Differential Geometry of Curves

- local analysis: differential calculus.
- global analysis: influence of local properties on the behavior of the entire curve.

Parameterized Curve

Definition:

a (infinitely) differentiable $map \ \alpha : I \to R^3$ of an open interval I = (a,b) of real line R into R^3 .

- $\bullet \ \alpha(t) = (x(t), y(t), z(t)).$
- tangent vector: $\alpha'(t) = (x'(t), y'(t), z'(t))$.
- trace: the image set $\alpha(I) \subset \mathbb{R}^3$.

Parameterized Curve

Remarks:

- ullet the map lpha needs not to be one-to-one.
- \bullet α is *simple* if the map is one-to-one.
- distinct curves can have the same trace:

$$\alpha(t) = (\cos(t), \sin(t))$$

$$\beta(t) = (\cos(2t), \sin(2t))$$

Regular Curve

Definition:

a parameterized curve $\alpha:I\to R^3$ is said to be regular if $\alpha'(t)\neq 0$ for all $t\in I$.

- for the study of curve, it is essential that the curve is regular.
- singular point: where $\alpha'(t) = 0$.

Arc Length

Definition:

given $t \in I$, the arc length of a regular curve $\alpha: I \to R^3$, from the point t_o , is

$$s(t) = \int_{t_0}^{t} |\alpha'(t)| dt$$

where

$$|\alpha'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}$$

is the length of the vector $\alpha'(t)$.

- since $\alpha'(t) \neq 0$, s(t) is a differentiable function of t, and $ds/dt = |\alpha'(t)|$.
- if the curve is arc length parameterized, then $ds/dt = 1 = |\alpha'(t)|$.
- conversely, if $|\alpha'(t)| \equiv 1$, then $s = t t_o$.

Curves Parameterized by Arc Length

Definition:

let $\alpha: I \to R^3$ be a curve parameterized by arc length $s \in I$, the number $|\alpha''(s)| = k(s)$ is called the *curvature* of α at s.

- at point where $k(s) \neq 0$, the normal vector n(s) in the direction of $\alpha''(s)$ is well defined by $\alpha''(s) = k(s)n(s)$.
- the plane determined by $\alpha'(s)$ and n(s) is called the osculating plane.
- binormal vector: $b(s) = t(s) \times n(s)$

Curves Parameterized by Arc Length

Definition:

let $\alpha: I \to R^3$ be a curve parameterized by arc length s such that $\alpha''(s) \neq 0, s \in I$, the number $\tau(s)$ defined by $b'(s) = \tau(s)n(s)$ is called the torsion of α at s.

- since $b'(s) = t'(s) \times n(s) + t(s) \times n'(s) = t(s) \times n'(s)$ hence, b'(s) is normal to t(s), and is parallel to n(s), and we may write $b'(s) = \tau(s)n(s)$
- if α is a plane curve, then the plane of the curve agrees with the osculating plane, hence $\tau = 0$.

• conversely, if $\tau \equiv 0$ and $k \neq 0$, $b(s) = b_o = constant$, and therefore $(\alpha(s) \bullet b_o)' = \alpha'(s) \bullet b_o = 0$ it follows that $\alpha(s) \bullet b_o = constant$, and hence $\alpha(s)$ is contained in a plane normal to b_o .

Frenet Trihedron

To each value of the parameter s, there are three orthogonal unit vectors t(s), n(s), b(s). The derivatives, called *Frenet Formulas*, are

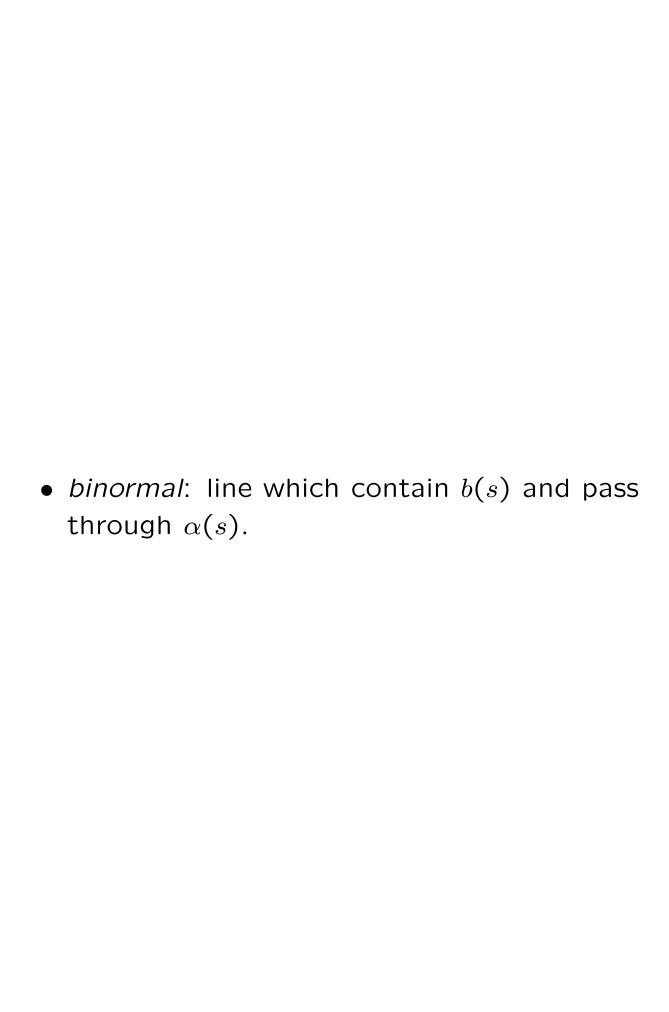
$$t'(s) = kn$$

$$b'(s) = \tau n$$

$$(n'(s) = b'(s) \times t(s) + b(s) \times t'(s) = -\tau b - kt)$$

when expressed in the basis $\{t, n, b\}$, yield geometrical entities (curvature and torsion) about the behavior of α in a neighborhood of s.

- rectifying plane: tb plane.
- normal plane: nb plane.
- principal normal: line which contain n(s) and pass through $\alpha(s)$.



Fundamental Theorem

Given differentiable functions k(s) > 0 and $\tau(s), s \in I$, there exists a regular parameterized curve $\alpha: I \to R^3$ such that s is the arc length, k(s) is the curvature, and $\tau(s)$ is the torsion of α . Moreover, any other curve $\bar{\alpha}$ satisfying the same conditions differs from α by a rigid motion.

• for plane curve, it is possible to give the curvature k a sign: under the basis $\{t(s), n(s)\}$, k is defined by

$$dt/ds = kn$$

• given a regular parameterized curve $\alpha:I\to R^3$ (not necessary parameterized by arc length), it is possible to obtain a curve $\beta:J\to R^3$ parameterized by arc length which has the same trace as α . (this all the extension of all local concepts to regular curves with an arbitrary parameter).

Local Canonical Form

Natural Local Coordinate system: the Frenet trihedron.

Taylor expansion:

$$\alpha(s) = \alpha(0) + s\alpha'(0) + \frac{s^2}{2}\alpha''(0) + \frac{s^3}{6}\alpha'''(0) + R(1)$$
 since $\alpha'(0) = t, \alpha''(0) = kn, \alpha'''(0) = (kn)' = k'n - k^2t - k\tau b$, we have

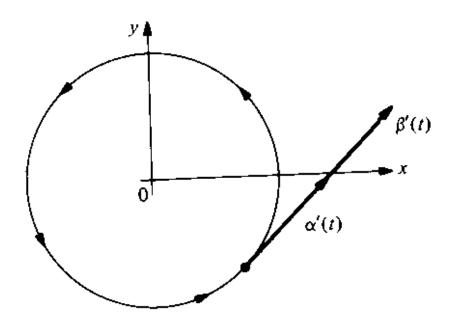
$$\alpha(s) - \alpha(0) = \left(s - \frac{k^2 s^3}{6}\right)t + \left(\frac{s^2 k}{2} + \frac{s^3 k'}{6}\right)n - k\tau b + R$$

where all terms are computed at s = 0. For $\alpha(t) = (x(t), y(t), z(t))$,

$$x(s) = s - \frac{k^2 s^3}{6} + R_x$$

$$y(s) = \frac{k}{2} s^2 + \frac{k' s^3}{6} + R_y$$

$$z(s) = -\frac{k\tau}{6} s^3 + R_z$$



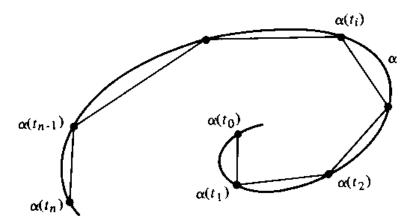


Figure 1-12

