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Wh¥ LOPO|09¥?

Need it for the definition of & manifold

Since tOPOlOgical Spaces are more general
than manifolds, we can appreciate
what differential geometry can and

cannot do.



This is & very informal introduction

Topology as generalization of Descarte’s insight

(-1.0,-2.0)
e 1-1 map
(0,0)
(1.0,3.0)
The set of pairs of Boints In & ol
real-numbers - > oints in a plane

These are the 'same”
thing



ToPoI09¥ as generah‘zazion of Descarte’s insighL




loPol0g¥ as generaliza];ion of Descarte’s insigb];
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Changes distance (metric) but not much else



Togolog;z as generalizaﬁon of Descarte’s insigb];

Absolutely key point:

[his mapping 1S hot useful because 1t IS not continuous




To,;o|09¥ as generaliza];ion of Descarte’s insighL

Attempt 1: Two sets A and B are toPoIOQICaIIy equivalent
if there is a “continuous’ one-to-one and onto

function f:A =) B.

Counter—example: B = { points
of the unit
circle }

f = (cos(®), sin (9))

[ )
T 7

A={0<=0 <2pi}




To;olog;z as generalizay‘on of Descarte’s insigbz

Definition: Sets A and B are tOPOIOgTCéIIy equivalem:
(or homeomorphic) if there is a one-to-one and onto

—1
function f:A -> B, such that f and f are continuous.

f is called a homeomorphism

Continuity is absolutely crucial in topological issues




Defn: A function f:R => R is continuous at x, if for any
e > O there is an d > O such that

| f(x,) = f(x) | < e for all |x, -x| < d.

Defn: A set N is a neighborhood of x if N contains an open

interval c:om;aining X.

Defn: A function f:R => R is continuous at x, if the inverse
image of any neighborhood of f(x, ) contains a

neighborhood of X,



[ o,;oloeical Space

Hausdorf, 1914

efn: A topological space is a set X, and for eachpoint

x of X a nonempty collection of subsets of X (called

neighborboods of x) which satisfy

(3) x lies in each of its neighborhoods,

(b) The intersections of two neighborhoods of x is also a neigborhood
of x,

(c) ¥ Nis a neighborhood of x and U is a subset of X containing N,
then U is a neighborhood of x,

(d) If N is & neighborhood of x, and N is the set {z € N | Nis a
neighborhood of z}, then N is & neighborhood of x.

(0]
(N is called the interior of N)

The same set X with different neighborhood systems is a

different toPOIogical space.




Alternate Definitions are sometimes easier

From Open sets:

Defn: A non-empty collection of subsets of X is a collection
of open sets if

(@) Any (not finite) union of open sets is open,

(b) Any finite intersection of open sets is open,

(c) X and the empty set are open.

Defn: N is a nel‘ghborhood of a point x is N contains an open

set which contains x

Givn‘ng A Set A tOPOIOgy means Choosing a system of neighborhoods

or open (or closed) sets



Continui

Definition: A function f from a topological space A to a

topological space B is continuous at x € A if

the inverse image of any open set containing

f(x ) is open.
A

\

TOPO'Ogy of A ToPology of B

Note: A function may not be continuous if you change

the tOPOIOgy.

Definition: Two toPOI09ica| Spaces are homeomorphic if there

there 1S an onto and one—to-one function
from one space to the other, such that the

function and 1ts inverse are continuous




\/\/h\/ should we care about this?

The parametrization of any new mathematical
object is really a8 homeomorphism from
some familiar structure to the new object

(More later)

This is really how we “understand” new mathematical

objects

B@.

homeomorphisms

Finding a (useful) topological space which is not homeomorphic

to a known topological is a major mathematical event



Some examples

Let R be the set of real numbers
An open interval 0 = {x| a < x < b, a # b}

An open set s any union of open intervals

This is called the usual LoPoI0g¥ on R

Let R be the set of real numbers
Any subset of R is an open set
Every point x has a single neighborhood {x}

This is called the discrete LoPolog;a on R

Every function is continuous in the discrete topology

Let R be the set of real numbers
A subset O is open if R — O contains a finite number
of elements, or is equal to R
This is called the finite-complement topology.

It s really strange




Some examples

Au=XIx=u+n o=u<in integer}

A=A}

with open sets defined as the the union of subsets

B, = U Au
' r<u<s

What is this to,wlog;[?

Just a circle

with unit circumference




Key Point

Topological equivalences are very hard to grasp intuitively.

We need formal technigues for cloing this:

[a] We need to indentify useful ways in which
topological spaces appear (are created)

n apph‘cations

Product spaces, Identification Spaces, Covering Spaces

etc.

[b] We need ways of calculating topological invariants
of such spaces
(It is often easier to determine when topological
Spaces are not equivalent, then when they

are equivalem;)

Homotopy and homology groups of spaces.



Product Spaces

Defn: The product space A X B of two topological spaces
is the set of all ordered pairs
AXB= {(@blacA bchb},

with the following system of open sets:

A subset W of A X B is open if it can be written as a union

of sets of the type U X W, where U is open in A

and W is open B.

R2= R X R with the usual toPoIOQIeS on R

I

/O
ON®




Descarte’s brilliant idea

Take R® with its usual topology
Take the plane with its usual topology
(Open sets are unions of open discs)
Impose a co-ordinate system on the plane
This givs a one-to-one and onto function f from

RZ to the plane

.......

....... 1-1 map

......

f is not just one-to-one and onto but is

actually a homeomorphism




bspace Topolo

Defn: Let B be a subset of a tOPOlOgTCéI space A. The
subspace tOPOlOgy on B is the toPoIogy that
W is an open set in B if and only if

W =B (0 Z, where Z is open in A.

\A/arningz W may not be open in the t0pology of A




Sgbgpace l oPoI09¥

B = closed unit Square in the plane

W is not open in the plane but is open in B



Identification S paces

Intuition: If you glue opposite sides of a square

you get a cylinder

Every point on the glued
eclge comes from a pair of
Every point points in the square

not on the gluecl
eclge comes from
A single point in
the square

Every point in the square goes
to exactly one point in the
cylinder



Identificatio aces

Defn: Let X be a topological space
Let P be a family of disjoint subsets of X such that
VP =X
Let Y be a set whose points are members of P
Let p: X => Y be the map that takes every point of X
to the subset containing Y
Let a subset O of Y be open if and only if p—1 (0) is

open in Y

Under these conditions Y is a tOPOlOgiCal space with the

identification LOPOIO%¥. (Y is an identification

space)






Identification Spaces




Identificatio aces
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An extention of this idea gives us a

manifold



Let f: X => Y be an onto and continuous function,
(and suppose that Y has the largest topology for which f is

-1
continuous), then f partitions X according to £ (y) , y e Y.

The technical condition is satisfied if X is compact and Y is

Hausfdorf

Let Y* be the identification space associated with the

partition.

Theorem: Y* is homeomorphic to Y

e

“

X 4




Further TOPO|O€¥

Just as we generalized the notions of open sets and continuous
functions, we can generlize the notions of connected and

COI’Y\PaCT, sets

Connectivity 1S AQ toPoIo§|‘cal nvariant

Invariants are important for showing when two tOPologfcal

spaces are not homeomorphic.

The key to cloing all of this is to generalize common notions
by using a set of formal properties.
surface

derivatives
vector

Knowing which properties to use takes genius.




