
Proposition 2 (Meusnier Theorem:)
All curve lying on a surface S and having at a

given point p ∈ S the same tangent line have

at this point the same normal curvature.

This proposition allows us to discuss the nor-

mal curvature along a given direction at p.

Given a unit vector v ∈ Tp(S), the intersec-

tion of S with the plane containing v and N(p)

is called the normal section of S at p along v.



Given a self-adjoint linear map A : V → V ,

there exists an orthonormal basis for V such

that relative to that basis the matrix of A is

a diagonal matrix. Furthermore, the elements

on the diagonal are the maximum and the min-

imum of the corresponding quadratic form re-

stricted to the unit circle of V .



For each p ∈ S, there exists an orthonormal ba-

sis {e1, e2} of Tp(S) such that dNp(e1) = −k1e1,

dNp(e2) = −k2e2. Moreover, k1 and k2 (k1 ≥

k2) are the maximum and minimum of the sec-

ond fundamental for IIp restricted to the unit

circle of Tp(S); that is, they are the extreme

values of the normal curvature at p.

Definition 7:
The maximum normal curvature k1 and the

minimum normal curvature k2 are called the

principal curvatures at p; the corresponding di-

rections, that is, the directions given by the

eigenvectors e1 and e2, are called the principal

directions at p.



The knowledge of the principal curvatures at

p allows us to compute the normal curvature

along a given direction of Tp(S). Let v ∈ Tp(S)

with |v| = 1, and since e1 and e2 form an or-

thonormal basis of Tp(S), we have

v = e1cosθ+ e2sinθ

where θ is the angle from e1 to v in the ori-

entation of Tp(S). The normal curvature kn

along v is given by the Euler formula:

kn = IIp(v) = − < dNp(v), v >

= − < dNp(e1cosθ+ e2sinθ), e1cosθ+ e2sinθ >

= < e1k1cosθ+ e2k2sinθ, e1cosθ+ e2sinθ >

= k1cos
2θ+ k2sin

2θ

The Euler formula is just the expression of the

second fundamental form in the basis {e1, e2}.



Definition 8:
Let p ∈ S and let dNp : Tp(S) → Tp(S) be the

differential of the Gauss map. The determi-

nant of dNp is the Gaussian curvature K of S

at p. The negative of half of the trace of dNp

is called the mean curvature H of S at p.

In term of the principal curvatures, we have

K = k1k2

H =
k1+ k2
2



Definition 9:
A point of a surface S is called:

• Elliptic: if det(dNp) > 0.

• Hyperbolic: if det(dNp) < 0.

• Parabolic: if det(dNp) = 0, with dNp 6= 0.

• Planar: if dNp = 0.

Definition 10:
If at p ∈ S, k1 = k2, then p is called an umbilical

point of S; in particular, the planar points are

umbilical points.



Definition 11 (Dupin indicatrix):
Let p be a point in S. The Dupin indicatrix

at p is the set of vectors w of Tp(S) such that

IIp(w) = ±1.

In more convenient form, let (ξ, η) be the Carte-

sian coordinates of Tp(S) in the orthonormal

basis {e1, e2}, where e1 and e2 are eigenvec-

tors of dNp. Given w ∈ Tp(S), let ρ and θ be

the polar coordinates defined by w = ρv, with

|v| = 1 and v = e1cosθ + e2sinθ if ρ 6= 0. By

Euler formula,

±1 = IIp(w) = ρ2IIp(v)

= k1ρ
2cos2θ+ k2ρ

2sin2θ

= k1ξ
2+ k2η

2

where w = ξe1 + ηe2. Hence, the Dupin indi-

catrix is a union of conics in Tp(S).



• For an elliptic point, the Dupin indicatrix is

an ellipse, and it degenerates into a circle

if the point is an umbilical nonplanar point

(k1 = k2 6= 0).

• For a hyperbolic point, the Dupin indicatrix

is made up of two hyperbolas with a com-

mon pair of asymptotic lines (zero normal

curvature).

• For a parabolic point, the Dupin indicatrix

degenerates into a pair of parallel lines.



Definition 12:
Let p be a point in S. An asymptotic direction

of S at p is a direction of Tp(S) for which the

normal curvature is zero. An asymptotic curve

of S is a regular connected curve C ⊂ S such

that for each p ∈ C the tangent line of C at p

is an asymptotic direction.

Definition 13:
Let p be a point in S. Two nonzero vectors

w1, w2 ∈ Tp(S) are conjugate if < dNp(w1), w2 >=<

w1, dNp(w2) >= 0. Two directions r1, r2 at

p are conjugate if a pair of nonzero vectors

w1, w2 parallel to r1 and r2, respectively, are

conjugate.



Gauss Map in Local Coordinates

From here on, all parameterizations x : U ⊂

R2 → S are assumed to be compatible with

the orientation N of S; that is, in x(U),

N =
xu × xv

|xu × xv|

Let x(u, v) be a parameterization at a point

p ∈ S, and let α(t) = x(u(t), v(t)) be a param-

eterized curve in S, with α(0) = p.



The tangent vector to α(t) at p is

α′ = xuu
′+ xvv

′

and

dN(α′) = N ′(u(t), v(t)) = Nuu
′+Nvv

′

Since Nu and Nv belong to Tp(S), we may write

Nu = a11xu+ a21xv

Nv = a12xu+ a22xv

and therefore

dN(α′) = (a11u
′+ a12v

′)xu+ (a21u
′+ a22v

′)xv

hence,

dN

(

u′

v′

)

=

(

a11 a12
a21 a22

)(

u′

v′

)

This shows that in the basis {xu,xv}, dN is

given by the matrix (aij) which is not necessar-

ily symmetric, unless {xu,xv} is an orthonormal

basis.



In the basis {xu,xv}, the second fundamental

form is given by

IIp(α
′) = − < dN(α′), α′ >

= − < Nuu
′+Nvv

′,xuu
′+ xvv

′ >

= e(u′)2+2fu′v′+ g(v′)2

where, since < N,xu >=< N,xv >= 0,

e = − < Nu,xu >=< N,xuu >

f = − < Nv,xu >=< N,xuv >= − < Nu,xv >

g = − < Nv,xv >=< N,xvv >



Weingarten Mapping:
The matrix [β] = (aij) in the form

[β] = −

(

e f
f g

)(

E F
F G

)−1

is called theWeingarten mapping matrix or the

shape operator matrix of the surface. This ma-

trix combines the first and second fundamental

forms into one matrix, and determines surface

shape by relating the intrinsic geometry of the

surface to the Euclidean (extrinsic) geometry

of the embedding space.

The Gaussian curvature of a surface can be

obtained from the Weingarten mapping matrix

as its determinant:

K = det[β] =
eg − f2

EG− F2

And the mean curvature is similarly half of the

trace of the Weingarten mapping matrix:

H =
tr[β]

2
=

eG− 2fF + gE

2(EG− F2)



Koenderink Shape Index:
The signs of the Gaussian, mean and princi-

pal curvatures are often used to determine ba-

sic surface types and singular points such as

umbilical points. Furthermore, the numerical

relationship between the two principal curva-

tures are used in more detailed classification

of surfaces by Koenderink, where a shape in-

dex function is defined as

si =
2

π
arctan

κ2+ κ1

κ2 − κ1
, (κ2 ≥ κ1)

This way, all surface patches, except for plane

patches where the two principal curvatures equal

zero, are mapped onto si ∈ [−1,+1]. This

shape index function has many nice proper-

ties with regards to the classification of surface

types:

• The shape index is scale invariant, i.e. two

spherical patches with different radii will

have same shape index values.



• Convexities and concavities are on the op-

posite sides of the shape index scale, sep-

arated by saddle-like shapes.

• Two shapes from which the shape index

differs only in sign represent complemen-

tary pairs will fit to each other as stamp

and mold if they are of same scale.



spherical trough   rut    saddle  saddle   saddle  ridge    dome  spherical
   cup       rut   ridge         cap

Surface Type Shape Index Range

Spherical Cup si ∈ [−1,−7/8)
Trough si ∈ [−7/8,−5/8)
Rut si ∈ [−5/8,−3/8)
Saddle Rut si ∈ [−3/8,−1/8)
Saddle si ∈ [−1/8,+1/8)
Saddle Ridge si ∈ [+1/8,+3/8)
Ridge si ∈ [+3/8,+5/8)
Dome si ∈ [+5/8,+7/8)
Spherical Cap si ∈ [+7/8,+1]



Shape Characterization of Discrete

Surfaces

For a regular surface S ⊂ R3 and p ∈ S, there

always exists a neighborhood V of p in S such

that V is the graph of a differentiable function

which has one of the following three forms:

z = h(x, y)

y = s(x, z)

x = t(y, z)

Hence, given a point p of a surface S, we can

choose the coordinate axis of R3 such that the

origin O of the coordinates is at p and the z

axis is directed along the outward normal of

S at p (thus, the xy plane agrees with the

tangent plane Tp(S)). It follows that a neigh-

borhood of p in S can be represented in the

form z = h(x, y), (x, y) ∈ U ⊂ R2, where U is

an open set and h is a differentiable function,

with h(0,0) = 0, hx(0,0) = 0, hy(0,0) = 0.



In this case, the local surface is parameterized

by

x(u, v) = (u, v, h(u, v)), (u, v) ∈ U

where u = x, v = y. It can be shown that

xu = (1,0, hu)

xv = (0,1, hv)

xuu = (0,0, huu)

xuv = (0,0, huv)

xvv = (0,0, hvv)

Thus, the normal vector at (x, y) is

N(x, y) =
(−hx,−hy,1)

(1 + h2
x+ h2

y)
1/2



From the above expressions, it is easy to ob-

tain the coefficients of the first and second

fundamental forms as

E(x, y) = 1+ h2
x

F (x, y) = hxhy

G(x, y) = 1+ h2
y

e(x, y) =
hxx

(1 + h2
x+ h2

y)
1/2

f(x, y) =
hxy

(1 + h2
x+ h2

y)
1/2

g(x, y) =
hyy

(1 + h2
x+ h2

y)
1/2

Hence, the curvatures of the surface can be

derived from the Weingarten mapping matrix

computed from these coefficients.


