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Abstract

Information about left ventricular (LV) mechanical performance is of critical importance

in understanding the etiology of ischemic heart disease. Regional measurements derived from

non–invasive imaging to assist in assessing this performance have been in use for decades,

and certain parameters derived from these measurements often are useful clinically, as they

correlate to some extent with gross physiological hypotheses. However, relatively little work

has been done to date to carefully understand the relationship of regional myocardial injury

to the local mechanical performance of the heart as derived from image data acquired non-

invasively for a particular patient in 3 spatial dimensions over time. This paper describes

efforts to take advantage of recent developments in 3D non-invasive imaging and biome-

chanical modeling to design an integrated computational platform capable of assembling a

variety of displacement and velocity data derived from each image frame to deform a vol-

umetric model representation of a portion of the myocardium. A brief description of both

the reasoning behind this strategy is put forth, as well as an overview of the approach and

some initial results are described.

Introduction

For several decades, researchers and practitioners in cardiology and cardiac radiology have

been interested in deriving measures of regional left ventricular function from non-invasive (and

even invasive) images [23, 42]. These measures have primarily come in the form of regional

ejection fraction, regional shape change, and regional wall motion. It is our observation that

in general these measures are trying to extract local descriptors of the pumping efficiency of

each sector of the heart, which relates primarily to the mechanical performance of that portion

of the myocardium. Furthermore, it is noted that the primary parameters in each case that

are recorded from these image-derived measures are each related to radial changes in the heart

wall, i.e. absolute position changes and/or thickness changes.
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As noted in the clinical cardiology literature [36], the relative change in thickness, or thick-

ening, seems to be the most important in terms of a quantitative indicator of the health of a

section of the LV. It is critical to note that this image-derived information is fundamentally

related to concepts from the field of continuum mechanics of deformable solids. This relative

change in thickness is essentially equivalent to the mean value of the radial strain of this de-

formable solid, although if there is shearing the orientation of an initially radial vector will

change. Furthermore, radial strain is only one component of a three-dimensional strain tensor

that can more completely characterize the deformation of this object.

A primary goal of image analysis is often to recover quantitative information from noisy

or otherwise corrupted image data. Often models are employed to help guide this recovery

process, with the goal being to use real data to guide recovery when possible, but use the model

as a smart interpolator in regions where the data are noisy, less reliable, or non-existent. Often

these models are based on very mundane or simple strategies of simply maintaining smoothness

everywhere. Rarely do we have the chance to invoke models that can truly attempt to describe

the actual physical situation. In the recovery of cardiac LV performance, we have that rare

opportunity, and due to the efforts of Hunter, McCulloch [20, 24] and others, there are even

some previous efforts aimed at putting elegant models in touch with real live data.

This paper briefly reviews the use of computational models of the mechanics of the heart

as applied to the problem of guiding the recovery of information about a particular heart from

3D diagnostic images. We are particularly interested in computationally accessible ideas which

are suitable for integrating with the image-derived approaches. Certainly, however, one could

also view these same strategies as a way of extracting data from images that can be used to

help form better models of the LV structure that is being studied. We particularly focus on

the problem of trying to recover information about the deformation of the LV everywhere in a

finite-sized transaxial portion of the myocardium, i.e. both at the bounding surfaces of the LV

as well as transmurally.
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Overview on Image–Derived Measurement of Strain

Alternatives to Imaging. First, to motivate the goal stated in the Introduction, it is

appropriate to note that there has been a variety of work in the cardiac physiology literature

attempting to quantitatively measure transmural myocardial strain. Several noteworthy efforts

in particular have used sonomicrometers ([13] and [11]) and arrays of implanted markers (see,

for example, [16, 26, 42]). While accepted as being accurate, a key point about these techniques

is that only a fairly sparse number of specific sites on the LV can measured, due to the difficulty

in implanting the sonomicrometers and the markers. It would be quite difficult to measure a

large number of sites simultaneously. Also, it is possible that these implanted devices can

alter myocardial perfusion and function, although there is little published evidence of this.

While many of these measurements are performed in animals, we note that some interesting

measurements of strain using markers have been produced even in humans [21]. Finally, we

also note that some researchers have looked at measuring in vivo strain using attached strain

gauges [9] (as noted in [3]), although little has been pursued along these lines. See [43] for a

very nice review of regional strain measurements in intact heart.

Non-invasive, Imaging- Based Strain Measurement. In addition to earlier work on

coronary strain analysis from angiograms [47], work has been performed regarding the mea-

surement of LV point-wise displacement using MR tagging as well as shape-based tracking of

bounding surface displacements in recent years. Also, MR phase contrast techniques have been

used to derive instantaneous velocity measurements. Each of these image data have been used

separately to derive local LV strain measurements. While much of the focus here has been on

the use of Magnetic Resonance Image (MRI) data (and this will be the primary image data uti-

lized in the work described in this paper), it should be noted that via the shape-based tracking

idea, measures can also be estimated from other 3D modalities with decent spatial resolution,

e.g. 3D ultrasound and cine-CT. We note finally that there has been considerable effort within

the medical image analysis and computer vision communities aimed at trying to correspond
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and then map one surface into another, which is an important underlying aspect of many strain

measurement approaches.

3D Deformation Analysis From MR Tagging. In this approach, grid lines at certain positions

can be generated at one point in the cardiac cycle and their deformation tracked over a portion

of the cycle, primarily using gated acquisition techniques. The development of the grid tagging

approach to the measurement of myocardial strain has been vigorously pursued by two groups

in particular, at the University of Pennsylvania [2] and Johns Hopkins University[49], who are

the original developers of the tagging ideas. Much of these groups’ current efforts are focused

on how to create dense fields of measurements in 3D by putting together several orthogonal

tagging grid acquisitions. Their approaches certainly show promise but have the following

current limitations: i.) it’s difficult to track the tags over the complete LV cycle due to decay

of the tags with time, and ii.) it’s still quite difficult to obtain acquisitions and assemble

the detected tags into a robust 3D analysis/display with spatial resolution under 1cm in any

direction. Both of these problems are being aggressively pursued by the two primary groups

mentioned above, as well at a few other institutions, including somewhat within our own group

([1]). Regarding recent efforts pertaining to i.), [48] and [15] have created segmentation models

to aid in the tag tracking process. Tag decay remains a fundamental issue, however, that is often

solved by performing a second acquisition (a re-tagging) somewhere later in the cardiac cycle.

Problem ii.) above is perhaps the most challenging one for MR tagging researchers. In order

to obtain data pertaining to deformation in 3D, tag data must be acquired in two orthogonal

views- typically short axis and long axis [3]. The same tissue elements are not tagged in each

of the two views, and thus the deformation in each view must be seen as partial data that

contributes to an overall scheme aimed at estimating the complete 3D deformation. This issue,

plus the fact that the grid spacing is often quite far apart (on the order of 7mm spacing and

2-5mm thick tags for the SPAMM tagging done by Axel, et al. [46] and even further apart at the

epicardium due to the radial tagging done by the Hopkins group [49]), is evidence that in most

tagging schemes there is actually a rather sparse set of displacement estimates available based
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on actual data, and some form of interpolation must be used to create a dense displacement

field from which strain (or in fact any 3D map of motion and/or function) can be computed.

A variety of approaches have been designed to attack this interpolation/estimation problem,

with each approach making certain assumptions. Several of the most interesting ideas are the

use of finite element model [46], the use of locally deformable superquadrics [31], and the use

of stochastic models and statistical estimation techniques [8].

In [46], the authors fit a finite element grid to the corresponded tag grid displacements

in order to interpolate between the sparse actual data points. The grid itself has a fairly

small number of nodes however, and results in a fairly gross interpolation, although the errors

computed in their simulations are reasonable. The goal in this work has been to compute the

mid -ventricular strain present in the LV, and the paper includes a smooth surface visualization

of the interpolated strains. This effort is related to our proposed approach here, although

the key difference is in the motivation and the use of the finite element model. In [46], a

finite element model is constructed as a geometrical representation of the left ventricle, and is

used for fitting the motion field to sparse, 1-D data constraints. In our approach, the finite

element model is used as a numerical method of solving dynamic system equations derived from

continuum mechanics models and image-based constraints.

More recently, the UPenn group has been moving toward the use of locally deformable su-

perquadrics models based on the work of Metaxas [31] as the parameterized model that can be

used as the unifying approach to assemble the MR tag (SPAMM) data. This provides an inter-

esting and possibly robust basis upon which to gather this information, and the investigators

note that global motion parameters of interest can be extracted [31]. This work has typically

proceeded using MR tag data in the mid-wall, although the authors imply that they are moving

toward a 3D model using boundary constraints to try to create a fully transmural strain map.

However, due to the x-y grid nature of the SPAMM tags, the only truly reliable, corresponded

displacement information will tend to come from the mid-wall tag sites. This means that in any
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one spatial slice, point- tracked LV function measures such as strain are quite accurate in the

mid- LV wall region, but tend to be noisy and inaccurate near the endocardial and epicardial

boundaries, as the grids cross over into the LV blood pool or the pericardial space.

At Johns Hopkins University, several efforts aimed at assembling 3D maps of myocardial

deformation are ongoing, using the radial MR tagging scheme developed there. In [30], the

authors utilize an MR acquisition sequence that obtains 3D tag information one component at

a time, again generating a sparse set of corresponded tag points. They propose fitting a high-

order polynomial to the displacement field in order to interpolate between the sparse data

points. Alternatively, the authors in [8] propose an estimation theory- based idea that uses a

stochastic vector field to assist in the interpolation. The authors argue that their approach uses

fairly weak assumptions on the specifics of heart wall motion as compared to some of the other

techniques mentioned above, and the Fisher estimate that is used in their approach can help

them relate estimation accuracy to the number of tag lines needed. On the down side, their

approach actually increases the errors at the boundaries of the myocardium, according to their

phantom studies.

While some of the approaches described above are related to our continuum model–based

approach described below, these ideas are geared toward dealing exclusively with MR tagging

data, whereas our goals are to develop techniques useful with data from one of several different

modalities. Also, while there is no doubt that MR tagging potentially provides unique and

interesting data regarding LV myocardial movement, the user should be cautioned that there

are quite a few processing steps required to assemble the data into meaningful measures of

3D deformation even after the acquisition. Just having the MR tag data available does not in

itself mean that physiologically/clinically accurate analysis is forthcoming. The proper choice

of image analysis and processing algorithms for assembling these data remains a significant

open question.

Shape-Based Estimates of LV Endocardial/Epicardial Surface Displacements. The bounding sur-



Progress in Biophysics and Molecular Biology, 69(2-3):333–351, 1998. James S. Duncan 8

faces of the LV can be isolated in the image data using automated 3D segmentation techniques

[39]. Once these operations are completed, one can compute the principal curvatures of local

patches on each surface and use these as feature–based tokens for tracking surface motion in

3D space [6, 22]. An earlier form of the work performed by our group was described in [10],

but more current descriptions are documented in [25, 38].

In our efforts, natural neighbor relationships between surface points are used to allow a

multi-scale local surface representation for curvature calculation, depending on the curvedness

of LV features expected in that region. Under the assumption that the surface patch surrounding

each sample point x deforms only slightly and locally within a small time interval, a physically-

plausible search region W is defined on the second surface at time ti+1 for each sampled point

on the first surface at time ti. Bending energy measures between the surface patch surrounding

point x and surface patches surrounding candidate points are computed, and the point x̄ that

has the minimum corresponding bending energy is chosen as the point corresponding to point

x. By matching the curvatures of surface patches that surround each sample point at time t

with similarly–sized patches surrounding candidate points at time t + 1, a shape–based initial

match result and matching confidence measure (the latter related to strength and uniqueness

of the match) are obtained.

These initially calculated 3D displacement vectors can be noisy due to inherent noises from

image data, segmentation, and curvature estimation, an intelligent smoothing process based on

solving confidence- weighted- regularization functional is utilized to help limit these problems.

The regularization functional incorporates the shape match and confidence measure information

just mentioned and is described in detail in [38]. Solving this functional for each pair of surfaces,

complete trajectories are then formed by concatenating these vectors over many frames.

Phase Contrast MRI- Based Analysis of Cardiac Deformation. Several investigators have em-

ployed changes in MR phase due to motion of tissue within a fixed voxel or volume of interest

to assist in estimating instantaneous, localized velocities, and ultimately cardiac motion and
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deformation. While the basic ideas were first suggested by van Dijk [41] and Nayler[29], it

was Pelc and his team [33, 34, 32] that first bridged the technique to conventional cine MR

imaging and permitted the tracking of myocardial motion throughout the cardiac cycle. This

technique basically relies on the fact that a uniform motion of tissue in the presence of a mag-

netic field gradient produces a change in the NMR signal phase that is proportional to velocity.

These velocities can then be integrated to estimate the pointwise displacement of a region of

the myocardium. In principle, these instantaneous Eulerian velocities can be derived from each

pixel in an image acquisition. However, clusters of pixels within regions-of- interest (ROI’s)

are typically analyzed when predicting pointwise motion, primarily due to signal-to-noise is-

sues. Several investigators have studied the resolution and accuracy of these techniques for

tracking myocardial motion and strain including the Stanford team (see [17]), Wedeen [44],

Constable [7], and Meyer[27]. It is worth noting that, as with MR tagging, accurately tracking

myocardial motion in 3D requires additional image processing, and little has been reported in

the literature about this problem. Assembling the dense field phase velocity information into a

complete and accurate 3D myocardial deformation map is a limiting problem to date for this

technology. Furthermore, currently phase contrast velocity estimates near the endocardial and

epicardial boundaries are extremely noisy due to the fact that the required size of an ROI for

signal-to-noise purposes is so big that it includes information from outside the myocardial wall.

Thus, the most accurate LV function information is obtained from the middle of the myocardial

wall, and is least accurate near the endocardial and epicardial wall boundaries. Also, because

of the artifacts created by the high speed blood flow within LV, there exists a horizontal band

of noise across of image which covers the ventricle. Velocity data with that band is usually

noisy and unreliable. Often a perpendicular imaging sequence is performed to partially solve

this problem.

Computer Vision- Based Ideas Related to Non-rigid Motion and Deformation Analysis. Image-

based quantifying the deformation of the LV could be seen as a two step process: first establish-

ing correspondence between certain points on the LV at time t and time t+1 and second, using
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these correspondences as a guide, solve for a complete mapping of the LV between any two time

frames. This problem could be posed for the entire myocardium or just portions of it, such as

the endocardial surface alone. There has been considerable effort in general on these two topics,

although rarely have they been addressed together. One form of establishing correspondence

is using the MR tags or integrating MR phase velocities as described above. As noted above,

tracking these usually visible MR tags still requires some effort (e.g. [15]), becomes increasingly

difficult as the tags decay, and the approaches often rely on computer vision strategies such as

deformable contours (e.g. [1]). The following of MR phase velocity data in a reliable manner

has proved to be a most challenging task at noted in [27]. As described above, another approach

to establishing correspondence is to track shape- related features on the LV over time [22, 6, 38].

The mapping or embedding between two 3D objects or surfaces is a problem that has received

much attention in the medical image analysis and computer vision communities. Efforts aimed

at solving for a nonlinear mapping between two objects are most related to the cardiac tracking

problem and include the work of [35], [5] and [40]. In [35], as well as interesting complementary

work in [31] and [28], physically-based finite element models were used to provide a framework

for the mappings. In all of these approaches, estimates of correspondence between individual

points on objects were either specifically assumed to be known to aid in solving the problem,

relied on some global distance measure, or was not considered at all in the solution. We have

aggressively pursued the notion of trying to solve both the correspondence problem and the

mapping problem from 3D frame to 3D frame as will be described below. We also note the

efforts of Ayache, et al. [6] who discuss integrating shape matching and surface mapping. We

point out that no work has been reported to date that has merged the computer vision- like

notions of shape- matching and nonlinear registration with the more image acquisition- physics-

based concepts such as MR phase- velocity within a unified framework as will now be described.

Another fundamental issue in the analysis of clinical images of ventricular wall motion is

the principle of frame indifference. In other words, it is often preferred in regional function

analysis to measure object-centered deformation parameters such as strains, as opposed to
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frame-centered parameters such as displacements or velocities. One main advantage is that

whereas strain is independent of translation and rotation, velocity and displacement are not.

Hence, our main goal in our model-based, integrated framework is to derived local deformation

from image sequences.

A Unified Framework for Estimating LV Motion and Deforma-

tion Based on Continuum Mechanics

We now form a framework from which we can compute myocardial deformation by integrat-

ing image-derived displacement and velocity data considered separately by others and described

above. While we choose to explain our approach using shape-based boundary displacement data

and mid-wall velocity data, it is of interest to note that any of the image-derived data described

in the previous section can be employed here. Also note that in each modality the images from

which we derive the two sources of data are perfectly registered with each other. For instance in

the main dataset we work with, they are components of the same complex MR signals. The LV

model represents an imaged myocardial 3D section as a homogeneous elastic solid continuum

bounded by the endocardial and epicardial surfaces found using the above-mentioned segmen-

tation strategies. Figure 1 illustrates the myocardial volume we are using, as well as the regions

where shape displacement and mid-wall velocity data will be incorporated.

The heart has some rather complex biomechanical properties in general and others have

developed sophisticated models to capture this. In our work aimed at beginning to bridge these

models into the image analysis problem, we set out to use simple, but plausible, model forms

that will be computationally feasible. Thus for our initial 3D efforts here, we assume that the

myocardium is a linear material, with its stress-strain relationship (the constitutive equation of

the material) obeying Hooke’s law: [σ] = [D] [ε], where [D] is a 6x6 matrix that is a function

of the Young’s modulus, a material specific constant which has been established experimentally

for the canine myocardium in the biomechanics literature[45] to be around 75,000 Pascal, and

Poisson’s ratio, another material related constant set to approximately 0.5 for incompressible
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material. We do want to point out that we are currently investigating in detail the incorporation

of more sophisticated constitutive models that have already been explored by the biomechanics

community for non-image analysis- based work, such as those of Humphrey [19] and Guccione

[14], any of which can be inserted into this framework. After we establish the strain–stress

relationship, we incorporate it into the numerical solution of the integrated motion recovery

using a finite element framework.

The finite element method is a numerical technique for analyzing the dynamic behavior of

an object. The first step in this method is to divide the continuous structure of the object into

finite pieces, or elements, and to construct a finite element mesh to represent the continuous

object. We create a fully three- dimensional finite element mesh that tessellates the complete

thickness of the left ventricular myocardium at any one 3D image frame. It has nodes in the

mid-wall region, as well as nodes on the endocardial and epicardial surfaces. The 3D grid

that will constitute the LV model is formed as follows: first the epicardial and endocardial

surfaces are found by segmentation technique [39]. Next, a bounded and constrained Delaunay

triangulation technique is used to form a fairly dense tessellation. A solid finite element LV

model which consists of many tetrahedra is thus generated for any one time frame, with linear

basis functions [4] constructed for each element. An isoparametric formulation is used, so

that the interpolation of the element coordinates and element displacements use the same basis

functions, and it is all defined in a natural coordinate system. Finally, regarding the formulation

of this initial grid, we note that to reduce the spatial extent of the acquisition as well as both

acquisition and computation time, we have limited the construction of the 3D FEM mesh to a

section of the myocardium defined along the LV long axis that contains image slices from the

middle of the LV down to just above the apex.

We derive the governing equations of the dynamics of the three-dimensional myocardium

using the minimum potential energy principle, based on the isotropic linear elastic model. We
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assemble the equations together, and write them in matrix form as:

MÜ + CU̇ + KU = R (1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, R is force load,

and U is the nodal displacement vector field. The mass matrix M is a function of the element

basis function and the assumed material density (see [45]), which are both known. The stiffness

matrix K is a function of element basis function and material strain-stress relationship matrix

defined above, so it is also known. Meanwhile, the damping matrix C represents viscous damp-

ing, and we use a common spectral damping scheme, the Rayleigh damping, to approximate C

as a linear combination of the mass and stiffness matrices. Currently, we assume the system

to be a low damping system with a low frequency content, and as a result approximate C to

be proportional only to the mass and to be about one percent of the value of the correspond-

ing element of M. Further, we want to point out that we intend to use this model to enforce

certain real physical constraints that we obtain through measurements of cardiac volumes and

pressures.

To this point we have constructed a transmural 3D finite element representation of the

LV which has nodes in the mid-wall regions and on the bounding endocardial and epicardial

surfaces, and in addition have also established the general governing equations of the entire

biomechanical system model. The framework is formulated such that the mid-wall velocity and

the boundary displacements are used as data-based constraints. The unknown field variables

are the displacement vectors at the nodal points, although the derivatives of the displacements

(velocity and acceleration vectors at the nodal points) can also be derived from the system

equations.

We first set up the initial conditions for the complete system of differential equations for

any starting time instant (say t). We assume that the initial displacement of all the points

U(t) would always be zero as the object has not moved yet. Since we have been encouraged

that the incorporation of a model of the generally cyclical motion of the LV into our shape-
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based tracking procedure has improved our (2D) algorithm’s estimates of point-wise motion[25],

we intend to constrain the motion of each and every point in the final 3D FEM grid to being

cyclical in nature., which is often neglected by other approaches. Next, the MR phase contrast

data at this starting instant provides the initial velocity information U̇mid−wall(t) of the mid–

wall region (the mid–wall region is defined as consisting of points that are at least one pixel

away from the segmented endocardial and epicardial surfaces). For the remaining points, we

assume U̇other(t) is zero. However, if we take into account the periodic nature of the heart

motion, we may use the estimated velocity at these points from the solution of equations at

the previous time instant as the initial velocity at this time. The initial acceleration of all the

points Üall(t) is set to zero. The initial equivalent total load Ṙ(t) can thus be computed from

the governing equations: R(t) = MÜ(t) + CU̇(t) where U̇(t) and Ü(t) are already known.

We also want enforce the displacements of the sampled boundary points Uboundary(t+dt) when

the myocardium deforms into the next time instant t+dt. One way to include these prescribed

nodal displacements while retaining the original structure of system equations is to modify

certain diagonal terms of the stiffness matrix [K] and the corresponding terms of the load

vector [F ]. The approach we take to incorporate this constraint is as follows: assume that the

ith node has enforced displacement b, then we multiply the iith element of the stiffness matrix

K by N , and the ith element of the load vector R is replaced by N ∗ b where N is very large.

Following this manipulation, the modified governing equations must now yield Ui(t + dt) = b.

Physically, this procedure can be interpreted as adding a spring of vary large stiffness, and

specifying a load which produces the required displacement b for variable Ui. This procedure is

repeated until all prescribed displacement variables have been treated. After these modifications

have been made, we proceed with the simultaneous solution to the complete set of differential

equations. In very strict terms, this modifying procedure will not give the exact values for

the prescribed displacements at the corresponding nodal points because we have only modified

the [K] and [F ] matrices but not the [M ] and [C] matrices. However, if the chosen large

multiplying factors are indeed very large compared to the values of the matrix terms, the errors
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will be negligible. In addition, this inexactness provides a way of incorporation of confidence

measures into the displacement boundary conditions. Since we are using the displacement

between shape- matched points as the prescribed displacements in the unified framework, we

treat these displacements differently based on their confidence measures. From this point of

view, the large multiplying factor is weighted by the confidence measure for each prescribed

displacement. The displacements with high confidence measures have really large multiplying

factors to enforce the system solution to give the exact prescribed values at these nodal points.

The displacements with low confidence measures often have relatively small multiplying factors

to have inexact solution values, which are the compromise of the prescribed conditions and the

smoothness constraint which is implicitly enforced by the constitutive laws of the materials.

Through the construction of the initial conditions, and the enforcement of the shape- based

boundary landmark displacements, the solution to the governing equations yields a predicted

set of displacements, velocities and accelerations at time t + dt that are the results of the

integration of two sources of image–derived information under the guidance of the physical

model. The step–by–step solution of the system is performed using the Newmark integration

method, which is unconditionally stable [4] (the time step dt is governed only by considerations

of accuracy which for low frequency systems can be fairly large to obtain accurate results).

This model thus represents a continuous description of the entire left ventricle at any one time

frame and it’s predicted deformation to a second time frame given a set of image-data- based

displacements and velocities.

We note that the finite element framework acts as a predictor for our system. Since we

already have geometrical information at t + dt in terms of the segmented endocardial and

epicardial surfaces, as well as the velocity information of mid-wall points at t + dt from phase

contrast images, we can refine the mapping estimate between frames t and t+dt by seeing how

close the displacement/velocity driven, model–based prediction comes to the actual segmented

surfaces and actual instantaneous velocities. The differences between the actual data and the
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prediction are then used as a recursive feedback term to improve the estimate of the deformation

mapping between frames. In [37], we reported our progress in using differences in coarse scale

2D boundary difference as the feedback force. Currently, we are work on utilizing both 3D

surface shape differences and velocity differences between the actual data at frame t + dt and

the prediction for that frame in the correction scheme. Initially, we create two metrics that

minimize these differences by adjusting the displacements (thus, the velocities will first be

integrated) of the nodes in the predicted mesh, each within a spatially limited search region.

Surface shape is compared at a coarse scale, and performed where there are key features for

tracking occur. Integrated mid-wall phase contrast velocities are compared at regularly sampled

intervals and broader regions than in the prediction computation. The intent is that in the end

a fairly sparse set of mesh nodes will be adjusted, with the idea that this will be sufficient

to provide some error correction without a great computational burden. Furthermore, we are

moving towards using Kalman statistical filtering framework that we used successfully in [27]

into the 3D prediction models.

Deriving Quantitative Measurements. Previously, we have looked at endocardial motion and

endocardial- epicardial thickening as quantitative measures of LV function. It is now our sense

that all of these measures are simply portions of a more complete description of the mechanical

deformation of the LV, namely point–tracked, myocardium–referenced measures of LV strain,

known as the Lagrangian strain. A complete 3D characterization of strain better answers the

basic question of how the mechanical function of the LV varies regionally, and how it’s altered

under a variety of normal and abnormal (especially acute infarct) conditions. Assuming the

Hookean model described above that we use in our effort, the Lagrangian strain tensor that

can be derived for each and every portion of the FE mesh contains 6 components [12]. More

cardiac specific strains, i.e. longitudinal, circumferential, and radial, as well as strains along

fiber directions can also be derived.

Experimental Results. The integrated motion and deformation analysis framework proposed
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has been implemented. Experiments have been conducted with cardiac MR phase contrast

images acquired from fasting anesthetized, open chest, adult mongrel dogs. The canine heart

was exposed through a thoracotomy. The proximal portion of the left anterior descending

(LAD) coronary artery was isolated for placement of a snare occluder.

The results of the shape-based surface motion tracking have been shown in figure 2(a-g) on

a MRI dataset of canine study. Each of the sixteen image volumes has an in-plane resolution of

1.64mm/pixel and inter-plane resolution of 5mm/pixel. Figure 2(a-d) illustrates the bending

energies (shape features) that were computed at the end- diastolic (ED) endocardial surfaces

and three successive time frames after ED for typical MRI baseline studies. A few of the

trajectories that were computed for these surfaces are noted in figure 2(e-f). Trajectories of

isolated surface points are compared to the trajectories of implanted imaging opaque makers

(four endocardial, four epicardial), and the average positional errors are within image resolution

for sixteen datasets [38]. We also note that we were able to track related sets of endocardial/

epicardial points (useful for strain computation), as shown in figure 2g.

Figure 3 shows an example of phase contrast images of a canine study. In this dataset, three

contiguous short axis slices were collected using the cine phase contrast gradient echo sequence

for sixteen time frames. The imaging parameters were: flip angle = 30◦, TE = 34msec,

TR = 34msec, FOV = 28cm, 5mm skip 0, matrix 256x128, 4 nex, venc = 15cm/sec. The

in-plane resolution of the dataset is 1.09mm/pixel, and the inter-plane resolution is 5mm. The

intensity values of the velocity images range from −150mm/sec to 150mm/sec, with the signs

of the values indicating the directions of the velocities. The dog’s LAD coronary artery was

occluded to cause dyskinetic motion at the inter-ventricular septum (the lower left part of the

LV). It should also be noted that because of the time (ten to fifteen minutes) to acquire each set

of directional phase velocity images (three slices are acquired at each time), the image dataset

only covers a small part of the left ventricle. However, this does not alter the validity of using

this dataset to test the capability of the integrated framework except that there is 3D motion
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out of the field of view vertically.

Since it is more desirable to have roughly equal resolutions in all three dimensions to track

surface motion, interpolation is needed between the data contour slices. A chamfer distance

based contour interpolation is used to insert three interpolated contours to every two consecutive

data contours [18]. The shape-based surface motion tracking process is then applied to the

sixteen interpolated surface sequences, once for the endocardium and once for the epicardium.

This way, the surface displacements have 1.09mm in-plane resolution and 1.25mm inter-plane

resolution. A subset of the surface point displacements (10 %) are used as the boundary

displacement constraints in the integrated volumetric framework.

The mid-wall velocities of the phase contrast images are used as the initial velocity con-

straints in the integrated volumetric framework. For computational reasons, the myocardial

surfaces are re-sampled to the lower resolutions of 4.36mm/pixel in-plane and 5mm/pixel

inter-plane after the surface motion tracking has been performed. This way, even though the

final re-sampled dataset has only 4.36mm in-plane and 5mm inter-plane resolutions to form

larger tetrahedral elements to save computational expense, the boundary displacements still

have 1.09mm in-plane and 1.25mm inter-plane resolutions. It should be noted that higher

resolution gives smoother and more accurate geometrical representation of the LV, although it

will require much more computer power. The myocardial sample points which are bounded by

the endocardial and epicardial boundaries are Delaunay tessellated to form the finite element

mesh of the myocardium. Figure 4 shows the low resolution tetrahedral finite element mesh of

the mid-ventricle covered by the three-slice image set. In this case, there are 2147 tetrahedra

in the mesh.

Following the procedures established in the previous sections, the governing equations of

the myocardium are derived from the minimum potential energy principle. A linear isotropic

elastic myocardial model is used, and the material-related constants that have been established

experimentally for the myocardium in the biomechanics literature [45] are used. The velocity
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values at the mid-wall points are used as the initial velocity conditions, and the surface dis-

placements are used as the displacement boundary conditions. Since the temporal resolution

of the dataset is 0.03125sec/frame, we choose the integration time step ∆t = 0.003125sec to

have 10 integrated steps. Using these constraints and parameters, the motion and deformation

parameters of the myocardium at all sixteen time frames are calculated using the Newmark

integration process. The required computer memory for the system to handle this data set is

around 60MB. The computation time for each pair of images is about half an hour on a Silicon

Graphics HighImpact workstation with 195 MHZ R10000 processor and 128MB memory.

Figure 5 presents the two-dimensional projection of the three-dimensional dense field dis-

placement vector map of the middle slice from ED to the next time frame, found from the

integrated framework. The use of 2D projections instead of a true 3D vector map is only

because of the ease of visualization. Here, a vector arrow begins from its position at present

time (ED), and ends at its position in the next time frame. The non-homogeneous nature of

the myocardial motion is very evident from this displacement map: different regions of the

myocardium display very different motion characteristics in direction and magnitude.

We have also calculated the strain tensors for each tetrahedral element of the finite element

grid to depict the non-rigid deformation. Figure 6 shows the maximum principal strain map of

the myocardium, as well as the two-dimensional projections of the associated three-dimensional

directions at the middle slice. The strains shown are mapped back to the myocardial grid at its

original state (ED). In the figure, the strain values are represented by different shades of red,

where darker red represents higher strain. Also, we want to point out the apparent non-uniform

strains transmurally across the heart wall, which could be extremely important in validating

the clinical observations that the ischemic disease progresses transmurally overtime. Of course,

any significant claim can only be made after more carefully designed validation on a range of

image datasets. Figure 6d shows a cutaway view of the maximal principal strain map at ES

with respect to ED. Figure 7 shows the temporal sequence of the first principal strain maps
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from ED to ES. Note the different strain values between different regions. We find that the

anterior septal region has the highest average maximum principal strain, which coincides with

the injury region observed from post mortem TTC staining. Also, we observe that the average

value of the first principal strain reaches a maximum strain of 32% at ES, the average second

strain is very small and stable, and the third principal strain reaches −18% at ES, all values

are in rough agreement with the strain ranges estimated from MR tagging based approaches as

well as those from biomechanics literature.

In addition, we are currently looking into the possibility of calculating strains in the myofiber

directions which have been documented [20]. This way, it can not only more accurately and

meaningfully compute and interpret the strain information, it can also facilitate the plan of

measuring active myocardial tension development.

Conclusions

Recovering a dense field of LV strain values from image data remains a challenging but

important problem. A variety of work is going on in the medical imaging/image analysis

community as was discussed in the Overview section. We have discussed in detail in this

paper one approach that uses integrated framework for the analysis of left ventricular motion

and deformation. This unified approach is based upon the use of image analysis strategies and

mechanical modeling of the myocardium, and is embedded in a finite element framework for the

integration of complementary image sources. Experiments have been performed on canine MR

phase contrast images. Motion and deformation parameters are estimated from the integration

of boundary displacement information and mid-wall phase velocity information.

Ongoing and future work includes adopting more sophisticated continuum biomechanical

models of the myocardium based on the theory of finite deformation. Temporal periodic char-

acteristics of the heart motion as well as 3D feedback mechanism will also be incorporated into

the current framework. In addition, while we have been focusing on the use of biomechani-
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cal models to aid heart motion and deformation recovery from images, we also begin to look

into the potential of deriving fundamental properties of the myocardium, such as strain energy

and material characteristics, from image- based framework. While our current approach may

provide useful clinical or diagnostic tools, image- derived material properties will contribute to

a more basic understanding of the myocardial biophysics and physiology. Towards this goal,

we believe that frameworks with stochastic dynamic characteristics, for both image data and

the myocardial models, are needed in order to achieve optimal estimate of state for particular

a priori physical models and a posteriori image data. For problems involved time-dependent

information such as motion, stochastic dynamics also provides ways of incorporate temporal

constraints into the framework.



Progress in Biophysics and Molecular Biology, 69(2-3):333–351, 1998. James S. Duncan 22

References

[1] A. Amini, P. Shi, T. Constable, K. Johnson, J. Duncan, and J. Gore. Energy- minimizing

deformable grids for tracking tagged MR cardiac images. In Computers in Cardiology,

Durham, N.C., Oct 1992.

[2] L. Axel and L. Dougherty. MR imaging of motion with spatial modulation of magnetization.

Radiology, 171:841–845, 1989.

[3] H. Azhari and et. al. Noninvasive quantification of principal strains in normal canine hearts

using tagged MRI images in 3d. Am. J. Physiol., 264:H205–H216, 1993.

[4] K. Bathe and E. Wilson. Numerical Methods in Finite Element Analysis. Prentice Hall,

1976.

[5] F. Bookstein. A geometric foundation for the study of left ventricular motion: Some tensor

considerations. In A. Buda and E. Delp, editors, Digital Cardiac Imaging, pages 65–83,

1985.

[6] I. Cohen, N. Ayache, and P. Sulger. Tracking points on deformable objects using curvature

information. In Lecture Notes in Computer Science- ECCV92, pages 458–466. Springer

Verlag, 1992.

[7] T. Constable, K. Rath, A. Sinusas, and J. Gore. Development and evaluation of tracking

algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn. Reson.

Med., 32:33–42, 1994.

[8] T. Denney and J. L. Prince. 3d displacement field reconstruction from planar tagged

cardiac MR images. In Workshop on Biomedical Image Analysis, pages 51–60, Seattle,

Washington, 1994.

[9] J. M. Dieudonne. Gradients de directions et la deformations principales dans la paroi

ventriculaire gauch normale. J. Physiol. Paris, 61:305–330, 1969.



Progress in Biophysics and Molecular Biology, 69(2-3):333–351, 1998. James S. Duncan 23

[10] J. S. Duncan, P. Shi, and et al. Towards reliable, noninvasive measurement of myocardial

function from 4d images. In E. Hoffman and R. Acharya, editors, Medical Imaging 1994:

Physiology and Function form Multidimensional Images, pages 149–161, Newport Beach,

Feb 1994. SPIE.

[11] T. Freeman, J. Cherry, and G. Klassen. Transmural myocardial deformation in the canine

left ventricular wall. Am J. Physiology, 235:H5230–H530, 1978.

[12] Y.C. Fung. A First Course in Continuum Mechanics. Prentice- Hall, Inc., Englewood

Cliffs, N.J., 1969.

[13] K. Gallagher, G. Oksada, M. Miller, W. Kemper, and J. Ross. Nonuniformity of inner and

outer systolic wall thickening in conscious dogs. Am J. Physiology, 249:H241–H248, 1985.

[14] J. M. Guccione, A. D. McCulloch, and L. K. Waldman. Passive material properties of intact

ventricular myocardium determined from a cylindrical model. Journal of Biomechanical

Engineering, 113:42–55, 1991.

[15] M. Guttman, J. Prince, and E. McVeigh. Tag and contour detection in tagged MR images

of the left ventricle. IEEE Trans Med Imaging, 13(1):74–88, 1994.

[16] A. R. Hashima, A. A. Young, A. D. McCulloch, and L. K. Waldman. Non-homogeneous

analysis of epicardial strain distributions during acute myocardial ischemia in the dog.

Journal of Biomechanics, 26(1):19–35, 1993.

[17] R. Herfkens, N. Pelc, L. Pelc, and J. Sayre. Right ventricular strain measured by phase

contrast MRI. In Proceedings of the 10th Annual SMRM, page 163, San Francisco, 1991.

[18] G. T. Herman, J. Zheng, and C. A. Bucholtz. Shape-based interpolation. IEEE Computer

Graphics and Applications, pages 69–79, 1992.

[19] J. D. Humphrey and F. C. P. Yin. Biomechanical experiments on excised myocardium:

theoretical considerations. Journal of Biomechanics, 22:377–383, 1990.



Progress in Biophysics and Molecular Biology, 69(2-3):333–351, 1998. James S. Duncan 24

[20] P. Hunter, A. McCulloch, P. Nielsen, and B. Smaill. A finite element model of passive

ventricular mechanics. In R. Spilker and B. Simon, editors, Computational Methods in

Bioengineering, pages 387–397. ASME, 1988.

[21] N. Ingels, G. Daughters, E. Stinson, and E. Alderman. Measurement of midwall myocardial

dynamics in intact man by radiography of surgically implanted markers. Circulation,

52:859–867, November 1975.

[22] C. Kambhamettu and D. Goldgof. Curvature- based approach to point correspondence

recovery in conformal nonrigid motion. CVGIP: Image Understanding, 60(1):26–43, July

1994.

[23] D. King, A. Gopal, A. Keller, and et al. Three- dimensional echocardiography: Advances

for measurement of volume and mass. Hypertension, 23(suppl. I):I172–I179, 1994.

[24] A. McCulloch and J. Omens. Non-homogeneous analysis of three- dimensional transmural

finite deformation in canine ventricular myocardium. Journal of Biomechanics, 24(7):539–

548, 1991.

[25] J. C. McEachen and J. S. Duncan. Shape-based tracking of left ventricular wall motion.

IEEE Trans. on Med. Imag., 16:270–283, 1997.

[26] G. D. Meier, M. Ziskin, W. P. Santamore, and A. Bove. Kinematics of the beating heart.

IEEE Trans Biomed Eng, 27:319–329, 1980.

[27] F. Meyer, T. Constable, A. Sinusas, and J. Duncan. Tracking myocardial deformation

using spatially- constrained velocities. IEEE Trans. on Med. Imag., 15:453–465, 1996.

[28] C. Nastar and N. Ayache. Classification of nonrigid motion in 3d images using physics-

based vibration analysis. In Workshop on Biomedical Image Analysis, pages 61–69, Seattle,

Washington, 1994.

[29] G. Nayler, N.Firmin, and D. Longmore. Blood flow imaging by cine magnetic resonance.

J. Comp. Assist. Tomog., 10:715–722, 1986.



Progress in Biophysics and Molecular Biology, 69(2-3):333–351, 1998. James S. Duncan 25

[30] W. Odell, C. Moore, and E. McVeigh. Displacement field fitting approach to calculate 3d

deformations from parallel tagged grids. J. Mag. Res. Imag., 3:P208, 1993.

[31] J. Park, D. Metaxas, and A. Young. Deformable models with parameter functions: Appli-

cation to heart wall modeling. In Computer Vision and Pattern Recognition (CVPR94),

pages 437–442, Seattle, Washington, 1994.

[32] N. Pelc, R. Herfkens, A. Shimakawa, and D. Enzmann. Phase contrast cine magnetic

resonance imaging. Magn. Res. Quart., 7(4):229–254, 1991.

[33] N. J. Pelc. Myocardial motion analysis with phase contrast cine MRI. In Proceedings of

the 10th Annual SMRM, page 17, San Francisco, 1991.

[34] N. J. Pelc, R. Herfkens, and L. Pelc. 3d analysis of myocardial motion and deformation

with phase contrast cine MRI. In Proceedings of the 11th Annual SMRM, page 18, Berlin,

1992.

[35] S. Pentland and B. Horowitz. Recovery of nonrigid motion and structure. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 13(7):730–742, July 1991.

[36] F. Sheehan, D. Stewart, H. Dodge, S. Mitten, E. Bolson, and G. Brown. Variability in the

measurement of regional left ventricular wall motion. Circulation, 68(3):550–559, 1983.

[37] P. Shi, G. Robinson, R. T. Constable, A. Sinusas, and J. Duncan. A model-based integrated

approach to track myocardial deformation using displacement and velocity constraints. In

Fifth International Conference on Computer Vision, pages 687–692, 1995.

[38] P. Shi, A. J. Sinusas, R. T. Constable, E. Ritman, and J. S. Duncan. Point-tracked quan-

titative analysis of left ventricular motion from 3d image sequences. IEEE Transactions

on Medical Imaging, accepted.

[39] L. H. Staib and J. S. Duncan. Model-based deformable surface finding for medical images.

IEEE Transactions on Medical Imaging, 15(5):720–731, 1996.



Progress in Biophysics and Molecular Biology, 69(2-3):333–351, 1998. James S. Duncan 26

[40] R. Szeliski and S. Lavallee. Matching 3d anatomical surfaces with non- rigid deformations

using octree splines. In Workshop on Biomedical Image Analysis, pages 144–153, Seattle,

Washington, 1994.

[41] P. van Dijk. Direct cardiac NMR imaging of heart wall and blood flow velocity. J. Comp.

Assist. Tomog., 8:429–436, 1984.

[42] L. Waldman, Y. Fung, and J. Covell. Transmural myocardial deformation in the canine

left ventricle. Circ Res, 57:152–163, 1985.

[43] L. K. Waldman. Multidimensional measurement of regional strains in the intact heart. In

L. Glass, P. Hunter, and A. McCulloch, editors, Theory of Heart. Springer-Verlag, 1991.

[44] V. Wedeen. Magnetic resonance imaging of myocardial kinematics: Technique to detect,

localize and quantify the strain rates of active human myocardium. Magn. Reson. Med.,

27:52–67, 1992.

[45] H. Yamada. Strength of Biological Material. Williams and Wilkins Co., 1970.

[46] A. A. Young and L. Axel. Three- dimensional motion and deformation of the heart wall:

Estimation with spatial modulation of magnetization- a model- based approach. Radiology,

185:241–247, 1992.

[47] A. A. Young, P. J. Hunter, and B. H. Smaill. Epicardial surface estimation from coronary

cineangiograms. Computer Vision, Grpahics, and Image Processing, 47:111–127, 1989.

[48] A. A. Young, D. Kraitchman, and L. Axel. Deformable models for tagged MR images: Re-

construction of two- and three- dimensional heart wall motion. In Workshop on Biomedical

Image Analysis, pages 317–323, Seattle, Washington, 1994.

[49] E. Zerhouni and et. al. Tagging of the human heart by multiplanar selective RF saturation

for the analysis of myocardial contraction. In Abstracts of the Ann. Meeting of the Soc. of

MR in Imaging, page 10, San Francisco, 1988.



Progress in Biophysics and Molecular Biology, 69(2-3):333–351, 1998. James S. Duncan 27

regions where shape-based surface
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and MR tag displacement are used  

Figure 1: Right: Tessellated 3D myocardial section to be used in unified algorithm. Left: Cross

section of finite element mesh showing regions where shape displacement and mid-wall velocity

data will be incorporated.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2: (a)–(d): Endocardial bending energies for the end-diastolic (ED) to ED+3 temporal

frames for a MRI dataset. The color white represents flat region, and different shades of green

represent degrees of bending energy, where darker green represents higher bending energy.

(e): Algorithm-computed (blue) and implanted marker (green) trajectories starting at ED and

moving to ES; (f): A blowup view of the trajectories shown in (e); (g): Related endocardial–

epicardial point sets (transmural cubes).



Progress in Biophysics and Molecular Biology, 69(2-3):333–351, 1998. James S. Duncan 29

(a) (b) (c) (d)

Figure 3: 3D MR phase contrast images at ED. Three mid–ventricle slices are acquired for

sixteen time frames through the cardiac cycle. The top row shows the images of the slice which

is closest to base, and the bottom row shows the images of the slice which is closest to apex.

(a): the magnitude images which encode the anatomical structures; (b): images which encode

x-direction velocities; (c): images which encode y-direction velocities; (d): images which encode

z-direction velocities.
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(a)

(b)

Figure 4: Volumetric finite element mesh of the mid-ventricle from phase contrast MR images.

(a): overall view; (b): cutaway view.
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Figure 5: Dense field displacement vector map (2D projection) from the integrated framework.

Note the non-homogeneous nature of the myocardial motion.
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(a) (b)
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(c) (d)

Figure 6: 3D principal strain map of mid-ventricle (ED-ES). (a): the first (maximum) principal

strain; (b): two-dimensional projections of the three-dimensional directions of the maximum

principal strain (middle slice). (c): color scale for the first principal strain; (d): cutaway view

of the maximal principal strain map.
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Figure 7: Temporal maps of the maximum principal strain (ED-ES) from phase contrast MR

images. Note that at ES, the anterior septal region has the highest average maximum principal

strain, which coincides with the injury region observed from post mortem TTC staining. (a)-(h):

the eight maximum principal strain maps from ED to ES; (i): color scale.


