Further Topology in Plain English
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Specifying open sets is equivalent to specifying
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Key Point

Topological equivalences are very hard to grasp intuitively.

We need formal technigues for cloing this:

[a] We need to indentify useful ways in which
topological spaces appear (are created)

n apph‘cations

Product spaces, Identification Spaces, Covering Spaces

etc.

[b] We need ways of calculating topological invariants
of such spaces
(It is often easier to determine when topological
Spaces are not equivalent, then when they

are equivalem;)

Homotopy and homology groups of spaces.



bspace Topolo

Defn: Let B be a subset of a tOPOlOgTCéI space A. The
subspace tOPOlOgy on B is the toPoIogy that
W is an open set in B if and only if

W =B (0 Z, where Z is open in A.

\A/arningz W may not be open in the t0pology of A




Sgbgpace l oPoI09¥

B = closed unit Square in the plane

W is not open in the plane but is open in B



Product Spaces

Defn: If A and B are sets, then their product A X B is

the set

AXB= {(@blaeA, bch}

M, : AXB ->A T,(ab) =2

M, : AXB >B  TMf@b) =b

What we want:

A sequence (an,bn)is convergent in A X B if and
only if an is convergent in A and by is convergent

in B.

A set 0 C A XBis open if and only if its projections on

A and B are open.



Product Spaces

Defn: The product space A X B of two topological spaces
is the set of all ordered pairs
AXB= {(@blacA bchl}

with the following system of open sets:

A subset W of A X B is open if its projections on A and

B are open.

Theorem: The projection functions are continuous




Product Spaces

ow _Should we visualize this?

For a fixed a e A, the set {(3,b), b e B} looks just
like B

For a fixed b € B, the set {(3,b), a € A} looks just like

%
=

RZ= R X R with the usual t0po|09|es on
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Descarte’s brilliant idea

Take R® with its usual topology
Take the plane with its usual topology
(Open sets are unions of open discs)
Impose a co-ordinate system on the plane
This givs a one-to-one and onto function f from

RZ to the plane

.......

....... 1-1 map

......

f is not just one-to-one and onto but is

actually a homeomorphism




Identification S paces

Intuition: If you glue opposite sides of a square

you get a cylinder

Every Point in the Square goes
to exactly one point in the
cylinder

Every point on the glued
eclge comes from a pair of
Every point points in the square

not on the gluecl

eclge comes from

A single point in \

the square Each element of this
space is a subset of the
Square

The new space is composed from digjoint subsets of the
original space



Identificatio aces

Defn: Let X be a toPOIOQICaI space

Let Pa be a family of disjoint subsets of X such that
U P,= X
a

Let Y be a set whose points are members of Pa

Let p: X => Y be the map that takes every point of X
to the subset com:aim‘ng Y

Let & subset O of Y be open If and only if p—1 (0) is

open in Y

Under these conditions Y is a tOPOlOgiCal space with the

identification LOPOIO%¥. (Y is an identification

space)






Identification Spaces




Identificatio aces

These are called
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An extention of this idea gives us a

manifold



A really cool theorem

Let f: X => Y be an onto and continuous function,
(and suppose that Y has the largest topology for which f is
-1
continuous), then f partitions X according to f (y) ,y c Y.

The technical condition is satisfied if X is compact and Y is

Hausdorf

Let Y* be the identification space associated with the

partition.

Theorem: Y* is homeomorphic to Y




L. evel Sets
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Level sets are connected exactly like R !




evel Sets

f=sin(2 Pl X sin(2 pi
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| evel Sets

f=sin(2 pi x) sin(2 pi v)
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D Open Set

Level Set

| Another level set approaching the first
|
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2.0

Level Sets

f=sin(2 pi x) siN(2 pi v)
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L.evel Sets

f=sin(2 pi x) sin(2 pi vy)
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Further TOPO|O€¥

Just as we generalized the notions of open sets and continuous
functions, we can generlize the notions of connected and

COI’Y\PaCT, sets

Connectivity 1S AQ toPoIo§|‘cal nvariant

Invariants are important for showing when two tOPologfcal

spaces are not homeomorphic.

The key to cloing all of this is to generalize common notions
by using a set of formal properties.
surface

derivatives
vector

Knowing which properties to use takes genius.




