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Why topology?

Need it for the definition of a manifold

 Since topological spaces are more general 

than manifolds, we can appreciate

what differential geometry can and

cannot do.



This is a very informal introduction

Topology as generalization of Descarte’s insight

Points in a plane
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(1.0,3.0)
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The set of pairs of 
    real−numbers

These are the "same" 
thing

1−1 map



Topology as generalization of Descarte’s insight
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Topology as generalization of Descarte’s insight
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Changes distance (metric) but not much else



Topology as generalization of Descarte’s insight

one−to−one
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−2.0
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−2.0 −1.0

0.0

1.0

−1.0−

Absolutely key point:

This mapping is not useful because it is not continuous



Topology as generalization of Descarte’s insight

Attempt 1:   Two sets A and B are topologically equivalent

if there is a ‘‘continuous’’ one−to−one and onto 

function f:A −>  B.

Counter−example:

[ )

B = { points
of the unit 
circle } [ )

A = { 0 <= 0  < 2pi } 

f = (cos(0), sin (0))



Topology as generalization of Descarte’s insight

Definition:  Sets A and B are topologically equivalent 

(or homeomorphic) if there is a one−to−one and onto 

function f:A −> B, such that f and f  are continuous.
−1

f is called a homeomorphism

Continuity is absolutely crucial in topological issues



Continuity for ordinary functions

Defn:  A function f:R −> R is continuous at x   if for any

e > 0 there is an d > 0 such that 

| f(x ) − f(x) | < e for all |x  −x| < d.

o 

o o

Defn: A set N is a neighborhood of x if N contains an open 

interval containing x. 

Defn: A function f:R −> R is continuous at x   if the inverse 

image of any neighborhood of f(x  ) contains a 

neighborhood of x

o

o

o



Topological Space

Defn: A topological space is a set X, and for eachpoint

x of X a nonempty collection of subsets of X (called

neighborhoods of x) which satisfy 

(a) x lies in each of its neighborhoods,

(b) The intersections of two neighborhoods of x is also a neigborhood

of x,

(c) If N is a neighborhood of x and U is a subset of X containing N, 

then U is a neighborhood of x,

(d) If N is a neighborhood of x, and N is the set {z c N | N is a 

neighborhood of z}, then N is a neighborhood of x.

(N is called the interior of N)

o

o

The same set X with different neighborhood systems is a 

  different topological space.

The same set X with different neighborhood systems is a 

  different topological space.

Hausdorf, 1914



Alternate Definitions are sometimes easier

From Open sets:

Defn: A non−empty collection of subsets of X is a collection

of open sets if 

(a) Any (not finite) union of open sets is open, 

(b) Any finite intersection of open sets is open,

(c) X and the empty set are open.

Defn: N is a neighborhood of a point x is N contains an open

set which contains x

Giving a set a topology means choosing a system of neighborhoods

or open (or closed) sets



Continuity

Definition: A function f from a topological space A to a 

topological space B is continuous at x c A if 

the inverse image of any open set containing 

f(x ) is open.

Topology of BTopology of A

Note: A function may not be continuous if you change 

the topology.

Definition: Two topological spaces are homeomorphic if there

there is an onto and one−to−one function 

from one space to the other, such that the

function and its inverse are continuous



Why should we care about this?

The parametrization of any new mathematical

object is really a homeomorphism from 

some familiar structure to the new object

(More later)

This is really how we ‘‘understand’’ new mathematical 

objects

Finding a (useful) topological space which is not homeomorphic

to a known topological is a major mathematical event

homeomorphisms



Some examples

Let R be the set of real numbers

An open interval O = {x| a < x < b, a = b}

An open set is any union of open intervals

This is called the usual topology on R

Let R be the set of real numbers

A subset O is open if R − O contains a finite number 

of elements, or is equal to R

This is called the finite−complement topology. 

It is really strange

Let R be the set of real numbers

Any subset of R is an open set

Every point x has a single neighborhood {x}

This is called the discrete topology on R

Every function is continuous in the discrete topology



Some examples

A  = {x| x = u + n,  o<= u < 1, n integer}u

A = {A }u

with open sets defined as the the union of subsets

B    =    U Ar,s
r < u < s

u

What is this topology?

Just a circle

with unit circumference



Key Point

Topological equivalences are very hard to grasp intuitively.

We need formal techniques for doing this:

[a] We need to indentify useful ways in which 

topological spaces appear (are created)

in applications

Product spaces, Identification Spaces, Covering Spaces

etc.

[b] We need ways of calculating topological invariants

of such spaces

  (It is often easier to determine when topological 

spaces are not equivalent, then when they

are equivalent)

Homotopy and homology groups of spaces.



Product Spaces

Defn: The product space A X B of two topological spaces

is the set of all ordered pairs 

A X B =  { (a,b) | a c A  b c B }, 

with the following system of open sets:

A subset W of A X B is open if it can be written as a union

of sets of the type U X W, where U is open in A 

and W is open B.

R  =  R X R  with the usual topologies on R
2

X = 

X 
= 



Descarte’s brilliant idea

Take R  with its usual topology

Take the plane with its usual topology 

(Open sets are unions of open discs)

Impose a co−ordinate system on the plane

This givs a one−to−one and onto function f from 

R  to the plane 

2

2

....
(−1.0,−2.0)
.......
.......

(0,0)
......
......
.....
(1.0,3.0)
......
......

1−1 map

f is not just one−to−one and onto but is 

actually a homeomorphism



Subspace Topology

Defn: Let B be a subset of a topological space A. The 

subspace topology on B is the topology that 

W is an open set in B if and only if 

W = B    Z, where Z is open in A.

U

A

BW

Z

Warning: W may not be open in the topology of A



Subspace Topology

B = closed unit square in the plane

B

Z

W

W is not open in the plane but is open in B



Identification Spaces

Intuition:  If you glue opposite sides of a square

you get a cylinder

Every point
not on the glued 
edge comes from
a single point in
the square

Every point on the glued
edge comes from a pair of
points in the square

Every point in the square goes
to exactly one point in the 
cylinder



Identification Spaces

Defn: Let X be a topological space

     Let P be a family of disjoint subsets of X such that 

U P = X,

    Let Y be a set whose points are members of P

    Let p: X −> Y be the map that takes every point of X

to the subset containing Y

    Let a subset O of Y be open if and only if p  (O) is

open in Y

Under these conditions Y is a topological space with the

identification topology. (Y is an identification

space)

−1



Identification Spaces



Identification Spaces



Identification Spaces

An extention of this idea gives us a 

manifold



A really cool theorem

Let f: X −> Y be an onto and continuous function, 

(and suppose that Y has the largest topology for which f is

continuous), then f partitions X according to f  (y) , y c Y.

The technical condition is satisfied if X is compact and Y is 

Hausfdorf

Let Y* be the identification space associated with the

partition.

Theorem: Y* is homeomorphic to Y

−1

f

YX



Further Topology

Just as we generalized the notions of open sets and continuous

functions, we can generlize the notions of connected and 

compact sets 

Connectivity is a topological invariant

Invariants are important for showing when two topological 

spaces are not homeomorphic.

The key to doing all of this is to generalize common notions

by using a set of formal properties. 

surface
derivatives
vector

Knowing which properties to use takes genius.


