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Keep this in mind:

Specifying open sets is equivalent to  specifying 

convergent sequences



Key Point

Topological equivalences are very hard to grasp intuitively.

We need formal techniques for doing this:

[a] We need to indentify useful ways in which 

topological spaces appear (are created)

in applications

Product spaces, Identification Spaces, Covering Spaces

etc.

[b] We need ways of calculating topological invariants

of such spaces

  (It is often easier to determine when topological 

spaces are not equivalent, then when they

are equivalent)

Homotopy and homology groups of spaces.



Subspace Topology

Defn: Let B be a subset of a topological space A. The 

subspace topology on B is the topology that 

W is an open set in B if and only if 

W = B    Z, where Z is open in A.
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Warning: W may not be open in the topology of A



Subspace Topology

B = closed unit square in the plane
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W is not open in the plane but is open in B



Product Spaces

Defn:  If A and B are sets, then their product A X B is 

the set 

A X B =  { (a,b) | a c A,  b C B}

Π1 :  A X B  −> A       ((a,b)) = aΠ1

:  A X B  −> B       ((a,b)) = bΠ2 Π2

A sequence  (a  ,b  ) is convergent in A X B if and 

  only if  a   is convergent in A and b   is convergent 

  in B.

n n

n n

A set O C A X B is open if and only if its projections on 

A and B are open.

What we want:



Product Spaces

Defn: The product space A X B of two topological spaces

is the set of all ordered pairs 

A X B =  { (a,b) | a c A  b c B }, 

with the following system of open sets:

A subset W of A X B is open if its projections on A and

B are open.

Theorem:  The projection functions are continuous



Product Spaces

R  =  R X R  with the usual topologies on R
2
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How should we visualize this?

For a fixed  a c A,  the set {(a,b), b c B} looks just 
like B

For a fixed b c B, the set {(a,b), a C A} looks just like 
like A



Descarte’s brilliant idea

Take R  with its usual topology

Take the plane with its usual topology 

(Open sets are unions of open discs)

Impose a co−ordinate system on the plane

This givs a one−to−one and onto function f from 

R  to the plane 
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......
......

1−1 map

f is not just one−to−one and onto but is 

actually a homeomorphism



Identification Spaces

Intuition:  If you glue opposite sides of a square

you get a cylinder

Every point
not on the glued 
edge comes from
a single point in
the square

Every point on the glued
edge comes from a pair of
points in the square

Every point in the square goes
to exactly one point in the 
cylinder

Each element of this 
space is a subset of the 
square

The new space is composed from disjoint subsets of the 
original space



Identification Spaces

Defn: Let X be a topological space

     Let P be a family of disjoint subsets of X such that 

U P = X,

    Let Y be a set whose points are members of P

    Let p: X −> Y be the map that takes every point of X

to the subset containing Y

    Let a subset O of Y be open if and only if p  (O) is

open in Y

Under these conditions Y is a topological space with the

identification topology. (Y is an identification

space)
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Identification Spaces



Identification Spaces



Identification Spaces

An extention of this idea gives us a 

manifold

These are called

attachment maps



A really cool theorem

Let f: X −> Y be an onto and continuous function, 

(and suppose that Y has the largest topology for which f is

continuous), then f partitions X according to f  (y) , y c Y.

The technical condition is satisfied if X is compact and Y is 

Hausdorf

Let Y* be the identification space associated with the

partition.

Theorem: Y* is homeomorphic to Y
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Level Sets
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Level sets are connected exactly like R !!



Level Sets
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Level Sets
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Level Set

Open Set

Another level set approaching the first
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Level Sets
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Further Topology

Just as we generalized the notions of open sets and continuous

functions, we can generlize the notions of connected and 

compact sets 

Connectivity is a topological invariant

Invariants are important for showing when two topological 

spaces are not homeomorphic.

The key to doing all of this is to generalize common notions

by using a set of formal properties. 

surface
derivatives
vector

Knowing which properties to use takes genius.


