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Abstract. In external beam radiotherapy (EBRT), patient setup veri-
fication over the entire course of fractionated treatment is necessary for
accurate delivery of specified dose to the tumor. We develop an informa-
tion theoretic minimax entropy registration framework for patient setup
verification using portal images and the treatment planning 3D CT data
set. Within this framework we propose to simultaneously and iteratively
segment the portal images and register them to the 3D CT data set to
achieve robust and accurate estimation of the pose parameters. Appropri-
ate entropies are evaluated, in an iterative fashion, to segment the portal
images and to find the registration parameters. Earlier, we reported our
work using a single portal image to estimate the transformation parame-
ters. In this work, we extend the algorithm to utilize dual portal images.
In addition, we show the performance of the algorithm on real patient
data, analyze the performance of the algorithm under different initializa-
tions and noise conditions, and note the wide range of parameters that
can be estimated. We also present a coordinate descent interpretation of
the proposed algorithm to further clarify the formulation.

1 Introduction

In external beam radiotherapy (EBRT) uncertainties due to patient setup errors
can be reduced by registering the high contrast simulator images, obtained at
diagnostic energies (40–100 KeV), to the low resolution, low contrast 2D portal
images, which are obtained using the treatment energy X–rays (4–20 MeV). Two
dimensional analysis of patient setup verification using single portal and simula-
tor images is restricted to the verification of in–plane rotations and translations.
Out–of–plane rotations and translations of the patient can degrade the accuracy
of the image registration [13].

To account for out–of–plane rotations and translations, a pair of simulator
and portal images of the same patient, obtained from different views, can be
employed. However, such an analysis of the patient setup from 2D images can
lead to inconsistencies in the determination of the transformation parameters
[13]. Many treatment centers are moving towards offering full 3D conformal
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treatments that are initially planned from 3D CT datasets. Thus, for consistent
and accurate three–dimensional analysis of the patient setup, it is necessary to
register the 3D CT datasets to the 2D portal images. However, due to the poor
quality of the portal images, automated registration of the portal images to the
CT data set has remained a difficult task.

A number of methods have been proposed for both two dimensional and
three dimensional analysis of the patient setup. Algorithms for two dimensional
analysis include gray–level intensity based image alignment algorithms [3, 14],
visual inspection by the physician [23] and the anatomical landmark–based ap-
proaches [5, 13, 20–22]. Studies which carry out three–dimensional registration
of the treatment planning 3D CT data set to the 2D portal images include inter-
active determination of patient setup [12], silhouette based techniques [18], gray
scale correlation–based methods [8, 19], a pattern–intensity based method [26],
and a ridge–based method [11]. One of these approaches is interesting in that
it also makes use of multi-scale medial information in the anatomical structure,
using a strategy known as cores [10].

We have been developing an information theoretic registration framework,
the initial form of which was reported in [1], where segmentation of a portal
image and registration to the 3D CT data set is carried out iteratively and si-
multaneously. This framework is based on the intuition that if we have a rough
estimate of the segmentation of the portal image, then it can help estimate the
registration parameters. The estimated registration parameters can then in turn
be used to better segment the portal image and so on. This framework is termed
minimax entropy as it has two steps: the max step and the min step. In the
entropy maximization step, the segmentation of the portal image is estimated,
using the current estimates of the registration parameters. In the entropy min-
imization step, the registration parameters are estimated, based on the current
estimates of the segmentation. The algorithm can start at any step, with some
appropriate initialization on the other.

2 Mathematical Notations and Formulation

Let, X= {x(i)}, for i = 1, . . . , N2 denote the N ×N random field from which
the portal images are sampled. Let, G= {g(i)}, for i = 1, . . . , N 3 denote the
random field from which 3D CT images are sampled. Let Y(T) = {y(i, T )} for
i = 1, . . . , N2 denote the N ×N random field from which the projections from
the 3D CT data set are sampled, at a given set of transformation parameters
T= T. The projected 3D CT images are also called the digitally reconstructed
radiographs (DRRs). We will assume that the pixels for all the random fields are
independently distributed. Thus, the probability density function of the random
field X can be written in the factored form as pX(X) =

∏

i pxi
(xi). Note that

for notational simplicity, we shall now write x(i) as xi and y(i, T ) as yi.
Segmentation information is incorporated into the problem by considering

the joint density function p(xi, yi) as a mixture density. Let A = {bone, no–
bone} = {1,2}, denote the set of classes into which the pixels are classified. The
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set of classes can also be denoted by a set of vectors, {(1, 0), (0, 1)}. Since X–rays
pass through both bone and soft tissue, a pixel in portal image is classified as
bone if the X–ray passes through at-least some bone tissue, rest of the pixels
are classified no–bone. Let, M= {m(i)}, for i = 1, . . . , N 2 denote the N × N

random field on the segmentation of the portal images.
Let Z be the N2 x 2 classification matrix, with each row zi of the matrix

defining a set of random variables zi = (z1i, z2i), defined to be:

z1i =

{

1, if mi = bone

0, if mi = no–bone
, z2i =

{

0, if mi = bone

1, if mi = no–bone

The expected values of the random variables zai,∀a, denoted by < zai >=
P (mi = a), satisfy the constraint,

∑

a∈A < zai >= 1. Note that the random
variables z1i, z2i are negatively correlated random variables, with the random
variable zi taking only two possible values, {(1, 0), (0, 1)}.

For clarification, we first pose our problem in a maximum a–posteriori (MAP)
framework where both the segmentation, M, and the transformation parameters,
T, are being estimated explicitly. However, we note some restrictions with this
approach for our problem and thus we propose a maximum likelihood (ML)/EM
[7] framework to overcome these restrictions. For our problem, the EM approach
has several restrictions, which lead us to propose our new minimax entropy
strategy described (in section 3).

2.1 Maximum A–Posteriori (MAP) Formulation

An estimate of the segmentation of the portal image, M, can be used to help
estimate pose, T, of the 3D CT data set based on a MAP formulation to si-
multaneously estimate the pose T and the portal image segmentation, M, as
follows:

(T̂ , M̂) = arg max
T,M

p(T, M |X, G) = arg max
T,M

∑

i

(

∑

a∈A

zai ln pa(xi, yi)− ln p(yi)

)

(1)

where we assume each pixel is statistically independent, and the joint density
function, p(xi, yi), can be written as a mixture density, in terms of component
density functions, pa(xi, yi), as, p(xi, yi) =

∑

a∈A P (mi = a) p(xi, yi|mi = a) =
∑

a∈A P (mi = a) pa(xi, yi) =
∑

a∈A Pi(a) pa(xi, yi) where, mi is the random
variable denoting label at the ith pixel.

This formulation requires that the algorithm solve for a unique segmentation
of the portal image, M, for a unique estimate of the pose parameters, T. An
estimated segmentation will effect the estimate of the pose parameters. Since we
feel that accurate segmentation of a portal image, in general, is quite difficult,
we prefer instead not to commit the algorithm to a particular segmentation.

2.2 Maximum–Likelihood (ML) Formulation

Thus, instead of solving the MAP problem, we pose our problem in a ML frame-
work, with segmentation labels appearing as hidden variables. Such an approach
could be captured using an EM algorithm.
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The ML/EM estimate [7] of the pose parameters can be formulated as:

T̂ = arg max
T

ln p(T |X, G) =arg max
T

∑

i

(

∑

a∈A

< zai >
k ln pa(xi, yi)− ln p(yi)

)

(2)

where < zai >k=

(

<zai>
k−1pk−1

a (xi,yi)
∑

b∈A
<zbi>k−1p

k−1

b
(xi,yi)

)

. We assume a uniform prior on

the pose parameters, T, and ignore the term p(G|T ), since the 3D CT data set,
G, is statistically independent of the pose parameters, T.

In the ML formulation of the problem, only the transformation parameters
are being estimated, with a probability distribution on the segmentation labels
being estimated. This allows the algorithm to not commit to a particular seg-
mentation of the portal image.

There are two reasons why we need to move beyond the above listed idea
to find an appropriate solution to our problem. First, the EM algorithm for the
mixture model as formulated above, requires that the form of pa(xi, yi), ∀a is
known (i.e. one should know whether they are Gaussian, Rayleigh, exponential,
etc.). For multi-modal image registration it is difficult, if not impossible, to know
a priori the joint density function between the pixel intensities in the two images.
Second, in the EM framework, the prior probabilities on each pixel, Pi(a), are
required to be known. If these probabilities are not known, then they can also be
estimated within the EM framework, assuming that the segmentation labels on
each pixel are independently and identically distributed (i.i.d.), i.e., Pi(a) = πa,
where πa satisfy the constraint

∑

a∈A πa = 1. For our problem, i.i.d. assumption
does not hold.

3 Minimax Entropy Formulation

We overcome the restrictions of the ML formulation by borrowing the idea of
averaging over the estimated density function from mutual information (MI). MI
was first proposed and successfully applied for multi–modality image registration
by two research groups [25, 6]. The proposed minimax algorithm [2] for solving
the basic problem posed by equation (2), in a computational form similar to EM,
has two steps, the max step and the min step, which are evaluated iteratively
to determine the registration parameters and the probability distribution of the
portal image segmentation. The max step is formulated as follows:
Max Step:

P
k(M) = arg max

P (M)

[

−
∑

M

P (M) ln P (M) +
∑

M

P (M) ln P (M |X, Y (T (k−1)))

]

(3)

under the constraint
∑

M P (M = M) = 1, where M is the random variable
whose domain is the set of possible segmentations of the portal image, where
each pixel can be labeled from the set of labels A. We assume that pixel labels are
statistically independent, i.e., P (M = M) =

∏

i P (mi = a) =
∏

i Pi(a). As for-
mulated above, the max–step simply states that the maximum entropy estimate
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of the probability P (M = M) is the posterior probability on the segmentation
of the portal image, i.e P (M |X,Y (T (k−1))), given the current estimate of the
transformation parameters, T (k−1), the portal image, X, and the DRR, Y [4].
This simple formulation of the estimated probability of a segmentation of the
portal image allows us to systematically put constraints on the segmentation
probability function, as we show below. The analytical solution to equation (3)
estimates the probability of a segmentation label at the ith pixel to be:

P
k
i (a) =

(

P k−1
i (a) pk−1

a (xi, yi)
∑

b∈A
P k−1

i (b) pk−1
b (xi, yi)

)

where the component density functions, pk−1
a (xi, yi), are estimated from the

previous step.
Note that the P k

i (a)’s, in the kth iteration, form the weighing terms in the
Parzen window estimates, in equation (6) below, of the component density func-
tions, pa(x, y). The component density functions, in turn, are used to estimate
the joint entropies, Ha(x, y) = −

∫ ∫

pa(x, y) ln pa(x, y) dx dy, which are mini-
mized in the min step to estimate the registration parameters.

In order to better incorporate our initial uncertainty on the registration pa-
rameters into the problem, an annealing schedule [17] is imposed on the esti-
mated probability of a segmentation of the portal image pixel. The modified
max step, equation (3), can thus be written as:

P
k(M) = arg max

P (M)

[

−
1

β

∑

M

P (M) ln P (M) +
∑

M

P (M) ln P (M |X, Y (T (k−1)))

]

(4)

under the constraint
∑

M P (M = M) = 1, where β = 1
t
, and t is the tem-

perature, which determines the annealing schedule. The annealing schedule is
imposed to incorporate subjective information in estimating P k(M) [2].

To overcome the need of the EM algorithm for known component densities,
we propose estimating pa(xi, yi) from the given data set at the current estimated
transformation parameters. Note that we use Parzen window method [9] for non–
parametric density function. However, these estimated joint density functions
cannot be used in the EM algorithm. Instead, we evaluate the expected value
of the objective function in the EM algorithm w.r.t. p(xi, yi) which leads to the
min step (see [2]):

Min Step : T
k = arg min

T

∑

a∈A

1

N2





N2

∑

i=1

P
k
i (a)



Ha(x, y)−H(y) (5)

which is joint conditional entropy H(M,X|Y ). The component density func-
tion for class a, pa(x, y), is estimated as the weighted sum of Gaussian kernels,

Gψ(x) = (2π)
−n
2 |ψ|

−1

2 exp(− 1
2xT ψ−1x), using the Parzen window method as

follows:

p
k
a(x, y) ≈

1
∑

(xi,yi)∈I
P k

i (a)

∑

(xi,yi)∈I

P
k
i (a) GΨa(x− xi, y − yi) (6)
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where, P k
i (a) = P k(mi = a) is the probability that the ith pixel in the portal

image belongs to class a, estimated in the max step, equation (3), Ψa is 2–by–2
covariance matrix, which is assumed to be diagonal. Note that this assumption
does not means that the random variables x and y are independent. I, J denote
sets of sizes NI and NJ , respectively, of pixels sampled at random from the portal
image, X, and the DRR, Y . The joint entropy functions, which are the expected
value of the log of the joint probability density functions, are approximated as
statistical expectations using the Parzen window density estimates as follows.
Ha(x, y)

≈

(

−1
∑

wj∈J
P k

j (a)

)

∑

wj∈J

P
k
j (a) ln

(

1
∑

wi∈I
P k

i (a)

∑

wi∈I

P
k
i (a) GΨa(wj − wi)

)

where wi = (xi, yi). The entropy of the DRRs, H(y), is estimated as in Viola
and Wells [25]. While MI assumes that pixels are i.i.d., we avoid this assumption
by using mixture densities. We note that Studholm et. al. [24], register images
with mutual information as a match measure while incorporating segmentation
information on one of the images. However, the image was pre–hand segmented.
Coordinate Descent Interpretation: The minimax entropy algorithm above
is developed within a probabilistic framework. However, within the optimization
framework the algorithm can be viewed as a coordinate descent approach which
seeks to optimize a cost function by iterative estimation of the parameters along
different coordinates. Let

F (P̃ , T ) = −H(M, X|Y ) + H(M)

=

∫ ∫

dX dY
∑

M

p(X, Y |M) P̃ (M) ln p(M, X|Y )−
∑

M

P̃ (M) ln P̃ (M)

Note that F (P̃ , T ) is a functional (function of function) which is to be op-
timized to estimate density function P̃ (M) and the parameters, T. Optimizing
F (P̃ , T ) using the coordinate descent approach leads to the following two steps:
Step 1: P̃ k(M) = arg maxP̃ F (P̃ , T k−1), under constraint

∑

M
P̃ k(M) = 1

Step 2: T k = arg maxT F (P̃ k, T )

Step 1, where the energy functional F (P̃ , T ) is being optimized to estimate
P̃ (M), utilizing the transformation parameters T k−1, is equivalent to the max
step. Thus, estimation of the density function P̃ (M), a variational calculus prob-
lem within the optimization framework, is interpreted as maximum entropy es-
timation of a density function within the probabilistic framework. Step 2, where
we optimize F (P̃ , T ) to estimate T, utilizing current estimates of P̃ (M), is equiv-
alent to the min step as the marginal entropy term, H(M), is independent of
the parameters T.
Utilizing Dual Portal Images: It is expected that utilizing another portal
image, typically the left–lateral (LL) portal image acquired in the orthogonal
direction, will greatly enhance the accuracy of the estimated pose. Thus, we
extend the algorithm to utilize two portal images, AP and LL, for the estima-
tion of the pose. Both the min step and the max step are modified to incor-
porate this new information. While estimating the segmentations of the two
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portal images, in the max step, we assume that the segmentations of the two
portal images are statistically independent. Thus, in the max step for the 2–
portal case, P k(MAP ) and P k(MLL), are estimated by repeating equation (4)
for the two portal images separately. Note that though there are two portal
images, whose segmentation is being estimated separately, there is only one
set of transformation parameters, T, is to be estimated. In the initial formu-
lation of the algorithm, the optimal pose parameters are thus estimated as
T̂ k = arg minT [H(MAP , XAP |Y1) + H(MLL, XLL|Y2)] where XAP , XLL denote
the AP and the LL portal image respectively, and Y1, Y2 denote the DRRs ob-
tained from the 3D CT data set in the AP and LL directions.

4 Results

In this section we evaluate the accuracy and robustness of the proposed min-
imax algorithm using both real and simulated data. A plexi–glass pelvic bone
phantom is scanned to provide the 3D CT dataset. The phantom consists of real
human pelvic bone encased in plexi–glass of density close to the density of soft–
tissue. The phantom is then moved to the treatment room to obtain real portal
images at the treatment energy X–rays (6 MV). The simulated portal images
are obtained in the following fashion. First, the 3D CT voxel values are mapped
from diagnostic energy values to the values at the treatment energy X–rays using
attenuation coefficient tables [15]. Second, the 3D CT data set is transformed
by known transformation parameters. Third, the digitally reconstructed radio-
graphs (DRRs) are rendered, using perspective projection, from the CT data
set, both in the anterior–posterior (AP) and the left–lateral (LL) directions.
Two different testing sets of simulated portal images are then generated from
the resulting DRRs. To obtain the first set of simulated portal images, varying
amounts of i.i.d. Gaussian noise are added to the DRRs. To obtain the second
set of simulated portal images, the DRRs are blurred using blurring kernels of
increasing width, which simulates the finite size of the radiation source, and low
contrast and low sharpness of the real portal images. Since the true registration
parameters are known for the simulated portal images, these datasets are used
to study the accuracy and robustness of the algorithm under increasing noise
and blur in the images.

Our previous work [1] suggested that the proposed algorithm is not robust to
the estimation of the out–of–plane transformation parameters when using only
single AP portal images. The second portal image would be expected to improve
this robustness. The in–plane translations for the AP portal image consists of
translations along the X and Y axes and the in–plane rotation is the rotation
about the Z–axis, θXY . For the lateral portal image, the in–plane translations are
the translations of the 3D CT dataset along the Y and Z axis and the in–plane
rotation is the rotation about the X–axis, θY Z . Note that by using two portal
images, the rotation about the Y–axis, θXZ , is the only out–of–plane parameter
to be estimated.
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 15.0 5.0 0.0 0.0 0.0 10.0

Estd. 15.62 5.19 -0.06 0.43 0.21 10.85

(a) (b) (c) (d)

Fig. 1. (a) Simulated AP portal image. (b) Simulated left–lateral portal image. (c)
Estimated segmentation of the AP portal image. (d) Segmentation of the LL portal
image estimated by the algorithm. Estimated and the true parameters are shown in
the table.

4.1 Dual Simulated Portal Data

The simulated portal images are obtained as explained above. The six trans-
formation parameters to be estimated are denoted as tx, ty and tz (along the
x–axis, y–axis and z–axis respectively) and the three rotations are denoted as
θY Z , θXZ and θXY (about the x–axis, y–axis and z–axis respectively).

The simulated dual portal images are blurred using a uniform blurring kernel
of width 11 to obtain the portal images shown in figure 1 (a), (b). Figure 1 (c),
(d) show the corresponding segmentation of the portal images estimated by the
algorithm. The table in the figure shows the true and the estimated parameters.
Note that the estimated translations are within 1 voxel of the true values, even
in the presence of a blur of 11 pixels. The estimates of the rotation parameters
are within 0.5o, on average, of the true values.

tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 15.0 5.0 0.0 0.0 0.0 10.0

Estd. 15.36 5.23 -0.02 -0.06 0.11 10.03

(a) (b) (c) (d)

Fig. 2. Simulated portal images with noise. (a) AP with std 30.0 (b) Left–lateral with
std 30.0 Estimated segmentation of (c) AP portal image. (d) LL portal image. The
table show the true and the parameters estimated by the algorithm.

Figure 2 (a), (b) shows the simulated portal images with Gaussian noise
of standard deviation = 30.0. The dynamic range of the pixel intensities was
255. Note again the accuracy of the parameters estimated by the algorithm.
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Figure 2 (c), (d) shows the segmentation of the portal images as estimated by
the algorithm.

Performance under varying initializations: Figure 3 (a) and (b) shows the graphs
of error in estimated parameters for varying amounts of rotational and transla-
tional setup variations, in the presence of Gaussian noise of standard deviation
(σ) = 20.0 in the simulated portal images. To obtain these graphs, first, the
3D CT dataset is transformed by a known amount and, AP and LL DRRs are
obtained. Then i.i.d. Gaussian noise of σ = 20.0 is added to the DRRs to ob-
tain the simulated portal images. For the graph labeled θY Z , only the parameter
θY Z , which denotes rotation about the X–axis, is varied to obtain the DRRs. All
other parameters are kept fixed at the true values. The 3D CT is then reset to
its untransformed position and the algorithm is run to estimate T. The error in
the estimated parameter is then plotted. The graphs show that, for this dataset,
the algorithm could estimate the rotation angles up to 50o accurately. For the
translations, the estimates for the three translations were accurate up to 25 or
more voxels. These figures also show that either the algorithm is quite accurate
in estimating the parameters or it breaks down completely, that is, the estimated
parameters are totally different than the true parameters. This shows that the
algorithm gets trapped into a local minimum if the global minimum is very far
from the initial starting position.

Performance under varying noise: Figures 3 (c) and (d) show the performance
of the algorithm under increasing noise. The AP and LL portal images, for
example for the graph labeled θXY , are obtained by first rotating the 3D CT
data by 15o about the Z–axis and then rendering the DRRs both in the AP
and the LL directions. A varying amount of noise is then added to the DRRs
to obtain the simulated portal images. The 3D CT data set is then initialized
to its undeformed position and the algorithm is run to estimate T. The graph
shows the error in estimated BdT for various amounts of noise. Similarly, for
the graphs labeled θY Z , θXZ , tx, ty, tz, the 3D CT data set was transformed by
30o, 25o, 20 voxels, 20 voxels and 15 voxels respectively to obtain the DRRs.

4.2 Performance on Actual Patient Treatment Data

Figure 4 shows the results of running the proposed algorithm on real patient
data. Figures 4 (a) and (b) show histogram equalized AP and LL portal images,
respectively. The DRRs projected through the 3D CT data in its original pose
are shown in the figures 4 (c) and (d). Running the algorithm estimates a new
pose of the 3D CT dataset, which differs from the original pose by θXY = 3.2o,
θY Z = 2.92o, θXZ = 1.93o, tx = 3.53 voxels, ty = 12.5 voxels and tx = 13.54
voxels. The DRR projections in the new pose are shown in the figures 4 (e) and
(f). Segmentations of the AP and LL portal images, estimated by the algorithm,
are shown in the figures 4 (g) and (h), respectively. Due to poor quality of
these digitized portal film images, the segmentation step was initialized manually
in several regions to highlight the background. To assess the accuracy of the
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estimated pose of the 3D CT data set, contours are hand drawn on the portal
images, matching visible features. These contours are then mapped onto the
DRRs, in figures 4 (c), (d), (e), (f) undeformed. Note that the contours are
used only to visually assess the goodness of the estimated pose. The contours
match closely to the features in DRRs obtained at the pose estimated by the
algorithm, although there is some remaining error, perhaps resulting from error
in θXZ (out–of–plane rotation for both views).

5 Discussion and the Future Work

In this work we extended our algorithm [1] to utilize dual portal images to
estimate the transformation parameters, note the performance of the algorithm
utilizing real patient data, present experiments which demonstrate the extent of
parameters algorithm can estimate, demonstrate the robustness of the algorithm
under increasing noise, and present a coordinate descent interpretation of the
algorithm.

Our future research includes algorithm speed–up, validation of the accuracy
and robustness of the algorithm, especially in comparison to the mutual informa-
tion based registration and the ridge based algorithm [11]. Effects of artifacts in
the portal images, like air bubbles, unstable features, like movement of femurs
w.r.t. pelvic bone and portal images with exposures only through the limited
treatment field require further study. The inclusion of edges and whole bound-
ary information will likely lead to more accurate results. Thus, we will extend
our algorithm to incorporate such information into the same framework.
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Fig. 3. (a) Error in estimated rotation angles. (b) Error in estimated translation. (c)
Error in estimated angles with increasing noise. (d) Error in estimated translation with
increasing noise.
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Fig. 4. Recovery of setup variation using actual patient data. (a,b) Portal images,
(c,d) DRR’s of 3D CT in original pose, (e,f) DRR’s in corrected pose, (g,h) implicit
segmentation of portals.


