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Abstract

The quantitative estimation of regional cardiac deformation from 3D image se-
quences has important clinical implications for the assessment of viability in the
heart wall. Such estimates have so far been obtained almost exclusively from Mag-
netic Resonance (MR) images, specifically MR tagging. In this paper we describe a
methodology for estimating cardiac deformations from 3D echocardiography (3DE).
The images are segmented interactively and then initial correspondence is estab-
lished using a shape-tracking approach. A dense motion field is then estimated
using an anisotropic linear elastic model, which accounts for the fiber directions in
the left ventricle. The dense motion field is in turn used to calculate the deforma-
tion of the heart wall in terms of strain in cardiac specific directions. The strains
obtained using this approach in open-chest dogs before and after coronary occlu-
sion, show good agreement with previously published results in the literature. They
also exhibit a high correlation with strains produced in the same animals using im-
planted sonomicrometers. This proposed method provides quantitative regional 3D
estimates of heart deformation from ultrasound images.

1 Introduction

A fundamental goal of many efforts in the cardiac imaging and image analysis
communities is to assess the regional function of the left ventricle (LV) of the
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heart. The general consensus is that the analysis of heart wall deformation
provides quantitative estimates of the location and extent of ischemic myocar-
dial injury. Regional left ventricular deformation can be determined using all
of the principal imaging modalities, including contrast angiography, echocar-
diography, radionuclide imaging, cine computed tomography (CT), and mag-
netic resonance (MR) imaging. There have been considerable efforts within
the medical image analysis community aimed at estimating this deformation
from each of these imaging modalities. Much of the effort has been confined
to analysis of two-dimensional images or projections of the heart. Although,
recently significant effort has been directed at a more comprehensive analysis
of left ventricular deformation in all three dimensions.

Left ventricular deformation can be assessed in three-dimensional space us-
ing ECG-gated single photon emission computed tomography (SPECT) [1–7]
or positron emission tomography (PET) [8–10]. However, both of these ra-
dionuclide methods have a restricted ability to assess left ventricular defor-
mation, secondary to the limited spatial and temporal resolution of these ap-
proaches. These radionuclide methods have involved both count-based [1,4,7]
and geometry-based approaches [2,3,6].

Cine MR imaging has emerged as a more comprehensive approach to assess
myocardial deformation in three-dimensional space [11]. MR imaging offers
improved spatial resolution. Unique to cine MR imaging is the ability to track
deformation of myocardial tissue within the wall as well as on the endocardial
and epicardial surfaces. However, the analysis of mid-wall myocardial deforma-
tion requires special cine MR imaging sequences, including MR tissue tagging
[12–17] and others, or MR phase contrast velocity imaging [18–21]. While these
newer MR approaches offer a comprehensive analysis of regional left ventric-
ular deformation, wide application of MR imaging remains limited by cost
and the difficulty in routinely applying these MR approaches to critically ill
cardiac patients.

Echocardiography offers significant advantages over both radionuclide imag-
ing and MR imaging. Echocardiographic images can be acquired on critically
ill patients in an emergency room or at the patient’s bedside in the inten-
sive care unit, and this can be accomplished at a reduced cost. Comprehen-
sive analysis of left ventricular deformation is now feasible using echocardio-
graphy, with the advent of newer three-dimensional acquisition systems [22].
Recently, commercial software has become available to automatically assess
global and regional left ventricular function [23]. However, these newer au-
tomated echocardiographic approaches have not been fully validated. Hence,
development of automated analysis of echocardiographic images is attracting
an increasing amount of attention in the literature [24–31]. However, none of
these methods is capable of estimating dense maps of three-dimensional de-
formation from echocardiographic images comparable to those obtained from
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the analysis of MR tagging images.

In this paper we describe, test and present prelinary validation for an ap-
proach to estimate the regional three-dimensional deformation of the left ven-
tricle using echocardiography. We use a biomechanical model to describe the
myocardium and shape-based tracking displacement estimates on the endocar-
dial and epicardial walls to generate the initial displacement estimates. These
are integrated in a Bayesian estimation framework and the overall problem is
solved using the finite element method. This method produces quantitative re-
gional 3D cardiac deformation estimates from ultrasound images which up-to
now was thought to be only possible using magnetic resonance and especially
MR tagging. We validate these estimates by comparing them to invasive mea-
surements performed simultaneously using implanted sonomicrometers. The
fast improving quality of ultrasound images with the introduction of harmonic
imaging [32] and contrast agents [33] should make it possible to obtain even
more accurate estimates of 3D left ventricular deformation in the future.

2 Our Approach

We estimate a dense displacement field within a Bayesian estimation frame-
work which consists of a data term and a model term. These are described in
sections 2.1 and 2.2 respectively. The data term captures the image-derived
information about the problem. We segment the images interactively and then
proceed to extract initial displacement estimates using a shape-tracking ap-
proach. We then model the noise in these estimates using a Gaussian noise
model. The model term captures our prior beliefs about the nature of the
displacement field. Since the left ventricle is a single deforming body, we ex-
pect the displacements of neighboring points to be related. We capture this
relationship using a biomechanical model which is, in turn, used to generate
a prior probability density function for the displacement field. Our approach
that incorporates a biomechanical model has the advantages of having no ar-
bitrarily set weights and of allowing us to take advantage of forward modeling
efforts in the biomechanics literature, see for example the collections in [34,35].

2.1 Obtaining Initial Displacement Data

2.1.1 Image Acquisition

The images were acquired using an HP Sonos 5500 Ultrasound System with
a 3D transducer (Transthoracic OmniPlane 21349A (R5012)). The 3D-probe
was placed at the apex of the left-ventricle of an open-chest dog using a small
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Fig. 1. Image acquisition geometry.

ultrasound gelpad (Aquaflex) as a standoff as shown in figure 1. Each acquisi-
tion consisted of 13–17 frames per cardiac cycle depending on the heart rate.
The angular slice spacing was 5 degrees resulting in 36 image slices for each
frame. For validation purposes we also implanted arrays of sonomicrometer
crystals [36,37] at two positions in the left ventricle.

2.1.2 Image Segmentation

The endocardial and epicardial surfaces were extracted interactively using a
software platform [38] originally developed for MR image data and subse-
quently modified to allow for the different geometry and image characteristics
of ultrasound. For the automated part of the segmentation, for each image
slice, we used an integrated deformable boundary method whose external en-
ergy function consisted of a standard intensity gradient term and a texture-
based term similar to that proposed by Chakraborty [39]. In our approach,
however, the contours were parameterized using B-splines [40] to allow for
easy interaction. Clearly detecting the epicardium is the hardest of the two
tasks. At this point we are relying on operator intervention and correction of
the automatic algorithm to ensure accurate segmentation.

The texture model tries to classify each pixel in one of three classes (blood
pool, myocardium, region outside the epicardium) by modeling each class using
texture parameters derived from the work of Manjunath [41]. The mean values
of these parameters for each class are set interactively by having the user
click on one point in each of the three regions. Then the variability of these
parameters in each class is modeled as a normal distribution assuming equal
variances for all the classes. A first-order Gaussian Markov Random Field
(GMRF) model is used to model the class-label for each pixel. The GMRF
combines the likelihood of belonging to a class as specified by the texture
parameters with a degree of regional smoothness in the classification. A more
detailed description can be found in [42].

The overall framework produced reasonable results as shown in figures 2 and
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Fig. 2. External Energy Functions for intensity and intensity+texture snakes. Note
that the intensity only energy function is very noisy inside the left-ventricular
blood-pool which creates many local minima for the deformable contour. The use
of the texture eliminates most of these minima.
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Fig. 3. Left: Images and superimposed extracted contours. Only two of the eight
frames are shown. Right: 3D rendering showing all the wire-frame contours super-
imposed on a long axis (original) and a short-axis (interpolated) image slices.

3. There is clearly room for improvement in this approach, as we are not yet
taking advantage of the temporal coherency in the spatial position of surfaces
across times. The potential benefits of using such constraints is demonstrated
in a number of papers, including [28,29,31]. We are also currently looking
into more sophisticated techniques for generating the external energy maps,
including those suggested by Mulet-Parada [43].
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Fig. 4. Example of the shape-tracking approach. The goal here is to map points
on the original surface to points on the final surface. For a point p1 on the origi-
nal surface, we define a search window W on the final surface which contains all
plausible corresponding points. Then the point p2 in W which has the most sim-
ilar shape-properties to p1 is selected as the candidate match point. The distance
function for shape-similarity is based on the difference in principal curvatures.

2.1.3 Shape-Tracking Displacement Estimates

In this work, the original displacements on the surfaces of the myocardium
were obtained by using the shape-tracking algorithm whose details were pre-
sented in [44,42]. The method tries to track points on successive surfaces using
a shape similarity metric which tries to minimize the difference in principal
curvatures and was validated using implanted markers [44].

For example, consider point p1 on a surface at time t1 which is to be mapped
to a point p2 on the deformed surface at time t2, as shown in figure 4. First, a
search is performed in a physically plausible regionW on the deformed surface
and the point p̂2 which has the local shape properties closest to those p1 is
selected. The shape properties here are captured in terms of the principal cur-
vatures κ1 and κ2. The distance measure used is the bending energy required
to bend a curved plate or surface patch to a newly deformed state. This is
labeled as dbe and is defined as:

dbe(p1, p2) =
((κ1(p1)− κ1(p2))

2 + (κ2(p1)− κ2(p2))
2

2

)

(1)

The displacement estimate vector for each point p1, u
m
1 is given by

um1 = p̂2 − p1 , p̂2 =
argmin

p2 ∈ W

[

dbe(p1, p2)
]
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Confidence Measures in the match: The bending energy measures for all
the points inside the search region W are recorded as the basis to measure the
goodness and uniqueness of the matching choice. The value of the minimum
bending energy in the search region between the matched points indicates the
goodness of the match. Denote this value asmg, we have the following measure
for matching goodness:

mg(p1) = dbe(p1, p̂2) (2)

On the other hand, it is desirable that the chosen matching point is a unique
choice among the candidate points within the search window. Ideally, the
bending energy value of the chosen point should be an outlier (much smaller
value) compared to the values of the rest of the points. If we denote the mean
values of the bending energy measures of all the points inside window W
except the chosen point as d̄be and the standard deviation as σd

be, we define
the uniqueness measure as:

mu(p1) =
dbe(p1, p̂2)

d̄be − σd
be

(3)

This uniqueness measure has a high value if the bending energy of the cho-
sen point is small compared to some smaller value (mean minus standard
deviation) of the remaining bending energy measures. Combining these two
measures together, we arrive at one confidence measure cm(p1) for the matched
point p̂2 of point p1:

cm(p1) =
1

k1,g + k2,gmg(p1)
× 1

k1,u + k2,umu(p1)
(4)

where k1,g, k2,g, k1,u, and k2,u are scaling constants for normalization purposes.
We normalize the confidences to lie in the range 0 to 1.

Modeling the initial displacement estimates: Given a set of displace-
ment vector measurements um and confidence measures cm we model these
estimates probabilistically by assuming that the noise in the individual mea-
surements is normally distributed with zero mean and a variance σ2 = 1

cm
.

In addition, we assume that the measurements are uncorrelated. Given these
assumptions we can write the measurement probability for each point as:

p(um|u) = 1√
2πσ2

e
−(u−um)2

2σ2 (5)
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Fig. 5. Fiber direction in the left ventricle as defined in Guccione [45].

2.2 Modeling the myocardium

The left-ventricular myocardium is modeled using using a transversely isotropic
linear elastic model which allows us to incorporate information about the pref-
erential stiffness of the tissue along fiber directions from Guccione [45]. These
fiber directions are shown in figure 5. The model described in terms of an
internal or strain energy function of the form:

W = etCe (6)

where e is the vector form of the strain tensor ε (see next section), et is the
transpose of e and C is the 6×6 matrix containing the elastic constants which
define the material properties. This is described in more detailed in continuum
mechanics textbooks such as Malvern [46].

Deformation and Strain: Consider a body B(0) which after time t moves
and deforms to body B(t) as shown in figure 6. A point X on B(0) goes to a
point x on B(t) and the transformation gradient F is defined as dx = FdX.
The deformation is expressed in terms of the strain tensor ε. Because the
deformations to be estimated in this work are larger than 5%, we use a finite
strain formulation implemented using a logarithmic strain εL, which is defined
as: εL = ln

√
F.F t. Since the strain tensor is a 3×3 symmetric 2nd-rank tensor

(matrix), we can re-write it in vector form as, e = [ε11 ε22 ε33 ε12 ε13 ε23]
t. This

enables us to express the tensor equations in a more familiar matrix notation.

Strain Energy Function: The mechanical model can be defined in terms
of a strain energy function. The simplest useful continuum model in solid
mechanics is the linear elastic one which is of the form: W = etCe where C is
a 6× 6 matrix and defines the material properties of the deforming body and
e is the vector form of the strain tensor. The simplest model is the isotropic
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Fig. 6. Geometry of deformation. In this case a body B(0) goes to a body B(t). The
deformation operator F is defined as dx = FdX.

linear elastic model used widely in the image analysis literature [19,13]. In this
case the matrix C takes the form:

C−1 =
1

E

































1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

































(7)

where E is the Young’s modulus that is a measure of the stiffness of the
material and ν is the Poisson’s ratio which is a measure of incompressibility.

In this work, the left ventricle of the heart is specifically modeled as a trans-
versely elastic material to account for the preferential stiffness in the fiber
direction. This is an extension of the isotropic linear elastic model which al-
lows for one of the three material axis to have a different stiffness from the
other two. In this case the matrix C takes the form:

C−1 =

































1
Ep

−νp
Ep

−νfp
Ef

0 0 0

−νp
Ep

1
Ep

−νfp
Ef

0 0 0

−νfpEf
Ep

−νfpEf
Ep

1
Ef

0 0 0

0 0 0
2(1+νp)

Ep
0 0

0 0 0 0 1
Gf

0

0 0 0 0 0 1
Gf

































(8)

where Ef is the fiber stiffness, Ep is cross-fiber stiffness and νfp, νp are the
corresponding Poisson’s ratios and Gf is the shear modulus across fibers.
(Gf ≈ Ef/(2(1 + νfp)). If Ef = Ep and νp = νfp this model reduces to
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the more common isotropic linear elastic model. The fiber stiffness was set
to be 3.5 times greater than the cross-fiber stiffness [45]. The Poisson’s ratios
were both set to 0.4 to model approximate incompressibility. 5

In using a linear elastic model we lose the ability to capture the progressive
hardening of the left ventricular myocardium as the strain increases, unlike for
example the non-linear models used by Guccione et al [45]. This is mitigated
by the fact that the estimation is done on a frame by frame basis hence the
degree of the hardening would be small.

A probabilistic description of the model: As previously demonstrated
by Geman and Geman [48] and applied to medical image analysis problems
[49,50] there is a correspondence between an internal energy function and
a Gibbs probability density function. If the mechanical model is described in
terms of an internal energy function W (C, u), where C represents the material
properties and u the displacement field, then we can write an equivalent prior
probability density function p(u) (see equation 10) of the Gibbs form [48]:

p(u) = k1 exp(−W (C, u)) (9)

where k1 is a normalization constant.

The Markov random field (MRF) then can be thought of as the probabilistic
analog of the continuum mechanical model. There are two interesting simi-
larities: (i) Both can be defined using energy functions and (ii) the energy
functions at any given point are functions only of the values of that points
and its immediate neighbors. In the case of the MRF point (ii) comes from
the fact that the the Gibbs probability density function is often defined on
first and/or second order cliques which are very local neighborhoods of the
point. So if the displacement field is modeled as a MRF, the probability of
the displacement of a given point p effectively only depends on the displace-
ment of its neighbors. In the case of the mechanical model described using
a strain energy function, the value of the internal energy function, which via
exponentiation in equation (9) becomes the probability density function, at
a given point depends only on the local strains. These local strains are only
dependent on the displacements of the neighbors of the point and not on the
displacements of the whole volume.

The expression of the mechanical model as a MRF allows us to solve the
problem within the Bayesian estimation framework. This has the advantage of

5 The value of 0.4 was chosen to model approximate incompressibility. Experience
shows that using values greater than 0.4 often causes numerical problems such as
mesh locking [47]. Also the myocardium is only approximately incompressible.
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allowing us to model the noise in the displacement estimates probabilistically
and still maintaining the description of the model in the language of continuum
mechanics.

2.3 Integrating the Data and Model Terms

Having defined both the data term (equation 5) and the model term (equa-
tion 9) as probability density functions we naturally proceed to write the
overall problem in a Bayesian estimation framework. Given a set of noisy in-
put displacement vectors um, the associated noise model p(um|u) (data term)
and a prior probability density function p(u) (model term), find the best out-
put displacements û which maximize the posterior probability p(u|um). Using
Bayes’ rule we can write.

û =
argmax

u
p(u|um) = argmax

u

(p(um|u)p(u)
p(um)

)

(10)

The prior probability of the measurements p(um) is a constant once these
measurements have been made and therefore drops out of the minimization
process. In this expression we also note that there is an undefined constant.
This is the scaling factor that translates the stiffness of the mechanical model
to the effective variance of its equivalent probability density function p(u).
This constant essentially translates stiffness which is measured in Pascals to
confidence in the model which is measured in pixels. The value of this constant
sets the relative weight of the data term to the model term. We set this
adaptively to be as large as possible (which pushes the optimum towards the
data side) subject to solution convergence. In this way we make the following
assumption: the best solution is the one which adheres as much as possible
to initial estimate of the displacement field but still results in a connected
solid. Convergence fails when the Jacobian of the deformation field 6 becomes
singular. In this case we lower the value of this weight to produce a smoother
displacement field.

Model bias and correction: We also note that the mechanical model prior
is generated by a passive biomechanical model, that is one which does not
capture the active deformation of the left ventricle. This model has a major
weakness in that it penalizes all deformations. This model could be thought in
some sense as having a mean of zero strain and a variance proportional to the
reciprocal of the stiffness. It will tend to underestimate the deformation and
hence the strain. As a certain amount of deformation does occur the use of this

6 The Jacobian of the deformation is the matrix F defined in figure 6.
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Fig. 7. A 3D Mesh generated by interpolating and filling between the endocardial
and epicardial boundaries.

model results in an underestimation of the deformation using our approach. A
solution to this problem is to incorporate a model of active contraction within
the prior, and this is a subject of on-going research within our group (again
see [42].) At this point the problem is dealt with by forcing the nodes which
lie on the endocardial and epicardial surfaces at time t to lie on the segmented
surfaces at the time t + 1. This corrects for the bias in the estimates of the
deformation for those components of the deformation which are perpendicu-
lar to the endocardial and epicardial surfaces. The bias in the estimation of
deformation parallel to the surfaces remains.

2.4 Numerical Solution

Taking logarithms in equation (10) and differentiating with respect to the
displacement field u results in a system of partial differential equations, which
we solve using the finite element method [51]. The first step in the finite
element method is the division or tessellation of the body of interest into
elements; these are commonly tetrahedral or hexahedral in shape. Once this
is done, the partial differential equations are written down in integral form for
each element, and then the integral of these equations over all the elements
is taken to produce the final set of equations. For more information one is
referred to standard textbooks such as Bathe [51]. The final set of equations
is then solved to produce the output set of displacements. In our case the
myocardium is divided into approximately 2,500 hexahedral elements, using
a custom mesh generation algorithm described in [42]. A solid mesh of one of
the hearts is shown in figure 7.

For each frame between end-systole (ES) and end-diastole (ED), a two step
problem is posed: (i) solving equation (10) normally and (ii) adjusting the
position of all points on the endocardial and epicardial surfaces so they lie
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on the endocardial and epicardial surfaces at the next frame using a modified
nearest-neighbor technique and solving equation (10) once more using this
added constraint. This ensures that there is a reduction in the bias in the
estimation of the deformation.

3 Experimental Procedure

Animal Experiments: To evaluate the efficacy of using image-derived in

vivo deformation estimates to measure regional LV function we conducted
experiments on fasting, anesthetized, open chest, adult mongrel dogs with
approval of the Yale University Animal Care and Use Committee. In this pre-
liminary work, we report results from four animals. The 3DE images were
obtained either before (D1 and D2) or after occlusion of the left anterior de-
scending coronary artery (D3 and D4), using the procedure described in sec-
tion 2.1.1. Coronary occlusion created an area of dysfunction which we call the
risk area. Also regional blood flow in the myocardium was determined using a
radio-labeled microsphere technique. Here, radioactively labeled microspheres
were injected into the left atrium and reference blood samples were drawn
from the femoral arteries. Regional myocardial blood flow was calculated us-
ing a method previously described in [52]. The blood flow measurements are
used to identify the risk area and play no further role in this work. Further
we implanted sonomicrometers (Sonometrics Corporation, London Ontario,
Canada) at two regions in the myocardium, as shown in the schematic in
figure 11(left). We obtain highly accurate invasive measures of the deforma-
tion from the analysis of implanted sonomicrometers. Sonomicrometer derived
regional strains were considered to be the gold standard.

Image Analysis: The images were segmented interactively and the surfaces
sampled to 0.5 voxel resolution, at which point curvatures were calculated
and the shape-tracking algorithm was used to generate initial displacement
estimates. The heart wall was divided into 2500 hexahedral elements and the
anisotropic linear elastic model was used to regularize the displacements. A
commercial finite element solver ABAQUS [53] was used to solve the resulting
equations. The computational time after the segmentation was of the order
of 3-4 hrs/dog (depending on the heart rate and hence the number of image
frames) on a Silicon Graphics Octane with an R10000 195 MHz processor and
128 MB RAM.

Strain Analysis: For the purpose of analyzing the results, the left-ventricle
of the heart was divided into 4 cross-sectional slices, slice 1 being at the apex

13



(a) Three Dimension al rendering of 
left ventricle with  sectors shown 

in alternating colo rs .
(b) Cut−slice showi ng numbering of sec tors

used in reporting b oth blood flow and strains .

Basal Slice

Apical Slice

Mid−Basal Slice

Mid−Apical Slice

1
2

3

4

5 6

7

8

Right
Ventricle

Left
Ventricular
Blood−pool

Right Ventricular −Left Ventricular 
Junction

Sector
Numbers

Fig. 8. Division of a slice of the heart for the purpose of reporting results. Each
sector consists of approximately 75 elements in the finite element mesh.

of the ventricle and number 4 being at the base of the ventricle towards the
valve plane. Each slice was further subdivided into 8 sectors, as shown in
figure 8(b). A sector was labeled as being in the risk area if the endocardial
microsphere flow was less than 0.25ml/min/g. The normal region was defined
by 5 transmural sectors located in the posterior lateral wall at the base of the
heart (sectors 5,6,7 of the basal slice and sectors 6,7 of the mid-basal slice). We
report the average of radial(RR), circumferential(CC) and longitudinal(LL)
strains for the risk areas and the normal regions. 7

4 Results

The potential of our methodology is illustrated in figure 9, which shows a
cut through our tracked 3D mesh overlaid on a slice through the original
3DE image data over time. This could be seen as a form of software-derived,
3DE-based “tissue tagging” somewhat in the sense of MR tagging. Note the
spreading grid lines near the endocardium on the right as the LV thickens
from enddiastole to endsystole.

The quantitative results are summarized in Table 1. Function in the risk area,
which was independently defined by microsphere flow, was markedly reduced
compared to non-affected regions and the control normal animal. The radial
strain is notably smaller in the risk area after coronary occlusion. The cir-
cumferential strain becomes less negative also indicating a loss of function.
There was a small decrease in the longitudinal strain as well. The progressive

7 Given a strain tensor ε1 in a coordinate frame c1 (e.g. x, y, z) we can map it to a
new coordinate frame c2 (e.g r, c, l) by use of a rotation matrix R. If R : c1 7→ c2,
then the strain transformation is done as: ε2 = Rε1R

t. In this way we can rotate the
strain tensor to line up with directions of interest. We also note that the principal
strains are the eigenvalues of the 3× 3 strain tensor and are invariant to changes in
the coordinate frame.
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3 4

Fig. 9. “3DE-tissue-tagging”- a slice through a 3D visualization with the algo-
rithm-driven deforming mesh overlaid on one slice through a 3DE dataset at four
time points between ED and ES. This demonstrates the output of the algorithm
which tries to follow (or tag) material points in time, similar to the Magnetic Reso-
nance Tagging approach. Note that thickening (or radial strain) increases from the
epicardium to the endocardium as expected. There is also an infarct region in the
left half of the image which exhibits bulging instead of contraction. See also the
accompanying movie file papad1.mov.

Study D1 D2 D3 D4

Normal Radial Strain 17.7 13.8 22.4 17.2

Normal Circumferential Strain -13.4 -13.1 -8.4 -12.4

Normal Longitudinal Strain -4.3 -3.2 -3.4 -3.1

Risk Area Radial Strain n/a n/a -4.3 -13.7

Risk Area Circumferential Strain n/a n/a 1.9 -7.3

Risk Area Longitudinal Strain n/a n/a -0.7 -2.0

Table 1
Summary of results for four animal studies. There was no risk area in studies D1
and D2 as the 3DE images, in these cases, were obtained before coronary occlusion.

development of regional radial and circumferential strains for ‘D3’ is shown in
figure 10.
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Fig. 10. A long-axis cut-away sectional view of the left ventricle showing circumfer-
ential(top) and radial(bottom) strain development in a dog following left anterior
descending coronary artery occlusion (on the lower right half of the heart). Note
the normal behavior in the left half of the heart. There was positive radial strain
(thickening) and negative circumferential strain (shortening) as we move from End
Diastole to End Systole. The lower right half of the heart where the affected re-
gion was located showed almost the opposite behavior, as expected. See also the
accompanying movies papad2.mov and papad3.mov.

Croisille [54] reported similar values (Radial=23.2± 1.9%, Circum=−10.5± 2.0%
and Long=−7.5± 1.0%) for strains in the normal regions of dog hearts us-
ing three-dimensional tagged MRI. However, they observed smaller reductions
in strains post-occlusion, which can be attributed to coronary reperfusion in
their model and significantly delayed imaging after the occlusion (2 days later
as opposed to 15-20 minutes in our case). This probably allowed for partial
recovery of function in the risk region.

5 Validation using Implanted Sonomicrometers.

In an effort to obtain an independent source of in vivo strain values for vali-
dation of image-derived strains, we have developed an independent approach
for strain measurement using cubic arrays of sonomicrometers implanted in
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Fig. 11. 3DE Algorithm-Derived Strains vs. Sonomicrometer-derived Strains. Scat-
ter plot of principal strains derived from N=3 3DE studies using the algorithm vs.
same strains derived from sonomicrometer arrays (12 crystals in each cluster) at
two positions in the Left Ventricular wall. Note the high correlation between the
two sets of strain values (r2 = .80).

the canine LV myocardium (see details in [36]). The efficacy of this technique
was illustrated by additional work [37] that showed that the distances obtained
with sonomicrometers compared favorably (r = 0.992) with those obtained us-
ing the more established technique of tracking implanted bead displacements
using biplane radiography.

We then compared our image-derived strains to concurrently-estimated so-
nomicrometer derived strains at several positions in the LV myocardium in
the same dogs. The sonomicrometers were located visually from the images
and the two nearest sectors of algorithm-derived strains were selected for com-
parison purposes. The comparison of the principal strain components in two
separate regions for a set of 3 studies (the sonomicrometer data was not avail-
able for study ‘D4’) showed a strong correlation (r2 = 0.80). Here we compare
the principal strains as it is difficult to estimate the cardiac specific directions
in the case of the sonomicrometer data. A scatter plot of algorithm-derived
principal strains versus sonomicrometer derived principal strains is shown in
figure 11.

This validation is still in a preliminary stage and we hope in the future, to
also validate strain patterns which are not fully averaged across the wall.

6 Conclusions

In this work we have demonstrated that estimates of 3D cardiac deformation
can be obtained from ultrasound images. These estimates are generally consis-
tent with values reported in the literature. Further, we validate such estimates
of regional deformation directly by comparing them to strains measured con-
currently from implanted sonomicrometers. While many problems remain to
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be solved, such as improving and speeding up the segmentation process, we
are confident that this approach has the potential to make 3DE a potential
source of images for the comprehensive estimation of 3D cardiac deformation.

Movies

There are three movies included with this paper. The first movie, papad1.mov

corresponds to figure 9. The second and third movies, papad2.mov and pa-

pad3.mov, correspond to the top and bottom parts of figure 10 respectively.
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