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Abstract

The problem of segmenting a volumetric layer of fi-
nite thickness is encountered in several important ar-
eas within medical image analysis. Key examples in-
clude the extraction of the cortical gray matter of the
brain and the left ventricle myocardium of the heart.
The coupling between the two bounding surfaces of
such a layer provides important information that helps
to solve the segmentation problem. Here we propose
a new approach of coupled surfaces propagation via
level set methods, which takes into account coupling
as an important constraint. By evolving two embed-
ded surfaces simultaneously, each driven by its own
image-derived information while maintaining the cou-
pling, we capture a representation of the two bound-
ing surfaces and achieve automatic segmentation on
the layer. Characteristic gray level values, instead of
image gradient information alone, are incorporated in
deriving the useful image information to drive the sur-
face propagation, which enables our approach to cap-
ture the homogeneity inside the layer. The level set
implementation offers the advantage of easy initializa-
tion, computational efficiency and the ability to cap-
ture deep folds of the sulci. As a test example, we
apply our approach to unedited 3D Magnetic Reso-
nance(MR) brain images. Our algorithm automati-
cally isolates the brain from non-brain structures and
recovers the cortical gray matter.

1 Introduction

Three-dimensional imagery such as MRI and Com-
puted Tomography(CT) is often represented as a set
of intensity voxels. In the analysis of such data, we of-
ten encounter the problem of segmenting a volumetric
layer of finite thickness. For example, in 3D cardiac
image analysis, the myocardium of the left ventricle
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is a thick structure bounded by the endocardial and
epicardial walls. In the analysis of neuroanatomical
structures from 3D MR images, the cortex, which is
the outermost layer of gray matter in the brain, is
bounded by the outer cortical surface (Cerebral Spinal
Fluid(CSF)/gray matter interface) and the inner cor-
tical surface (gray/white matter interface). The two
surfaces which bound the layer can be viewed as cou-
pled in several ways, ranging from loosely coupled (e.g.
the endocardial and the epicardial boundaries) to tight
coupling where the thickness of the layer is nearly con-
stant(e.g. the outer and the inner cortical surfaces).

The segmentation of such a volumetric layer must
be considered in 3D. Slice by slice segmentation and
stacking of the results doesn’t use the inter-slice infor-
mation, hence the result may be either non-optimal
or grossly inaccurate. For example, although the volu-
metric layer of cortical gray matter is constantly about
3.0mm’s thick([1]), due to its convoluted nature, an
oblique 2D slice that happens to be approximately
parallel to a particular sulcus will give the appearance
of a much thicker structure. Only by going through
the neighboring slices can we get complete informa-
tion to perform segmentation. Slice by slice manual
segmentation of these structures is tedious and labor
intensive, hence automatic segmentation is a highly
desirable goal. There has been a large amount of work
along this line.

1.1 Related work

One form of related effort is region-based method,
which exploits homogeneity in images. It primarily
depends on the underlying consistency of any relevant
feature in the different regions. Following the work of
Geman & Geman [7], Markov Random Field (MRF)-
based methods have been widely used, which employ
energy minimizing techniques to reconstruct a piece-
wise flat image from the noisy data. In [2] a multispec-
tral voxel classification method is used in conjunction
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with connectivity to segment the brain into different
tissue types from 3D MR images. A material mix-
ture model[11] is also used for the segmentation prob-
lem. Region-based methods typically require further
processing to group segmented regions into coherent
structure(s).

The typical alternative strategy is boundary find-
ing, of which active contour methods are of special
note. They rely mainly on gradient features for seg-
mentation of structures from an image. One of the
most generic and popular methods of detecting bound-
aries is the snakes approach due to Kass et al [8]. One
concern regarding this method is that a close initial-
ization has to be provided in order to achieve good
final results. A balloon model with a pressure force
outward was then introduced in [3] as a way to gener-
alize and solve some of the problems encountered with
the above snake method. In [4], 3D deformable sur-
face models using the finite-element method are used
to segment 3D images. However, the need to override
local smoothness to allow for significant protrusions
that a shape may possess (which is highly desirable in
order to capture the folds of the sulci, and papillary
muscle of the left ventricle) remains a problem.

All of the above methods are limited when used to
segment the volumetric layer of finite thickness, in the
sense that they don’t explicitly use the information of
how the two bounding surfaces are coupled. There has
been some effort made in this direction. Davatzikos et
al. [5] introduced the concept of a ribbon for modeling
the outer cortex in cross-sectional brain images and
proposed an active contour algorithm for determining
the spline of such a ribbon. This model is then ex-
tended to 3D in [6]. However close initialization and
significant human interaction are still needed to force
the ribbon into the sulcal folds. It was also reported
that the iterative algorithm was fairly computation-
ally demanding, while a multi-scale formulation could
be used to decrease the computational load. No pro-
cessing time was given.

2 Our Approach
The nature of our problem is as follows: the volu-

metric layer we’re trying to recover is bounded by two
surfaces. Across each surface, there is a local difference
in the gray scale values, while in between the two sur-
faces there is a homogeneity of certain voxel statistics.
The layer is defined completely by its bounding sur-
faces and the homogeneity in between. Based on these
facts, we propose a new approach of coupled surfaces
propagation via level set methods, which takes into
account the coupling information. By evolving two
embedded surfaces simultaneously, each driven by its
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Figure 1: Local operator to derive image information

own image-based information while maintaining the
coupling, we are able to achieve an automatic, stable
and robust segmentation on this special set of volumes.
The information used here to drive the surface prop-
agation is based on gray level values instead of image
gradient alone, which enables our approach to reward
the homogeneity of inside the layer.

2.1 Single surface approach vs. coupled
surfaces approach

Because of the limitations of the imaging technique
used and volume averaging, it is often observed that in
some regions, there’s not enough information from the
image data to clearly define either the outer bounding
surface or the inner bounding surface. When applying
a single surface approach, we may very well end up
with error in such a region. While using the coupled
surfaces approach, information on the partner surface
is available through the coupling and improves the per-
formance of the surface finding.

In the case of MR brain images, due to volume aver-
aging, in some regions the boundary between the white
matter and gray matter is not well shown, while the
CSF appears clearly. The single surface approach may
have the inner cortical surface collapse into CSF. How-
ever with the coupled surfaces approach, we maintain
some minimal distance between the inner cortical sur-
face and CSF, thus preventing the inner cortical sur-
face from going into CSF. There are also places where
structures such as eye sockets appear, so that the CSF
can’t be observed in the image. With the coupled
surfaces approach, the information of the white/gray
boundary is then used to stop the propagation of the
outer cortical surface before it penetrates non-brain
structures.

2.2 Image information derivation

Medical images consist of a number of different
anatomical regions. The homogeneity of each re-
gion can usually be characterized by various voxel
statistics in the region. Thus, by using gradient fea-
tures(information of gray level difference between dif-
ferent tissues) alone, we are actually losing important
pieces of information. Here in our approach, instead
of using gradient features, we design a local operator
which makes use of the gray level information, and
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gives a measure of the likelihood of a voxel lying on
the boundary between tissue A and tissue B. This
model can also be extended to make use of several
differently parametric images(such as T1, T2 and PD
MR images) or images from different modalities.

We show in Figure 1 the operator we use. At each
voxel site s, a small neighborhood around s is drawn.
Now given the possible boundary with normal direc-
tion ~θ, dividing the neighborhood into parts R1 and
R2, the probability that s lies on the boundary be-
tween tissue A and tissue B is:

p(~θ) = p(R1 ∈ TissueA) · p(R2 ∈ TissueB) (1)

Given an estimation ~θ∗ of ~θ, we can use p(~θ∗) as a
measure of the likelihood that s lies on the boundary
between tissue A and tissue B.

One way of estimating ~θ∗ is to first generate the
vector P = [p(~θ1), p(~θ2), ..., p(~θk)]T where k is the

number of possible directions, and ~θ∗ is then the one
which corresponds to the biggest element in vector P .
In the case when different parameterized images are
available, P becomes a matrix with each column being
the probability vector obtained from a single paramet-
ric image. An estimate of p(~θ∗) is then based on the
matrix P .

Here we make the assumption of one single para-
metric image X, in which pixels belonging to tissue
A are independently drawn from Gaussian distribu-
tion G(µA, σA), and pixels belonging to tissue B are
independently drawn from G(µB , σB). Then we have

pAB(~θ) =
∏

r∈R1

1√
2πσA

e
−

(Xr−µA)2

σ2
A (2)

·
∏

t∈R2

1√
2πσB

e
−

(Xt−µB)2

σ2
B

In Figure 2, we show examples of our local oper-
ator. The local operator was applied to images after
we reduced the effects of MR inhomogeneity by cor-
recting using a simple fixed map. The map was deter-
mined manually by sampling tissue types throughout
the field to decide the average inhomogeneity. Note
that more complicated MR image models ([7],[10],[9])

can be used to calculate p(~θ).

2.3 Level set method

Level set methods ([15],[13],[12]) are powerful nu-
merical techniques for analyzing and computing inter-
face motion. The essential idea here is to first rep-
resent the surface(in our case) of interest as a front
γ(t). Now given a moving closed front γ(t), the idea

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: (a)-(d)Axial and (e)-(h)coronal slices from
3D brain images. (a),(e): original images; (b),(f): re-
sult from gradient operator; (c),(g): result from our lo-

cal operator PBC(~θ), B =gray matter, C=white mat-

ter; (d),(h): PAB(~θ), A =CSF, B=gray matter.

is to produce an Eulerian formulation for the motion
of this surface propagating along its normal direction
with speed F , where F can be a function of the surface
characteristics(such as the curvature, normal direction
etc.) and the image characteristics(e.g. the gray level,
or gradient etc.) This is done by embedding the prop-
agating interface as the zero level set of a higher di-
mensional function Ψ defined by Ψ(x, t) = d, where
d is the signed distance from position x to γ(t). The
equation of evolution of Ψ, inside which our surface is
embedded as the zero level set is given by:

Ψt + F | ∇Ψ |= 0 (3)

The major advantages of using this method over
other active contour strategies include the following:
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d: distance between the two bounding surfaces
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Figure 3: Functions g and h used in speed term design

first, the evolving function Ψ(x, t) remains a func-
tion. However the propagating hypersurface γ(t) may
change topology, break, merge and form sharp cor-
ners as the function Ψ evolves. Second, the intrinsic
geometric properties of the front may be easily de-
termined from the level function Ψ. For example, at
any point of the front the normal vector is given by
~n=∇Ψ, and the curvature is easily obtained from the
divergence of the gradient of the unit normal vector
to front, that is, K = ∇ · ∇Ψ

|∇Ψ| .

2.4 Coupled surfaces propagation, speed
term design

In solving the problem of segmenting the volumetric
layer bounded by two surfaces, we consider two mov-
ing interfaces describing the outer bounding surface
and the inner bounding surface respectively. Start-
ing from either inside the inner bounding surface or
outside the outer bounding surface, with an offset in
between, the interfaces propagate along the normal
direction stopping at the desired place, while main-
taining the distance between them.

Embedding each surface as the zero level set in its
own level function, we have two equations:

Ψint
+ Fin | ∇Ψin | = 0 (4)

Ψoutt
+ Fout | ∇Ψout | = 0 (5)

where Fin and Fout are functions of the surface normal
direction, image-derived information and distance be-
tween the two surfaces. The coupling is embedded in
the designing of Fin and Fout. The basic ideas are that
at places where the distance between the two surfaces
is within the normal range, the two surfaces propagate
according to the image-based information; where the
distance between the two surfaces is out of the normal
range, then the distance imposes a constraint on the
propagation of the surfaces.

With the level set implementation we have an easy
and natural way to evaluate the distance between the
two surfaces. Recall that the value of the level function
of a front at any point is simply the distance from
this point to the current front, which as in [15], is
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Ψ(t): current surface
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neighborhood of point a, in which 
distance calculation is performed

a
a: point on the current surface

b: point in the narrow band

b

Figure 4: Narrow band implementation: dynamic con-
struction of the narrow band and update of the level
function ψ within the narrow band are performed in
the neighborhood of the current surface.

calculated as the shortest distance from this point to
all the points on the front. In our case of the two
moving surfaces, for any point on the inner moving
surface, the distance to the outer moving surface is
the value Ψout at this point, and vice versa for the
point on the outer moving surface. Hence, we write

Fin = g(pBC(~θ∗))h(Ψout) (6)

Fout = g(pAB(~θ∗))h(Ψin) (7)

where g and h are the functions as shown in Figure
3, and A, B, C denote CSF, gray matter and white
matter respectively.

Function g maps larger probability to slower speed,
i.e., as the probability gets larger, g tends to zero,
while as the probability gets to near zero, g tends
to a constant. Function h penalizes the distance off
the normal range, as the distance goes out of nor-
mal range, h goes to zero. Thus, each surface moves
with constant speed along the normal direction, slows
down when either the image-based information be-
comes strong or the distance to the other surface
moves away from the normal range, and finally stops
when the image-derived information is strong enough
or the distance to the other surfaces is out of the nor-
mal range. The speed term only has meaning on the
front, i.e. zero level set, it is then extended from the
zero level set to the whole image grid as in [15].

Due to the level set formulation, we have a notion
of the inside and outside of the current moving front,
and this information is embedded in the normal direc-
tion ~n. It actually helps to reduce the feasible space
of possible ~θs, or provides an estimate of ~θ, thus ob-
taining a better result.

2.5 Narrow band implementation

The algorithm is implemented using a narrow band
method, which modifies the level set method so that it
only affects the points close to the current propagating
fronts(see Figure 4). Based on the fact that any point
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(a) (b) (c) (d)

Figure 5: (a): Original synthetic image of a ribbon;
(b): initialization for the algorithm; (c): an interme-
diate stage of propagation; (d): final ribbon captured
with the constraint of nearly constant width imposed.

b in the narrow band of the current surface should be
within some neighborhood of a certain point a on the
surface, the narrow band is constructed dynamically
in the neighborhood of each point on the current sur-
face by including points that lie less than some given
distance(bandwidth) away from that particular point.
Also since a point b in the narrow band can be within
the neighborhoods of several points a1,...,k on the cur-
rent surface, we update the value of the level function
Ψ at b to be sign(Ψ)mini=1,...,k | dist(b, ai) |. Thus,
for a surface represented using N points, the construc-
tion of its narrow band and the update of ψ in the nar-
row band is an O(N) calculation. The bandwidth is
chosen such that the inner surface lies within the nar-
row band of the outer surface and vice versa for the
outer surface, to ensure that the distance-based corre-
spondence between the coupled surfaces falls out au-
tomatically. Thus, at each time step, the current posi-
tion of the propagating coupled surfaces and the sur-
rounding narrow bands are estimated, and the whole
process repeats until the speed terms for both the in-
ner and outer surfaces reach a zero value everywhere.

3 Experimental Result

For ease of illustration, we first show results em-
ploying a 2D synthetic image. As shown in Figure
5, the original image contains a closed ribbon(i.e. a
layer in 2D). Other than at the folds, the ribbon is of
nearly constant width. We see from the result that
the algorithm nicely utilizes the constraint of nearly
constant width on the folds. This property is highly
desirable in capturing the sulci on the outer cortical
surface from the MR images of the brain.

More substantively we have also tested the algo-
rithm on 14 sets of 3D MR brain images to segment the
brain from surrounding non-brain matter(e.g. skull)
and the cortical gray matter from the overlaying CSF
and underlying white matter. Subjects were imaged
with a GE 1.5 T scanner, using a 3D SPGR volume
acquisition. Contiguous, 1.2 mm thick sagittal im-
ages were acquired covering the entire brain with the

(a)

(b)

(c)

(d)

Figure 6: Propagation of the outer bounding sur-
face(left) and inner bounding surface(right); (a) ini-
tialization; (b),(c) intermediate steps; (d) final result.

following parameters: TR=24, TE=5, flip angle=45,
matrix=192x256, NEX=2, FOV=30 cm, 124 images.
This yields images with essentially isotropic voxels
(1.17 x 1.17 mm in plane, 1.2 mm thick). The im-
ages were preprocessed to reduce the effects of MR
bias field inhomogeneity using a simple standard non-
linear map, which was also a step before the expert
manual tracing described below.

The algorithm works in the following fashion. We
start by initializing several pairs of concentric spheres
inside the white matter in the 3D brain volume, with
an offset between the outer spheres and the corre-
sponding inner spheres. The outer spheres then grow
out and merge to capture the outer cortical surface,
while the inner spheres grow out to capture the in-
ner cortical surface. The propagation is driven by
the image-derived information, constrained by the re-
quirement of maintaining the coupling between the
outer and inner surfaces. The captured outer corti-
cal surface defines the outer boundary of the brain,
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(a)

(b)

(c)

Figure 7: Three views of the outer(left) and in-
ner(right) cortical surfaces. (a): sagittal view; (b):
axial view; (c): coronal view.

brain brain cortex cortex
volume TP volume FP TP rate(%) TP rate(%)

rate(%) rate(%) (axial) (coronal)
94.3 3.2 86.9 86.6
93.4 3.8 87.1 85.9
95.3 4.0 87.0 85.6
95.4 3.3 86.2 85.7
94.6 5.1 83.7 82.6
97.2 5.1 88.2 86.8
95.3 3.9 87.3 86.2
95.5 3.7 86.6 85.3
95.6 3.8 88.6 85.6
95.0 3.4 87.9 88.8
94.0 2.0 89.7 89.5
94.5 4.8 87.0 84.4
95.3 4.0 84.7 85.4
97.2 3.9 87.0 87.8

Table 1: Comparison of the whole brain volume and
cortical gray matter from 3D algorithm vs. from ex-
pert slice by slice manual tracing on 14 3D MR brain
images. TP: true positive; FP: false positive.

(a) (b) (c)

Figure 8: Axial(top) and coronal(bottom) slices from
3D images. (a): original image; (b): cortical gray
matter from manual tracing; (c): cortical gray matter
from our 3D algorithm.

automatically segmenting brain from non-brain mat-
ter. The cortical gray matter is captured between the
inner and outer cortical surfaces. Figure 6 shows the
growing process of the outer and inner spheres.

The initialization only requires the user to specify
several pairs of concentric spheres(more specifically,
only the center of the concentric spheres and the ra-
dius of the inner sphere for each pair), which can be
done within minutes. Once the starting spheres are
planted, there’s no further user interaction. In our
implementation, the normal range of the distance be-
tween the outer and inner surfaces is set to be 3.0mm
with an allowed variation of -20% to 30%. It should
be emphasized that neither the number nor the place-
ment of the spheres during the initialization affect the
accuracy or reproducibility of the final result(due to
the ability of the level set method to handle topol-
ogy change), only the computational efficiency of the
algorithm.

Expert manual tracing is done in the following
steps: first isolate the brain from non-brain structures,
then define the CSF/gray matter interface and finally
define the gray/white matter interface. All these are
done slice by slice. For each data set, the first two
steps alone take 3-4 hours, and the third step is many
times more time consuming(usually 1-2 days). The
algorithm described in this paper runs in about 1.5
hours on a R10000 SGI Indigo2 machine. We are cur-
rently working on the optimization of our codes, which
should help to reduce the processing time more.

A quantitative comparison of our algorithm and the
expert manual tracing are provided in the table. In
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outer cortical surface

inner cortical surface

gray matter(bright ribbon)
on the cutting plane

Figure 9: 3D volume rendering of the cortical gray
matter from our 3D algorithm with oblique cutting
planes. The convoluted thin bright ribbons are the
cortical gray matter captured on the cutting plane,
the darker parts are the rendering of the out-of-plane
gray matter.

the first two columns, we compare the whole brain
volume captured from our 3D algorithm(referred to
as Va) and that from the expert tracing(referred to
as Ve). We denote the overlap between Va and Ve as
Vae, and the part that is in Va but not in Ve as Vae′ .
The true positive rate is then defined to be the ra-
tio of the size of Vae to the size of Ve, while the false
positive rate is defined to be the ratio of the size of
Vae′ to the size of Ve. The true positive rate for the
whole brain ranges from 93.4% to 97.2% in the sam-
ple of 14 images. Only part of the brain stem and
cerebellum are recovered, which contributes to most
part of the error in the true positive rate. The occurs
because the constraint of nearly constant thickness is
not as well satisfied in these areas as in the cerebral
hemispheres. The missing part of the brain stem and
cerebellum can be easily picked up by hand editing
within minutes. The 2%-5.1% false positive rate is
in part a function of the variability in expert tracing
performance, and in part due to the over inclusive-
ness of the algorithm. The over inclusiveness is due
to the voxels adjust to brain with similar gray level
values. From the 3D views shown in Figure 7, we see
our algorithm well defines the outer and inner cortical
surfaces.

The results of cortical gray matter recovered from
our algorithm is compared to the expert results on one
axial and one coronal slices to provide the true positive
rate in the table. The true positive rate here is defined
in the same fashion as for the whole brain volume.
The true positive rate varies from 82.6%-89.7%. The

study of repeated manual tracings by experts shows a
reproducibility rate(true positive rate when compare
results from expert repetition) of 90%-95%. Compara-
tively, our algorithm performs reasonably well. Figure
8 shows the comparison of cortical gray matter from
our algorithm and expert result on several slices. In
Figure 9, we show the 3D volume rendering of the
cortical gray matter, with oblique cutting planes.

Whole brain volume and volume of its constituent
parts, white and gray matter, are typically the mea-
surements of interest for comparison among different
subjects in studies of neuroanatomy. Thus, a sec-
ond way to analyze the utility of our algorithm is
to compute reliability statistics on volume measure-
ment. Reliability is best assessed by the intraclass
correlation(ICC)([14]), because it is sensitive to both
the rank order associations and mean differences pro-
duced by the two measurement procedures(expert and
algorithm). Although the tracer is expert in defin-
ing neuroanatomical features, hand tracing inevitably
produces some error, and thus it is important to de-
termine how large the algorithm’s error is relative to
the expert’s own rate of error. Repeat measurement
of whole brain volume on 15 subjects by two indepen-
dent expert tracers involved virtually no error(ICC =
.997; average volumes differed by 0.6%). Whole brain
volume measured by the algorithm compared to the
expert tracing was also excellent (ICC = .990; aver-
age volumes differed by 1.35%). For gray/white mat-
ter segmentation, a single expert tracer was able to re-
produce gray matter volumes across 7 subjects with an
average of 3.1% error(ICC = .972). Our algorithm, on
the other hand, averaged 4.4% error compared to the
expert tracings (ICC = .923). Thus, for both whole
brain volume and gray matter volume, the coupled
surfaces algorithm produced measurements that were
highly similar to expert tracings.

4 Summary and Future Directions

In this paper, we presented a new approach to
the problem of segmenting a volumetric layer of fi-
nite thickness. Two bounding surfaces and the ho-
mogeneous nature of the gray level values in be-
tween the surfaces define such a layer. By evolving
two embedded surfaces simultaneously, each driven by
its own imaged-derived information while maintaining
the coupling, a final representation of the bounding
surfaces and automatic segmentation of the layer are
achieved. A local operator based on gray level values
is designed to capture the information to drive surface
finding. The use of such gray level-based information
instead of the image gradient, gives our algorithm the
ability to capture the homogeneity of tissue, and in
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this way it improves the performance. The level set
implementation offers the advantage of easy initializa-
tion, ability to handle complex geometry and topology
change, as well as the ready evaluation of several char-
acteristics of the layer, such as the surface curvature
and the distance map between the two bounding sur-
faces.

Curvature maps for both the outer and inner
bounding surfaces can be calculated using equation
in 2.3. The information of high curvature point can
then be used to guide 3D tracing and mapping. Also,
the thickness map between the outer and inner sur-
faces can be readily evaluated through Ψin and Ψout,
which can be used to detect pathology.

Future directions for this work include the follow-
ing: finer design of the local feature operator to bet-
ter model the volume averaging effect, better captur-
ing the homogeneity of the volume, the calculation of
the curvature of the bounding surfaces, and the cal-
culation of the thickness map to help in abnormality
diagnosis.
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