set density maps. In this case, the esti-
mator from equation (9) is adjusted to accept cubes of voxels 
from the region inside the particle. The noise statistics inside and 
outside the particle are nearly identical (Supplementary Note 4). 
Both noise-variance estimators are implemented in the accompa-
nying software package (Supplementary Software; http://resmap.
sourceforge.net/).

Multiple-testing correction. The likelihood-ratio test chooses 
between two hypotheses at each voxel. Because this test has 
to be repeated for many voxels in S, some sort of false discov-
ery rate (FDR) control is necessary. The tests in neighboring  
windows are not independent from each other; therefore, we 
use the Benjamini-Yekutieli FDR procedure12 that accounts for 
dependencies between tests.

Summary. ResMap works by applying a hypothesis test at every 
voxel. The null hypothesis is that the data in the neighborhood of 
a voxel do not support a local sinusoid. The alternative hypothesis 
is that the data describe a local sinusoid. These features are mod-
eled by 3D steerable functions. The likelihood-ratio statistic is 
used to decide between the hypotheses at a given P value. Noise 
variance is estimated from the area surrounding the particle,  
and multiple-testing correction is applied to carry out the test  
at many voxels.

18.	 Loader, C. Local Regression and Likelihood (Springer, New York, 1999).
19.	 Farebrother, R.W. J. R. Stat. Soc. Ser. C Appl. Stat. 33, 332–339 (1984).
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