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Abstract

We propose an approach for boundary finding where

the correspondence of a subset of boundary points to a

model is simultaneously determined. Global shape pa-

rameters derived from the statistical variation of object

boundary points in a training set are used to model the

object. A Bayesian formulation, based on this prior

knowledge and the edge information of the input im-

age, is employed to find the object boundary with its

subset points in correspondence with boundaries in the

training set or the mean boundary. We compared the

use of a generic smoothness prior and a uniform in-

dependent prior with the training set prior in order to

demonstrate the power of this statistical information.

A number of experiments were performed on both syn-

thetic and real medical images of the brain and heart to

evaluate the approach, including the validation of the

dependence of the method on image quality, different

initialization and prior information.

1 Introduction
Locating the boundary of structures in an image

is of great importance in a variety of image analy-
sis and computer vision applications including robot
vision, pattern recognition and biomedical image pro-
cessing. Numerous boundary finding methods have
been proposed [2, 3, 4, 5, 7, 10, 11]. However, these
methods, except, to some extent, [3, 4], do not pro-
vide any notion of correspondence. Correspondence is
a key step in a number of computer vision applications
such as stereo disparity, object recognition, motion es-
timation and non-rigid registration. There has been
much work on determining boundary correspondence
using local shape features [12, 8]. In this paper, how-
ever, we are interested in both determining an object’s
boundary and simultaneously determining spatial cor-
respondence between similar structures over different
subjects. Prior shape information is quite helpful in
delineating the object boundary and solving the non-

rigid correspondence problem. The goal of our work
is to use prior shape models with point based global
shape parameters to find the object boundary and the
spatial correspondence. We use a Bayesian objective
function based on this model and image derived infor-
mation.

One of the most generic and popular methods of
detecting whole boundaries using deformable models
is the active contour approach (snakes) of Kass et al.

[7]. A snake is a continuously deformable curve used
to locate features in an image controlled by internal
smoothness forces and external image forces. There
have been many refinements, however, the parameters
are still free to take almost any smooth boundary with
no constraints on the overall shape.

Staib and Duncan [10] used elliptic Fourier descrip-
tors as model parameters to represent open and closed
boundaries. The Fourier coefficients are used to bias
toward a range of shapes about a mean by using a
Gaussian distribution on the parameters as a prior
probability. A Bayesian approach is then used to ob-
tain the maximum a posteriori estimate of the bound-
ary. Chakraborty et al. [2] extended this approach to
incorporate region homogeneity. Fourier descriptors
are somewhat limited because they are not suitable
for describing some shapes, such as those with con-
volutions or corners. In addition, these methods are
designed for boundary finding, without regard to cor-
respondence, which is one of our goals here.

Cootes et al. [3] combined deformable shape de-
scriptors with statistical modal analysis built from a
training set of annotated images. Object shapes are
represented by a subset of boundary points, and a cor-
respondence is established between these points from
the different images of the training set. The defor-
mations are modeled using linear combinations of the
eigenvectors of the variations from the mean shape,
thus defining the characteristic pattern of a shape class
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and allowing deformation reflecting the variations in
the training set. A similar Modal Analysis scheme is
proposed by Pentland and Sclaroff [9] which gives a set
of linear deformations of the shape equivalent to the
modes of vibration of the original shape. However, the
modes are somewhat arbitrary and may not be repre-
sentative of the real variations which occur in a class of
shapes. In Cootes’ image search algorithm, the model
is adjusted by searching a region of the image around
each model point for an improved displacement. These
local deformations are transformed into adjustments
to the pose and shape parameters of the point model.
By projecting the shape onto the shape parameters
and enforcing limits, global shape constraints are ap-
plied ensuring that the current shape remains similar
to the training set. The estimation of the displace-
ment, however, is determined by a search only in the
normal direction toward the strongest image edge [3].
In some situations, the adjustment of the pose, scale
and shape parameters can not accommodate the inac-
curacies this causes resulting in a misadjusted bound-
ary. Shape parameters are accepted unless they are
beyond three standard deviations. A more continuous
penalty is more appropriate. In addition, the influence
of the training set on the results is always fixed, and
it can not be adjusted according to the image quality.

In this work, we use statistical point models with
shape and shape variation generated from sets of ex-
amples using principal component analysis of the co-
variance matrix. This idea has been used successfully
for boundary determination [3, 11]. Also, the Bayesian
formulation of the objective function is akin to the
work of Staib and Duncan [10]. The primary contri-
bution of this paper is that it extends these ideas to
provide a more robust method for both boundary and
correspondence finding. Moreover, in order to show
the important role of the prior shape model, we also
compare with two other kinds of generic prior infor-
mation. Specifically, the use of a Bayesian framework
allows us to adjust the weighting between the statisti-
cal prior knowledge and the image information based
on the image quality and the reliability of the train-
ing set. During the optimization, we search the shape
and pose parameters together, resulting in a better
optimum. Continuous penalizing criteria based on a
training set derived Gaussian distribution for the prior
shape and pose parameters are used during the search-
ing. In addition, the optimization algorithm is faster
and more robust than the image searching of Cootes
et al. [3].

2 Statistical Point Models
Suppose we want to derive a model to represent

the shapes whose boundaries are shown in Figure 1(b).
We can represent each example shape as a set of hand-
labeled landmark points. The model is then based on
the mean positions of the points on the aligned shapes
and the main variation of the points from the mean.

2.1 Capturing the Statistics

The critical points on the boundary are usually eas-
ily identified features, such as high curvature points,
sharp corners, etc. Equally spaced points are interpo-
lated between the critical points (Figure 1(a)). The
training set points are first aligned to minimize a
weighted sum of squares of distances between equiva-
lent points on different shapes. During the alignment,
we calculate the standard deviations of the pose (scale,
rotation, translation).

(a) (b)
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Figure 1: Synthetic shape model. (a): synthetic image

(64 × 64) with its 24 point model of the boundary (4 crit-

ical points, (large dots), shown with interpolated points

(small dots)); (b): 16 examples of synthetic shapes from

a training set; (c): effects of varying each of the first two

shape parameters of the synthetic model.

The following 2D formulation is similar to that of
Cootes et al. [3]. Given m aligned examples and
each example of a set of N aligned labeled points,
Li = (xi(1), yi(1), xi(2), yi(2), ..., xi(N), yi(N))T (i =
1, ...,m), we calculate the mean shape, L̄, and the co-
variance about the mean, Ctraining. It can be shown
that by principal component analysis, the eigenvectors
of the covariance matrix, Ctraining, corresponding to
the largest eigenvalues describe the most significant
modes of variation in the variables used to derive the
covariance matrix, and that the proportion of the to-
tal variance explained by each eigenvector is equal to
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Figure 2: Heart shape model. (a): MR heart image (150

× 150); (b): 34 point model of the endocardium boundary

(7 critical points, large dots) (cropped); (c): 16 examples

of heart shapes from a training set; (d): effects of varying

each of the first two shape parameters of the heart model.

the corresponding eigenvalue λk [6]. Most of the vari-
ation can be explained by a small number of modes, t
(< 2N). Any shape in the training set can be approxi-
mated using the mean shape and a weighted sum of de-
viations obtained from the first t modes: L = L̄+Qa,
where Q = (q1 | q2 | ... | qt) is the matrix of the
first t eigenvectors, and a = (a1a2...at)

T is a vector
of weights, which is also the set of t shape param-
eters to be optimized later. This equation allow us
to generate new examples of the shapes by varying
the parameter a within suitable limits, for example,
−3
√

λk ≤ ak ≤ 3
√

λk. We have used the techniques
described above to generate statistical point models
for both synthetic objects (Figure 1) and biological
objects (Figure 2 for heart endocardium).

2.2 Identity Covariance Matrix

Consider the use of a 2N × 2N identity covariance
matrix Cidentity instead of the covariance derived from
the training set. This means that all points (x and
y coordinates) are independent. The eigenvectors of
Cidentity qk (size 2N), for k = 1, 2, · · · , 2N , are of the

format

q1 = (1, 0, 0, 0, · · · , 0, 0, 0)T

q2 = (0, 1, 0, 0, · · · , 0, 0, 0)T

...
...

...
q2N = (0, 0, 0, 0, · · · , 0, 0, 1)T

(1)

with the corresponding eigenvalues λk = 1. If k is
even, the k’th eigenvector moves point k/2 in the y
direction; if k is odd, the k’th eigenvector moves point
(k + 1)/2 in the x direction. Combinations of vectors,
one for each mode, can move the modeled landmark
points anywhere in the image. Any shape can also be
approximated using the mean shape and a weighted
sum of deviations obtained from the 2N modes. Since
the eigenvalues here are very small, ten times the orig-
inal range is used (−20

√
λk ≤ ak ≤ 20

√
λk) to demon-

strate the generation of new shapes, as shown in Fig-
ure 3.

a1
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a2N

−20
√
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√
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Figure 3: Effects of varying each of the 1st, the 2nd and

the 2Nth shape parameters of the synthetic model with

the identity covariance matrix.

2.3 Smoothness Covariance Matrix

Since the identity covariance matrix is too under-
constrained, consider the incorporation of a type
of smoothness constraint into the covariance matrix
where neighboring points are correlated. That is

Csmooth =


























1 0 0.5 0 0 · · · 0.5 0
0 1 0 0.5 0 · · · 0 0.5
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where Csmooth is a 2N × 2N matrix. Here, neigh-
boring points are more likely to move together than
if they were independent. The first two eigenvectors
(with equal eigenvalues) allow for a rigid translation.
Combinations of these two eigenvectors and the other
eigenvectors, one for each mode, can move the mod-
eled landmark points to anywhere in the image with
the neighboring points moving together. The shapes
generated (Figure 4) are smoother than those using
the identity covariance matrix. Shapes are not re-
stricted by a training set and thus the model is not
specific but allows variability. Parameters correspond-
ing to higher frequency variation have lower eigenval-
ues and thus have less influence. Also, the critical
points no longer correspond. Note, the degree or scale
of smoothing could be controlled by changing the co-
efficients along the diagonals. The motivation or goal
of the use of this smoothness covariance matrix is ac-
tually similar to that of the internal smoothness forces
in Kass’s snakes [7]. However, it is expected that our
image searching algorithm with this smoothness con-
straint would be more efficient than Kass’s because we
select the eigenvectors of Csmooth corresponding to the
largest eigenvalues and thus reduce the dimensionality
of the search space.

a3

a6

a11

−20
√
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Figure 4: Effects of varying each of the 3rd, the 6th and

11th shape parameters of the synthetic model with the

smoothness covariance matrix.

3 Bayesian Objective Function
Given the statistical models, our aim is to use them

to model particular examples of structure in individ-
ual images, and then to find the shape parameters a =
(a1a2...at)

T , and pose parameters: scale s, rotation
θ, translation Tx, Ty. The combined pose and shape
parameter vector to be determined is represented by
p = (s, θ, Tx, Ty, a1, a2, ..., at)

T . The point represen-
tation of the nth boundary point (n = 0, 1, ..., N − 1)

is

x(p, n) = s cos θ{x̄(n) +
∑t

j=1
Q2n,jaj − Sx

2
} −

s sin θ{ȳ(n) +
∑t

j=1
Q2n+1,jaj − Sy

2
}+ Tx + Sx

2

y(p, n) = s sin θ{x̄(n) +
∑t

j=1
Q2n,jaj − Sx

2
}+

s cos θ{ȳ(n) +
∑t

j=1
Q2n+1,jaj − Sy

2
}+ Ty +

Sy

2
(3)

where x̄(n) and ȳ(n) are the mean shape of the nth
point, and Sx, Sy are the image size in x, y directions
respectively. In order to apply the prior knowledge
of the shape model to the problem of boundary and
correspondence determination, we pose the problem
in a maximum a posteriori Bayesian formulation.

3.1 Prior Probability Density

Prior information can bias the boundary finder to
search for a particular range of shapes and poses. We
model the prior by using a zero mean multivariate
Gaussian density Pr(p) for the shape and pose param-
eters (as in [10]). The variance for the shape parame-
ters is the eigenvector’s corresponding eigenvalue. For
the pose parameters, the variance can be calculated
from the training set alignment.

3.2 Likelihood

The likelihood is a measure of the similarity be-
tween the deformed template and the object present
in the image. The likelihood we propose only uses the
edge information in the input image, which is denoted
as E here. The edge image E is assumed to consist of
one of the deformed templates, tp, corrupted by ad-
ditive white zero mean Gaussian noise with standard
deviation σn, i.e. E = tp + n. This leads to (as in
[10]):

Pr(E | p) =
∏

A

1√
2πσn

e
−

(E(x,y)−tp(x,y))2

2σ2
n (4)

where A is the whole image area.

3.3 Posterior Probability Density

By using Bayes rule, the a posteriori probability
density of the deformed template given the input edge
image can be expressed as:

Pr(p | E) =
Pr(E | p) Pr(p)

Pr(E)
(5)

Our objective is to maximize the a posteriori density
in Eq.(5) with respect to p. This can be simplified to
maximize (as in [10]):

M(p) =

t+4
∑

i=1

[

− (pi −mi)
2

2σ2
i

]

+
1

σ2
n

N
∑

n=1

E(x(p, n), y(p, n))

(6)
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where mi is the mean of pi and σi is the standard
deviation for each of the parameters. This equation is
the maximum a posteriori objective incorporating a
prior bias to likely shapes and poses (first term) and
match to the edges in the image (second term).

4 Experimental Results
We optimize the objective function M(p) using the

conjugate gradient method because we can efficiently
compute the gradient from an analytic formulation.

For comparison, we also implemented the image
searching of Cootes et al. [3]. On an SGI Indy
133MHZ, the convergence time of our boundary find-
ing is about 5 seconds compared with 50 seconds for
theirs for an average of 36 points, a speed up by a
factor of ten.

4.1 Evaluation Criteria

The boundary error of each labeled boundary point
on the final boundary is calculated by finding the dis-
tance to the closest point on the true boundary. We
use both average, Eb a, and maximum, Eb m, error
measures. The correspondence error of each critical
point on the final boundary is the distance between
this point and its corresponding critical point on the
true boundary. The average error of the correspon-
dence is denoted as Ec a.

4.2 Synthetic Images

The image shown in Figure 5 is a simple synthetic
image where the target object (the brightest) belongs
to the training set family shown in Figure 1, but is not
among that training set. The initial curve position is
defined by the mean of the training set. The edge
map of the input image is calculated by the Canny
edge detector [1]. The final curve position accurately
finds the target object. The following are four sets of
experiments testing the effect of noise, initial param-
eters, prior probability bias and the form of prior.

The first experiment, shown in Figure 6, demon-
strates the effect of noise on the method, by adding
different amounts of zero mean Gaussian noise to the
synthetic image shown in Figure 5 and measuring
the boundary and correspondence error. Not all the
Canny scales we chose here are optimal so that we can
test our algorithm’s tolerance to noise, to spurious and
broken edges. The initial curve position is the mean
of the training set for all testing. Signal-to-noise ratio
(SNR) is defined here as the ratio of gray-level con-
trast between the target object and the background
to the standard deviation of the Gaussian noise.

The second experiment, shown in Figure 7, ex-
amines the effect of the initial parameters. We av-
erage three results for each initial parameter using
the synthetic image from Figure 5 with SNR of 5.0,

Figure 5: Synthetic image example. Left: initial contour

on the synthetic image (64 × 64); Middle: Canny edge

image (scale: 1.0); Right: final contour on target shape.
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Figure 6: Sensitivity to noise experiment. Top, left to

right: image from Fig. 5 with Gaussian noise added with

SNR of 5.0, 2.5, 0.5. Each shown with final contour; Mid-

dle, left to right: corresponding Canny edge image with

scale of 1.2, 1.4, 2.0; Bottom, error measures (Eb a —

boundary average error; Eb m — boundary maximum er-

ror; Ec a — correspondence average error).

2.5 and 1.0. The parameters individually varied were
the first shape parameter, scale, horizontal translation
and rotation, holding the other parameters constant.
All results are good within reasonable ranges. Note,
some error curves are not symmetric due to the non-
symmetric test image. For all the initial parameters,
when they are too far away from the true boundary,
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Figure 7: Sensitivity to initial parameters experiment.

Left, top to bottom: image from Fig. 5 with Gaussian

noise added (SNR = 2.5) shown with initial contours for

range of the first shape parameter tested, range of scale

tested, range of horizontal translation tested, range of ro-

tation tested; Right: corresponding error measures respec-

tively (Eb a — boundary average error; Eb m — boundary

maximum error; Ec a — correspondence average error).

the optimization may be trapped by local minima cor-
responding to nearby edges.

In the third experiment, we demonstrate the ef-
fect of different prior probability densities. The shape
model for the training set is shown in the top of Fig-
ure 8. A synthetic image, shown in the bottom of Fig-

−2
√

λi ←− ai −→ 2
√

λi

Figure 8: Bias experiment. Top left: 6 examples of

synthetic shapes from a training set, each containing 24

points; Top right: effects of varying each of the first two

shape parameters of the synthetic model; Bottom left: ini-

tial contour on the synthetic image (64 × 64); Bottom

middle: final contour, biased to the brighter target shape;

Bottom right: final contour, biased to the darker target

shape.

ure 8, was designed containing two objects. The light
object corresponds to the shape with the first shape
parameter at two standard deviations. The dark ob-
ject underneath it is the shape with the second shape
parameter at two standard deviations. Using densi-
ties with the same mean, but different variances, we
can demonstrate different results that are completely
due to the prior bias density. The prior can be bi-
ased towards finding the light object by having a wide
distribution on the first shape parameter and narrow
distribution on the second parameter and vice versa
(the bottom of Figure 8). This would not be possible
without the continuous bias of the prior term.

In the fourth experiment, we compare different
prior models to illustrate the appropriateness of our
prior model. If there is no prior information, using an
identity covariance matrix, each point on the bound-
ary can move independently. The objective function
only includes the likelihood term. The result will try
to match to edges without regarding to shape or corre-
spondence. With the smoothness covariance of Eq.(2),
neighboring points on the boundary will tend to move
together. The resulting boundary points will try to
match edges while maintaining the smoothness, but
the correspondence of the points may not be main-
tained. Here, we used the same synthetic image with
SNR= 2.5 and the same Canny edge image at scale
1.4 (the middle of Figure 6). The results with dif-
ferent prior models are shown in Figure 9 and Table
1. The training set covariance Ctraining works best,
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Figure 9: Prior experiment for synthetic image. Left:

initial contour; Middle: final contour on target shape us-

ing identity covariance matrix Cidentity; Right: final con-

tour on target shape using smoothness covariance matrix

Csmooth.

as expected, while the smoothness covariance may be
suitable in situations where there is no training set
and correspondence is not needed.

Cidentity Csmooth Ctraining

Eb a 2.58 1.45 0.57
Eb m 7.23 5.90 1.52
Ec a 5.04 1.86 0.36

Table 1: Error measure for the synthetic image in the

prior experiment with different covariance matrices: Eb a

— boundary average error; Eb m — boundary maximum

error; Ec a — correspondence average error.

4.3 Real Images

Results of the method applied to sagittal and axial
magnetic resonance (MR) images of the human brain
are shown in Figures 10 and 11 respectively. For the
sagittal corpus callosum image, we used a 49 point
model derived from a set of 12 corpus callosum shapes.
For the axial brain image, a 93 point model derived
from a set of 12 basal ganglia and ventricle boundaries
is used. Not only are the final contours delineated
successfully, but also the correspondence of the points
is established accurately. Figure 12 shows the method
applied to the endocardium in an MR image of a dog
heart using the heart shape model in Figure 2. Both
the boundary and correspondences are found correctly.

We also compared the three different prior models
for the dog heart image (Figure 12) with the same ini-
tial position as before. With the identity covariance,
the boundary cannot be found since the shape is com-
plicated and the points move independently. With the
smoothness covariance Eq.(2), although the resulting
boundary is similar to the true boundary, the corre-
spondence of the points is not determined. The results
in Figure 13 and Table 2 show quantitative compari-
son with an expert drawn endocardium. For the heart

Figure 10: MR sagittal brain example. Top left: original

MR image (100 × 64); Top right: Canny edge image (scale:

1.2); Bottom left: initial contour (mean curve); Bottom

right: final contour on corpus callosum.

Figure 11: MR axial brain example. Left: initial contour

(mean curve) on the original image (80 × 100); Right: final

contour on basal ganglia and ventricle boundaries.

image here, a shape model is a necessity for finding
the endocardium and its critical points.

5 Conclusions and Future Work

This work presents a systematic approach to deter-
mine an object’s boundary, as well as the correspon-
dence of boundary points to a model. The statistical
point models derived from a training set by principal
component analysis are used as the prior probability
in a Bayesian scheme, capturing prior knowledge of
the shape. The structure is delineated and the spa-
tial correspondence of these points to the model is
established when the a posteriori probability is max-
imized using conjugate gradient optimization. From
experimental results, it was found that this method
performs well at both boundary finding and determin-
ing correspondence, and it is also relatively insensitive
to noise and initialization. The prior models testing
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Figure 12: MR heart image example. Left: original MR

image (150 × 150); Middle: initial contour (mean curve)

on endocardium (cropped); Right: final contour.

Figure 13: Prior experiment for MR heart image

(cropped). Left: contour on endocardium drawn by an

expert; Middle: final contour using identity covariance

matrix Cidentity; Right: final contour using smoothness

covariance matrix Csmooth.

further demonstrated that the statistical shape mod-
els used are crucial for both boundary and correspon-
dence finding.

Cidentity Csmooth Ctraining

Eb m 6.12 1.79 1.36
Ec a 5.57 7.19 0.89

Table 2: Error measure for the heart image in prior exper-

iment with different covariance matrices: Eb m — bound-

ary maximum error; Ec a — correspondence average error.

These methods generalize directly to 3D. Other fu-
ture directions include testing the smooth covariance
matrix Csmooth at different smoothing scales, combin-
ing the training set approach with the smoothness co-
variance matrix when few training set examples are
available, and using the resulting boundary points as
landmarks for non-rigid registration.
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