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Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-
maximization (E-M) algorithm are popular because of their ability to produce high resolution structures.
However, these algorithms are computationally very expensive, requiring a network of computational
servers. To overcome this computational bottleneck, we propose a new mathematical framework for
accelerating maximume-likelihood reconstructions. The speedup is by orders of magnitude and the pro-
posed algorithm produces similar quality reconstructions compared to the standard maximum-likeli-
hood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-
EM) data and projection images, greatly reducing the number of image transformations and comparisons
that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall
execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300.
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1. Introduction

Single particle reconstruction from cryo-electron microscopy
(cryo-EM) is an iterative process that infers the 3D structure of a
macromolecule or a “particle” from many noisy 2D projections of
the particles lying at random orientations. Currently popular
approaches to single particle reconstruction are based on the maxi-
mum-likelihood principle or the related maximum-a-posteriori
principle. All these methods are optimized using the expecta-
tion-maximization (E-M) algorithm (Dempster et al., 1977), which
iterates between the expectation step (E-step) and the maximiza-
tion step (M-step). The E-step calculates latent probabilities for
every possible alignment between particle image and structure
projection. The M-step then uses these latent probabilities to give
weights for alignments in calculating the reconstruction. E-M
algorithms have gained popularity because they perform more
favorably compared to other approaches for data with low
signal-to-noise ratio (SNR).

The maximum-likelihood principle and related methods have
been applied to many cryo-EM reconstruction problems. The first
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application of the maximum-likelihood principle in cryo-EM was
for aligning particle images to a single 2D reference (Sigworth,
1998). Since then, several extensions have been proposed. The
maximum-likelihood framework has been applied to 2D mul-
tireference image refinement (Scheres et al., 2005b), single particle
reconstruction (Doerschuk and Johnson, 2000; Yin et al., 2001,
2003), and reconstruction of structurally heterogeneous data
(Scheres et al., 2007). Another extension incorporates prior proba-
bility functions (priors) which encourage smoothness of the 3D
structure, thereby limiting the amount of noise that propagates
through to the reconstruction (Scheres, 2012a,b). More recent pri-
ors include enforcing a sparse representation by using an adaptive,
non-Fourier basis, which improves the SNR and hence the res-
olution of the reconstruction (Kucukelbir et al., 2012). Maximum-
likelihood with priors is referred to as the Bayesian or maxi-
mume-a-posteriori approach.

While reconstruction methods based on maximum-likelihood
and the E-M algorithm have several desirable properties, from a
computational point of view, the E-M algorithm is very slow
(Cheng and Walz, 2009; Sigworth et al., 2010). The computational
bottleneck of the E-M algorithm is the calculation of the latent
probabilities in the E-step. In its naive form, the computational
complexity of the E-step is the number of particle images x the
number of projection directions x the number of image rotations
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and translations; this much computation is prohibitive. For
example, Scheres (2012b) reports that a straightforward E-M
reconstruction of 5053 GroEL particles required almost 25 days,
even while using 56 CPUs in parallel. As data sets are larger by
an order of magnitude or more, such execution times are clearly
unacceptable.

Several heuristics have been proposed to accelerate E-M recon-
struction algorithms (Sigworth et al., 2010). All of these heuristics
depend on the observation that latent probabilities tend to be
peaky; that is, the latent probabilities are high for relatively few
alignments and very low for the rest. If the high probability align-
ments can be found quickly, then the rest can be ignored, speeding
up the calculations. An early strategy used this idea by calculating
latent probabilities only for those alignments whose probabilities
in the previous iteration exceed some threshold (Scheres et al.,
2005a). A more sophisticated strategy utilizes ideas from adaptive
integration, in which the probabilities are calculated on a coarse
sampling and then refined only where most of the probability mass
is concentrated (Tagare et al., 2008, 2010). This adaptive E-M algo-
rithm can be combined with GPU implementation (Tagare et al.,
2010) and local orientation searches (Scheres, 2012b) for further
speedup.

Another strategy is to exploit known symmetries of the particle.
For example, Lee et al. (2007) exploits icosahedral symmetry of
viruses to accelerate E-M reconstructions. The approach utilizes
a fixed basis of spherical harmonics to efficiently sample rotations
(Doerschuk and Johnson, 2000). Furthermore, a linear trans-
formation of the data is applied to speed up E-M calculations.

This paper proposes a completely novel heuristic for speeding
up the E-M algorithm. The idea is to represent the particle images
and structure projections in two different, relatively low-dimen-
sional subspaces that are adapted to the data. This representation
is accurate, so the projections can be rotated, translated, and com-
pared with the particle images simply by performing the
corresponding operations on the subspace bases. Because the num-
ber of basis elements is much smaller than the number of images
and projections, substantial speedup is possible. The approx-
imation using the subspaces is integrated into the maximum-a-
posteriori framework. We refer to the proposed algorithm as
SubspaceEM.

The SubspaceEM algorithm is developed below in the spatial
domain. However, as will become clear in Section 5, the
SubspaceEM algorithm applies without change to the Fourier
domain, where equally significant speedups can be expected.
This is important because some E-M algorithms are implemented
in the spatial domain (e.g., ML3D in Xmipp (Sorzano et al., 2004))
while others are interpreted in the Fourier domain (e.g., RELION
(Scheres, 2012b)). The subspace idea applies to both.

In the following, we begin by describing the mathematical
derivations and implementation of the proposed SubspaceEM
algorithm. After the discussion of the algorithm, experiments are
presented comparing SubspaceEM with the classic E-M algorithm
in reconstructing both simulated and real cryo-EM data. The
computational cost of the SubspaceEM algorithm is compared with
a straightforward implementation of the E-M algorithm. The pur-
pose of these experiments is to examine the potential of the
SubspaceEM algorithm to reduce computational costs by orders
of magnitude without loss in the quality of 3D reconstruction.

2. Mathematical methods

2.1. The maximume-likelihood and maximum-a-posteriori formulations

We first briefly review the maximum-likelihood and maximum-
a-posteriori formulations for single particle reconstruction. An

extensive overview of the theory of maximum-likelihood methods
for cryo-EM analysis is available in Sigworth et al. (2010).

Suppose that S is a particle structure, mathematically repre-
sented as a set of density values on a grid in a three-dimensional
cube. The structure is projected along D directions and a set of F
contrast transfer functions (CTFs), belonging to F defocus classes,
are applied to each projection. This results in M = D x F “filtered
projected” structures, each with a specific defocus class. Let P;
denote the M =D x F projection operators composed with CTF
operators. Then, each filtered projected structure is given by
P;(S). Reconstruction algorithms, including the E-M algorithm,
compare particle images with these M = D x F filtered projected
structures, but the comparison of any particle image is only with
the filtered projected structures that have the same defocus class
as the image. To express this in the following mathematics, we
tag each filtered projected structure P;(S) with its defocus class,
denoted by C;. The value of C; is an integer from 1,...,F. We
emphasize that C; is not the CTF function, but an integer which
indexes the defocus class. In the following, to simplify the
terminology, we will call P; the projection operator and P;(S) a
structure projection whose defocus class is C;.

Next, let x;, i =1,...,N, be the cryo-EM particle images. Similar
to the structure projections, each particle image x; is tagged with
its defocus class, denoted by C;. The defocus class C; is also an inte-
ger from 1,... F and is assigned according to the CTF measured
from the micrograph. The cryo-EM image formation model is that
X; is a projected structure of the same defocus class, rotated and
translated, and further corrupted by zero mean additive noise.
The identity of the projection direction is lost in the image forma-
tion process. Letting z; denote the index of the unknown projection
operator relating the structure S to the image x;, the image forma-
tion process is

X =T+ (Py(S) +m, WithCl =C,. (1)

In the above equation, 7+, is the 2D transformation operator which
rotates and shifts the image according to the transformation
parameter T; = {¢;, tir, tyy}, Which specifies the in-plane rotation
angle ¢; and the translations t; and t;, along the x and y image axes.
Further, n; is the additive white Gaussian noise with zero mean and
standard deviation o. Finally, C; = C,, states that the image x; can
only arise due to the action of a projection operator P, whose defo-
cus class C is identical to the image defocus class C;.

Under the image formation model in Eq. (1), the conditional
probability density that image x; comes from structure S is

N(TT,' (Pzi (S))7 0-2) if C: = Cz,-
0 otherwise’

pxilS, 0,2, Ti) = { 2)
where N(7+,(P;(S)),0?) is the probability density function of a
Gaussian random variable with mean 7,(P,,(S)) and variance ¢2.

The variables z; and t; are nuisance or latent variables because
their values are unknown and are not of particular interest.
These variables are eliminated by marginalization, that is, by
integrating them out. Let & = {0, . .., otm }, where o; is the probabil-
ity that z; = j, let Q;, be the domain of possible values for the trans-
formation parameter 7;, and let p(t;) be the probability of t;. Then,
marginalization results in

M
p(xilS,0,0) = Z/Q p(xilS, 0.j, T)p(zi = j)p(Ti)dTi
j=1 7%
Moo, 3)
:Zaj/ p(xilS, 0.j, T)p(Ti)dT;,
=Gy

where the sum over j marginalizes z; and the integral marginalizes
7;. Simplifying the notation by setting © = {S,0,a} gives
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p(xi | S,0,a) = p(x; | ©). In statistical estimation terminology, ® are
the parameters of the problem.

The single particle reconstruction problem is to recover ®, with
particular interest in the structure S, from the particle images
x;, i=1,...,N. Under the maximum-likelihood principle, the esti-
mate of the parameters ® is

N
© =argmax) _logp(x(®). (4)
6 O

Related to the maximum-likelihood estimate is the maximum-
a-posteriori estimate. Given a prior density p(®) of ®, the maxi-
mum-a-posteriori estimate of ® is

N
® =arg maxg logp(xi|®) + log p(O). (5)
€]

i=1

Often, useful prior knowledge is available only for some parameters,
and it is common to set the prior of the remaining parameters to a
uniform or noninformative density (Bishop, 2006) so that these
parameters can be dropped from the maximization altogether.

The maxima in Egs. (4) and (5) are numerically found using the
E-M algorithm (Dempster et al.,, 1977). This optimization algo-
rithm iteratively alternates between the E-step and the M-step.
The E-step computes the probability of the latent variables z; and
7; given the data x; and the current parameter estimates. The M-
step updates the parameters ® given the latent probabilities.

For single particle reconstruction, the E-step requires calculat-
ing the sum of squared differences (SSDs) between each image x;
and each projection P;(S) with the same defocus class for every

transformation value t;, ||x; — Tri(Pj(S))HZ. The SSD calculations
involve a very large number of image transformations (M structure
projections) and image comparisons (N particle images x D struc-
ture projections). This is what makes the E-step the computational
bottleneck in the E-M algorithm.

2.2. The idea behind the SubspaceEM algorithm

We now turn to discussing our proposed method for speeding
up the E-M algorithm. The method is based on the key observation
that the latent probabilities are insensitive to high frequencies in
the images; that is, accurate latent probabilities can be calculated
using only the low frequencies in the images. This property has
already been experimentally verified; results from simulated
images confirm that discarding high frequency information in the
data or applying an appropriate low-pass filter to the intermediate
structures does not affect matching accuracy (Scheres and Chen,
2012). Even for conventional (not E-M) single particle reconstruc-
tion methods, low-pass filtering the images is known to improve
alignment (Henderson et al., 2011; Grigorieff, 2007).

Low-pass filtering is especially useful when the bandwidth of
the filter adapts to the images. One natural technique to
“adaptively low-pass filter” the images is to project them onto a
low-dimensional subspace, which is chosen to give accurate repre-
sentations of the images. Our use of this idea is illustrated in Fig. 1,
which shows two subspaces. The first subspace approximates the
M structure projections. This subspace is restricted to have dimen-
sion K, with K much smaller than M, but large enough to capture
most of the information in the projections. Every structure projec-
tion is approximated as some linear combination of K basis images
of this subspace, in which the coefficients of the basis elements are
v (Fig. 2A). In a similar fashion, the N particle images are approxi-
mated by the second subspace of dimension L, with L much smaller
than N. Each particle image is approximated by a linear combina-
tion of the L basis images of the subspace with coefficients w
(Fig. 2B).

Incorporating the subspace approximations into the E-M algo-
rithm, the SSDs between structure projections and particle images
can be calculated simply by comparing the K x L subspace bases
and applying the coefficients of their approximations (details are
given below). Further, the approximated images and projections
can be rotated and translated by performing these operations on
their bases. This reduces the computation considerably.

The approximated images and structure projections give fast
and accurate estimates of the probabilities of latent variables.
However, because these approximations do not have high fre-
quency content, the reconstructed structure from the approx-
imations does not have as high a resolution as it could. But this
is easily fixed - after the E-M algorithm terminates, an additional
step which uses the calculated latent probabilities with the original
particle images gives a structure that preserves the high frequency
content. This is the SubspaceEM algorithm.

2.3. Statistical models

To proceed with a mathematical description of the algorithm,
we adopt the following convention: every particle image and struc-
ture projection is represented by a column vector of pixel values.
The standard inner product of any two vectors u and v is
(u, v) = u"v, and the norm of any vector u is |jul], so ||u||* = (u,u).
A subspace is represented by a matrix, called the basis matrix,
whose columns are the basis vectors of the subspace.

Let B be the basis matrix with L columns for the particle image
subspace and w; be the coefficients for representing particle image
x; in basis B. Then,

X; = Bw; + ng;, (6)

where Bw; is the approximation of x; in the subspace spanned by
basis B, and ny; is the error in approximating the particle image in
the subspace.

Similarly, let A be the basis matrix with K columns for the struc-
ture projection subspace and let w»; be the coefficients for
representing the jth projection in the basis A. Then,

7)](5) = AT/j + Myj, (7)

where Avj is the approximation of the projection P;(S) in the sub-
space spanned by basis A, and ny; is the error in approximating
the projection in the subspace. For simplicity, this error is modeled
as white Gaussian noise with standard deviation o,.

Finally, a particle image approximation is related to a projection
approximation by image rotation and translation. As above, let z;
be the unknown index relating the approximate particle image
Bw; to the corresponding approximate structure projection Av;,.
Then,

Bw; = T (Av,) + myy, with(; =, (8)

where ny; is the error in representing the approximated particle
image by the aligned approximated projection. This error is mod-
eled as white Gaussian noise with standard deviation o.

Egs. (6)-(8) define the new image formation model. Note that
Eq. (8) is very similar to the classical model in Eq. (1), in which
the subspace approximations Bw; and Av,, replace the image x;
and the projection P (S). Furthermore, the error n; in Eq. (1) is
now distributed over three error terms: ng;, ny;, and ny;.

For the new model to be useful, it is essential that the image
approximation be good. Because the particle images do not change
as the structure is estimated, we fix the subspace and therefore
approximate the images before running the reconstruction algo-
rithm. We choose the image subspace basis B using principal com-
ponent analysis (PCA) (Jolliffe, 2002) of the particle images. For a
given subspace dimension, PCA finds a basis for the subspace that
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Fig.1. Schematic for the fast E-M framework. We approximate the M projections from the current structure in some subspace that can be described by K basis images, where

K < M. Each projection is approximated in the subspace using corresponding coefficients

v. Similarly, we approximate the N particle images in some subspace represented by

L basis images, with L < N. Each image approximation can be written using corresponding coefficients w. The proposed algorithm greatly reduces computational cost because

it only rotates and compares the basis images to calculate the latent probabilities.

minimizes the mean-squared error between the data and the pro-
jection of the data onto that subspace. The choice of the dimension
of the principal component subspace is discussed below. Once the
subspace is determined, the particle images are projected onto it
and the approximated images Bw; are taken to be data. In contrast
to this, both the subspace basis A and the coefficients z; for
approximating the structure projections are taken to be unknown,
since the structure and the projections themselves are unknown,
and are estimated along with the structure. The set of parameters
to estimate is then ® = {S, 01,07, a,A, v}, where v = {vy,..., vy}
is the set of coefficient vectors for approximating the structure
projections.

2.4. Maximum-a-posteriori estimation with the E-M algorithm

Using the new model, the single particle reconstruction prob-
lem is to recover the parameters ® from the particle images x;
and the approximated images Bw; fori = 1,...,N. Under the maxi-
mume-a-posteriori estimation framework, the estimate for the
parameters is

N
® = argmax Zlogp(de@) +logp(0)|. 9)
o i-1
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Fig.2. Structure projection and particle image models using subspace approximations. (A) Structure projection model. (B) Particle image model.

The maximization in Eq. (9) is similar to the classical maximum-a-
posteriori problem in Eq. (5), with the approximated particle
images replacing the original data.

The first term of the objective function in Eq. (9) contains the
log of the conditional probability of an approximated image given
the parameters. Similar to the traditional maximum-likelihood
formulation, z; and 7t; are latent variables. Marginalizing with
respect to z; and T1;, the conditional probability is

p(Bwi©) = Za] / p(BWiA, v, 0, T)p(T)dT. (10)

For simplicity, we set p(t;) to a uniform density. Further, using the
model in Eq. (8),

N(T+(Av)),6%) ifC =G
0 otherwise

p(BWilA, vj, 01, T;) = { (11)

The second term of the objective function in Eq. (9) is the log of
the prior p(®). Using the dependencies in Eq. (7) and assuming
S, 01, 02, and a are independent, p(®)=p(S,a1,02,%,A, V)=
P(A,v |S,a2)p(S)p(02)p(co1)p(a). The density for p(A,v|S,0,) is
derived from Eq. (7):

M
= [Ipavs.02). (12)

j=1

p(Aa V|S, 0-2)

where p(Av; | S, 02) = N(P;(S), 63). The priors for a, 01, g;, and S
are assumed to be uniform and thus are dropped altogether from
the maximization.

Egs. (9)-(12) define the maximum-a-posteriori reconstruction
problem. It is straightforward to derive an E-M algorithm for the
problem. Details of the derivation are given in Appendix A. The
iterative updates of the algorithm are given below in Egs. (13)-
(19) and are executed in sequence. Each update is calculated using
the most recent estimate for the parameters thus far. Note that to
denote this, the parameters on the right-hand side of Egs. (13)-
(19) should have iteration superscripts, but we have omitted these
superscripts for clarity.

In iteration n, the E-step involves calculating the probability of
z; and 71; given the data Bw; and the estimate for the parameters

O™ from the previous iteration. We denote these latent

probabilities as W (j, 7;) = p(zi
computed as

=Jj, 7 | Bw;,®" 1) and they are

IBw;~T; (Av)) |2
o exp —T

[Bwi~T, (A2
Secr e Jo, { —Jd

0 otherwise

ifC; =G

WG, 1) = (13)

Note that the SSDs [Bw; — T+, (Av;)||* are calculated between the
approximated particle image and approximated projection, while
in StandardEM the SSDs compare the particle image and projection.

The M-step updates all the parameters ®™ using the latent
probabilities W™ (j, ;) from the E-step:

1 .
a][n]:N; o W(]7‘L',')df,' (14)
2 _ 1 W(, ) ||Bw; — T= (Avy)|*dt; 15
@)" =gy [, WG.T)|Bwi — T (AP (15)
i=1 j=1 Ty
20 _ 1SN, ps)? 16
(02)" = ppg 2_ 1A% = PiS) (16)
j=1

Al :[ o> W(j, )T _,(Bw;) Td‘c,+alz7>] }
=1 i=1 Y9

1 1

(17)
I:O'ZZZU] / W(, t)dt; + UIZUJ }]
j=1 i=1
(ATA) G%Z fn W(j, Ti)T— (Bwi)dT; + G1PJ(S):|
= & (18)
agz Jo. WG, T)dT; + 02
i1
M
S" = argmin’ ||A; — P;(S)|*. (19)
s i3
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In Egs. (15) and (16), P is the number of pixels in a particle image,
and in Egs. (17) and (18), T_, is the 2D transformation operator
which performs the inverse transformation of 7. Because the
objective function on the right-hand side of Eq. (19) is quadratic
in S, its minimum is found efficiently by the conjugate gradient
method.

The update expressions for &, o1, and S are similar to those in
the standard maximum-likelihood framework, while the remain-
ing update equations are unique to the subspace formulation. To
gain some intuition about the new update expressions, note in
Eq. (17) that the update for the basis A depends on a weighted
combination of the data and the prior model, that is, the basis
depends on the aligned approximated particle images 7 _,(Bw;)
and the current projections of the estimated structure P;(S). The
weighting between these two terms depends on the variance of
the error in aligning the approximated particle images and
projections 02 and the variance of the error in approximating the
projections ¢3. If the alignment of the approximated particle
images to the approximated projections is poor compared to the
approximation of the structure projections, 62 will be larger than
02, and the prior term will drive the subspace estimate. On the
other hand, if the error between the aligned images and the
projections is small compared to the error in approximating the
projections, g2 will be larger than ¢2, and the data term will have
a greater influence in estimating the new basis. The image result-
ing from the combination of the data and prior is compared against
the current approximation coefficients »; and normalized (by the
expression in the brackets with the inverse) to give the update
for basis A.

A similar weighting between the data and current structure is
seen in the coefficient update in Eq. (18). For each projection, the
weighted compromise between the particle images and current
projection is multiplied by the basis matrix A" to get a representa-
tion of the combined image in the subspace. This representation is

then normalized by (ATAf1 and the sum of the weights in the
denominator of Eq. (18) to give the updated coefficients »;. In this
way, the estimate of the subspace and coefficients for the
projection approximations adapts to both the particle data and
the evolving structure estimate.

2.5. Fast computation of latent probabilities

The latent probabilities in Eq. (13) require calculating the SSDs
between each approximated particle image and projection. These
SSDs can be written as

1BW; — T« (Av)||* = || T _<,(Bw;) — Ayl

= |7, Bw)|* + [Aj])* — 2(T <, (Bwi), Avy)
= 1T« (Bw)II” + IAw|* — 2(Bw;, T+ (Avy)), (20)

where the last equality makes use of the fact that the inner product
of two vectors is invariant under rotations. We write it as above
because the number of basis elements K needed to represent the
projections is smaller than the number of elements L needed to
represent the particle images, and thus fewer transformation
operations are executed. This inner product can be further
simplified by utilizing the subspace representations. Writing out
the matrix multiplication Aw; in terms of the columns of A, the
approximated projection can be written as Av; = Z'k(:]ak vj’.‘, where

a, is the basis image from the kth column of A and v]’f is the kth

component of the vector »;. Similarly, let Bw; = Z,Lzlb,wﬁ, where b,
is the Ith column of B and wﬁ is the Ith component of w;. Then,

L K L K
o7 ) = (300 ) = 33 et T )
=1 k=1 =1 k=1
(21)

Egs. (20) and (21) are at the heart of the computational speedup
of SubspaceEM. First, note that the term || 7 ., (Bw;)||* in Eq. (20) is
the squared norm of the approximated image, which stays the
same with each E-M iteration. Thus, these values need be com-
puted just once at the initialization of the algorithm. The second
term in Eq. (20) is the squared norm of the approximated projec-
tion, which is computed once at the start of each E-M iteration.
For a fixed image size, its complexity is order K. The last term in
Eq. (20), calculated by way of Eq. (21), dominates the cost of com-
puting the SSDs. In each iteration, every basis image ay is trans-
formed for every value of rotation and translation. For a fixed
number of rotations and translations, these image transformations
also have complexity of order K. Finally, the inner product between
the subspace bases in Eq. (21) has complexity of order K x L. Thus,
overall the computation cost of calculating the SSDs in each itera-
tion is order K x L.

A similar analysis can be performed for the cost of calculating
the SSDs in the classical E-M formulation. In each iteration, every
projection must be transformed for every rotation and translation,
giving complexity of order M. For each transformation value and
defocus class, D projections must be compared against particle
images belonging to the same defocus class. Thus, the overall com-
plexity for calculating the SSDs in each iteration is order D x N.

Comparing the complexity of the classical E-M algorithm with
SubspaceEM shows that the speedup of the proposed method
depends on how small the dimensions of the subspaces are com-
pared to the number of particle images and projections. As demon-
strated by the experiments in the Results section, the subspace
dimensions needed for accurate latent probability calculations
are generally an order of magnitude or more smaller than the num-
ber of particle images and projections. Therefore, the SubspaceEM
algorithm results in substantial computational speedup.

2.6. Choosing the subspace dimensions

The SubspaceEM algorithm requires selecting the dimensions of
the approximating subspaces. Recall that PCA is used to find a basis
that is adapted to the particle images. In addition, we use PCA to
initialize the basis for the projections. Many rules have been pro-
posed in the literature for choosing the number of principal com-
ponents such that little information is lost (Jolliffe, 2002; Peres-
Neto et al., 2005). We apply the popular Cattell’s scree test
(Cattell, 1966). In PCA, each principal component is associated with
a principal value, which is an eigenvalue. Cattell’s scree test plots
the eigenvalues, ordered from largest to smallest, against the index
of the corresponding principal component. The principal compo-
nent index at which the eigenvalue plot starts to level off in a
straight, not necessarily horizontal line is chosen as the cutoff for
the number of components, determining the dimension of the
approximating subspace. A numerical way to determine this point
is to calculate the second difference between adjacent eigenvalues
and keep components up to the point where the absolute second
difference is less than some threshold t.

An example of an eigenvalue plot is shown in Fig. 3. The cutoff
point that satisfies the absolute second difference threshold is
highlighted for various values of t. The approximations of the par-
ticle images corresponding to the different cutoff points are also
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displayed. Experiments reported below show that the reconstruc-
tions are insensitive to the range of choices for t in Fig. 3.
Nominally, we use t = 0.0001.

2.7. Final algorithm and implementation

The proposed SubspaceEM method is outlined in Fig. 4. Given as

input a set of particle images x, an initial volume S, and a thresh-
old t for determining the subspace dimensions, the algorithm out-

puts a final reconstruction .

Steps 1-4 are initialization steps for the algorithm. Step 2 per-
forms PCA of the particle images, fixes the dimension L of the par-
ticle image subspace according to the threshold t, and sets the
subspace approximations of the images. Step 3 performs PCA of
the initial structure projections, fixes the dimension K of the pro-
jection subspace according to the threshold ¢, and initializes the
projection subspace basis and coefficients for each projection.
Step 4 initializes the remaining parameters. The vector « is initial-
ized by setting all of its components to 1/M. The standard devia-
tion of the pixel noise in the approximated images o; is
initialized to the standard deviation of the noise in the original par-
ticle images. The standard deviation for the pixel noise in the pro-
jections o3 is initialized to be a hundred times larger than the noise
in the approximated images, so that the data drives the parameter
estimates in the initial E-M iterations.

After the initializations, the E-M algorithm using the subspace
approximation framework is executed in Step 6. As discussed
above, the latent probabilities are well estimated at convergence,

but the structure S™ is missing some high frequency information
from the original images due to the subspace approximations. To
correct for this, Steps 7 and 8 use the estimated latent probabilities
and the original particle images to compute the final reconstruc-
tion S.

Finally, we run the algorithm twice. The final structure S from
the first run (SubspaceEM-1x) is used as the initial structure S
in a second run (SubspaceEM-2x). The entire algorithm in Fig. 4
(except for Step 2, which depends only on the particle images) is
then executed again. In particular, this means that the dimension
of the approximating subspace for the structure projections is
recalculated. This improves the result, likely because the approxi-
mating subspace is a better fit, which allows the algorithm to
escape from a local minimum of the first run. In practice, additional
iterations of the algorithm do not appear to improve results any
further, and we only execute two iterations.

3. Experimental methods
3.1. Reconstruction experiments

We carried out experiments to investigate the quality of the
reconstructions and the potential computational savings of the
SubspaceEM algorithm compared to the traditional maximum-
likelihood formulation. A straightforward implementation of the
maximum-likelihood approach in Eq. (4) with the classical image
model in Eq. (1) was used, which we refer to as StandardEM.
Experiments were carried out using both simulated and real
cryo-EM data, described below. For each of these cryo-EM datasets,
we estimated reconstructions using the StandardEM algorithm and
the proposed SubspaceEM algorithm.

In addition, we tested the sensitivity of the SubspaceEM algo-
rithm to the choice of parameter threshold t, which determines
the cutoff for the number of basis components to represent the
projection and the particle images. We tested the robustness of
the algorithm to our chosen value of t = 0.0001 by changing the
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Fig.3. Plot of eigenvalues from PCA of simulated cryo-EM data. The number of
components for various values of the threshold t are noted along with correspond-
ing approximated images for the sample particle image in the upper right. The
particle image intensities are first normalized to have mean of zero and standard
deviation of one before performing PCA.

parameter to the values t = 0.0002 and t = 0.00005. These values
for t resulted in approximately 50-100 projection basis elements
for the first SubspaceEM run and 100-300 projection basis ele-
ments in the second SubspaceEM run. The number of basis ele-
ments for the particle image subspace had greater variation, from
a few hundred to over one thousand elements. The exact number
of components used for each data set are given in Table 1.

3.2. Simulated data

We created a low noise (SNR =0.05) and high noise
(SNR = 0.02) synthetic dataset of 10,000 cryo-EM images. These
images were simulated from the 50S ribosomal subunit structure
published by Voss et al. (2010), available online at the National
Research for Automated Molecular Microscopy (NRAMM) website.
The NRAMM volume is 100 x 100 x 100 voxels with a voxel size of
3.09 A. To create a synthetic cryo-EM image, we projected the
structure along some direction randomly chosen from a 2° sam-
pling on the sphere. We then applied one of three CTFs, based on
imaging with 120keV electrons and defocus values of
—1.0, —1.8, or —2.6 um. Finally, we randomly rotated and trans-
lated the projection and added white Gaussian noise to achieve
an SNR of 0.05 for the low noise dataset and 0.02 for the higher
noise case.

For each dataset, we ran reconstructions using a 5° angular
stepsize for both the projection direction around the sphere and
in-plane image rotation. The 5° stepsize and three CTF classes
resulted in 4998 projections. Translational search was performed
in the range of +4 pixels. We used the NRAMM volume low-pass
filtered to 60 A as the initial structure.

3.3. Real data

For experiments with real data, we used a 25,000 (25K) image
subset of the 1.3 million particles of the 70S ribosome published
by Brilot et al. (2013). The original particle images collected by
Brilot et al. (2013) are 320 x 320 with a pixel size of 1.04 A. We
grouped the images into five CTF classes with defoci at
—2.63, -3.16, —-3.63, —4.10, and —4.76 um at 300kV. To run



N.C. Dvornek et al./Journal of Structural Biology 190 (2015) 200-214 207

SubspaceEM Algorithm

Input: Particle images x, initial structure SO cutoff threshold t.

Output: Reconstruction S.

. Set n=0.

. Initialize ag’] for all j, UEO}, 0&0].

. Iterate until convergence:
(a) Set n=mn+1.
(b) E-Step:

. Do PCA on x and set B,w; for all 7 according to ¢.
. Do PCA on projections P; (S1%) to initialize A, v_E.U] for all j according to t.

Compute squared norm of each transformed image approximation ||7_, (Bwi)HZ.

i. Compute squared norms of each approximated projection |\Avj\|2 .
ii. Compute inner products between each image and transformed projection basis element

<blvTTq (ak)>‘

iii. Compute each latent probability W™ (j,7;) via Eqs. (13) and (20)-(21).

(¢) M-Step:
i. Update ©[" using Eqs. (14)-(19).

7. Recompute projection estimates using W™l (4, ;) and original images x.

8. Reconstruct final structure S.

Fig.4. The SubspaceEM algorithm.

Table 1
Values tested for the threshold t and the corresponding number of components for
each dataset and basis.

K, SubspaceEM-1x K, SubspaceEM-2x L

0.05 SNR simulated data

t = 0.0002 52 118 302
t = 0.0001 73 225 641
t = 0.0005 77 280 1062
0.02 SNR simulated data

t = 0.0002 50 135 351
t = 0.0001 51 163 724
t = 0.00005 52 197 1103
25K real images, 5° sampling

t = 0.0002 82 206 359
t = 0.0001 100 176 431
t = 0.00005 101 219 529

the StandardEM algorithm in a reasonable amount of time on a sin-
gle multi-core desktop computer, we downsampled the cryo-EM
images by a factor of four. Prior to running the structure estimation
algorithms, the particle images were phase-flipped, pre-whitened,
and normalized to have intensities with mean of zero and standard
deviation of one.

Reconstructions from the 25,000 particle images were obtained
using an angular search stepsize of 5° around the sphere (8330
projections) and 2° for in-plane rotation. A translational search of
+4 pixels was used. The algorithms were initialized with the pub-
lished volume from 1.3 million particles low-pass filtered to 60 A.

3.4. Algorithm implementation and evaluation criteria

The SubspaceEM and StandardEM algorithms were imple-
mented using MATLAB software (MATLAB, 2013). The code is avail-
able for download from the MATLAB Central File Exchange at
http://www.mathworks.com/matlabcentral/fileexchange/50091.
Rotation operations were performed on the GPU using built-in
MATLAB functions with the default (bilinear) interpolation setting.
The algorithms were considered converged when the squared
norm of each projection reference used in calculating the SSDs dif-
fered by no more than 1% from the previous iteration. Specifically,
the norms of the approximated projections were compared in

SubspaceEM, while the norms of the structure projections were
compared in StandardEM.

We evaluated the goodness of the reconstructions using the
Fourier shell correlation (FSC). Prior to computing the FSCs, struc-
tures were aligned to one another using UCSF Chimera (Pettersen
et al., 2004), and a soft, spherical mask with a Gaussian fall-off at
the edge was applied to each volume. The FSC between each recon-
struction and published structure was calculated to determine how
closely the reconstruction agrees with the existing structure. The
resolution of the reconstruction based on these comparisons was
estimated using the frequency which coincides with FSC = 0.5.
Furthermore, for the real dataset, two independent reconstructions
were obtained from the data randomly split in half, and the gold
standard FSC (Scheres and Chen, 2012) was calculated to assess
the consistency of the estimated reconstructions. Because calcula-
tion of a gold standard FSC requires half-dataset reconstructions,
the threshold of FSC = 0.143 was used to report the resolution
(Rosenthal and Henderson, 2003). Finally, the FSCs between
SubspaceEM and StandardEM reconstructions were calculated to
directly compare the results produced by the two algorithms.
Since reconstructions from the same whole dataset were com-
pared, the structures were considered similar up to the more con-
servative FSC = 0.5 threshold.

In addition to measuring reconstruction quality, we evaluated
algorithm efficiency by measuring total CPU times' for different
parts of the algorithms. We measured the average CPU time to com-
pute the exponential function of the SSDs in Eq. (13) in the E-step
(denoted as “Average SSD Time” in the tables), the average CPU time
for one E-M iteration, and the total CPU time to run the entire algo-
rithm. For the SubspaceEM method, we reported the calculation
times for each run of the algorithm (SubspaceEM-1x and
SubspaceEM-2x) as well as overall statistics after finishing the two
runs (SubspaceEM-Overall). The speedup in CPU time was calculated
as the StandardEM time divided by the SubspaceEM-Overall time. All
reconstructions for each dataset were performed on the same
machine for fair comparison of run times.

1 The MATLAB implementation for the StandardEM algorithm makes use of the
parfor function to allow the code to run across several MATLAB processes at the same
time. We use the term “CPU time” to mean the sum of execution time across all
processes.
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4. Results
4.1. Simulated data experiments

The original NRAMM reconstruction, used as the ground truth
in the simulations, is shown in Fig. 5A. The reconstructions for
the 0.05 SNR simulated data are in Fig. 5B and C, and the recon-
structions for the 0.02 SNR data are in Fig. 5D and E. The 0.02
SNR reconstructions appear noisier and lower resolution than the
0.05 SNR reconstructions, as expected. However, for each dataset,
the SubspaceEM algorithm structure appears less noisy compared
to the StandardEM result. The StandardEM algorithm was run with
no additional low-pass filtering of the images or structure, which
may have partly contributed to the noisier result.

FSCs between the ground truth structure and the estimated
reconstructions are plotted in Fig. 5F. The FSCs confirm that the
SubspaceEM reconstructions contain more detail than the
StandardEM results; the StandardEM and SubspaceEM algorithms
produced structures with resolutions of 15.2 A and 13.4 A for the
0.05 SNR dataset and 19.0 A and 16.0 A for the 0.02 SNR dataset,
respectively. Furthermore, the FSCs comparing the StandardEM
and SubspaceEM results suggest that the methods produced struc-
tures that are similar up to about the resolution of the StandardEM
structure (Fig. 5G).

Table 2 displays computing times for StandardEM and
SubspaceEM. The time to compute the SSDs in one iteration using
StandardEM was on the order of a few days, while SubspaceEM took
only a few minutes. Although the SubspaceEM algorithm was run
twice and required more E-M iterations than StandardEM to con-
verge, the total CPU time for SubspaceEM was less than 2 h, while
StandardEM needed up to four weeks to finish processing.
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The computational speedup of SubspaceEM over StandardEM is
shown at the bottom of Table 2. On average, the SSD calculation is
over 1000 times faster, while the computation for an entire E-M
iteration is over 500 times faster for SubspaceEM. Note that the
time to update the structure dominates the M-step in both algo-
rithms; since the reconstruction time is a much smaller fraction
of the time to complete a StandardEM iteration compared to a
SubspaceEM iteration, the speedup factor is reduced. The overall
computational speedup is further reduced to about a factor of
300 due to the SubspaceEM algorithm requiring more iterations
to converge than StandardEM.

4.2. Real data experiments

Fig. 6 summarizes the reconstruction results using the real data.
The StandardEM and SubspaceEM reconstructions appear very
similar (Fig. 6B and C). Gold standard FSCs suggest a resolution of
12.4 A using StandardEM and 11.3 A using SubspaceEM (Fig. 6D).
The FSCs comparing the StandardEM and SubspaceEM volumes
with the structure from Brilot et al. (2013) show agreement with
the published volume up to 13.3A and 12.9A, respectively
(Fig. 6E). The FSC between the StandardEM and SubspaceEM recon-
structions suggest structural agreement is limited by the slightly
lower resolution of the StandardEM result (Fig. 6F).

Computation times are listed in Table 3. StandardEM required
weeks of CPU time to complete one iteration, while an iteration
of SubspaceEM ran in less than half an hour. Overall, the total
CPU time was about 6 h for SubspaceEM compared to almost
3 months for StandardEM.

Speedup factors for the real data experiments are shown at the
bottom of Table 3. Both the SSD calculation time and iteration time

0.05 SNR

0.02 SNR

Ground Truth 0.05 SNR 0.02 SNR
StandardEM SubspaceEM StandardEM SubspaceEM
F 1 G 1
N --- 0.05 SNR, StandardEM . ---0.05SNR
) 0.05 SNR, SubspaceEM —0.02 SNR
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Fig.5. Reconstruction results from simulated data experiments. Reconstructions were obtained from 10,000 simulated particle images with a pixel size of 3.09 A, using 5°
projection direction sampling. (A) Ground truth structure of the 50S ribosomal subunit obtained from Voss et al. (2010). (B) StandardEM reconstruction from 0.05 SNR
simulated data. (C) SubspaceEM reconstruction from 0.05 SNR simulated data. (D) StandardEM reconstruction from 0.02 SNR simulated data. (E) SubspaceEM reconstruction
from 0.02 SNR simulated data. (F) FSCs between true and estimated structures. (G) FSCs between StandardEM and SubspaceEM reconstructions.
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Table 2

209

CPU time and speedup for simulated data experiments. Times are reported as the sum of execution time across all processes.

Average SSD* time (min)

Average iteration time (min)

# EM iterations Total CPU time (h)

Simulated 0.05 SNR

StandardEM 4004 4022
SubspaceEM-1x 2.8 6.1
SubspaceEM-2x 43 7.2
SubspaceEM-Overall 3.5 6.7
Simulated 0.02 SNR

StandardEM 3914 3924
SubspaceEM-1x 2.6 7.1
SubspaceEM-2x 3.7 6.8
SubspaceEM-Overall 3.2 7.0
Speedup”

Simulated 0.05 SNR 1144 600
Simulated 0.02 SNR 1223 561

10 670
6 0.8

458
0.8
0.9
1.6

- U

—_

394
- 280

2 SSD =sum of squared differences. In StandardEM, the differences are calculated between images and projections. In SubspaceEM, the
differences are between approximated images and approximated projections.
b Speedup is calculated as (StandardEM time)/(SubspaceEM-Overall time).
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Fig.6. Reconstruction results from real data experiments. Reconstructions were obtained from 25,000 particles images with a pixel size of 4.16 A, using 5° projection direction
sampling. (A) Structure of the 70S ribosome from Brilot et al. (2013). (B) StandardEM reconstruction. (C) SubspaceEM reconstruction. (D) Gold standard FSCs. (E) FSCs between
structure from Brilot et al. (2013) and estimated structures. (F) FSC between StandardEM and SubspaceEM reconstructions.

for SubspaceEM were about 1000 times faster than for
StandardEM. The increased speedup of the E-M iterations in this
experiment compared to the simulated experiments is due to the
greater number of particles, resulting in longer SSD calculations.
As in the simulated experiments, SubspaceEM required more itera-
tions to converge compared to StandardEM, and thus the speedup
for overall runtime is smaller compared to the average speedup per
E-M iteration. Still, SubspaceEM ran over 300 times faster than
StandardEM.

4.3. Parameter sensitivity

The SubspaceEM reconstructions from varying the number of
basis components are shown in Fig. 7. Each row shows the recon-
structions using the same dataset. With t decreasing from left to
right, each column corresponds to the same value for t. For each
dataset, the reconstructions agree in a similar way to the published

structure, as evidenced by the overlap in the FSC curves comparing
the estimated and baseline structures (Fig. 8). Note that
SubspaceEM produced very similar reconstructions even though
the number of basis elements used varied by up to an order of
magnitude (Table 1), demonstrating the robustness of the algo-
rithm to the choice of threshold t.

5. Discussion
5.1. SubspaceEM algorithm discussion

The SubspaceEM algorithm is a new method for performing fast
cryo-EM single particle reconstruction. The approach finds two
image subspaces, one for approximating the particle images and
one for approximating the projections of the current structure esti-
mate. The particle image subspace is estimated from the particle
data, while the structure projection subspace is iteratively
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Table 3
CPU time and speedup for real data experiments. Times are reported as the sum of
execution time across all processes.

Average SSD? Average iteration # EM Total CPU
time (min) time (min) iterations time (h)
25K images, 5° sampling
StandardEM 23,950 23,956 5 1996
SubspaceEM- 15.9 18.8 8 2.6
1x
SubspaceEM- 19.2 21.8 7 2.7
2x
SubspaceEM- 17.5 20.2 15 53
Overall
Speedup” 1369 1186 - 377

2 SSD = sum of squared differences. In StandardEM, the differences are calculated
between images and projections. In SubspaceEM, the differences are between
approximated images and approximated projections.

b Speedup is calculated as (StandardEM time)/(SubspaceEM-Overall time).

estimated within the E-M framework from the weighted aligned
particle images and current structure. Using these two subspaces,
the match between each transformed projection and particle
image can be quickly calculated by performing the appropriate
operations on the subspace bases and applying the image coeffi-
cients. This gives the SubspaceEM algorithm significant speedup
compared to the conventional E-M algorithm for maximum-likeli-
hood reconstruction because the numbers of image comparisons
and transformations are greatly reduced.

An alternative to using two subspaces is to approximate both
the particle images and structure projections with a single sub-
space, for which there are two options. One option is to just use
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t = 0.0002

t = 0.0001

the PCA subspace of the data by itself. A second option is to itera-
tively estimate one subspace within the E-M algorithm. It turns
out that both of these alternatives have significantly worse
computational performance as well as worse representational
accuracy.

To understand the effect on computational performance, recall
that if the dimension of the projection approximation subspace is
K and the dimension of the image approximation subspace is L,
then the computational complexity of the each E-M iteration is
K x L. The dimension L is typically one or two orders of magnitude
larger than the dimension K. If a single subspace is used for
approximating both, then K = L, and the computational complexity
increases by an order of magnitude or two. Keeping the subspaces
separate reduces K and gives a faster algorithm.

In considering the accuracy, the key factor is that the number of
particle images is one or two orders of magnitude more than the
number of structure projections. Hence, if a single subspace is used
to approximate the particle images as well as projections, then the
subspace is determined solely or mostly by the particle images.
There is no guarantee that the projections will be approximated
well, since the data are unaligned and noisy. This implies that
the latent probabilities may not be approximated well, and the
accuracy of the reconstruction may suffer. Instead, using two sub-
spaces approximates the data as well as the projections indepen-
dent of their relative sizes, giving accurate approximations for
both. Further, the accuracies of both can be independently con-
trolled by choosing a separate dimension for each.

The dimension of each approximating subspace is constant dur-
ing a single run of the SubspaceEM algorithm (e.g., as indicated in
Table 1). This is simply what is dictated by the mathematics of the
E-M algorithm. Of course, changing the dimension of the
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Fig.7. SubspaceEM reconstructions using different values for the threshold t. Each row corresponds to reconstructions using the same dataset, with number of basis
components used increasing from left to right. (A) Simulated 0.05 SNR, t = 0.0002. (B) Simulated 0.05 SNR, t = 0.0001. (C) Simulated 0.05 SNR, t = 0.00005. (D) Simulated 0.02
SNR, t = 0.0002. (E) Simulated 0.02 SNR, t = 0.0001. (F) Simulated 0.02 SNR, t = 0.00005. (G) Real data, t = 0.0002. (H) Real data, t = 0.0001. (I) Real data, t = 0.00005.



N.C. Dvornek et al./Journal of Structural Biology 190 (2015) 200-214 211

approximating subspaces will further improve the accuracy, and
our approach to this is to run the SubspaceEM algorithm twice.
After the SubspaceEM algorithm is run for the first time, its final
structure is used as the new initial input for a second run.
Specifically, the projections from the first reconstruction are used
with the scree test to increase the dimension of the structure pro-
jection subspace, and SubspaceEM is run the second time with this
new dimension. Our experience with the SubspaceEM algorithm is
that it is not necessary to repeat this further; running SubspaceEM
twice gives reconstructions that are as good as with multiple
repeats.

5.2. SubspaceEM reconstruction quality

The proposed SubspaceEM algorithm consistently produced
reconstructions with resolutions that were comparable to or better
than results from the classic E-M reconstruction algorithm.
Restricting the data and projections to a lower dimensional sub-
space undeniably results in some loss of high frequency informa-
tion. While the structure estimated by the E-M algorithm using
the subspace approximations (after Step 6 in Fig. 4) is of lower res-
olution, the latent probabilities are very well approximated, i.e.,
the cryo-EM data are well-aligned to the projections. Thus, we
are able to get back an accurate, higher resolution structure using
the original data and the final latent probabilities. A similar strat-
egy is often used in traditional reconstruction methods: low-pass
filtering the images to calculate the best match between the pro-
jections and data, and then including higher frequency information
to calculate the reconstructions.

The SubspaceEM reconstruction is driven by the likelihood
function, which has multiple local maxima. The E-M algorithm,
as well as other popular reconstruction methods, only guarantee
convergence to a local maximum. Since the SubspaceEM algorithm
follows an E-M derivation, it too will converge to a local maxi-
mum. Standard techniques for avoiding bad local maxima can be
used with SubspaceEM. For example, the algorithm could be run
many times with different initial structures, and the result with
the highest likelihood would be chosen as the final reconstruction.
The computational speed of the SubspaceEM algorithm makes this
an attractive strategy for handling suboptimum reconstructions.

One additional consideration for SubspaceEM compared to
StandardEM is the choice of subspace dimensions, governed by
the threshold parameter t. If ¢ is chosen to be too large, the sub-
space dimensions may be too small to retain enough image infor-
mation for accurate particle alignment. On the other hand, the
smaller the value of t, the larger the dimensions of the subspaces,
and the closer the approximations get to exactly representing the
particle images and projections. The experiments show robustness
of the SubspaceEM algorithm to a wide range of subspace dimen-
sions (Fig. 8).

While SubspaceEM produced good results for the tested data-
sets regardless of the choice of subspace dimensions, there may
be cases where the alignment information is in such high frequen-
cies that the subspace approximations may not give accurate align-
ment. For example, successful determination of the structure of
apoferritin by cryo-EM required frequencies beyond 10 A (Russo
and Passmore, 2014). Recall that our algorithm uses Cattell’s scree
test to determine the subspace dimensions (Section 2.6). If it is
imperative that certain frequencies be preserved, the scree test
could be replaced by another test that adjusts the subspace dimen-
sions to keep as many basis elements as needed to cover the
desired frequency range. Compared to the scree test, a test to keep
very high frequencies would likely give higher dimensions for the
subspaces and reduce the computational speedup of SubspaceEM.
However, note that even if all the basis elements are kept, the

computational complexity would be no more than in the tradi-
tional E-M reconstruction algorithm.

5.3. Reduction in computational costs

The primary advantage in applying our SubspaceEM approach is
the very large computational savings. The sizes of the datasets and

projections tested were ~ 10* and ~ 10°, respectively, while the

image and projection bases each consisted of ~ 10% elements.
Thus, we expect the SSD computations for the latent probabilities

to be accelerated by a factor of ~ 10°. The experimental results
matched our theoretical expectations, with the speedup in calculat-
ing the SSDs reaching over a factor of 1000. While we ran the
SubspaceEM algorithm two times for each dataset to handle the local
minimum problem, using the reconstruction from the first run to ini-
tialize the second, the overall CPU time using SubspaceEM was still
over hundreds of times faster than using StandardEM.

The greatly reduced computational time for the proposed
SubspaceEM algorithm has implications for single particle recon-
struction with modern direct detector methods. As image acquisi-
tion techniques improve and the size of cryo-EM datasets grow, the
image analysis is often limited by the availability of computational
power. The significant speedup of our approach allows a much lar-
ger number of images to be processed in a reasonable amount of
time, using fewer computational resources. In addition, unlike
other acceleration methods which reduce the parameter search
space, the SubspaceEM algorithm performs a truly exhaustive
search for the optimal alignment parameters. The implementation
of the SubspaceEM algorithm can be further optimized and com-
bined with other acceleration techniques such as hardware
parallelization to further minimize the wall-clock time.

5.4. Extensions of the SubspaceEM algorithm

While presented above in the spatial domain, the SubspaceEM
algorithm applies without change to the Fourier domain. These
two domains provide representations of images in two different
orthonormal bases. In the spatial domain, an image is represented
in terms of a delta function basis, while in the Fourier domain, an
image is represented in a (co-)sinusoidal basis. Note that in the
SubspaceEM algorithm, the two subspace bases (the columns of
the B and A matrix) are defined solely in terms of particle images
and structure projections. All of the calculations of the algorithm
can be carried out in any coordinate system in which the images
and the projections are represented. Furthermore, since the
calculations in the SubspaceEM algorithm give identical results in
any orthonormal basis, the algorithm and all its results, including
the expected speedup, apply identically to both the spatial and
Fourier domains.

An additional consideration in a Fourier domain imple-
mentation is the practice of low-pass filtering to limit the res-
olution of the particle images based on the resolution of the
current structure. This helps to reduce overfitting of the data. We
show below that the application of the SubspaceEM algorithm to
limited resolution images in the Fourier domain would provide
computational gains comparable to those seen in the spatial
domain implementation.

To illustrate the effect of a Fourier implementation on the
speedup potential of the SubspaceEM algorithm, we ran the fol-
lowing numerical analysis. Using three sets of images from the real
data experiment, the subspace dimensions were determined using
Cattell’s scree test and a threshold of t = 0.0001 as described in
Section 2.6. The structure projection subspace dimension was cal-
culated for two sets of projections: the projections of the structure
used to initialize the reconstruction, and the projections from the
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Fig.8. FSCs evaluating SubspaceEM reconstructions using different values for the threshold t. (A) True vs. estimated structures for 0.05 SNR data. (B) True vs. estimated
structures for 0.02 SNR data. (C) Brilot et al. (2013) structure vs. estimated structures for real data.
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Fig.9. Scree tests for different sets of images from the real data experiment. For each image set, PCA was performed on the original images represented in the spatial and
Fourier domains. In addition, PCA was performed on the images limited to 12 A and 20 A resolution, represented in Fourier space. The filled circles on the eigenvalue plots
denote the calculated subspace dimensions using t = 0.0001. The plots for the spatial and Fourier versions of each image set are identical, while the plots for the limited
resolution images compared to the original images show a small change. (A) Scree tests for projections of the initial structure. Because the initial structure is low-pass filtered
at 60 A, the plots and calculated dimensions are identical for each case. (B) Scree tests for projections from the last iteration of SubspaceEM-2x. (C) Scree tests for the particle

images.

last iteration of the second run of the algorithm (SubspaceEM-2x).
The particle image subspace dimension was calculated from the
25K particle images. For each of the three sets of images, the sub-
space dimensions were computed from the images represented in
both the spatial and Fourier domains. In addition, the subspace
dimensions were calculated for each set of images in Fourier space
restricted to a resolution of 12 A, the approximate resolution of the
final reconstruction, and also to 20 A, representing greater low-
pass filtering in earlier reconstruction iterations.

The results of the scree tests for each set of images are shown in
Fig. 9. The subspace dimensions from the scree test are denoted on

the eigenvalue plots by the filled circles. We make three observa-
tions about the plots. First, as expected, the plots for each image
set in the spatial and Fourier domain are identical, and thus the
subspace dimensions are the same regardless of the image repre-
sentation. Therefore, for the same set of images, the speedup of
the spatial implementation of SubspaceEM would apply equally
to a Fourier implementation. Second, limiting the resolution of
the images has only a small effect on the scree plot. The plots are
actually identical for the initial structure projections, since the ini-
tial structure was already low-pass filtered at 60 A (Fig. 9A). The
greatest difference is seen in the plots for the particle images,
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because these images are much noisier than the structure projec-
tions (Fig. 9C). The last observation is that the subspace dimension,
as calculated by the scree test, changes by only a small amount for
the images with limited resolution compared to the original
images. The small change occurs because limiting the resolution
effectively reduces the noise in the images, resulting in more image
details being represented in more of the principal components.
Since the change in dimension is small, the speedup for a Fourier
domain implementation would be similar to the results reported
for the spatial domain.

Finally, the ideas used in the SubspaceEM algorithm may be
applied to other cryo-EM reconstruction problems. One direction
is to adapt the subspace approximation approach to the classical
best-match formulation for single particle reconstruction. Like in
the E-M formulation, the computational bottleneck in the best-
match strategy is in calculating the goodness of the alignment
between each particle and projection image. Thus, application of
the subspace method to the best-match approach should result
in a speedup factor similar to the experiments presented here. In
addition, a straightforward extension of the SubspaceEM algorithm
to 3D multireference refinement would greatly accelerate struc-
turally heterogeneous data analysis. We would propose using
one subspace in which to represent all the projections from the dif-
ferent structures, which should result in even greater speedup than
in the single particle case.
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Appendix A. M-step objective function and updates

The M-step of the E-M algorithm corresponds to maximizing a
function Q with respect to the parameters ®. For our problem, the
Q function simplifies to

Bw; — T+ (Av))|]?
Q= Z]Z: A W(, T (logocj —Plog g, —%) dr;
i=1j T
—ZM:<Plog02 +|()) (A1)
= 203

Maximizing the Q function of Eq. (A.1) with respect to each of the
parameters gives the updates in Egs. (14)-(19). Update expressions
for o5, 02, and S are similar to those in the traditional E-M algo-
rithm for reconstruction, and we omit their derivation here. The
updates for the projection basis A and the projection coefficients
v; are derived below.

Let A; be the entry in the ith row and jth column of matrix A.
Then the derivative dQ is deﬁned as the matrix whose entry in
the ith row and jth column is 22 Thus the derivative of Eq. (A.1)

with respect to A yields

ZZ ' Wi, T (ijij G%r,(BWz) )d‘f;

i1 j=1 Y9
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3

(A2)

j=1

Setting Eq. (A.2) equal to zero and rearranging so terms involving A
are all on one side, we get
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(A3)

Multiplying both sides by ¢2 and ¢% and then multiplying both
sides on the right by the inverse of the expression in the brackets
gives the update expression in Eq. (17).

Taking the derivative of Eq. (A.1) with respect to v,

T AT .
Z W(L i ( A Ay] A ZTi(BW1)>dTi

i=1 0]

ATAv; - A"P; S
82/, o3

(A4)
Setting Eq. (A.4) equal to zero and moving all terms with z; to one

side gives

ATA ZZ W(, ti)dt; + 1 S| v
2

s

Finally, multiplying both sides of Eq. (A.5) on the left by (ATA)71 and
dividing through by the quantity in the brackets on the left hand
side gives the update in Eq. (18).
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