Tangent Spaces in Plain English

Hemant D. Tagare

Tangent plane to a surface

How do we generalize this?

Vector Space

The Euclìdean n−space (Rⁿ) ìs an example of an n−dìmensìonal real−vector space.

Isomorphic Vector Spaces

Defn: Two vector spaces are isomorphic if there is a 1−1 mapping between them that conserves addition.

$$
f(x +_{\chi} y) = f(x) +_{\gamma} f(y)
$$

Isomorphic means "they are really the same space"

Theorem: Two real vector spaces are isomorphic if and only if they have the same dimension.

Theorem: All n−dimensional vector spaces are isomorphic to

Isomorphic Vector Spaces

The basis vectors i_1, i_2, \ldots, i_d do not have a numerical formula

Example

The set of all directional derivative operators at a

point form a linear vector space

$$
\frac{d}{dt} = \frac{d}{dx} + b \frac{d}{dy}
$$

and the contract of the contract of

Tangent plane to a surface

Surface

Manifold

Observation 1

Let $C(t)$ be a curve on the surface passing through p for $t=0$ Then $\frac{dS(V)}{dt}$ is the tangent vector. dC(t) dt

 Multiplying the tangent vector by a means reparametrizing at a times the speed

 Adding two tangent vectors means finding a curve such that its tangent vector at p is the (Euclidean) sum of the original tangent vectors. (NEEDS THEOREM)

The tangent plane is the vector space of tangents to curves at p.

Addition of tangent vectors

Theorem: The addition of tangent vectors is well−defined

Proof: $C_1(t) = \Phi(C_1^*(t)),$ $C_2(t) = \Phi(C_2^*(t))$ Let $C(t) = aC_1(t) + bC_2(t)$, Then $\Phi(\mathcal{C}^\star(t))$ is a curve on the surface passing through point P. Call it C(t). $*$ $*$ * $*$ * * $dC(t) = d\Phi \, dC^*(t) = d\Phi$ (a $dC_1^*(t) + b \, dC_2^*(t)$) dt dt dt dt = a dΦ dC^{*} (t) + b dΦ dC^{*} (t) = a dC₁ (t) + b dC₂ (t) $1(t) + D dC_2$ $x^*(t) = d\Phi$ (a d($x^*(t) + b$ d(x^* $\frac{1}{2}$ (t) + b d Φ dC^{*}

dt dt dt dt dt

 $\frac{1}{1}$ (t) + b d Ψ d($\frac{2}{1}$ (t) = a d($\frac{1}{1}$ (t) + b d($\frac{2}{1}$

Tangent vectors also act as derivatives via the chain rule

f is a differentiable function from the surface to the real line $f*(t) = f(C(t))$ $(f* = f \circ C)$ $d_C f*(t)$ = $dC_x(t)$ $\frac{df}{dt}$ + $\frac{dC_y(t)}{dt}$ df + $\frac{dC_z(t)}{dt}$ dt dx dt dy dt dz $C + \star(t)$ = $d(x(t))$ dt + $d(y(t))$ dt + $d(z)$ t=0 $\sqrt{1}$ t=0

Components of tangent vector

Observation 2

Think of $\,$ d $_{\mathsf{C}}\mathsf{l}\,$] as an operator associated with C that takes $\,$ as input a differential function on the surface and produces as an output the derivative of the function at p.

$$
d_{\mathcal{C}}[f] = \frac{d f(\mathcal{C}(t))}{dt} \Big|_{t=0}
$$

Two operators $\mathsf{d}_{\mathsf{C}_1}[\mathsf{f}]$ and $\mathsf{d}_{\mathsf{C}_2}[\mathsf{f}]$ are equal if and only if they give the same output for every differentiable function f

Observation 2

The set of all d operators forms a vector space

with suitably defined addition and multiplication

$$
d_{C_1} + d_{C_2} = d_C
$$
 where C has a tangent vector which is
the sum of tangent vectors of C₁ and C₂
and
 $d_C = d_{Ca}$

Any d operator can be written as $\mathsf{ad}_{\mathsf{C}_1}$ + $\mathsf{bd}_{\mathsf{C}_2}$ for linearly independent operators $\mathsf{d}\, \mathsf{c}_1^{}$ and $\mathsf{d}\, \mathsf{c}_2^{}$.

The space of d operators is isomorphic to the tangent space

Tangent Space and d−space

Curve on a Manifold

Note: No arc−lengths

Curve on a Manifold

Tangent vector at P

Defn: Two curves are tangent at P if for every f

 $df(C_1(t)) = df(C_2(t))$ dt dt <u>1(t))</u> = df(C2(t)) Note: No arc−lengths

Defn: The set of all curves tangent at P define a differential operator $v_{C_1} = v_{C_2} =$ called the tangent vector at P. $\vee_C [f]$ gives the derivative of f along C Notation

Tangent space at P

Defn: The set of all tangent vectors at P is the tangent space at P.

Convert it into a vector space by suitably (in the derivative sense) defining multiplication by scalar and addition

$$
a v_C = v_{Ca}
$$

Addition of tangent vectors

Standard Representation

