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Tangent Vector and Space

Recall:

A tangent vector is a directional derivative operator
at a point. 

The set of all directional derivative operators at a point 
is a vector−space and is called the tangent space
at the point.
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Notation

The notation is a little funky:

We will denote tangent vectors as  v   etc.

The directional dervivative of a function is denoted  v  [f]

 Given a parametrization, the co−ordinate curves form a basis
  of the tangent space. This is expressed as

v  =  Σ  a    d           v [f]  =  Σ  a     d      [f]
                            dx                              dx

The tangent space  is denoted  T M, where M is the manifold. 
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The Tangent Bundle
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The set of all tangent spaces of a manifold is the 

tangent bundle of the manifold, denoted TM.

The tangent bundle is itself a manifold:

If   { (U  ,φ  )} is an atlas for M, then 

{(U X R, (φ,γ))} is an atlas for TM:

where, γ takes R into the tangent space at p.
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Vector Field

A vector field on a manifold M is a correspondence (function)
which associates with each point p of M a vector x(p) of T M.

The vector field is x, its value at a point is x(p).

A vector field x is a map from M to TM.  x:M −> TM.

The vector field is differentiable if the map x:M −> TM is 
differentiable

p

Theorem: Let a vector field v be expressed in local co−ordinates

as  v(p) = Σ a (p)    d          , then v is differentiable if and 
                          dx  

 only if a  (p) are differentiable functions on the manifold.
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Integral curve of a vector field

P

Defn: Let v be a vector field on manifold M. An integral curve
of v passing through point P of M is a curve t−>C(t)
such that

[1] C(0) = P, and [2]  d C(t)  = v(C(t)).
                                      d t

C(t)

t

X

d X (C(t))  =  a (C(t))
dt
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Geodesic, Parallalism, Connection

After Riemman, the next biggest conceptual leap was 
 by Levi−Civita (1917) who formalized the notion of 
 parallel transport, connection and hence that of a 
 geodesic.

A clear definition of these quantities was not available 
even though mathematicians as far back as Euler understood

 what a geodesic was.

Curve of least "intrinsic curvature"



Curve of least "intrinsic curvature"

Geodesic

Move this vector 
parallel to itself
through ambient 
space

Difference in the two 
tangent vectors

The component in the tangent
plane tells us how much the curve 
appears to swing in the surface.

This is the notion of 
"intrinsic curvature"



Do this construction differentially

tangent vector

derivative of the tangent vector

projection of the derivative
onto the tangent plane

A geodesic is a curve for which the projection of the 
the derivative of the tangent vector onto the tangent 

 plane is zero at all points of the curve.

Theorem: Locally, a geodesic minimizes arc−length.

Note:  The derivative of a tangent vector along a curve
  
still requires the ambient space.



Projection of derivative of a tangent vector

(Surface in 3−D)

Vector field v

Choose a direction w
also in the tangent 
space at P

P

Pw

[1]

[2]
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Projection of derivative of a tangent vector

(Surface in 3−D)

w

[3] Take the derivative
of v along w at P

dv
dw p

P

[4]

w

Project it on the 
tangent plane at P

     Π   dv
       dw p

p

  D (v) = Π  d    (v)
               dw pw,p

p

D (v) is called the covariant derivative of v along w at P
w,p



Covariant Derivative

By using properties of ordinary derivatives we can show that

[1]  D   (ax + by) =  a D   (x)  + b D   (y),

[2] D       (x)    =  a D    (x)   + b D     (x)   

w,P w,P w,P

av+bu,P v,P u,P

Parallel Transport

Defn: A vector is parallely transported along a curve if its
 covariant derivative is zero.

A geodesic parallely transports its tangent vector
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Affine Connection

Let w be another vector field and define   to be the the
 operator that gives the covariant derivative of v wrt w
 at every point on the surface

    :TS  X  TS  −> TS  given by       (v) at P   =  D  (v)
w,p

is called the affine connection. It tells us how the tangent
space at every point is "connected" to the tangent spaces
around the point 

For a surface it is derived via ambient space.
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Affine Connection

How do we derive the affine connection for
 a manifold    ??

How are these
"connected"?

i.e. how should we define
a covariant derivative
(a "projected" derivative)?

The laws of ordinary derivative give us the following
properties for the affine connection 

[1]
fv+gw

(x)   =  f     (x)  + g    (x)
v w

[2]
v

(x+y)  =      (x)   +      (y)
v v

[3]
v

(fx)  =  f     (x)   +  v[f] x
v



Affine Connection on a Manifold

The definition of a manifold
does not tell us anything 
about how tangent spaces should
be connected

That we are free to "connect" them
in any way.

Choosing a "connection" is equvalent 
to choosing an affine connection operator.

Choose any      :TM X TM −> TM  as long as it satisfies

the formal properties [1] − [3]

[1]
fv+gw

(x)   =  f     (x)  + g    (x)
v w

[2]
v

(x+y)  =      (x)   +      (y)
v v

[3]
v

(fx)  =  f     (x)   +  v[f] x
v



Affine Connection on a Manifold

parametrization

Then,

Theorem:

y
(x) =  Σ ( Σ  a (p)b (p)  Γ  (p)     + x[b(p)] )   d
                                                      dxi,jk k
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Christoffel symbols  (n^3).  Choose any functions.
Choosing these corresponds to choosing the kth component of
the co−variant derivative of the ith basis w.r.t. jth basis

Let   x(p) =   Σ a  (p)   d          and  y(p)  = Σ  b (p)   d
                            dx                                   dxi
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Affine Connection on a Manifold

Is there a meaningful and generally useful affine connection?

Surface in 3−D :   Affine connection from ambient space
Manifolds       :   Affine connection from Riemannian Metric

Manifold

Tangent space and Bundle

Affine Connection

Co−variant derivative 

Geodesic                         Parallel Transport

Christoffel Symbols



Riemannian Metric

Defn:  A Riemmanian Metric on a manifold M is an inner
   product <  ,  >   defined for the tangent space 

  at every point p of the Manifold.

p

Inner product  <  ,  >     is bilinear, symmetric and positive
   definite. p

Riemannian
Metric



Riemannian Metric

Riemannian
Metric

Let   x(p) =   Σ a  (p)   d          and  y(p)  = Σ  b (p)   d
                            dx                                   dxi
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Then,     <x(p),y(p)>    =     Σ    g (p)  a (p) b(p)   
p i,j i,j i j

These four functions on the manifold define the Riemannian
  Metric.



Affine Connection and Riemannian Metric

Riemannian
Metric

Is there an affine connection such that the "orthogonal frame"
  of the Riemannian Metric is parallel transported along itself?

Not the formal defn.

Theorem (Levi−Civita):   Yes!

Proof:

Γ  =   1  Σ  {  d   g   + d  g   −  d   g  }   (G   )
        2         dx        dx         dx

where G = matrix g  

i,j
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m
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j,m
j

m,i
m

i,j

−1
m,k

i,j

Riemannian Connection



Parallel Transport with a Riemannian Connection

Two vectors are parallel if they have the same
co−ordinates after normalization.

(Intuitive)

Normalize unit ellipse to unit
circle by scaling axes



Covariant Derivative

Normalize unit ellipse to unit
circle by scaling axes

change

d change          is the co−variant derivative
dt

(Intuitive)



Geodesic

(Intuitive)

Tangent vector is transported parallel to itself.

Theorem: A geodesic minimizes local Riemannian arc−length



Geodesic

(Intuitive)

Theorem: (lntuitive)  

[1] For every tangent vector in some open
ball of size (metric) e > 0, there is a corresponding unique geodesic
in the manifold.

[2] Let C (t) be the geodesic whose initial vector is v. Then

  the map exp(v) = C (1) takes v to point in M.

 exp(v) is a diffeomorphism from the open ball in the tagent space
  to an open set of the manifold.

v
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The Exponential Map

The exponential map is incredibly important in understanding
   the "curvature" of the space because it lets us define a 
  "sphere" on the manifold that has the same dimension as 
  the manifold.

Area
diam^2

< π

Area
diam^2

= π

Area
diam^2

> π



Comments

The ideas of tangent spaces, affine connections and 
   Riemannian metric allow us to do geometry (use geometric
   reasoning) in many problems.

e.g. Calculus of variations.

It is possible to geometry under a wide variety of metrics (distance)
  The metric can often be tailored to the problem 

e.g. unbiased snakes

More general geometries are also possible by suitable definitions 
of affine connection. 

e.g. affine differential geometry

You can get additional mileage by adding more structure to this

e.g. Lie groups


