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Abstract. Continuum mechanical models have been used to regularize
ill-posed problems in many applications in medical imaging analysis such
as image registration and left ventricular motion estimation. In this work,
we present a significant extension to the common elastic model which we
call the active elastic model. The active elastic model is designed to re-
duce bias in deformation estimation and to allow the imposition of proper
priors on deformation estimation problems that contain information re-
garding both the expected magnitude and the expected variability of the
deformation to be estimated. We test this model on the problem of left
ventricular deformation estimation, and present ideas for its application
in image registration and brain deformation during neurosurgery.

Continuum mechanical models have been extensively used in medical imag-
ing applications over the last ten years, particularly within the contexts of image
registration and cardiac motion estimation. More recently, similar models have
been applied to the problem of brain deformation during neurosurgery. The mod-
els used have been selected either (i) because of their mathematical properties
(e.g. [3, 9]) or (ii) as an attempt to model the underlying physics of the situation
(e.g. [11, 17, 21]). Such models are a specific case of the quadratic regularizers
used in many computer vision applications, such as in the work of Horn[12] or in
the deformable models used for segmentation (see McInerney and Terzopoulos
[16] for a review).

The classical elastic model is derived from the properties of elastic solids
such as metals. In cases of small deformations, the linear elastic model may also
be applied to model biological tissue which is more hyperelastic in nature. All
linear elastic models so far used in medical imaging work are passive models.
These models will produce no deformation of their own and are essentially used
for smoothing and/or interpolation. Using an elastic model results in an under-
estimation of the deformation as the model itself biases the estimates towards
zero deformation. In this paper we present work to extend these elastic models
to allow for non-zero bias. We call this model the ‘active elastic model’.

The active elastic model is designed to be used to solve a problem of the
following form: ‘Given an input of noisy, possibly sparse, displacements find a
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dense smooth displacement field which results in a deformation which is close
to a desired/expected deformation.’ This new method allows us to construct a
proper prior model on the deformation that includes both a mean (the desired
magnitude of the deformation) and a covariance (derived from the desired degree
of smoothness).

The rest of this paper reads as follows: In section 1, we review the basic
mathematics of the general energy minimization framework and we compare the
use of a passive and an active elastic model for estimation purposes. In section 2,
we examine the problem of bias in deformation estimation and demonstrate how
the active model can be used to reduce this bias. We present some preliminary
results of the application of an active model to reduce the bias in left ventricular
deformation estimation in section 3.1 and we conclude by discussing potential
applications of this methodology in other areas such as image registration and
brain deformation during neurosurgery in section 4.

1 The Energy Minimization Framework

In this section we describe a framework in which the goal is to estimate a dis-
placement field u which is a smooth approximation of a noisy displacement field
um. We will assume that um is derived from some image-based algorithm, such
as the shape-based tracking algorithm[20, 17], MR tagging measurements (e.g.
[11]) or optical flow estimates (e.g. [12]).

We can pose this problem as an approximation problem whose solution is a
least-squares fit of u to um subject to some smoothness constraints and takes
the form:

û =
argmin

u

(
∫

V

c(x)|um(x)− u(x)|2dv +W (α, u, x)dV

)

(1)

where: u(x) = (u1, u2, u3) is the vector valued displacement field defined in the
region of interest V and x is the position in space, c(x) is the spatially varying
confidence in the measurements um and W (α, u, x) is a positive semi-definite
regularization functional. W is solely a function of u, a model parameter vector
α and the spatial position x.

This approach also generalizes to the case where the input displacement
field um is sparse. At those locations where no measurement um(x) exists the
confidence c(x) can be set equal to zero.

1.1 The Linear Elastic Model

In the early computer vision literature (e.g. [12]) the model W was generated
using a regularization functional which penalized a weighted sum of the squared
derivatives of the displacement field to impose a smoothness constraint. In med-
ical imaging analysis work the classical linear elastic model is often used, espe-
cially in those cases where the problem is the estimation of a real deformation
(e.g. left ventricular motion estimation [11, 17].)
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A common way to define solid elastic models is in terms of an internal energy
function. This internal energy function must be invariant to rigid translation and
rotation in order to satisfy certain theoretical guidelines (see Eringen[8] for more
details.) Hence the use of any elastic model provides no constraints on the rigid
component of the displacement. Additional constraints must be employed to take
advantage of any other prior information regarding the magnitude of the overall
translation and rotation.

The classical linear elastic model[22] captures the mechanical properties of a
deforming solid in terms of an internal, or strain energy function of the form:

W =
1

2
εtCε (2)

where C is a 6 × 6 matrix representing the elastic properties of the material
and ε is the strain vector. In the most commonly used case, that of isotropic,
infinitesimal linear elasticity these can be written as:

C−1 =
1

E
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(3)

where u(x) = (u1(x), u2(x), u3(x)) is the displacement at point x = (x1, x2, x3).
E is the Young’s modulus which is a measure of the stiffness of the material and
ν is the Poisson’s ratio which is a measure of the incompressibility.

In the rest of the paper we will refer to the classical linear elastic model as
the passive model to distinguish it from the active linear elastic model described
in the next section.

1.2 The Active Linear Elastic Model

The classical linear elastic model described in equation (2) is a passive model. In
the absence of any external force, the material will do nothing. Given no external
work, equilibrium is reached at the lowest energy state where the strain vector
is identically equal to zero. Such a material model is not accurate in the case of
actively deforming objects such as the left ventricle of the heart. In this case, a
substantial part of the deformation is actively generated by the muscle and is
clearly not a result of external forces. This active deformation does not produce
a change in the strain energy of the material and to account for this factor we
need to modify the elastic model appropriately. With this in mind we propose
the active elastic model which takes the form:

W =
1

2
(ε− εa)tC(ε− εa) (4)
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where εa is the active strain component. The active strain component represents
the deformation that is not a product of external forces and hence should not
be penalized by the model. In the absence of external forces, the active elastic
model results in a deformation equal to the one actively generated by the object.
So in this sense it can deform itself and hence it justifies the label active. Given
a prior model of the active contraction, the active elastic model can also be used
to generate a prediction of the position of the deforming object.

This model is also appropriate in the case where it is used to regularize
an image registration problem where there is no such physical notion of active
deformation. Here, the active component εa can be thought of as the expected
magnitude of the deformation.

1.3 The Elastic Model as a Prior Probability Density Function

The energy minimization problem described in equation (1) can also be expressed
as a Bayesian maximum a-posteriori estimation problem[17]. In this case, the
solution vector û is the u that maximizes a posterior probability density p(u|um).
Using Bayes’ rule, we can pose this problem (at each point x) as:

û = arg max
u

{

p(u|um) =
p(um|u)p(u)

p(um)

}

= arg max
u

{log p(um|u) + log p(u)} (5)

by noting that p(um) is a constant once the measurements have been made.
The measurement probability p(um|u) can be obtained by using a white

noise model for the noise in the measurements um. The prior probability density
function p(u) can be derived using an energy function (such as W ) using a
probability density function of the Gibbs form [10]. We note that this approach
has been previously used in medical imaging problems (e.g. Christensen [3], Gee
[9] and others). In the cases of the passive and the active model, this prior
distribution has the form:

Passive: log p(u) = k1 +
−εtCε

2
(6)

Active: log p(u) = k2 +
−(ε− εa)tC(ε− εa)

2
(7)

where k1 and k2 are normalization constants.
Note further that the standard multivariate normal distribution (mean=µ,

covariance =Σ) has the form (k3 is similarly a normalization constant):

log p(u) = k3 +
−(u− µ)tΣ−1(u− µ)

2
(8)

By comparing equations (6) and (7) to equation (8), we can see that in both
cases the material matrix C plays a similar role to the inverse of the covariance
matrix (the stiffer the material is, the greater the coupling between the displace-
ments of neighboring points and hence the smaller the effective component of
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Fig. 1. A one-dimensional example. Consider a one-dimensional object consisting of
two points p1 and p2 originally a distance L apart. The body is modeled using an
elastic spring of stiffness of K. The body is then somehow deformed (stretched). In the
deformed state, we have initial estimates of the positions of p1 and p2 shown as q1 and
q2 respectively, and the confidence in these estimates is given by A. The problem can
be visualized by connecting point pairs (p1,q1) and (p2,q2) with zero length springs of
effective stiffness A and points (p1,p2) with a spring of stiffness K and length L. In
this case, the initial displacements are given by um = [q1 − p1, q2 − p2]

t and the strain
ε is equal to u1−u2

L
.

the covariance matrix), and that in the case of the active model, the active strain
εa acts like the mean of the distribution. In the case of the passive model, the
mean is effectively zero. Hence we can explicitly see that the active elastic model
is a generalization of the passive model, by adding the possibility of having a
non-zero mean.

2 Bias Reduction Using the Active Elastic Model

The passive elastic model will likely underestimate the real deformation as a
result of its penalization of all deformations. We proceed to illustrate the problem
by means of a simple example and demonstrate how the active model can be
used to reduce the bias. We also describe how the problem (or more precisely
its symptoms) have been dealt with in the literature and point out some of the
shortcomings in those approaches.

2.1 A Simple Example

To illustrate the concept of the active elastic model more concretely we will use
the simple one-dimensional case described in figure 1. In this case the approxi-
mation functional (see equation 1) takes the form:

û =
argmin

u

[

A
(

|um(p1)− u(p1)|
2 + |um(p2)− u(p2)|

2
)

+W
]

(9)

We will consider two forms of W , a passive model Wpassive and an active model

Wactive which have the form:

Wpassive =
K

2

(u1 − u2

L

)2

Wactive =
K

2

(u1 − u2

L
− εa

)2

(10)
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Note here that the active model reduces to the passive model if the value of the
active strain εa is set to zero. Substituting for the models defined in equation (10)
into equation (9), and differentiating with respect to u we obtain the following
matrix equations (in the active case):

[

A+ K
L

−K
L

−K
L

A+ K
L

] [

u1

u2

]

=

[

Aum1 +Kεa

Aum2 +Kεa

]

(11)

To simplify the math in order to make the illustration clearer, we set um(p2) =
0, u(p2) = 0. This results in the following two solutions for u(p1):

1

Passive Model: u(p1) =
Aum(p1)

A+ K
L

(12)

Active Model: u(p1) =
Aum(p1) +Kεa

A+ K
L

(13)

Further we can write the expected value of u(p1), E(u(p1)) in terms of the ex-
pected value of um(p1), E(u

m(p1)) as:

Passive Model : E(u(p1)) =
( A

A+ K
L

)

E(um(p1)) (14)

Active Model : E(u(p1)) =
( A

A+ K
L

)

E(um(p1)) +
( Kεa

A+ K
L

)

(15)

2.2 Bias Estimation and Reduction

In the solution produced by the passive model, the expected value of u(p1)
(see equation 14) will be smaller than the expected value of the measurements
um(p1) as long as K > 0. Hence any estimation using the passive elastic model is
biased, and will underestimate the actual deformation. Consider the case where
L = 1, A = 3K. In this case by substitution into equations (14) and (15) we get
the following expressions:

Passive: E(u(p1)) =
3

4
E(um(p1)), Active: E(u(p1)) =

3

4
E(um(p1)) +

1

4
εa

So by an appropriate choice of εa derived from knowledge of the specific problem
the bias in the estimation can be significantly reduced. For example, if we had

1 As an aside, we also note that the expressions of equations (12) and (13) can be
rewritten so that the constants K and A appear only as the ratio K

A
. For example,

equation (12) can be rewritten as u(p1) =
um(p1)

1+ K

AL

. Hence the absolute value of the

stiffness K or the data confidence A do not enter into the problem. This can be a
problem in the case of the estimation of real deformation (such as in the case of the
left ventricle) as the two are measured in different units and hence make the equation
inconsistent from a dimensionality viewpoint.
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prior knowledge of the expected strain in this case (where ε = u(p2)−u(p1)
L

), we
could use such information to set the active strain εa so as to reduce the bias.

We note further that the effect of the bias is more significant where the
relative confidence of the measurements (A) is low as a result of noisy data.

2.3 Alternative Methods of Bias Reduction

We also note that the problem of bias has been dealt with in a number of different
ways in the literature (often without being actually recognized as such).

Zero Stiffness: This ‘solution’ is used by Park et al[19] where the Young’s Modu-
lus is set to zero. In this case, temporal filtering is used for noise reduction. This
eliminates the problems associated with bias; it also forfeits all the usefulness of
exploiting the spatial relationships between different points in the model. The
method is successful in part because the input data are very clean.

Direct Bias Correction: Sometimes further knowledge about the problem can be
used to correct for some of the bias. In our earlier work [18, 17] on left ventricular
deformation estimation we solved the problem in a two step fashion, for each
frame in the image sequence. At each time t the problem was solved first using
a formulation like that of equation (1) to produce an estimate of the position of
all the points at time t+ 1.

Then all points that were on the endo- and epi-cardial surfaces of the heart
at time t were mapped to the (pre-segmented) endo- and epi-cardial surfaces
at time t+ 1, using a modified nearest neighbor approach. In this approach the
bias in the radial and circumferential directions is largely accounted for but there
remains bias in the longitudinal direction (which lies parallel to the ‘major’ axis
of the surface).

Other methods which constrain the tracked tokens to lies on a given curve
or surface fall into this category of bias correction (e.g. [14]).

The Incremental Approach: In this case the estimation problem is broken into
a number of small (algorithmic) steps. This has the effect of reducing the bias
which is directly related to the magnitude of um. Consider again the simple
example of figure 1 with L = 1, A = 3K as before. If the displacement um(p1)
is applied in one step, we get an estimate of u(p1) = 0.75um(p1) and a bias of
0.25um(p1).

The incremental approach is best explained algorithmically. At each incre-
ment i ∈ (0, N) the estimate of u(p1) is defined as di(p1). Then, for any increment
i we calculate di(p1) as:

i = 0 : d0(p1) = 0

i > 0 : di(p1) = di−1(p1) + 0.75
( i

N
um(pi)− di−1(p1)

)
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This essentially is a history-free approach as in each step the model is only
used to regularize the difference between the current input and the last step
as opposed to the whole of the input. This approach results in smaller input
displacements which are closer to zero, thus resulting in a reduction of the bias.
The reduction of the bias is directly related to the number of steps. In this specific
case when N = 2 the total bias is 0.16um(p1), when N = 4 it is 0.08um(p1), and
for N = 8, it is reduced to 0.04um(p1).

The Fluid Model: This is essentially the limiting case of the incremental ap-
proach. In the work of Christensen[3], it takes the differential form:

µ∇2v + (λ+ µ)∇(∇.v) = F (16)

where F is the image derived forcing function and v is the local velocity vector.
The isotropic linear elasticity model can also be written in differential form by
differentiating the energy functional posed in equation (1) and generating a force
F by grouping together all external displacements um. This takes the form (as
derived in Christensen [2]):

µ∇2u+ (µ+ λ)∇(∇.u) = F (17)

where λ and µ are the Lamè constants which are defined in terms of the Young’s
modulus E and the Poisson’s ratio ν as[22]: λ = Eν

(1+ν)(1−2ν) , and µ = E
2(1+ν) .

If we compare equations (16) with (17) we see that they have essentially the
same form, with the one being in terms of the velocity v and the other in terms
of the displacement u. The fluid model can be seen to be the limiting case of the
incremental approach of the previous section as the step size goes to zero. This
approach has the advantage of explicitly stating its assumptions properly and
possibly some numerical advantages. 2

Disadvantages of the Incremental/Fluid Approach: The incremental/fluid ap-
proach substantially reduces the bias, but the history of the deformation is lost
at each (algorithmic) step. Hence in this way we cannot capture aspects of real
materials such as progressive hardening with increased deformation (using non-
linear elastic models) as at each step the deformation is assumed to be zero. Also
the fact that the analysis is reset at the end of each step makes incorporation
of temporal smoothness constraints in problems such as left ventricular motion
estimation very difficult. Perhaps more fundamental in certain cases is the lack
of the ability of either of these approaches to encapsulate any prior information
available as to the expected magnitude of the deformation, as opposed to simply
its relative smoothness.

2 This is perhaps the answer to the ‘controversy’ as to whether the linear elastic
model is useful in the case of large deformations. If the (passive) linear elastic model
is applied using the incremental approach, as is often the case, it is really a fluid
model in disguise hence it has similar large deformation capabilities.
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2.4 Relation of the Active Elastic Model to Other Methods

In this section we clarify the relationship of certain other methods in the litera-
ture which relate or appear to relate to the active elastic model. Any criticism of
these methods is simply with respect to its application in the problem of interest
of our own work. (We do note that these methods were mostly designed to solve
different problems.)

The thin-plate spline: A common regularization function is the thin-plate spline
model[1] which in two dimensions has the form (using u = (u1, u2) and x =
(x1, x2) :

W (u) =
(∂2u1

∂x2
1

)2

+
(∂2u1

∂x2
2

)2

+
( ∂2u1

∂x1∂x2

)2

+
(∂2u2

∂x2
1

)2

+
(∂2u2

∂x2
2

)2

+
( ∂2u2

∂x1∂x2

)2

It can easily be shown that this function would qualify as a solid elastic
model as it is invariant to rigid translation and rotation. In fact this function
is invariant to all affine transformations. Hence, the bias in the estimate of the
deformation in methods which utilize the thin-plate spline as a regularizer (e.g.
[4]), is limited to only that component of the deformation which is not captured
by an affine transform. In this respect the thin-plate spline is superior to the
standard (passive) elastic regularizers, but a bias problem still remains which in
certain cases could be substantial.

The Active Shape Model: In a series of papers Cootes et al (e.g. [6, 7]) presented a
methodology for segmentation and registration using a point-based shape model.
While this is interesting work, it does not directly relate to the active elastic
model presented in this paper. The goal of the active shape model is to capture
the statistical variation of the shape of a given structure/object across a number
of images, whereas the goal of our work is to be able to include information
regarding the expected deformation of a given object across a sequence of images.

The balloon variation of the active contour: In the balloon model of Cohen et
al[5], an additional force is added to the standard snake[13] algorithm to provide
for a constant expansion or contraction force. While this force does reduce the
bias towards zero deformation of the underlying snake, it does so as an additional
force and not as a change in the regularization model. Hence it cannot be used to
capture prior information regarding the expected magnitude of the deformation,
as can the elastic model.

Non-Rigid Registration of Brain Images with Tumor Pathology: Kyriacou et al
[15] presented some interesting work relating to the registration of pre- and post-
tumor brain images. To achieve an accurate registration a uniform contraction
of the tumor is first used to estimate the shape of the post-tumor brain prior to
the growth of the tumor. Unlike the balloon approach of Cohen[5], this uniform
contraction procedure is very close in spirit to our work on the active elastic
model, as in this case the tumor is shrinking under the influence of internal
contraction and not as a result of an external force.
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3 Experimental Results

3.1 Methodology

In this section we present some preliminary results of the application of this
algorithm to left ventricular deformation estimation. The active elastic model is
used to do two things: (i) Isovolumic Bias Correction and (ii) Imposition of a
temporal smoothness constraint alongside the Isovolumic Bias Correction.

We bootstrap the algorithm by using the output produced by our previous
work [18, 17]. We label this algorithm as the ‘passive’ algorithm. In the passive
algorithm, the images are segmented interactively and then initial correspon-
dence is established using a shape-tracking approach. A dense motion field is
then estimated using a passive, transversely linear elastic model, which accounts
for the fiber directions in the left ventricle. The dense motion field is in turn
used to calculate the deformation of the heart wall in terms of strains. We note
that, although we apply bias correction in the passive algorithm (see section 2.3)
bias remains in the estimate of the strain in the longitudinal direction (which
lies parallel to the ‘major’ axis of the surface).

The output of the ‘passive’ algorithm consists of a set of vectors εp(xi, tj)
representing the strain estimated by the passive algorithm at position xi and time
tj . Typically we divide the heart into about 800-1000 (i.e. i ∈ 1 : 1000) elements
and use 6-9 time frames (j ∈ 1 : 9) resulting in a total of approximately 7000
6× 1 vectors εp = [εprr, ε

p
cc, ε

p
ll, ε

p
rc, ε

p
rl, ε

p
lc]

t. The components of εp are the normal
strains in the radial (rr), circumferential (cc) and longitudinal (ll) directions as
well as the shears between these direction (e.g. εprc is the radial-circumferential
shear strain).

These vectors εp are then used to generate an estimate of the active strain
εa (in one of two different methods as discussed below) and then a new set of
output strains is estimated using the new ‘active’ algorithm. In this case we do
not employ any additional bias correction.

A. Isovolumic Bias Correction: In this bias correction procedure at each dis-
crete element position xi and time tj we generate an output vector εa(xi, tj) by
adjusting the longitudinal strain to create a new set of strain estimates εa that
result in an incompressible deformation.

The fractional change in volume produced under strain εp can be approxi-
mated as:

δV p = (1 + εprr)× (1 + εpcc)× (1 + ε
p
ll)

If we assume that most of the bias is in the longitudinal direction and that in
reality the volume is preserved we can generate an estimate of the active strain
εa(xi, tj) by simply (i) setting εa(xi, tj) = εp(xi, tj) and (ii) adjusting the longi-
tudinal component of εa to correct for any divergence from the incompressibility
constraint i.e.

εall =
1

(1 + ε
p
rr)× (1 + ε

p
cc)
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These estimates εa are used as the mean value for the active elastic model.
The variance is determined by the stiffness matrix and is the same as it was for
the passive model. We label the results produced by this procedure as Active.

B. Temporal Smoothing and Isovolumic Bias Correction: In this case, before
estimating the active strain component εa as above the strain vectors εp(xi, tj)
are smoothed by performing a temporal convolution with a one-dimensional
Gaussian kernel of standard deviation σ = 1.0 in the time direction to produce
a temporally smooth set of vectors εs.

The εs vectors are then used instead of the un-smoothed vectors εp as the
input to isovolumic bias correction procedure described above. This combined
temporal smoothing and isovolumic bias correction procedure is used to generate
an estimate of the active strain εa to be used with the active elastic model. We
label the results produced by this procedure as ActiveT.

3.2 Experiments

Data: We tested the new algorithm(s) by comparing its output to those ob-
tained using MR tagging[14] and implanted markers[18]. In the MR tagging
case we used one human image sequence provided to us by Dr Jerry Prince from
John Hopkins University. The images were acquired using 3 orthogonal MR tag-
ging acquisitions and the displacements estimated using an algorithm presented
in Kerwin[14]. From these displacements we estimate the MR tagging derived
strains. Images from one of the three acquisitions had the evidence of the tag
lines removed using morphological operators, was segmented interactively and
the strains were estimated using our previous approach (Passive)[18]. In the case
of implanted markers we used 8 canine image sequences with implanted markers
as was described in [18].

Tests: We tested two permutations of the active algorithm. For the algorithm
labeled Active in figure 3, we used as input the output of the passive algorithm
after isovolumic bias correction, without any temporal smoothing. The algorithm
labeled as ActiveT used the output of the passive algorithm with both temporal
smoothing and isovolumic bias correction. Figure 2 illustrates the output of al-
gorithm ActiveT at four points in the cardiac cycle as applied to the MR tagging
sequence. The output of the tagging method[14] at End-systole is presented for
comparison.

Figure 3 shows the error between the estimates of our old algorithm labeled
passive and the two variations of the new active algorithm (Active and ActiveT ),
as compared to the output of the tagging algorithm[14] and to the estimates
obtained using the MR markers. In the case of the tagging algorithm we observe
an overall reduction in mean strain error from 9.9% (passive) to 8.1% (active)
at end-systole (frame 10). In the case of the implanted markers we observe a
similar reduction from 7.2% to 6.3%.

It is also interesting to note that the MR tagging algorithm [14] produces a
reduction of myocardial volume of 12% between end-diastole and end-systole, our
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passive algorithm an increase of approximately 14% and all both versions of the
active algorithm produced small increases (< 2%) showing that the isovolumic
bias correction was effective.

4 Conclusions

The active elastic model is a generalization of the original elastic model which
penalizes deformations away from a preset value as opposed to simply all defor-
mations. This model can be used as a prior to solve problems where we have
prior information regarding the magnitude and the variability of the expected
deformation, hence it can be used to construct a proper prior probability den-
sity function for the displacement field having both a mean and a covariance, as
opposed to the more traditional elastic model which has a fixed mean of zero.

The cardiac deformation example is an obvious application of this model as
the active strain component can be used to model the active contraction of the
left ventricle in the systolic phase of the cardiac cycle.

In the case of image registration such an active model could be used to good
effect in cases where even a gross sense of the magnitude of the deformation
exists a priori. For example, in Wang et al[23] where statistical shape-based
segmentation information is used to constrain an elastic model, information from
the segmentation regarding the relative deformation of different structures can
be used with an active elastic model to drive the elastic model towards the
expected solution, thus applying ‘forces’ to the elastic model from within as
opposed to from ‘the outside’.

Another example is the case of cerebro-spinal fluid loss in neurosurgery which
results in large deformations in the ventricles not accounted for by gravitational
forces[21]. In this case an active elastic model could be used to account for
the expected large deformation of the ventricles (based perhaps on population
statistics from inter-operative images) and hence reduce the bias in the final
displacement field.
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