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3D MR Images Using Coupled Surfaces Propagation
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Abstract— The cortex is the outermost thin layer of gray

matter in the brain; geometric measurement of the cortex

helps in understanding brain anatomy and function. In the

quantitative analysis of the cortex from MR images, extract-

ing the structure and obtaining a representation for various

measurements are key steps. While manual segmentation

is tedious and labor intensive, automatic, reliable and effi-

cient segmentation and measurement of the cortex remain

challenging problems due to its convoluted nature. Here

we present a new approach of coupled surfaces propaga-

tion using level set methods to address such problems. Our

method is motivated by the nearly constant thickness of the

cortical mantle and takes this tight coupling as an impor-

tant constraint. By evolving two embedded surfaces simul-

taneously, each driven by its own image-derived information

while maintaining the coupling, a final representation of the

cortical bounding surfaces and an automatic segmentation

of the cortex are achieved. Characteristics of the cortex

such as cortical surface area, surface curvature and cortical

thickness are then evaluated. The level set implementation

of surface propagation offers the advantage of easy initial-

ization, computational efficiency and the ability to capture

deep sulcal folds. Results and validation from various ex-

periments on both simulated and real 3D MR images are

provided.

Keywords— 3D segmentation, volumetric layer, coupled

surfaces propagation, level set.

I. Introduction

A significant amount of recent anatomical MRI studies
on the human brain have been focused on the cerebral cor-
tex. As the outermost layer of gray matter in the brain, the
cerebral cortex is composed of columns of neurons, aligned
perpendicularly to the cortical surface, that serve as basic
units of information processing. Cortical surface area is
likely to be proportional to column number and therefore
surface area should be related to functional capacities. In
addition, regional cortical thickness and gray matter vol-
ume may relate to functional capacities, and alteration in
each of these features has been suspected in specific neu-
ropsychiatric disorders [32]. In the quantitative analysis of
these features of the cortex, segmentation is the first step.

The cerebral cortex is characterized by its convoluted
surface. Due to this convoluted nature, the segmentation
of the cortex must be considered in 3D. For example, al-
though the cerebral cortical layer is nearly 3mm thick [1]
everywhere on the cortex, an oblique 2D slice that hap-
pens to be approximately parallel to a particular sulcus
will give the appearance of a much thicker structure. Only
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by going through the neighboring slices can we get com-
plete information to perform segmentation. Slice by slice
manual tracing of the cortex is extremely tedious and labor
intensive, hence automatic, reliable and relatively efficient
segmentation which enables automated measurement is a
highly desirable goal.

A. Related Work

There are a variety of alternatives to our approach. The
first group are region-based methods, which exploit homo-
geneity in images. They primarily depend on the underly-
ing consistency of any relevant feature in different regions.
Following the work of Geman & Geman [10], Markov Ran-
dom Field(MRF)-based methods have been widely used for
this purpose, which employ energy-minimizing techniques
to reconstruct a piece-wise flat image from the noisy data.
A multi-spectral voxel classification method [2] was used
in conjunction with connectivity to segment the brain into
different tissue types from 3D MR images. A material mix-
ture model [19] was also used for the segmentation problem.
Region-based methods typically require further processing
to group segmented regions into coherent structures. More-
over, quantitative measurement of features other than vol-
ume does not follow immediately.

The most common second alternative strategy is bound-
ary finding, of which active contour methods are of special
note. They rely mainly on gradient features for segmenta-
tion of structures from an image. One of the most generic
and popular methods of detecting boundaries is the snakes
approach due to Kass et al. [13]. One concern regarding
this method is that close initialization has to be provided
in order to achieve good final results. A balloon model with
a pressure force outward was then introduced as a way to
generalize and solve some of the problems encountered with
the above snake method. Deformable surface models using
the finite-element method have been used to segment 3D
images [3]. However, the need to override local smooth-
ness to allow for significant protrusions that a shape may
possess (which is highly desirable in order to capture the
sulcal folds) remains a problem.

An alternative approach to deformable boundary finding
was to use a 3D surface model with Fourier presentation
due to Staib and Duncan [35], [36]. The advantage of this
model is that it allows a wide variety of smooth surfaces
to be described with a small set of parameters. However,
it has limitations in capturing convoluted surfaces such as
the cortical surface.

All of the above methods do not explicitly use constraints
due to cortical structural information, hence are limited for
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Fig. 1. A local operator to derive image information.

the purpose of cortical segmentation. However, there has
been some effort made in this direction. MacDonald et
al. presented an iterative algorithm for simultaneous de-
formation of multiple surfaces with inter-surface proximity
constraints and self-intersection avoidance, where the de-
formation was formulated as a cost function minimization
problem [21], [22]. This method was applied to 3D MR
brain data to extract surface models for the skull and the
cortical surfaces. This approach takes advantage of the in-
formation of the interrelation between the surfaces of inter-
est. However, drawbacks lie in its extremely high compu-
tational expense, and the difficulty of tuning the weighting
factors in the cost function due to the complexity of the
problem.

Teo et al. [38] used a system that exploited knowledge of
cortical anatomy, in which white matter and CSF regions
were first segmented. After the connectivity of the white
matter was verified in regions of interest, a representation
of the gray matter was created by a constrained growing-
out from the white matter boundary. The focus of this
work was to create a representation of cortical gray matter
for functional MRI visualization.

Davatzikos et al. introduced the concept of a ribbon for
modeling the outer cortex in cross-sectional brain images
[4] and then extended the model into 3D [5]. A deformable
surface algorithm was constructed to find the central layer
of the cortex. Based on this parameterization, the corti-
cal structure was characterized through its depth map and
curvature map. This method explicitly used the structural
information of the cortex. However, close initialization and
significant human interaction are needed to force the rib-
bon into sulcal folds. To compensate for this, Xu et al.
further extended the method by using a new external force
model called gradient vector flow for surface deformation
[41].

Dale et al. [6] concentrated on cortical surface-based
analysis. They started by deforming a tessellated ellip-
soidal template into the shape of the inner surface of the
skull under the influence of an MRI-based force and a cur-
vature reducing force. White matter was then labeled and
the cortical surfaces were reconstructed with validation of
topology and geometry.

II. Our Approach

The cortical layer to be recovered has an nearly constant
thickness (there is variation across different regions) and is
bounded by two surfaces: the CSF/gray matter boundary
and gray/white matter boundary. Across each bounding
surface, there is a local difference in the gray level values,
while in between the two surfaces there is a homogeneity of

certain voxel statistics. For our purposes, the cortical layer
is defined completely by its bounding surfaces and the ho-
mogeneity in between. Following our earlier work [42], we
propose a new approach of coupled surfaces propagation via
level set methods for the segmentation and measurement
of the cortex. By evolving two embedded surfaces simul-
taneously, each driven by its own image-based information
while maintaining the coupling, we are able to achieve an
automatic and robust segmentation of the cortex, and si-
multaneously obtain a representation of the inner and outer
cortical surfaces from which surface area can be calculated.
Furthermore, curvature and thickness maps are easily ob-
tained from this coupled level set formulation.

A. Image Information Derivation

Medical images consist of a number of different anatom-
ical regions. The homogeneity of each region can usually
be characterized by various voxel statistics inside. Thus,
by using gradient features (information of gray level dif-
ference between neighboring voxels) alone, we actually lose
important pieces of information. Here in our approach, in-
stead of using gradient features, we design a local operator
which makes use of the gray level information, and gives a
measure of the likelihood of a voxel lying on the boundary
between tissue A and tissue B. This model can also be
extended to make use of a vector of registered parametric
images (such as T1, T2 and PD MR images) or images
from different modalities.

At each voxel site s, a small neighborhood around s is
drawn (see Figure 1). Now given a possible boundary with

normal direction ~θ, dividing the neighborhood into parts
R1 and R2, the probability that s lies on the boundary
between tissue A and tissue B is:

pAB(~θ) = p(R1 ∈ TissueA) · p(R2 ∈ TissueB) (1)

Given an estimation ~θ∗ of ~θ, we can use p(~θ∗) as a measure
of the likelihood that s lies on the boundary between tissue
A and tissue B.

One way of estimating ~θ∗ is to first generate the vector
P = [p(~θ1), p(~θ2), ..., p(~θk)]T where k is the number of pos-
sible directions corresponding to the 26 first order neigh-
bors. Then, ~θ∗ is the direction which corresponds to the
element in vector P that has the largest magnitude. Here
we make the assumption of one single parametric image
X, in which voxels belonging to tissue A are independently
drawn from a Gaussian distribution G(µA, σA), and vox-
els belonging to tissue B are independently drawn from
G(µB , σB). Thus, we have

pAB(~θ) (2)

=
∏

r∈R1

1√
2πσA

e
−

(Xr−µA)2

σ2
A ·

∏

t∈R2

1√
2πσB

e
−

(Xt−µB)2

σ2
B

In our implementation, R1 and R2 are now set to in-
clude one voxel each. A limited expansion to several voxels
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Fig. 2. Results from our local operator compared to image gradient.
(a): an axial slice from original 3D brain images; (b): result from

gradient operator; (c): result from our local operator pBC(~θ∗),

B= gray matter, C=white matter; (d)pAB(~θ∗), A= CSF, B=gray
matter.

could potentially further enhance the capability of captur-
ing homogeneity. In Figure 2, we show an example of the
results from our local operator showing how well it selects
the appropriate gray level transition, which is crucial for
subsequent processing. The local operator was applied to
images after we reduced the effects of MR inhomogene-
ity by correcting using a simple fixed map. The map was
determined manually by sampling tissue types throughout
the field to decide the average inhomogeneity. Note that
more complicated MR image models [10], [17], [18] can be

used to calculate p(~θ).

B. Level Set Method

Level set methods are powerful numerical techniques for
analyzing and computing interface motion, and have been
used in image segmentation in recent years [23], [24], [25],
[33], [34]. The essential idea of the level set methods is to
represent the propagating surface (in our case) of interest
as a front γ(t), and embed this front as the zero level set
of a higher dimensional function Ψ defined by Ψ(x, t) = d,
where d is the signed distance from position x to γ(t). An
Eulerian formulation is produced for the motion of this sur-
face propagating along its normal direction with speed F ,
where F can be a function of the surface characteristics
(such as the curvature, normal direction etc.) and the im-
age characteristics (e.g. gray level and gradient etc.). The
equation of the evolution of Ψ, inside which the propagat-
ing surface is embedded as the zero level set is then given
by:

Ψt + F | ∇Ψ |= 0 (3)

The major advantages of using this method over other
active contour strategies include the following. First, al-

coupled surfaces 
approach prevents 
the inner surface 
from collapsing 
into CSF

coupled  surfaces 
approach prevents 
the outer  surface
from penetrating 
non−brain tissue

Fig. 3. Single vs. coupled surfaces approach on cortex segmenta-
tion. Top: surfaces resulting from single surface approach shown
on a sagittal slice of original image (finding the inner and outer
cortical surfaces separately); bottom: surfaces resulting from the
coupled surfaces approach shown on a sagittal slice of the expert
tracing result. Notice that the outer cortical surface resulted from
the coupled 3D algorithm nicely fits the boundary from expert
tracing.

though the evolving level function Ψ(x, t) remains a func-
tion, the embedded propagating front γ(t) may change
topology, break, merge and form sharp corners as Ψ
evolves. Second, the intrinsic geometric properties of the
front may be easily determined from Ψ. For example, at
any point of the front, the normal vector is given by ~n=∇Ψ.

C. Single Surface Approach vs. Coupled Surfaces Approach

Because of the limitations of the imaging technique used
and the volume averaging effect, it is often observed that
in some regions, there is not enough information from the
image data to clearly define either the outer or the in-
ner bounding surface. When applying a single surface ap-
proach, we may very well end up with error in such a region.
While using the coupled surfaces approach, information on
the partner surface is available through the coupling and
improves the performance of the surface finding.

In the case of MR brain images, due to volume aver-
aging, in some regions the boundary between white mat-
ter and gray matter is not well shown, while the CSF ap-
pears clearly. The single surface approach may hence have
the inner cortical surface collapse into CSF. However with
the coupled surfaces approach, we maintain some minimal
distance between the inner cortical surface and CSF, thus
preventing the inner cortical surface from going into CSF.
There are also places where structures such as eye sockets
appear, so that the CSF can not be observed in the image.
With the coupled surfaces approach, the white/gray matter
boundary information is then used to stop the propagation
of the outer cortical surface before it penetrates non-brain
structures. Figure 3 shows examples of the above men-
tioned cases where the coupled surfaces approach outper-
forms the single surface approach.
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Fig. 4. Functions g and h used in speed term design.

D. Coupled Surfaces Propagation: Speed Term Design

In solving the problem of segmenting the cortex, we con-
sider two moving interfaces describing the inner and outer
cortical bounding surfaces respectively. Starting from in-
side the inner cortical surface (i.e. inside the white matter),
with an offset in between (see Figure 7), the interfaces prop-
agate along the outward normal direction stopping at the
desired place, while maintaining certain distance between
them.

Embedding each surface as the zero level set in its own
level function, we have two equations:

Ψint
+ Fin | ∇Ψin | = 0 (4)

Ψoutt
+ Fout | ∇Ψout | = 0 (5)

where Fin and Fout are functions of the surface normal di-
rection, image-derived information and distance between
the two surfaces. The coupling is embedded in the design
of Fin and Fout. At places where the distance between
the two surfaces is within a normal range, the two sur-
faces propagate according to the image-based information.
Where the distance between the two surfaces is out of the
normal range, the distance imposes a constraint on the
propagation of the surfaces.

With the level set implementation, we have a natural way
to establish a correspondence between the points on the two
evolving surfaces through distance, which is evaluated with
little extra computational expense. Recall that the value
of the level function of a front at any point is simply the
distance from this point to the current front, which as in
[33], is calculated as the shortest distance from this point
to all the points on the front. In our case of two moving
surfaces, for any point on the inner moving surface, the
distance to the outer moving surface is the value Ψout at
this point, and vice versa for the point on the outer moving
surface. Hence, we write

Fin = g(pBC(~θ∗))h(Ψout) (6)

Fout = g(pAB(~θ∗))h(Ψin) (7)

where g and h are the functions as shown in Figure 4,
and A, B, C denote CSF, gray matter and white matter
respectively.

Function g maps larger likelihood to slower speed, i.e., as
the likelihood gets larger, g tends to zero, while as the like-
lihood gets to near zero, g tends to a constant. Function h
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Fig. 5. Schematic of narrow band implementation for 2D curve case
(same argument holds in 3D). Top: dynamic construction of the
narrow band and the update of the level function Ψ within are
performed in the neighborhood of the current surface. Bottom:
inner and outer surfaces with their narrow bands. Notice the
inner surface lies within the narrow band of the outer surface,
and vice versa.

penalizes the distance off the normal range. As the distance
goes out of normal range, h goes to zero. Thus, each sur-
face moves with constant speed along its normal direction,
and slows down when either the image-based information
becomes strong or the distance to the other surface moves
away from the normal range. Each surface finally stops
when the image-derived information is strong enough or
the distance to the other surface is out of the normal range.

Based on the fact that the speed terms are designed to
force the propagating level set to stop at the desired bound-
ary, the image dependent speed terms have meaning only
on the front, i.e. the zero level set. However the level
set equation of motion is written for the function Ψ de-
fined over the entire image grid. We thus extend the speed
terms from the zero level set to the whole image grid as in
[33], i.e. point b takes on the speed of point a which is the
closest point to b and lies on the zero level set.

Due to the level set formulation, we have a notion of the
inside and outside of the current moving front, which is
embedded in the outward normal direction ~n. This infor-
mation can be used to reduce the feasible space of possible
~θs, or ~n can be used directly as an estimate of ~θ∗, thus
obtaining a better result.

E. Narrow Band Method and Distance Correspondence

For computational efficiency, the algorithm is imple-
mented using a narrow band method [33], which modifies
the level set method so that it only explicitly updates the
points close to the current propagating fronts. Our imple-
mentation of the narrowband method uses this idea, but is
designed specifically for coupled level sets so that the dis-
tance between the two embedded surfaces (necessary for
the computation of the speed terms) is available with no
further computation after narrowband rebuilding.

Based on the fact that any point b in the narrow band
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Fig. 6. Algorithm diagram

of the current surface should be within some neighborhood
of a certain point a on the current surface, the narrow
band is constructed dynamically in the 3D neighborhood
of each point on the current surface by including points
that lie within a certain distance range (i.e. bandwidth)
away from that particular point. Also, since a point b in
the narrow band can be within the neighborhood of several
points a1, ..., al on the current surface, we update the value
of the level function Ψ at b to be

sign(Ψ(b)) · (Mini=1,...,ldist(b, ai))

where function dist gives the positive Euclidean distance.
The steps for rebuilding the narrow band and updating

Ψ inside the band are as follows:

for every point a on the current front {
for every point b in the neighborhood of a {

if b is not already in the narrow band,

then add b to the narrow band;

if dist(b, a) is less than

the absolute value of the current Ψ(b),
then update Ψ(b) to be sign(Ψ(b)) · dist(b, a);

}
}

The size of the neighborhood depends on the allowed
bandwidth, and therefore is fixed. Thus, for a surface rep-
resented using N points, the construction of its narrow
band and the update of Ψ in the narrow band is an O(N)
calculation.

In our application, two different narrow bands are com-
puted for the inner and outer interfaces respectively. As
shown in Figure 5, to ensure that the distance-based corre-
spondence between the coupled surfaces falls out automat-
ically, the two bandwidth ranges (for the inner and outer
narrow bands separately) are chosen such that the inner
surface lies within the narrow band of the outer surface and
vice versa. Thus, at each time step, the current position of

the propagating coupled surfaces and the surrounding nar-
row bands are estimated, and the whole process repeats
until the speed terms for both the inner and outer surfaces
reach a zero value everywhere. To summarize, the algo-
rithm diagram is shown in Figure 6.

F. Measurement

With the coupled surfaces propagation via level set meth-
ods, it is easy to perform various measurements on the cor-
tical layer with little extra computational expense. Whole
brain volume, cortical gray matter volume, white matter
volume, cortical surface area, cortical surface shape and
cortical thickness maps are among the features most inter-
esting in the study of brain structure and function. Differ-
ent combinations of the above measurements may help in
determining the pathobiology of various neuropsychiatric
disorders. We now discuss one by one the above measure-
ments from our coupled surfaces formulation.

Volume With the signed distance function Ψ, the
level set formulation keeps track of the inside and outside
of the current moving front. Once the evolution of the cou-
pled surfaces is completed, the cortical gray matter voxels
are those that lie inside the outer cortical surface while
outside the inner cortical surface. In the same fashion,
non-brain tissue voxels will be the ones that are outside
the outer cortical surface, and voxels of white matter will
lie inside the inner cortical surface except for sub-cortical
gray matter and ventricles.

Because the signed distance based measures has a sub-
voxel accuracy, we can obtain a sub-voxel segmentation
instead of a binary segmentation on the data set. In other
words, if the distance from a voxel to the zero level set
surface is less than the voxel size in width, the voxel is
considered to contain multiple tissue types.

Surface area A marching cubes algorithm [20] is per-
formed on the signed distance functions, Ψin and Ψout, to
extract the embedded zero level sets. The resulted surfaces
are realized using a triangular representation. Surface area
is then calculated as the sum of the areas of the triangles.

Surface curvature and shape index As discussed
above, one advantage of the level set implementation is
that geometric properties of the propagation front are eas-
ily calculated [33]. In our case of surfaces propagating in
3D space, there are many choices for the curvature of the
front (for formal definitions of the curvatures, refer to [7]),
including mean curvature, κM , and Gaussian curvature,
κG. Both may be conveniently expressed [33] in terms of
the level set function Ψ:

κM =

∑

(i,j,k)∈C((Ψii + Ψjj)Ψ
2
k − 2ΨiΨjΨij)

2(Ψ2
x + Ψ2

y + Ψ2
z)

3/2
(8)

κG =

∑

(i,j,k)∈C(Ψ2
i (ΨjjΨkk −Ψ2

jk)

+2ΨiΨj(ΨikΨjk −ΨijΨkk))

(Ψ2
x + Ψ2

y + Ψ2
z)

2
(9)
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where C = {(x, y, z), (y, z, x), (z, x, y)} is the set of circular
shifts of (x, y, z).

The maximum principle curvature, κ1, and the minimum
principle curvature, κ2, are related to Gaussian and mean
curvatures through the following formulas:

κ1 = κM +
√

κ2
M − κG; κ2 = κM −

√

κ2
M − κG;

We also adopt the classification of surfaces by Koen-
derink [15] using the numerical relationship between the
two principal curvatures. A shape index function is defined
as si = 2

π arctan((κ1 + κ2)/(κ1 − κ2)), which classifies the
surfaces into nine types as show in Figure 11. With the
shape index, gyri (mostly ridges) and sulci (mostly ruts)
are automatically identified. Further potential use of the
shape index includes the definition of an atrophy index
(sulci widen with age).

Thickness map As discussed above, the value of the
level function of a front at any point is the distance from
this point to the current front. Also recall that the inner
and outer surfaces are the zero level sets of Ψin and Ψout.
Thus, for any point on the outer surface, the absolute value
of Ψin at the point is simply the distance from the point to
the inner surface. Using this measure, we obtain a thickness
map between the inner and outer cortical surfaces, which
can be used to study the normal thickness variations across
different regions of the brain, and also the abnormalities in
brain structures.

III. Experimental Results

In this section, we show validations of our approach on
various simulated and real MR data, as well as applica-
tions to specific cortical studies. We use only T1-weighted
images because they provide the best gray/white contrast
[31], and are therefore commonly used for neuroanatomical
analysis.

A. Validation on Simulated MR Data with Ground Truth

We first present our segmentation results using the sim-
ulated MR brain images provided by the McConnell Brain
Imaging Center at the Montreal Neurological Institute [12].
The images are generated using an MRI simulator [16]
which allows users to independently control various acquisi-
tion parameters to obtain realistic MR images. The ground
truth of the phantom is provided in the form of membership
functions of each voxel belonging to different tissue types,
such as the skull, CSF, gray matter and white matter.

The simulated data we tested our algorithm on were
T1 images of normal brain, with the following parameter
settings: voxel size= 1mm3, noise= 3%, intensity non-
uniformity= 0%. Starting from the unedited images, no
further user interaction is needed after specifying several
pairs of concentric spheres as initialization. The spheres
grow out and automatically lock onto the inner and outer
cortical surfaces. As long as the spheres are placed inside
the white matter, the algorithm is robust to starting posi-
tion. Measurement of the volume is then done as described

TABLE I

Comparison of our volume measurements with the phantom

ground truth. whole brain: total brain tissue (white+gray

matter); cortical gray matter ∗: cortical gray matter on

the frontal 49 coronal slices and the top 56 axial slices;

% whole cortical gray white
brain matter ∗ matter

TP rate 92.3 92.8 92.4
FP rate 2.0 6.0 3.3

volume ratio 96.3 103.2 98.1

in the previous section; we use a binary segmentation in
this experiment. In our implementation of cortex segmen-
tation, the allowed distance between the inner and outer
surfaces is set to range from 1.5mm to 5.5mm based on
knowledge from reported postmortem studies [1]. There-
fore, to ensure the proper overlapping of the inner and
outer narrow bands, the bandwidth ranges for the inner
and outer interfaces are chosen to be (−3mm, 6mm) and
(−6mm, 3mm) respectively.

To evaluate the segmentation result, we apply several
measures defined as follows. For any tissue type T in the
region of interest, we denote the voxels of tissue type T
recovered from our 3D algorithm as Va and the voxels that
are mostly of tissue type T according to the phantom (i.e.
the value of tissue T membership function is greater than
0.5) as Ve. We denote the overlap of Va and Ve as Vae, and
the part that is in Va but not in Ve as Vae′ . A true posi-
tive(TP) rate is then defined to be the size of Vae relative
to the size of Ve, while the false positive(FP) rate is defined
to be the ratio of the size of Vae′ to the size of Ve. We also
define the volume ratio to be the volume of all the voxels
segmented as of tissue type T by our algorithm to the total
sub-voxel volume of tissue type T specified by the phantom
(sub-voxel contribute in only part of the voxel volume).

Table I shows our measurement results over 3 types: to-
tal brain tissue (including white matter and gray matter),
cortical gray matter in selected slices, and white matter.
Since the algorithm is designed specifically for the nearly
constant thickness of the cerebral cortex, it recovers only
part of the gray matter in the brain stem and the cere-
bellum where the constant thickness constraint is not well
satisfied. These regions account for most of the errors in
the TP rate and volume ratio for whole brain tissue. For
the same reason that the algorithm is specifically tailored
for the cerebral cortex, we would compare the cortical gray
matter volume only in the cerebrum. Since the phantom
data does not provide the information related to partition-
ing cerebrum, the cerebellum and the brain stem, we only
compare the cortical gray matter volume on selected slices
where cerebellum and brain stem are excluded: frontal 49
coronal slices and top 56 axial slices. The resulting average
error of the TP and FP rate is around 6% to 7% , and the
volume ratio error is within 4%. For the white matter, the
errors for the TP, FP rate and volume ratio are also low.
These results show that our algorithm performs well in iso-
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Fig. 7. Propagation of the outer (pink) and inner (yellow) bounding
surfaces. Top: pairs of concentric spheres (only the outer ones
are shown on the left, both are shown with a cutting plane on the
right) as initialization in unedited 3D MR brain images; middle:
intermediate step in surface propagation; bottom: final result of
the outer and inner cortical surfaces.

lating the brain from non-brain tissues and in segmenting
the cortex.

B. Validation on 20 Normal Brains

To further evaluate our segmentation approach under a
wide range of imaging conditions, we tested the algorithm
on real MR data and compared the results obtained with
gray segmentation by manual experts. Since for 3D data
it is a very labor intensive job to segment gray and white
matter, we utilized the data provided by the Internet Brain
Segmentation Repository (IBSR) of the Center for Morpho-
metric Analysis (CMA) at Massachusetts General Hospital
[11].

The purpose of IBSR is to encourage the development
and evaluation of segmentation methods by providing test
image data, human expert segmentation results, and meth-
ods for comparing segmentation results. It is one of the first
efforts to offer solutions to the problem of validating and
comparing new algorithms in this rapidly growing medical
image analysis field. The test image data sets provided in
this repository permit a standardized mechanism for evalu-
ation of the sensitivity of a given analysis method to signal
to noise ratio, contrast to noise ratio, shape complexity,
degree of partial volume effect, etc.

We obtained 20 normal MR brain data sets and their
manual segmentations from IBSR. These 20 coronal 3D T1-
weighted spoiled gradient echo MRI scans were performed

on two different imaging systems. Ten FLASH scans on
four males and six females were performed on a 1.5 tesla
Siemens Magnetom MR System (Iselin, NJ) with the fol-
lowing parameters: TR = 40 msec, TE = 8 msec, flip angle
= 50 degrees, field of view = 30 cm, slice thickness = con-
tiguous 3.1 mm, matrix = 256x256, and averages = 1. Ten
3D-CAPRY scans on six males and four females were per-
formed on a 1.5 tesla General Electric Signa MR System
(Milwaukee, WI), with the following parameters: TR = 50
msec, TE = 9 msec, flip angle = 50 degrees, field of view
= 24 cm, slice thickness = contiguous 3.0mm, matrix =
256x256, and averages = 1.

All data sets were positionally normalized at CMA by
imposing a standard 3D brain coordinate system on each
3D MR scan using the midpoints of the decussations of the
anterior and posterior commissures and the mid-sagittal
plane at the level of the posterior commissure as points of
reference for rotation and (non-deformation) transforma-
tion [37], [8]. The repositioned scans were then resliced
into normalized 3.0mm coronal, 1.0mm axial, and 1.0mm
sagittal scans which were used for subsequent analysis.

Manual segmentation was performed on the normal-
ized scans by trained investigators at CMA using a semi-
automated intensity contour mapping algorithm [14], [11].
Once the external border was determined by intensity con-
tour mapping, grey-white matter borders were demarcated
using signal intensity histograms. Using this technique,
borders were defined as the midpoint between the peaks
of the bimodal histogram for a given structure and its ad-
jacent tissue. Other neuroanatomical structures were seg-
mented similarly [9].

An overlap metric is used by IBSR to compare results
from automatic segmentation and manual segmentation.
While manual segmentations are not ”ground truth”, they
provide reasonable way to compare automated segmenta-
tion methods. The overlap metric is defined for a given
voxel class assignment as the number of voxels that have
the class assignment in both segmentations divided by the
number of voxels where either segmentation has the class
assignment, which is equivalent to TP/(1+FP ). This met-
ric ranges from 1.0 , for perfect agreement, to 0.0, for no
agreement of classified voxels.

We interpolated the image data into 1mm thick coronal
slices, and then ran our coupled surfaces algorithm. Figure
8 shows the overlap metric for gray matter segmentation
on 20 normal brains from the manual method, various au-
tomatic segmentation methods and our coupled surfaces
algorithm. The results from the automatic segmentation
provided by IBSR were from work done by Rajapakse, and
partially based on the methods described in [26]. The gray
matter overlap metric for our algorithm on the whole brain
is 0.657, which is well above those from the other 6 listed
automatic methods ranging from 0.473 to 0.564 (shown
in column 1-6 in Figure 8). Since our algorithm is de-
signed specifically for the cerebral cortex, we compute an
improved overlap metric on the upper and frontal part of
the brain (to exclude brain stem and cerebellum) of 0.701.
Moreover, considering that the other 6 listed automatic
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Fig. 8. Average overlap metric for gray matter segmentation on 20
normal brains from various segmentation methods. The results
of automatic segmentation methods provided by IBSR were from
work done by Rajapakse. MAP: Maximum Aposteriori Probabil-
ity. ML: Maximum-Likelihood. ∗: using frontal 13 coronal slices
and upper 50 axial slices of each brain to exclude brain stem and
cerebellum.

methods started with brain-only data sets, while the cou-
pled surfaces algorithm started with un-stripped brain im-
ages, the advantage of our method with geometric struc-
tural constraints is clear.

These 20 brain scans were chosen by IBSR because they
have been used in published studies [26], and cover a range
of image quality [11] with the worst ones having low con-
trast and relatively large intensity inhomogeneities. The
overlap scores shown in Figure 8 from the automatic clas-
sification methods may appear low, however they need to
be taken into the context of a wide range of image quality,
and should not be compared with numbers from different
studies. More recently acquired (i.e. better quality) data
should result in far better results from the automatic clas-
sification methods, which holds for our coupled surfaces
algorithm as well. In fact, as shown in the section above,
the overlap metric for our phantom cortical segmentation
is 0.928/(1+0.060) = 0.875, which compares well with the
manual overlap metric of 0.876 showing inter-operator re-
producibility from tests on 4 brains averaged over 2 experts
(see Figure 8). With the rapid growth of medical image
processing, it is virtually impossible to implement all the
novel methods published and compare results. However we
take this study as our initial step towards more extensive
evaluation of our algorithm with the help of IBSR, and we
intend to carry out more studies.

C. Results on Real MR Data for Frontal Lobe Study

We then tested our algorithm on frontal lobes of 7 high
resolution MRI data sets (SPGR, 2NEX, 1.2×1.2×1.2mm3

voxels) from a randomly chosen subset of young adult autis-
tic and control subjects from our ongoing studies to mea-
sure frontal lobe volume. After preprocessing to reduce
the effects of MR bias field inhomogeneity using a simple
standard nonlinear map (this is also a step before expert
manual tracing), we ran the coupled surfaces algorithm to
isolate the brain tissue and segment the cortex (see Figure
7). The frontal lobe was then manually defined indepen-
dently in the left and right hemispheres as all tissue anterior

Fig. 9. 3D volume rendering of the frontal lobe cortex with an oblique
cutting plane. The convoluted thin bright ribbon is the cortical
gray matter captured on the cutting plane.

Fig. 10. Coronal slices form 3D images. Left: original image; middle:
cortical gray matter from manual tracing; right: cortical gray
matter from our 3D algorithm.

to the central sulcus, excluding sub-cortical nuclei [28]. We
then create a mask of the frontal lobe, and use it to exclude
the posterior part of the volume.

Figure 9 shows a 3D volume rendering of the cortical
gray matter of a frontal lobe resulting from our algorithm.
In Figure 10, 2D coronal slices of the same result are shown.
As shown in Table II, over the 7 frontal lobes, the TP and
FP rate (compared to manual tracing by our neuroanatomy
specialist) of the whole frontal lobe averaged 94.1% and
2.1% respectively, which demonstrated that our algorithm
nicely isolated the brain tissue from the non-brain tissue.
The average TP and FP rate for the cortical gray mat-
ter (measured on 2 orthogonal slices, one coronal and one
axial, to over the entire range of the frontal lobe) in the
frontal lobe were 86.7% and 20.8%. As we see in Figure
10, the expert tracing tended to be more aggressive in defin-
ing the gray/white matter boundary, which resulted in the
relatively larger value of the FP rate. Note that the FP
rate on gray/white segmentation is a very sensitive mea-
sure, especially considering the fact that manually drawing
a boundary between gray and white matter to some ex-
tent depends on subjective individual judgment. However,
in quantifying the difference between populations, despite
the FP rates, the volume measurements would still yield
useful information as long as they are consistent.

The volume of the constituent parts of the brain is typ-
ically the measurement of interest for comparison among
different subjects in studies of neuroanatomy. Thus, as
a second way to analyze the utility of our algorithm, we
compute reliability statistics on the volume measurements
using the methods described in [31] (see also [42]). There
was strong agreement between the algorithm and the ex-
pert on the volume of the frontal lobe (Pearson r = .991;
intraclass correlation coefficient [ICC] = .901). The al-
gorithm systematically estimated the frontal lobe volume
to be less than the expert tracer (mean difference = 4%),
and this accounts for the lower ICC than Pearson coeffi-
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TABLE II

Our measurements compared with expert tracing results on

7 frontal lobes

frontal lobe frontal lobe cortex
TP(%) FP(%) TP(%) FP(%)
93.8 3.4 83.6 25.5
93.9 1.9 86.2 20.1
95.2 2.9 86.5 24.4
93.7 1.7 86.7 24.5
94.5 1.5 88.9 21.2
94.1 1.7 87.0 20.5
94.1 1.4 89.0 19.5

−1    −7/8    −5/8    −3/8    −1/8    1/8    3/8     5/8     7/8     1 
si

  spherical trough  rut   saddle  saddl e  saddle ridge   d ome  spherical
   cup                     rut           rid ge                  cap  

Fig. 11. The outer and inner cortical surfaces of a frontal lobe colored
with the specified spectrum representing shape index si.

cient. Similarly, for gray matter volume of the frontal lobe
there was also good agreement (Pearson r = .96). Thus,
for both whole frontal lobe volume and frontal gray matter
volume, the coupled surfaces algorithm produced measure-
ments that were very similar to expert tracings.

Figure 11 shows the outer and inner cortical surfaces of a
frontal lobe colored with their shape indices. As we can see,
most parts of the gyri are automatically identified as ridge
while most parts of the sulci are identified as rut, which
coincides with our knowledge of the cortical structure.

D. Regional Cortical Thickness

We further applied our algorithm to 7 high resolution
MRI data sets (SPGR, 2NEX, 1.2× 1.2× 1.2mm3 voxels)
of normal males (average IQ = 109) to study the pattern
of regional cortical thickness.

The lobes of the brain were labeled using locally devel-
oped software [29] in conjunction with the ANALYZE soft-
ware package [30]. The frontal lobe was segmented by trac-
ing the central sulci directly on 3D renderings of the brain,
and then in successive 2D slices extending the traces to
the depth of the sulci and through the white matter to the
mid-line at an angle perpendicular to the inter-hemispheric
fissure. Next, the temporal lobes were segmented by trac-
ing the sylvian fissure on 3D renderings until the point
where the fissure arched upward into the parietal lobe. At
that point of inflection, a plane parallel to the AC-PC was
used to segment the temporal and parietal lobes. The
occipital-parietal boundary was set at mid-line by plac-
ing a oblique plane through the parietoccipital sulcus, and

(a)

 1      2 2.5 3 3.5 4        5       6(mm)

(b)

Fig. 12. Regional cortical thickness. (a): Parcellation of lobes where
regional cortical thickness is measured. (b): Top and back views
of an outer cortical surface colored with cortical thickness.

TABLE III

Regional cortical thickness (in mm) of 7 normal male

subjects

frontal temporal parietal occipital
3.35 3.18 2.81 2.82
3.47 3.14 2.95 2.95
3.18 3.00 2.70 2.67
3.18 2.83 2.59 2.46
3.39 3.30 2.95 2.60
2.97 2.95 2.56 2.44
2.99 3.04 2.78 2.44

a coronal plane at the intersection of the parietoccipital
sulcus and the calcarine fissure. Figure 12(a) shows the
parcellation of the lobes of a cerebrum, as described above.

Shown in Figure 12(b) are the top and back views of an
outer cortical surface colored with cortical thickness. Table
III lists the cortical thickness measurements in 4 lobes over
the 7 subjects. We compared the mean thickness of each
lobe to the data on 63 males from the postmortem study
by Pakkenberg and Gundersen [27], and found the exact
same rank ordering of thickness; the frontal cortex was the
thickest and the occipital the thinnest. The postmortem
data measurements were 5 to 14% thinner by lobe than
our in vivo data. This might be due to both the older age
of the subjects, tissue shrinkage in the postmortem study,
and volume averaging with our MRI data. However, it is
important to note that the variability of thickness was the
same for both samples (about 0.15 mm). This gradient of
thickness from front to back in the brain is well known and
due to the greater number of large pyramidal neurons in
the anterior as compared to the posterior cortices.
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A repeated measures analysis of variance (ANOVA)
tested whether cortical thickness differed by lobe, and
found significant differences between the 4 lobes (F[3, 27]
= 56.3, p < .0001). Post hoc paired t tests showed that
the frontal lobe and temporal lobes were each significantly
thicker than either the parietal and occipital lobe (p’s <
.001), but they did not differ in thickness from one an-
other. Likewise, parietal and occipital lobe thickness were
not significantly different.

E. User Interaction and Speed Issue

In addition to robustness and accuracy, minimum user
interaction and computational efficiency have always been
two important issues in the problem of segmenting and
measuring the cortex. For an expert to manually isolate
the non-brain tissue (using a combination of image thresh-
olding, region growing, and fine editing with manual trac-
ing slice by slice to carefully remove any non-brain vox-
els such as the CSF within sulci and the dura) alone can
take about 2 hours. (Structures such as the dura and the
CSF in sulci can only be removed by careful slice-by-slice
inspection. Therefore, considering the thoroughness and
obsessiveness of the fine editing, we believe 2 hours is a fair
estimate of the processing time.) The manual tracing of
cortical gray matter is even more time consuming. Mac-
Donald et al. deformed two ellipsoids with inter-surface
constraints to approximate the inner and the outer cortical
surfaces. Their processing time for such segmentation on
each subject was reported to be 100 hours on a SGI Origin
200 R10000 processor running at 180 MHz [22]. In [5], it
was reported that the “ribbon” algorithm was a fairly com-
putationally demanding iterative procedure; while manual
placement of the initial cortical surface and a multi-scale
formulation could decrease the computational load. The
processing time per subject for Xu’s method was reported
to vary between 4.5 to 6.5 hours on a SGI O2 workstation
with a 174MHz R10000 processor [41].

The initialization for our algorithm only requires the user
to specify several pairs of concentric spheres in the unedited
images, which can be done with several mouse clicks within
seconds. It should be emphasized that neither the number
nor the placement of the spheres (within a broad range of
acceptable values) affects the accuracy or the reproducibil-
ity of the final result. To illustrate this, Figure 13 shows
the coupled surfaces propagation on the same brain as in
Figure 7 but from a different set of initializing spheres.
The final results of the surfaces show little visual differ-
ence. Quantitatively the TP rate of one with respect to
the other is over 99.5%, and FP rate is less than 0.5%.

For a 3D image (1.2 × 1.2 × 1.2mm3 in voxel size) of
the whole brain, our algorithm runs in about 1 hour on
a SGI Indigo2 machine with a 195MHz R10000 processor.
Skull-stripping, segmentation and measurement of

the cortex are done simultaneously. Comparatively,
to our knowledge our algorithm outperforms other related
techniques with respect to user interaction and computa-
tional efficiency.

Fig. 13. Coupled surfaces propagation on the same brain image as
in Figure 7 but with a different set of initializing spheres. For
the two final results from different initialization, the TP rate
of one with respect to the other is over 99.5%, and FP rate is
less than 0.5%, which demonstrates our algorithm’s robustness
to initialization.

IV. Summary and Future Directions

In this paper, we presented a new approach to the seg-
mentation and measurement of cortical structure which is
of great interest in the study of the structural and func-
tional characteristics of the brain. Motivated by the fact
that the cortex has a nearly constant thickness, we model
the cortex as a volumetric layer, which is completely de-
fined by the two bounding surfaces and the homogene-
ity in between. Starting from easily initialized concentric
spheres, and driven by image-derived information, two in-
terfaces evolve out to capture the inner and outer cortical
boundaries, thereby segmenting out the cortical gray mat-
ter from the white matter, as well as isolating the brain
tissue from the non-brain tissue. Cortical gray matter vol-
ume and cortical surface area (both inner and outer) are
then measured. Due to the coupled level set implementa-
tion, the cortical surface curvature and cortical thickness
map are also easily obtained. As seen from various exper-
iments, our algorithm is automatic, accurate, robust and
relatively computationally efficient.

We would like to mention that this segmentation method
using coupled surfaces propagation has potential applica-
tions in other medical image analysis domains where a vol-
umetric layer is the study of interest. Examples include
the left ventricular (LV) myocardium of the heart and the
bounding wall of the liver. Different coupling may be used
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to tailor the algorithm for specific application. For exam-
ple, the endocardial and epicardial walls which bound the
thick LV myocardium are loosely coupled, instead of tightly
coupled as the cortical surfaces.

Future directions for this work include the following:
finer design of the local feature operator to better model the
volume averaging effect, better capturing the homogeneity
of the volume, volume measurement on the sub-voxel level,
possible use of a vector image data set, and testing on im-
age data of abnormal brains.
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