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Abstract
Accurate estimation of heart wall dense field motion

and deformation could help to better understand the
physiological processes associated with ischemic heart
diseases, and to provide significant improvement in
patient treatment. We present a new method of es-
timating left ventricular deformation which integrates
instantaneous velocity information obtained within the
mid-wall region with shape information found on the
boundaries of the left ventricle. Velocity informa-
tion is obtained from phase contrast magnetic reso-
nance images, and boundary information is obtained
from shape-based motion tracking of the endo- and epi-
cardial boundaries. The integration takes place within
a continuum biomechanical heart model which is em-
bedded in a finite element framework. We also employ
a feedback mechanism to improve tracking accuracy.
The integration of the two disparate but complemen-
tary sources overcomes some of the limitations of pre-
vious work in the field which concentrates on motion
estimation from a single image-derived source.

1 Introduction
The measurement of regional myocardial injury due

to ischemic heart diseases is an important clinical
problem. Accurate estimates of heart motion and de-
formation are essential to evaluate normal and abnor-
mal cardiac physiology and mechanics. It is the goal
of many forms of cardiac imaging and image analysis
methods to measure the regional function of the left
ventricle (LV) in an effort to isolate the location, sever-
ity and extent of ischemic myocardium. The complex-
ity of the LV motion and the absence of internal land-
marks in the myocardium imply that the true motion
trajectories of tissue elements are, at best, difficult to
infer from sequential images.

Recently, the advances in magnetic resonance (MR)
imaging technology have provided new possible strate-
gies to the quantification of the LV motion and func-
tion. One technique has been the MR tagging of the
myocardium[1, 18], which creates a sparse magneti-
zation grid that tags the underlying tissue, and uses
the grid deformation to follow the tissue movement.
However, the magnetic grid tends to decay over time,
which limits the its ability to track motion over the
entire cardiac cycle. It is also quite difficult to acquire
and assemble the detected tags into a robust 3D anal-

ysis framework. We note, however, that the efforts
of Young[17] and Prince[5] have developed approaches
for assembling MR tagging-derived information into
three dimensional maps of cardiac motion/function.
Another new approach for point tracking is the use of
phase contrast images to decipher local velocity which
in turn can be integrated in order to estimate trajecto-
ries of individual points over time[4]. Currently, phase
contrast velocity estimates near the endo- and epi-
cardial boundaries are extremely noisy because they
include information outside the myocardium. Thus,
as with MR tagging, the most accurate LV motion in-
formation is obtained from the middle of the myocar-
dial wall, and is least reliable near the wall boundaries.
Nevertheless, the mid-wall instantaneous velocity pro-
vides valuable information, and we intend to use it as
one source of constraints in our integrated framework.

In computer vision research, nonrigid surface regis-
tration and nonrigid motion tracking are directly rel-
evant to the cardiac motion problem. The efforts in
nonrigid surface registration attempt to register entire
sets of image data and quantitatively and statistically
look for similarities and differences, which include
the use of deformable thin-plate splines[3] and octree-
spline based volumetric transformation[14]. The more
physical-model motivated work of Pentland[7] and
Terzopolous[15] is also aimed at solving this embed-
ding problem. In these approaches, any estimates of
correspondence between points are either specifically
assumed to be known to aid in solving the problem,
or are not considered at all. The goal of the non-
rigid motion recovery is to find point correspondences
between two objects over as dense a spatial field as
possible. Goldgof[9] has been pursuing surface shape
matching ideas using conformal stretching model. Re-
cently, Metaxas[11] has utilized the mid-wall point cor-
respondences estimated from MR tagging in conjunc-
tion with the deformable superquadrics.

We have proposed a shape-based approach to com-
pute point-wise myocardial boundary (contour and
surface) motion between successive image frames[6,
13]. Our method has been based on locating and
matching boundary geometric landmarks and using a
mathematical optimization reasoning strategy to com-
bine the data-derived information with a local co-
herent smoothness model. However, we now believe
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that solely boundary based descriptions as well as the
purely mid-wall based methods are inherently incom-
plete, with each neglecting valuable additional con-
straints provided by the other. Therefore, we pro-
pose here an integrated motion tracking framework
that combines the boundary (from our shape based
approach) and mid-wall (from phase contrast MR
images) information under a continuum mechanical
model of the LV. This heart model enables us to nat-
urally incorporate actual physical constraints related
to known cardiac parameters, such as pressures, elas-
ticity, etc. We also employ a feedback mechanism
which minimizes the differences between the local real
data boundary and predicted boundary to correct the
boundary matching error and improve the accuracy of
the motion tracking. The proposed approach makes
it possible to more reliably assess the myocardial de-
formation within the entire left ventricle. We want to
emphasize that although we adopt the finite element
framework as in some previous work, our underlying
model is based on actual physical constraints of the
myocardium, and we are considering the whole my-
ocardium (epicardium, endocardium, and mid-wall)
as one single object, and integrating of complemen-
tary information from boundary and mid-wall, while
others only consider either boundary or mid-wall but
not both. In addition, unlike other authors, our goal
is to find point correspondence between image frames.

In the rest of the paper, analysis will be given in the
two dimensional case. However, the theoretical aspect
of the approach is also valid in 3D, though it may be
more constrained computationally. We are currently
implementing one version of the 3D approach.

2 Image–Derived Information
In this section, we briefly describe the two sources

of image-derived information, the boundary displace-
ment and the mid-wall instantaneous velocity. See the
cited references for more details.

2.1 Shape-Based Boundary Displacement
As mentioned above, we have previously proposed

that we can use the shape of the endo- and epi-cardial
boundary to track the motion of a dense field of points
which sample the boundary over the entire cardiac
cycle[6, 13]. Our motion tracking method is based
on locating and matching differential geometric land-
marks and using a mathematical optimization reason-
ing strategy to combine a local coherent smoothness
model with data-derived information to obtain dense
field motion vectors. In the 2D case, a sparse subset of
the contour points are created by choosing shape land-
marks which are defined as locally extreme curvature
points or curvature zero-crossing points. Making the
curvature zero-crossing points part of the landmark
subset ensures that any contour segment between two
consecutive landmarks will not change curvature sign
if we traverse the segment from one end to the other.
In other words, all the contour segments constructed
by the consecutive landmarks will be either constant
convex, or constant concave, or a straight line. The
significance of this classification will be explained in
the feedback mechanism section.

Computation of the displacement vector flow field
is carried out in two sequential steps for a given pair
of contours representing two consecutive time frames:

computation of initial local matching of landmarks of
the contours, and formulation/solution of a regulariza-
tion functional whose solution results in a set of dis-
placement vectors which are locally smooth but still
adhere to the initial matching. The bending energy
matching criterion is defined as[6]:

ebend(δ) =
1

2
EI

∫

C

[κg(τ + δ)− κf (τ)]
2
dτ (1)

where κf is the curvature for any given landmark point
in the first contour, C the search region on the second
contour, κg the curvature of a candidate point within
the search region on the second contour, and δ indexes
the different candidate points within search region.
Among all the candidate points within the search re-
gion, the one which yields the smallest bending energy
ebend is chosen as the initially matched point. The
result of this process for every landmark produces a
set of shape-based, best-matched initial motion vec-
tors Uinit(t) for each pair of contours. Next, for each
contour pair, a regularization procedure is adopted to
result in a dense velocity vector field Uoptimal(t) that
is an optimal compromise between an adherence term
and a smoothness term. A subset of optimal vectors,
denoted as Uboundary(t), which is comprised of all the
vectors that terminate at the landmarks of the second
contour is then formed. We will use this subset of
boundary displacement vectors as the shape-derived
boundary information in our integrated framework.
2.2 Phase Contrast Images and Mid-Wall

Instantaneous Velocity
Recently, a new imaging technique[12], Phase Ve-

locity Magnetic Resonance Imaging, has been devel-
oped. It incorporates velocity phase encoding into a
conventional cine-MR sequence and produces images
of myocardial instantaneous velocity throughout the
cardiac cycle. Phase contrast methods can depict mo-
tion parameters with pixel precision and thus provide
a high resolution technique for quantitative measure-
ments. Led by Dr. Constable, our team has been
working on developing methods to deal with propa-
gated phase errors, as well as quantitatively charac-
terizing the phase velocity based motion tracking[4].

Uniform motion of tissue in the presence of a mag-
netic field gradient produces a change in the MR signal
phase, φ, proportional to the velocity:

φ = νγ

∫ TE

0

G(t)tdt (2)

where G(t) is the gradient strength as a function of
time, ν the tissue velocity, TE the echo delay time,
and γ the gyromagnetic ratio. The velocity in a partic-
ular spatial direction can be estimated by measuring
the difference in phase shift between two acquisitions
with different first gradient moments. Velocity maps
encoded for motion in three spatial dimensions may
easily be obtained at multiple time instances through-
out the cardiac cycle using a phase contrast cine-MR
imaging sequence. The acquired velocity maps may
then be used to provide information on tissue displace-
ment, strain, strain rate, and other quantitative mea-
sures of deformation. Regardless of which quantita-
tive parameters are to be measured, an important first
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step is to devise methods that can accurately track
each segment of myocardium as it deforms through the
heart cycle. However, the velocity maps themselves
only provide instantaneous motion information. They
do not establish the point correspondences between
image frames. Methods that use direct forward and/or
backward integration of velocity to estimate the dis-
placement vector have been proposed[4]. These meth-
ods assume various kinds of constant velocity condi-
tions between time frames. These assumptions suffer
from the fact that myocardial motion is the result of
complex interaction between electrical activation, my-
ocardium active contraction, blood flow pressure, etc,
and it is not constant between even small time in-
tervals. Errors resulting from the constant velocity
assumptions can be significant especially during the
fast contraction stage, which is very important in the
prediction of cardiac health.

As mentioned before, phase contrast velocities near
the endo- and epi-cardial boundaries are extremely
noisy, reliable motion information is only available
within the mid-wall region. We denote these mid-wall
velocity vectors as U̇mid−wall(t).

3 A Model Based Integrated Approach
with Feedback Mechanism

In this section, we present a new method of esti-
mating left ventricular deformation which integrates
mid-wall instantaneous phase contrast velocity with
boundary shape-based displacement.1 The integra-
tion takes place within a continuum mechanical model
of the LV, is embedded in a finite element frame-
work, and uses a feedback mechanism to improve ac-
curacy. The integration of the two disparate but com-
plementary sources overcomes the limitations of pre-
vious work in the field which concentrates on motion
estimation from a single image-derived source.

3.1 Continuum Mechanical Model of the
Left Ventricle

We want to model the left ventricle such that given
image-derived constraints and other prescribed condi-
tions, the model should provide a realistic and reason-
able framework to help recover nonrigid deformation.
In the work proposed here, we represent each imaged
myocardial slice as a homogeneous elastic solid contin-
uum, bounded by endo- and epi-cardial contours. We
want to emphasize that this model is different from
the spring-like mesh widely used in graphics and vi-
sion community, it is a model based on continuum
mechanics. Since we intend to embed our model in a
finite element framework, and use the principle of min-
imum potential energy to solve the governing equilib-
rium equations for motion recovery, we need to estab-
lish the relationship between the deformation and the
induced stress. Rigid motion induces no stress, thus
the displacements of each point of the body cause no
strain. The heart is a nonrigid object that deforms
over time and has very complicated biomechanical

1The regular MR images on which we perform our boundary

based method and the phase contrast images from which we

derive the velocity information are the magnitude and phase

images of the same data acquisition, respectively. Spatially,

they are perfectly registered with each other.

properties[8, 10] and stress-strain relationships. For
the simplicity of the framework, we assume that the
myocardium is a Hookean material, with its stress([σ])
and strain([ε]) relationship (the constitutive equation
of the material) obeying Hooke’s law: 2

[σ] = [D] [ε] (3)

Under two dimensional Cartesian coordinate system,
assuming the displacement along the x- and y-axis of a
point to be u(x, y) and v(x, y) respectively, the strain
tensor [ε] of the point can be expressed as:

[ε] =





∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x



 (4)

and under plane strain condition, matrix D can be
derived to be:

[D] =
E

(1 + ν)(1− 2ν)

[

1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2

]

(5)

Here, E and ν, Young’s modulus and Poisson’s ratio,
are two material-related constants which have been
established experimentally for myocardium in biome-
chanics literature[16], with value to be around 75,000
Pascal and 0.5 respectively.

It is clear that under our model, the internal stress
caused by the deformation is a function of the displace-
ment vector and some material-specific constants. We
are going to use this strain-stress relationship in the
finite element representation of the model.

3.2 Finite Element Representation of the
Model

The finite element method is an engineering me-
chanics technique for analyzing the dynamic behavior
of an object. The first step in this method is to di-
vide the continuous structure of the object into finite
pieces, or elements, and to construct a finite element
mesh to represent the object. Since the velocity con-
straint is only reliable in the mid-wall region, we want
to incorporate as many mid-wall elements as possi-
ble. Currently, pixel-resolution grids are used for 2D
applications.3 The Delaunay tessellation method is
used to tessellate the bounded LV into a triangular
grid. Next, local basis functions for each element are
constructed. These allow approximation of the prop-
erties of any point by those of the nodes of the element
to which it belongs. An isoparametric formulation de-
fined in a natural coordinate system is used, in which
the interpolation of the element coordinates and ele-
ment displacements use the same basis functions. For
the tri-nodal linear element, the basis functions are
linear functions of the three nodes’ coordinates[2].

2However, currently we are in the process of developing more

suitable and realistic constitutive models, any of which can be

inserted into this framework.
3However, we are investigating methods to reduce the reso-

lution in the 3D case for computational reasons.
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Figure 1: Regular magnitude MR image, x-direction
phase contrast image, y-direction phase contrast im-
age, and triangular grid superimposed on the region
of interest.

The nodal displacement based governing dynamic
equation of each element is established under the prin-
ciple of minimum potential energy, using the mechani-
cal model described in the previous section. The equa-
tions are assembled together in matrix form as:

MÜ + CU̇ + KU = R (6)

where M is the mass matrix, C the damping ma-
trix, K the stiffness matrix, R the force load, and U
the nodal displacement vector field. M is a function
of the element basis functions and material density
(1.1gram/mm3), and K is a function of element basis
functions and material strain-stress matrix [D]. Mean-
while, matrix C is frequency dependent, and is pro-
portional to the mass matrix. Considering the motion
characteristics of the heart tissue (a very low damp-
ing system), we choose element of C to be about one
percent of the value of the corresponding element of
M. We want to point out that we also intend to use
this model to enforce certain real physical constraints
related to known cardiac pressures.

It is important to note that while the finite element
grid provides the basis for approximating a continuous
spatial model, the dynamic equations provide the basis
of an appropriate temporal model for the matching
and predicting of image frames.
3.3 Numerical Solution of the System

The governing equations have been constructed in
such a way that the mid-wall instantaneous veloc-
ity and the boundary displacement are being used as
data-based constraints within a continuum mechani-
cal model. Dense deformation fields, (displacement,
velocity, acceleration, and strain), can be estimated
from this model-based, image-constrained framework.

For any sampled time instant (assume t = T0 for
convenience), the initial conditions for the system of
differential equations are as follows:

• The initial displacements of all the points Uall(t0)
are always zero (the object has not moved yet).

• The phase images provide the initial velocity in-
formation U̇mid−wall(t0) of the mid-wall points.

For the other points, we could assume U̇other(t0)
to be zero. However, if we take into account the
periodic nature of the heart motion, we can use
the estimated velocity at these points from the
solution of equations at the previous time instant
as the initial velocity at this time.

• The initial acceleration of all the points Üall(t0)
could be zero, or we can again use the estimated
result from the previous time.

Figure 2: The dense field displacement vector maps of
four consecutive time frames, beginning with the ED
frame. Note the non-homogeneous nature of myocar-
dial motion.

• The initial equivalent total load R(t0) can be
computed from the governing equations:

R(t0) = MÜ(t0) + CU̇(t0) (7)

where U̇(t0) and Ü(t0) are known.

We also want to enforce the displacements of the
boundary landmarks Uboundary(t1) when the my-
ocardium deforms into the next time instant t1. One
method to incorporate this constraint is as follows: as-
sume that the ith component of vector U has enforced
value b, we multiply the iith element of the stiffness
matrix K by N , and replace the ith element of the
load vector R by Nb, where N is a very large number.
Following this manipulation, the modified governing
equations must now give Ui(t1) = b.

Through the construction of the initial conditions,
and the enforcement of boundary landmarks displace-
ments, the solution to the governing equations will be
the result of the integration of two sources of image-
derived information under the guidance of the mechan-
ical model. The step-by-step solution of the system
is performed using the Newmark integration method,
which is unconditionally stable. The integration pro-
cess results in estimates of displacement of all the node
points between time intervals, as well as the predicted
nodal velocity and acceleration at the next time in-
stant.
3.4 Feedback Mechanism to Improve Ac-

curacy
When using the finite element framework to track

motion between temporal images, it can be regarded
as a predictor from time t0 to time t1. Since we al-
ready have data information at t1 in terms of the seg-
mented endo- and epi-cardial contours, as well as the
mid-wall velocity, we can refine the mapping estimate
between frames t0 and t1 by comparing how close the
image-driven, model-based prediction comes to the ac-
tual data. The differences between the data and the
prediction can be used as a recursive feedback term
to improve the matching process. Here, we report our
progress in using the boundary difference as the feed-
back force.

As described in section 2, the boundary displace-
ment constraint is only enforced at the matching vec-
tors which terminate at the landmark points of the
second contour. This way, the real and predicted con-
tours at time t1 intersect at these points. As explained
before, the contour segments defined by two consecu-
tive landmarks of the real data will always be either
constant convex, or constant concave, or a straight
line. The corresponding predicted contour segments
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Figure 3: Top: coordinate-dependent strain maps: x
direction, y direction, and shear strain; Bottom: prin-
cipal strain maps: maximum strain, minimum strain,
and the direction associated with the maximum prin-
cipal strain.

should be close to real ones in the same classification
sense, if the initial shape-based boundary matching is
reasonably good and the contour segments are not too
large. In practice, these two requirements are readily
satisfied. In the feedback process, predicted contour
segments are compared to actual ones, based on a met-
ric related to the similarity between pairs of actual and
predicted contour segments. To date, two curve com-
parison metrics have been developed, and have shown
similar effects in improving the matching process.

The first metric utilizes the shape matching idea
that our initial boundary matching is based upon.
However, we were using point-wise shape comparison
in that process, but now we have to compare curve seg-
ments. We define that the total tension for any curve
segment C equal to its normalized total curvature:

T (C) =

∫

C

|κ(s)| ds (8)

Since we have stated that the real and predicted con-
tour segments would be close in the sense of constant
convexity or concavity, the total tension of any curve
segment will indicate its total curveness. Furthermore,
since the whole real contour can be treated as if it were
in equilibrium state tension-wise, the total tension dif-
ference (termed as expanding force f(P)) between the
corresponding predicted segment P and real segment
R can be used as a target as to how much the predicted
segment should increase or decrease its tension:

f(P) = T (P)− T (R) (9)

Positive f(P) indicates that the segment has a ten-
dency to expand along the outward tangent directions
of the two end points, while negative f(P) implies the
shrinking tendency. Since the neighboring segments
interact at the common end point, the net expanding
force of the two segments determines the net expand-
ing/shrinking tendency of the common landmarks.

The second comparison metric simply defines the
total tension for any given curve segment equal to the
normalized area of the segment (closed by the line con-
necting the two end points). The expanding force is
again defined as the total tension difference between
the corresponding predicted and real segments.

The right figure of Fig. 4 illustrates the contour
segment comparison idea described above. Here, the
solid line represents the real contour, and the dotted

Segment C

f(A)

f(B)

f(B)
f(C)

Segment A Segment B

Figure 4: Left: compute the landmark net expand-
ing/shrinking force in the feedback mechanism. Right:
top left: original grid; top right: predicted grid with-
out feedback; bottom left: predicted grid with two
feedback iterations; bottom right: actual target grid.

line is the predicted contour. Segments A and C have
expanding tendency, while segment B is inclined to
shrink. However, the net force at the common end
of A and B causes that landmark expand (or shrink
from B’s standpoint) into B, while the net force at
the common end of B and C is minimal (no change).

After forming the net expanding force at each
landmark point, adjustments are made for the initial
boundary displacements. Displacement vectors ema-
nating from the first image frame are modified so they
will end on the boundary of the second image, at one
side or another of the original matching landmarks,
depending on the magnitude and direction of the net
expending force of each landmark. The new displace-
ment is then applied into the integrated finite element
framework to compute refined motion information.

4 Experimental Results
The model-based integrated framework proposed in

this paper has been implemented for the two dimen-
sional case. Experiments have been conducted with
real cardiac phase contrast images from a canine study.

Figure 1 demonstrates the image dataset we are
currently working with. Shown here are three MR im-
ages taken at the end diastolic (ED) stages of the car-
diac cycle (we have sixteen time frames within each cy-
cle): the regular magnitude MR image which provides
the anatomical information of the left ventricle, the x-
and y-direction phase contrast images which indicate
the instantaneous velocity components in the respec-
tive directions. The right figure shows the triangular
finite element grid representation of a 2D myocardial
slice (superimposed on the region of interest).

Figure 2 presents the dense field displacement vec-
tor maps of four consecutive time frames, beginning
with the ED frame. Here, a vector arrow begins from
its position at present time t, ends at its position of
next time t+ δt. The non-homogeneous nature of my-
ocardial motion is very evident from these displace-
ment maps: within the same time frame, different re-
gions of the myocardium display very different motion
characteristics (direction, magnitude, etc); between
time frames, the same muscle tissue changes its mo-
tion parameters within a fairly short time interval.

We believe more detailed and sophisticated anal-
ysis is required to infer more useful information for
clinical and research purposes. To that end, we have
calculated the strain tensors for each triangular ele-
ments of the finite element grid, which indicates the
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non-rigid deformation but not the rigid bulk motion
of the element. The top row of Figure 3 shows the
three components of the strain tensors: x component,
y component, and shear strain. The bottom row of the
figure shows the more object centered principal strain
maps: maximum, minimum, shear, and the principal
direction associated with the maximum principal nor-
mal strain. In our original color-coded display of the
strain maps, different colors are used to delineate the
positive and negative values of the strain components.
The gray scale maps presented here can be difficult to
interpret. We denote large positive strain with light
white shade, large negative strain with dark shade,
and near zero strain with neutral gray. These strain
maps display the evidence of the non-homogeneous de-
formation.

Finally, the left figure of Fig. 4 illustrates the
mechanism behind the adjustments of the boundary
displacements. The right figures show the results of
feedback mechanism to improve the accuracy of the
matching process. Top left is the original grid, bot-
tom right is the target grid at the next time frame.
Top right is the system predicted grid without any
corrections, while bottom left is the refined prediction
after two steps of feedback correction at the bound-
aries. We can see the local and overall improvement
of the refined prediction.

5 Conclusions
We have presented an integrated motion tracking

framework that combines the boundary displacement
and mid-wall instantaneous velocity information un-
der a continuum mechanical model of the left ventri-
cle. The heart model naturally enables us to incorpo-
rate actual physical constraints related to known car-
diac parameters and myocardium properties. We also
employ a feedback mechanism which minimizes the
differences between the local real data boundary and
predicted boundary to correct the boundary matching
error and improve the accuracy of the motion tracking.
We believe our approach is one of the first efforts to
integrate disparate but complementary image-derived
modules to assess the true transmural myocardial de-
formation. Initial results from the analysis of real im-
ages have been encouraging. And we are moving to-
wards developing 3D framework.
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