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A systematic approach towards the problem of designing integrated methods for image

segmentation has been developed in this thesis. This is aimed towards the analysis of

underlying structures in an image which is crucial for a variety of image analysis and

computer vision applications. However, a robust identification and measurement of

such structure is not always achievable by using a single technique that depends on a

single image feature. Thus, it is necessary to make use of various image features, such

as gradients, curvatures, homogeneity of intensity values, textures, etc. as well as model-

based information (such as shape). Integration provides a way to make use of the rich

information provided by the various information sources, whereby consistent informa-

tion from the different sources are reinforced while noise and errors are attenuated. As

a first step, integration is achieved in this work by using region information in addi-

tion to gradient information within the deformable boundary finding framework. This

considerably increases the robustness of the final boundary output to noise and initial

estimate. This feature integration paradigm for deformable boundary finding is then

further developed through the addition of curvature information which makes the bound-

ary solution better localized. Next, a more general integration framework is considered,

whereby computational modules are associated with the boundary and region processes

which are simultaneously updated. This is achieved through the use of a new game-



theoretic procedure where the modularity of the underlying objectives are retained. The

integration problem is framed as a family of coupled and coexisting objectives using a

Bayesian strategy whereby the output of one module depends upon the previous outputs

of the other modules. This mode of information sharing, where only the final decisions of

the different modules (decision makers) are broadcast to the other decision makers, is not

only technically more general than other single objective function approaches, but is also

computationally less burdensome especially in cases like the present one where incom-

mensurate objectives are involved. This further improves both the region and boundary

estimates.
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Chapter 1

Introduction

1.1 Introduction to the problem

Segmentation and analysis of underlying structures in an image is of importance in a

variety of image analysis and computer vision applications including robot vision, pattern

recognition and biomedical image processing. However, any individual image analysis tool

is not likely to achieve reliable results under all circumstances. This is especially true

if the images were obtained under different conditions and have different content. This

work is concerned with the precise and robust segmentation of underlying structures from

natural images using integrated methods.

It has been observed that when different segmentation techniques are applied to

an image, they are likely to produce different segmentation maps. Integrated methods

give us ways to resolve these differences, thereby allowing us to make better use of the

rich information provided by the various sources. The idea is that consistent information

from the different sources is reinforced while noise and errors are attenuated.

The bulk of the existing work on image segmentation can be categorized into

1
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two basic approaches: region-based and gradient-based [5]. Region based methods [45]

rely on the homogeneity of spatially dense localized features and other pixel statistics.

Simple thresholding is the most basic and easiest region-based segmentation method

[108, 120]. However even after a careful choice of the threshold [133, 131], for most

practical images that are noisy, thresholding produces poor results. Split and merge

techniques [65, 20] carry out seeded region growing, but under noisy circumstances suffer

from the problems of over-segmentation and are often too sensitive to the choice of the

seed points. Following the seminal work of Geman & Geman [47], Markov Random Field

(MRF) based methods have been widely used by researchers for region segmentation

[47, 41, 40, 91]. While more details about region-based segmentation using the MRF

formalism will be discussed later (chapters 2 and 3), we would like to note here that there

are two commonly used variants of this formalism. The first method employs energy

minimizing techniques [91, 14] to reconstruct a piece-wise flat image from the noisy data

field. The other method is more versatile in the sense that it can deal with homogeneity

in other features like texture (besides grey level intensity values) and uses probabilistic

classification to divide the image. Incidentally, anisotropic diffusion methods [101] can be

used to obtain region estimates similar to the ones obtained via some of the MRF based

methods [91] (see details in the following chapter). Further, while some of the region

methods have performance superior to the others, they share a common problem - that

of over-segmentation and poorly localized region boundaries.

The other group of work uses gradient-based edge detection methods [21, 84]

followed by edge following techniques [107]. Gradient methods concentrate on regions of

the image where there is a sharp local difference in the grey scale values. Thus instead

of looking at the similarities as in the previous region-based case, these methods focus
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on the differences/transitions. However, the problem with these methods is that almost

always they result in false and broken edges. Thus they are likely to produce edges at

locations where there are no objects to be found. This is the case mainly because of the

local nature of the procedure whereby any location where the gradient is high could be

considered to be an edge point even if it is a local noise artifact and is not really a part

of an object boundary. Also, performing a reasonable edge following [107] could often

be very difficult. Local operations without any notion of shape cannot guarantee the

segmentation of whole structures from images without further processing. More details

regarding the various segmentation methods will be provided in Chapter 2.

One of the solutions for the above lies in using deformable whole boundary meth-

ods [116, 62] which rely on the gradient features at a subset of the spatial positions of

an image (near an object boundary). By imposing a global shape to the problem, one

augments missing or noisy local information. Once again, there are a number of whole

boundary methods that can be used [62, 116, 82]. In the snakes method [62, 3] the spatial

coordinates of a continuous deformable curve are adjusted from the initial to the final

position guided by image-derived forces as well as internal spline forces. Improvements to

this basic approach can be found in [87, 33]. The shape-based deformable models intro-

duced in [116] use an orthogonal boundary representation [116] and have the capability

to use shape priors easily. (This is the approach that we have chosen, more details of

which will be provided in chapter 3.) Other shape-based methods such as [37] or [119]

(which in turn is a development based on [116]) use pattern matching techniques to con-

strain both the overall shape and the possible deformations. Recently, a new breed of

topologically adaptable active contour methods [94, 22, 82, 85] and their variants (such

as the reaction-diffusion approach of [121]) have been used that are adaptable to changes
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in the topology of the target object.

This work primarily focuses on segmentation of whole structures from images and

is consequently based on a whole boundary method. However, while the above-mentioned

whole boundary methods are free of broken edges, they still suffer from a variety of

problems similar to that of edge detection as long as they use gradient information alone

to detect the true boundary. Specifically, when the high frequency information in an

image is either noisy or missing, the gradient-based boundary finder tends to drift away

from the actual boundary. This problem becomes acute when the signal to noise ratio

(SNR) is low, because the gradient is a derivative process that amplifies noise. Another

associated problem with these methods is that of initialization. Due to the presence of

other objects in an image and also due to noise, these methods typically need an initial

guess from where they converge to the actual boundary. Especially when the noise is

high, due to the presence of multiple local minima, they may not converge unless the

initialization is very close.

One of the ways to address the problem of a low SNR for deformable bound-

ary finding is through the addition of region information. Since this information can be

obtained (as in the present case) directly from the raw image data (without taking deriva-

tives), it is less susceptible to noise. Also, region information is a more global source of

information since image classification is done based on the statistical properties of the

different regions in an image, unlike the gradient information which only uses the pixel

values of a particular site. This global information also makes the problem more robust

to the problem of poor initialization.

Thus, an integrated deformable boundary finding system using both gradient and

region information is likely to perform better. While the details will be provided in the
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next chapter, we note here that there is a limited amount of previous work available

seeking to integrate region-based methods with boundary-based methods. Among the

various methods [29, 53, 47, 91, 14, 121], only the recent effort of [138] tries to integrate

region and boundary information within a solid mathematical framework even though

the emphasis here is more on the region module.

We take the view that integration is best achieved via mathematical optimization.

In its simplest form, additional information can be introduced as extra constraints within

the same optimization framework. This is similar to the situation in a least squares

fitting problem when extra observations become available. We will define this form of

integration, where the optimization is carried out over the same set of parameters, but

the solution depends on a larger information set (here, image-derived features) as feature

integration (within the deformable boundary finding framework). This is so because of

the use of additional features. Alternatively, a more general approach can be used where

computational modules are associated with the different features. Module parameters are

then updated through the optimization process. This is what we denote the feature-based

module integration framework. Here, parameters associated with the different modules

are updated simultaneously. In the feature integration framework, new features are used

as additional sources of information within the same computational framework (i.e. op-

timization is carried out over the same set of parameters ). However, in feature-based

module integration different computational modules using different information sources

are combined and the optimization is carried out over the parameters of both the mod-

ules. Clearly, feature integration as defined here, thus can be considered to be a special

case of the just defined feature-based module integration framework.

As mentioned before, one of our main goals is to make the boundary estimate more
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robust to noise and poor initialization. Now, since we have already observed that region

information has better noise properties, our first effort involves feature integration within

the boundary finding framework by using the region segmented image as an additional

source of information. A simple way to incorporate this information consists of first

producing the region information and then using this in the boundary finding process

(see chapter 4 for the details). The important thing to note is that the use of this

additional feature do not change the parameters over which the optimization is carried

out.

Our next effort is aimed at addressing yet another problem that often plagues the

gradient-based boundary-finder. Boundary finding often has a tendency to smooth out

the sharp corners in an object resulting in large localization errors. There are a couple

of reasons as to why this happens. First, we emphasize smoothness of the boundary

to reduce the effects of noise. The other is that if we consider the boundary to lie at

locations where the local pixel-wise difference is a maximum, by using a gradient-based

boundary finder we are in fact ignoring all the other higher order information. Higher

order information such as grey level curvature along with gradient could be incorporated

as a further feature in addition to gradient and region homogeneity within the boundary

finding framework (see chapter 5 for the details).

Feature integration within the boundary finding framework improves the boundary

estimate by using the region information as an additional feature besides the gradient

information. If that is indeed the case, the dual situation might be true as well. In

other words, it is likely that using information from the boundary finder as an additional

feature for the region process will refine the region estimate. Now this improved region

information can be fed back to the boundary finder to further improve its output. We can
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continue to do this until the system reaches a stable equilibrium. Clearly, such a feature-

based modular integration would produce a superior output for both the modules than

what we might obtain by feature integration alone. As said before, one can visualize feature

integration as a special case of the more complete feature-based module integration. While

in feature integration the output of one of the computational modules (i.e. boundary

finding) is improved, in the more general case of feature-based modular integration all the

computational models are simultaneously updated.

Thus effectively, we are considering an integrated effort that could potentially

improve both methods through information feedback. However, any integration always

results in a larger, more complicated system. In general, analyzing large and complex

information systems is a daunting task. Probably the easiest way is to divide the system

into functional modules and analyze them separately. Hence, the reverse problem, i.e. the

development of integrated methods often consists of intelligently assembling smaller well-

understood modules, leading to what can correctly be termed integrated systems. Here,

integration refers not only to succinctly describing the mathematical relations between

these modules but also describing algorithms that can perform the integration.

In the general case, we have a team of modules (two for the present segmentation

problem) working in a coordinated fashion in a possibly hostile and uncertain environment

towards common or at least related goals. It is important to note that the members do

not necessarily acquire the same information and thus operate in a decentralized mode of

decision making. The formulation of such a problem consists of modeling the objectives

of the modules as cost functions that have to be optimized. Modeling the uncertain

environment and the possible measurements made by the modules in this environment is

done in the form of a probability space along with a suitable information structure [56].
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If we assume the presence of a common probability space, thereby allowing the

modules to share a similar view of the world, this could lead to probably the most com-

mon method of optimizing multi-objective functions, namely the single objective function

approach. Here, all the objective functions of the different modules are combined into a

single cost function which is then optimized [10]. Besides the single objective approach,

other proposed approaches have been based on artificial intelligence techniques and sys-

tems that are a mixture of mathematical, control-theoretic and algorithmic techniques

[81]. While sometimes such techniques may provide constructive solutions, often their

utility is limited by their inadequate analytic and computationally tractability [18].

While the single objective approach often seems to be the method of choice in the

vision literature [81, 14], we note that there are occasions when it is inadequate or at least

not the best approach. One of the important concerns is the robustness of such models

and the optimum solutions that it produces under small variations in the underlying

assumptions. This could be important especially in situations where the models perceive

the outside world differently i.e. if they have different probability descriptions of the

environment. This would then lead to different expected cost functions for the different

modules, making the use of a single objective approach at best sub-optimal. A big

advantage of treating the problem within a game- theoretic framework, in particular as

a stochastic non-zero sum game with the modules taking on the roles of decision makers

having different subjective probability measures [7], is that there is no need for calculating

the joint probability distribution function.

Another advantage of using this game-theoretic approach is that any one module

need not know the cost functions of the other modules. This approach keeps them de-

coupled. The flow of information is restricted to passing only the results of the decisions
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between the modules. This allows us to combine incommensurate objectives through this

approach which might not be possible using the conventional single objective approach.

However, the outputs of the two approaches (i.e. the game theoretic approach and the

single objective approach) may not necessarily be the same as has been pointed out in

[17]. Thus the application of either will depend on the appropriateness of the solution

that might be achieved using either of the methods. Further, the decoupled nature of the

system has the practical benefit of being computationally light.

All this is of interest for our segmentation problem. The probability distributions

of the gradient and the region process are definitely different, even if they are related.

Thus, in order to use the global objective function appropriately, we need to calculate

the joint probability distribution function of the boundary and the region process, which

in itself is very complicated. On the other hand, using the game theoretic approach, this

problem can be circumvented because when optimizing the cost function of one of the

methods, the output of the other is only used as a prior, in the maximum a posteriori

framework that we use. Thus, the boundary and region processes remain reasonably

decoupled, yet they influence each other through mutual information sharing.

Despite resulting in complementary sets of information, the region and boundary

processes involve conflicting and incommensurate objectives, as region-based segmenta-

tion attempts to capitalize on homogeneity properties whereas boundary finding tech-

niques use the non-homogeneity of the same data as a guide. Thus, combining them into

a global objective function is non-trivial. However, as mentioned before, using the game

theoretic framework, there isn’t any need to combine them. Further, it is also impor-

tant that it is computationally light because a large number of parameters are generally

involved.
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1.2 Main Contributions

This thesis is concerned with robust and reliable methods for image segmentation. We

have developed a unique new approach to integration that can accommodate appropriate

features and feature-based modules resulting in segmentation methods that are consider-

ably superior to the existing methods. To obviate some of the problems associated with

integrating image segmentation methods (which were mentioned in the last section), our

work looks into the problem from two inter-related viewpoints, feature integration and

feature-based module integration. An important thing to note is that all the optimizations

are motivated by the maximum a posteriori (MAP) formalism. The main contributions

of the work are listed below.

First, we have developed an integrated deformable boundary finding method that

uses region information in addition to the gradient to locate the final boundary. We have

done this by emphasizing region homogeneity within the area enclosed by the deformable

boundary along with high gradient at the boundary location. It is not necessary for the

regions to be perfectly homogeneous, but instead assumes that the intra-region variation

should be smaller than the inter-region variation. This use of region information has

resulted in a method that is significantly more robust to both noise and poor initializa-

tion than the gradient-based boundary finder of [116] as the experiments in chapter 4

demonstrate. We achieved this without significantly increasing the computational over-

head through appropriate application of Greens theorem. We note that the above was

done within the feature integration paradigm defined before and has been reported in

chapter 4.

Second, we have further developed the deformable boundary finder to improve its

localization accuracy by using curvature, a second order feature in addition to gradient
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and region information. This was done once again, within the feature integration frame-

work. Especially for sharply bending objects, it resulted in considerable improvement.

This has been reported in chapter 5. In this chapter, we have also developed a model to

select which feature should be emphasized and under what circumstances via theoretical

and experimental analysis.

Next, we have developed a feature-based module integration framework for the

image segmentation problem using game theory. This section of the work reported in

chapter 6 makes two important contributions. The use of game theory within the image

analysis setting was first introduced in [18]. The primary contribution here is in extending

the game theoretic framework to integrate region and boundary procedures. Computa-

tional modules assigned to the above processes took on the role of players and the final

decision was obtained as the Nash Equilibrium of the resulting non-zero sum two-person

non-cooperative game. The second contribution relates to the conditions for the existence

and stability of the Nash equilibrium for problems like the present one (i.e. integrating

boundary and region process) where the cost functions of the two modules take a partic-

ular structure. We state and prove the condition under which cost functions having the

above structure will have a stable Nash equilibrium. It shows how the existence of the

Nash equilibrium can be controlled by the appropriate choice of constants.

Finally, we have developed a new approach to 3D deformable surface finding that

uses in addition to prior and gradient information, region information as well. We took

the Fourier parameterized surface finding algorithm developed in [118] and integrated it

with region based methods in a way similar to the two dimensional case discussed earlier.

This made the surface finding procedure more robust to noise and initialization.
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1.3 Overview

This thesis investigates integration methods for robust and reliable image segmentation.

The present chapter serves to introduce the problem of integration and our analysis as

to what the possible solutions could be.

Chapter 2 reviews the relevant background literature on the different methods for

image segmentation.

In chapter 3 we discuss in mathematical detail the segmentation methods, both

region-based and boundary-based that we use in the subsequent chapters. It is these

methods that we integrate. In particular, the Fourier parameterized deformable boundary

finding method and Markov Random Field based region segmentation techniques that we

use throughout the rest of the thesis are discussed here.

Chapter 4 formulates how region information can be integrated within a de-

formable boundary finding framework [25, 24, 26]. The motivation and the mathematical

formulation is followed by extensive experimental analysis to demonstrate decisively that

the Greens theorem-based formulation indeed improves the performance of the deformable

boundary finder both for synthetic as well as real images.

We extend the feature integration paradigm (for deformable boundary finding)

in chapter 5 by introducing curvature into the deformable boundary finding framework

[27]. We also present analytical as well as theoretical results to show how much of which

information should be used under a particular circumstance.

Chapter 6 takes up the problem of modular integration which is considered to be

a more complete method for image segmentation, with a view towards generating better

boundary solutions. Game theoretic modular integration is suggested as an alternative

to the traditional single global objective function minimization procedure. The chapter
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starts with some of the basic definitions of Game Theory which will be necessary for the

subsequent development. This is followed by modeling the segmentation problem as a

two person game where the computational models take on the roles of decision makers

[23]. We also discuss the stability and existence of the Nash equilibria.

Finally, in chapter 7, we extend some of the integration methods that we had

suggested to surface finding for three dimensional images. We briefly explain the rele-

vant surface parameterization, give the mathematical formulation and show experimental

results.



Chapter 2

Related Work

In this chapter, we describe briefly the available literature on the topics that are relevant

to this work. Over the years a number of different approaches has been developed for

image segmentation, excellent reviews of which can be found in [45, 55, 97]. Here, we

first will describe some of those approaches. Next, we will describe briefly the available

work on integrated image segmentation methods which have recently become popular

in view of their ability to overcome some of the limitations faced by any one of these

above-mentioned methods. In the same context, we will also describe earlier work on

applications of game- theoretic integration to computer vision.

2.1 Related Work in Image Segmentation

2.1.1 Region based Methods

We classify region-based methods as those that exploit homogeneity of spatially dense

information, e.g. pixel-wise grey level values, texture properties etc. to produce the

segmented image. Thus these methods primarily depend on the underlying consistency

14
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of any relevant feature in the different regions of an image. Formally, the underlying

principle behind these approaches can be defined as follows [97]: if F is the set of all

pixels and P () is a uniformity predicate (of any one of the above mentioned properties)

on groups of connected pixels, then region-based segmentation is a partitioning of the set

F into a set of connected subsets or regions (S1, S2, ..., Sn) such that

n
⋃

i=1

Si = F with Si ∩ Sj = φ, i 6= j (2.1)

The uniformity predicate P (Si) = true for all regions Si and P (Si ∪ Sj) = false, when

Si is spatially adjacent to Sj .

2.1.1.1 Thresholding

Thresholding is one of the oldest and most widely used tools for image segmentation.

It can either be done based on information derived from the whole image (e.g. grey

level histogram of the entire image) or it can be done based on local image characteristics

(cooccurance matrix) of the image [108, 120]. If the image is composed of distinct regions,

characterized by their grey level, then the histogram is generally characterized by sharp

peaks and deep valleys, thus providing natural choices for threshold levels. But often

in a noisy image that is not the case, making the job of threshold selection non-trivial.

Different methods have been tried. Otsu [95] maximizes a measure of class separability,

Nakagawa and Rosenfeld [92] minimized the total misclassification error under assump-

tions of normal distributions. Others used more sophisticated measures like the image

entropy [131, 78] and so on.

However, the basic assumption behind a global thresholding scheme, that pixels

higher than a certain grey level fall into one region and those that are lower than the
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threshold, belong to another region may not often be true, particularly when the image

is noisy or the background is uneven and the illumination is poor. This image variability

makes adaptive thresholding techniques necessary where local thresholds are chosen for

local image blocks which are then interpolated to produce a threshold surface [133]. How-

ever, despite the use of adaptive thresholding, segmentation by thresholding is extremely

noise sensitive and unreliable, producing isolated regions of mis-classified data, jagged

boundaries etc.

2.1.1.2 Region Growing

Region growing methods have some similarity to the adaptive thresholding methods in

the sense that they too are generally dependent on the pixel statistics over localized

areas of the image. The most widely used region growing methods are the split and

merge techniques [65, 68]. The idea here is to first plant some seeds at different points

in the image by choosing some pixels as representative of the attributed regions. Then

the regions associated with these points are allowed to grow based on their homogeneity

properties. The problem however is that the resulting segmentation depends considerably

on the choice of the seed points and the region’s shape is dependent on the choice of the

actual algorithm used. Also, more often than not, these methods result in an over-

segmented image, although this can be corrected through the use of domain specific but

rather ad-hoc rules [20, 77].

While region growing methods perform better than thresholding procedures, they

continue to have similar problems, producing artificial and poorly localized boundaries.

Thus, to produce reliable boundary estimates, further processing often becomes necessary.
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2.1.1.3 MRF based approaches

Region-based image segmentation techniques using spatial interaction models like Markov

Random Field (MRF) or Gibbs random field to model the image [47, 41, 40] have become

very popular recently. This started with the influential work of Geman & Geman [47]

who forged an elegant link via statistical mechanics between mechanical systems like the

soap films or splines (that minimize energy) and probability theory. They have shown

that in effect, signal estimation by least square spline fitting results in optimal estimates

if certain a priori probabilistic beliefs about the world in which the signal originated

is to be expected, especially if the estimated signal can be modeled as samples from a

Markov Random Field and Gaussian noise was assumed to have been added during the

process of data generation. The MRF assumption is useful because it gives a probabilistic

description of interaction. It says that the probability of a point being in a particular

state is entirely dependent on the probabilities of the states of its neighbors. However,

despite this local description, global interaction is still possible as a result of propagation.

Further, it is also possible to directly include interaction from distant points [48].

Formally, Geman & Geman [47] and related efforts showed that the link between

the energy of the spline reconstruction E and the probability of the corresponding image

realization is given by [14]

P ∝ e−E/T (2.2)

(T is a constant). Thus, the lower the energy of a particular signal (that was generated

by a particular MRF), the more likely it is to occur. This is so because the energy

is computed as a measure of the distance between the model and the raw image data.
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Further, Geman & Geman [47] also developed a restoration algorithm based on stochastic

relaxation and annealing. Introduction of the above result, which is also known as the

Hammersley-Clifford theorem resulted in a number of region-based image segmentation

techniques. Most of them can be categorized into two main groups brief discussions of

which follow.

The first version considers the problem of simultaneously smoothing the image

and detecting discontinuities. It can be formulated in terms of a simple energy function

that has the appropriate interaction between the data field and the line processes (which

are defined as a discontinuity field). A simplified version of the model is given by the

weak membrane energy which for the continuous case was proposed by Mumford & Shah

[91] and for the discrete lattice by Geman & Geman [47], Blake & Zisserman [14] etc.

The most basic formulation given by Mumford & Shah [91] considers minimizing:

E =

∫ ∫

I
(f(x)− g(x))2dx+ α

∫ ∫

I−C
||∇f(x)||2dx+ γ

∫

C
ds (2.3)

where f() is the smoothed image, g() is the noisy image data, I(⊂ R2) is the image

domain, and C is the set of curves that divide up the image domain into a set of regions.

Here, the first term is the data fidelity term, the second term the smoothness term and

the last term is the penalty term for introducing edges. Thus it produces a smooth

reconstruction of the image except at discontinuities. While in general this method and

its variants [46, 14] might produce better results than some of the approaches mentioned

before, they still suffer from the problems of unwanted and poorly localized edges that

are characteristic of any region-based method.

Another problem of the above approach is that it is ill-suited for the problem of
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texture segmentation in its basic form. This brings us to the second approach that is also

MRF based but can naturally handle more diverse region descriptions than just unifor-

mity in the grey-level values as in the previous case. These methods can be considered

as classification procedures that label a pixel as belonging to one of a finite number of

classes [11, 41, 39, 83, 73]. There are two things that need to be estimated for this class

of problems. First, we need to estimate the class properties, following which the actual

classification is done. For a simple grey level image, the class properties correspond to

the mean and the variance, whereas for texture images, a larger number of parameters

are used to characterize the texture. Thus, these methods are more general than the

methods discussed before. However, the problem lies in estimating the class properties

for which the segmented image is necessary. To avoid this problem, both the class prop-

erties and the pixel classification can be solved simultaneously as in [73], or one can first

calculate the class properties from a crude estimate of the segmented image and then do

the classification [83, 98]. The optimization process is more complex in these types of

region-based methods, because unlike the previous case, here the optimization cannot be

posed as an energy minimization problem because the probability function generates a

combinatorial explosion. While these methods can be more general than the region-based

methods discussed earlier, in the sense that they have the ability to handle a larger class

of image features, they continue to suffer from the problems of poor localization and

unwanted boundaries resulting from misclassified pixels.

In either of the above cases, global optima can be achieved only through the use

of a global optimization method like simulated annealing which is computationally very

expensive [47, 73]. However, suboptimal methods like iterated conditional modes (ICM)

algorithm [11, 83] often produce comparable results. More elaborate discussions of the
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MRF based approaches used in this work can be found in chapter 3.

2.1.1.4 Non-linear Diffusion methods

Non-linear diffusion methods [101, 49, 1], like the MRF based methods discussed before

[91, 14] are used for doing edge preserved smoothing. Non-linear diffusion can be con-

sidered to be a natural extension of scale space filtering. Linear scale space methods

solve the linear diffusion equation and were first developed by Witkin [130] and Koen-

derink [67] and further developed in [4, 135, 58]. The essential idea here is to produce

a multiscale description of the image i.e. embed the original image in a family of de-

rived images I(x, y, σ) obtained by convolving the original image I0(x, y) with a Gaussian

kernel G(x, y, σ) i.e.

I(x, y, σ) = I0(x, y) ∗G(x, y, σ) (2.4)

Now this one parameter family of derived images can be viewed as the solution of the

isotropic diffusion equation,

Iσ = ∆I (2.5)

where ∆ is the Laplacian operator. However, the problem (as noted in [101]) with this

method is that the true location of a boundary is not directly available at a non-zero

scale image because the smoothing generated does not respect the existence of edges. To

obviate this problem, the anisotropic diffusion equation

Iσ = div(c(x, y, σ)∆I) = c(x, y, σ)∆I +∇c · ∇I (2.6)
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was suggested [101, 1]. Here, the smoothing is controlled by the function c() which is

nonlinear. When constant, it reduces to the isotropic diffusion equation. Different choices

for c() have been suggested, the main idea being to let c() decay to small values where

the gradient is high, thereby preventing smoothing across edges [101, 106]. Clearly, the

motivation is similar to the ideas in the MRF based energy minimizing methods [14, 91]

described before. Mathematical derivation of this equivalence can be obtained in either

[101] or [46].

It would be appropriate to mention here on a related note that another class of

non-linear methods that generate medialness description has also recently been advo-

cated as a plausible representation for structures in an image [80, 44]. Any structure

is represented by a line passing through the center of that object and the radial width

at all points on that central axis. This forms what has been described as the “core”

of the object. Often this is done over multiple scales and is used for instance in image

registration.

In the next section, we will discuss the boundary methods that have better local-

ization properties than the region methods but suffer from high noise sensitivity.

2.1.2 Boundary Methods

Boundary based methods rely on the pixel-wise difference to guide the process of segmen-

tation. Thus they try to locate points of abrupt changes in the grey tone images. There

are a number of approaches that use boundary information some of which are discussed

below.
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2.1.2.1 Edge Detection

Edge detectors are model-free local boundary finders where for any image the edge

strength is calculated by using a local differential operator. Important requirements

for a good edge operator are that it should be a differential operator and it should be

capable of being tuned to act at any desired scale. There are a variety of edge operators

such as Robert’s, Sobel, Prewitt etc. [107]. One of the most influential methods use the

zero-crossings of the Laplacian of the Gaussian of the image [84]. It produces continuous

closed boundaries (being the zero-set of an implicit function), but since it is a second

derivative operator, it is extremely noise sensitive. Also, it is difficult to distinguish be-

tween more and less probable edges and the only way of discarding false edges would be

to do so interactively by an human operator.

The Canny edge detector [21] seeks to optimize by making the best trade-off

between detection and localization of edges, the two main yet opposing goals of edge

detection, in addition to producing one and only one response for a single edge point. He

showed that the ideal edge detector can be approximated by first taking the gradient of the

image convolved with the Gaussian kernel and then choosing the maxima of the gradient

image in the direction of the gradient. However, except under ideal circumstances, it

results in broken edges and thus identifying objects would require grouping those edges

either interactively or by using some other algorithm [107].

2.1.2.2 Hough Transform / Rigid Templates

Hough transform may be considered to be an alternative to boundary analysis. It is

essentially a mapping from the image to a parameter space. It was originally used for

parameterizable shapes like curves, but was extended later to include general shapes [5].
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Likely boundary points are identified first in the image, which are then mapped to the

parameter space. Maxima in the Hough space correspond to possible shape instances.

The advantage of this method is that it is relatively insensitive to gaps and noise. The

drawback however is the computational requirement that goes up geometrically with an

increase in the number of parameters. And for deformable boundaries, it becomes even

more unsuitable.

This finally brings us to the whole boundary methods that we shall briefly describe

below and then in more detail in chapter 3.

2.1.2.3 Whole Boundary Methods

Whole boundary methods [116, 62, 3, 37] rely mainly on the gradient features at a subset

of the spatial positions of an image (near an object boundary) for segmentation of struc-

tures from an image. By considering the boundary as a whole, a global shape measure

is imposed on the problem that simplifies the task. Thus gaps are prohibited and overall

consistency is emphasized. Once again, there are a number of approaches, some of which

we will describe here, more details about which can be found in the book by Blake &

Yuille [13] which contains an excellent collection of papers on deformable contour meth-

ods. We will also discuss some of the most recent work on this topic using curve evolution

methods [82, 22, 63].

One of the first instances of this approach used parameterized templates called

rubber masks by Widrow [129]. Yuille [136, 134] used a parameterized template to model

the features of an human face. In both these cases, the overall object was broken down

to parts that were subsequently modeled. These methods were not very generic, in other

words, a new model was necessary for every new object.
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2.1.2.3.1 Energy minimizing snakes One of the most generic and popular methods

of detecting whole boundaries is the snakes approach due to Kass et al [62]. A snake is

a continuously deformable curve that can be used as a mechanism to locate features of

interest in an image. It’s shape is controlled both by internal forces (the implicit model)

and external or image forces. If v(s) = (x(s), y(s)) is the parametric description of the

snake (s ∈ [0, 1])), its total energy can be written as

Esnake =

∫ 1

0
[Eint(v(s)) + Eimage(v(s))] ds (2.7)

where

Eint(v(s)) =
1

2

(

α(s)|vs(s)|2 + β(s)|vss(s)|2
)

(2.8)

and

Eimage(v(s)) = wlineEline(v(s)) + wedgeEedge(v(s)) + wtermEterm(v(s)) (2.9)

The internal energy, Eint, represents the smoothing forces on the curve, and Eimage

represents the image-derived forces that constrain the curve to take the shape of the

features present in the image. The internal energy forces v(s) to be a controlled continuity

spline [123] with its first order membrane term favoring points to become close to one

another and its second order thin plate term favoring low overall curvature.

The image energy consists of a linear combination of three image-derived terms.

The line energy attracts the contour to lower or higher intensity values in the image

depending on the sign of wline with Eline = I(x, y). The edge energy calculated as
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Eedge = −|∇I(x, y)|2 attracts the contour to image points with high gradient. Eterm

being the curvature of the level curves in a Gaussian smoothed image, attracts the con-

tour towards line terminations. Minimization of the above was achieved by using the

variational method that involves solving for the corresponding Euler equations.

The problem with this initial version was that if the initial curve was not close

enough to an edge, it had difficulty in being attracted by it. Also, the curves in the original

snakes version had a tendency to shrink on themselves. To improve the convergence

properties, [2, 3] used dynamic programming to do the energy minimization. Also, [3]

extended the objective function to include hard local constraints. Some robustness to

the problem of finding a good initial guess was achieved by the addition of an extra force

which made the contour have a more dynamic behavior. In other works, the curve was

considered to be a balloon [33] (in 2D) that was being inflated. From an initial oriented

curve, an extra pressure force was added that pushed the curve outside as if air was being

introduced inside the closed contour.

However, despite all these improvements, this direct representation still had the

problem of having too many parameters (here the position vectors along the curve) to

optimize over. To alleviate this problem, a parameterized B-spline [6] approximation was

used in [87] where the curve was replaced by its B-spline approximation and the energy

of the approximation was minimized.

2.1.2.3.2 Shape-constrained deformable models As an alternative to the snakes

method, orthogonal representations for curves were proposed in [115, 116] where a curve

was expressed in terms of an orthogonal series. Thus the curve was expressed as a

weighted sum of some known functions. An orthonormal set is desirable because it makes

the parameters uncorrelated. This reduction in redundancy becomes particularly helpful
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during the optimization process. In our work here, we chose to use this Fourier parame-

terized boundary approach mainly because of its suitability for the types of problems we

were interested in, its compact representation, and its ability to incorporate prior shape

information. Since, this constitutes our primary approach, we will describe this method

in more detail in the next chapter (chapter 3).

While the use of prior shape can be used as an optional constraint in the above

method of [116], the “active shape model” of [37] constrains not only the overall shape

but also any deformation to be consistent with a model built from a training set. Thus

for every single object that needs to be detected, a model is created that learns the

pattern of variability from a training set. Thus only those variations that have already

been experienced before can be detected. While this pattern matching procedure makes

the process more robust, it takes away some of the flexibility as well. Thus even for

high quality images, one has to depend primarily on the model. Also, only those objects

for which a model has already been created, can be detected, making the process very

task-specific.

2.1.2.3.3 Curve Evolution methods While the last two deformable boundary find-

ing approaches (energy minimizing snakes [62, 3] and Fourier parameterized boundary

method [116]) can be used successfully in a variety of image processing/computer vision

applications, they have one important limitation: they are unable to handle changes

in topology of the deforming contour. To circumvent that, a new family of deformable

boundary methods, based on the curve evolution techniques of Osher & Sethian [94] have

recently been introduced [82, 22, 63].

The essential idea here is to first represent the contour that we are interested in as

a front γ(t). Now, given a moving closed contour γ(t), the idea is to produce an Eulerian
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formulation for the motion of this contour propagating along its normal direction with

speed F , where F can be a function of the curve characteristics (like the curvature, normal

direction etc.) or it could be a function of the image characteristics (e.g. the grey level

gradient etc.). This is done by embedding this propagating interface as the zero level set

of a higher dimensional function Ψ defined by

Ψ(x, t = 0) = d (2.10)

where d is the distance from x to γ(t = 0). The evolution equation of Ψ, inside which

our contour is embedded as the zero level set is given by:

Ψt + F |∇Ψ| = 0 (2.11)

where the speed function is given by:

F = kI (FA + FG) (2.12)

kI is the image derived term and is often a function of the reciprocal of the gradient,

the purpose being to stop the front at locations where the gradient is high. The term

FA is a constant and is independent of the moving front’s geometry. FG depends on the

geometry of the front (such as the local curvature) and is responsible for smoothing out

high curvature points on the curve.

While the above is the basic idea behind the approaches of [94, 82, 22, 110,

137], a variation of the above is the reaction-diffusion method of [121]. Here random

bubbles are introduced throughout the image, which then propagate using the evolution
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equation given before. Whenever these bubbles meet they produce “shocks”, which are

then handled using “shock-capturing” numerical algorithms [109, 94].

Besides these curve evolution methods, in [85] a variation of the original snakes

approach have been reported that handles changes in the topology of the contour by

embedding the snake in a simplicial domain decomposition that handles the splitting or

merging of contours in a topologically meaningful way.

However, it is important to remember that the whole boundary methods have

some limitations as well. Being gradient-based, they suffer from high noise sensitivity.

Also, if the high frequency information in an image is either absent or is missing, gradient-

based methods tend to diverge. The following section addresses some of these problems

via the use of integrated methods.

2.2 Image Segmentation using Integrated methods

There has been only very limited previous work seeking to integrate either different fea-

tures or different modules to improve the segmentation process.

Simultaneous consideration of smoothness and contrast was first used in [89] which

applied dynamic programming for minimizing the weighted sum of a contrast measure

and smoothness measure. The snakes approach of Kass et. al. [62] solves explicitly a

regularization problem to locate object boundaries.

However, seeking to integrate region and boundary information has only been tried

relatively recently. The difficulty is that even though the two methods yield complimen-

tary information, they involve conflicting and incommensurate objectives, as region-based

segmentation attempts to capitalize on homogeneity properties whereas boundary finding

techniques use the non-homogeneity of the same data as a guide. Thus, as previously
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observed [99], even though integration has long been a desirable goal, achieving this goal

is non-trivial. Among the available methods, AI-based techniques have been used where

production rules are invoked for conflict removal [99]. Other efforts have used probability-

based approaches (see e.g. [47, 46, 91, 14, 66, 53]) where often the aim is to maximize

the a posteriori probability of the region classified image given the raw image data by

optimization methods like simulated annealing. Integration here is achieved in the local

or dense field sense where the edges are used as line processes and the optimization is

achieved both over the location of the line processes as well as the pixel classification.

These methods, as mentioned before, are thus primarily aimed at doing edge-preserved

smoothing rather than truly integrating edge and region processes. Furthermore, these

methods are concerned only with the grey-level homogeneity, and are not suitable for

handling other features like texture, similarity in the optical flow etc. which are more

incommensurate with the gradient-based boundary methods.

In some methods [99, 53], region growing is done first followed by an binary edge

detection step. There are a few disadvantages to this procedure. First, a region classified

image is often over-segmented due to the presence of noise. Thus, one needs a validating

scheme to distinguish between true and false edges. Also, such a scheme has no way of

differentiating between multiple regions as it deals with the binary edge map obtained

from the region grown image. Further, such a method may suffer from the effects of

poor edge localization as is often the case with region-based segmentation. Some of these

problems can be alleviated using the method in [29], but it still is an edge-based approach

with associated drawbacks.

The reaction-diffusion method of [121] has bubbles (described earlier) deforming

unless encountered by changes in any one of the low level process that it endeavors
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to integrate. However, the problem of using such a method is that if any one of the

processes make an error (e.g. a false edge), that is propagated to the final solution. Also,

there is no notion of global shape attached to it. Further, decision regarding the final

object boundary is made here by considering the whole space of reaction-diffusion images,

something that can get very complicated.

However, the recent work of [138] has similar motivations as ours even though here

integration is achieved through the single objective method and the final implementation

is similar of the weak membrane method of [14, 91]. Also, while it is constrained to

produce closed boundaries, it does not handle the issue of shape in a similar way as is

done over here.

2.3 Game Theoretic approaches for Image Analysis

Most of the work involving integration in image analysis systems [29, 81, 14] have used

the single objective approach that combines the different objectives into a single global

objective function which is then optimized. However, as noted in the introduction and

in [7], this may not always be appropriate especially when the modules that are be-

ing integrated have different views of the world, characterized by different probability

spaces. Also, a global objective approach may be computationally complex. Expectation

Maximization methods [38, 74] can be used, but for the general case of unknown joint

probability distribution, use of nonparameteric methods become necessary that could re-

sult in algorithms that might be as complicated and as sub-optimal as the global objective

function approach.

In view of the above, game theoretic methods were suggested in [7, 18, 17] for

module integration. Game-theoretic methods for vision and image analysis in particu-
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lar were used in [18] for image segmentation by integrating locally curvilinear edge-like

structures to boundaries. Besides that work [18], further references to which will be made

in a later chapter (chapter 6), little work using game-theoretic ideas has been performed

within the field of computer vision.

In the present work, we will use a model-based game-theoretic integration frame-

work to integrate the region and boundary models.

2.4 Three Dimensional Object Segmentation

Segmentation of three dimensional images is of particular importance in the medical

imaging domain, where 3D images are routinely acquired. A large number of the seg-

mentation ideas discussed above can be extended from two dimensional images to three

dimensional images at least theoretically. This is particularly true for most of the region-

based methods. In [30] a multispectral voxel classification method is used in conjunction

with connectivity, to segment the brain into different tissue types from 3D MR images.

This method is limited by the assumption of normality in the probability distributions

of the tissues. Gerig et al. [50] used a similar approach. Raya [104] uses multispectral

classification in conjunction with a rule base to classify MR brain images. In [19, 126]

classification via histogram thresholding for 3D MR images.

However, unlike in the region-based case, extension of boundary methods to 3D

images is non-trivial. The first such model, the Generalized cylinders proposed by Binford

can only be applied to a very restrictive class of objects that are naturally cylindrical [103].

The 3D snakes model of [124] is more flexible because it has deformation parameters to

control the elasticity of the main axis and the walls of the cylinder, but it still suffers

from some of the same problems. Superquadrics model objects with deformable ellipsoids
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[112] with parameters for such operations as twisting, bending and tapering. While they

have a compact description with a small number of parameters, the nature of the basis

used, highly constrain the range of shapes that can be modeled. Strain modes [100]

and wavelet basis [127] have been used to augment their modeling capability. Another

related development uses hyperquadrics [72], which has been shown to be more flexible

than the superquadrics. The Fourier parameterized surface model of [117, 118], a direct

extension of the 2D Fourier parameterized boundary method, describes the surface by the

leading coefficients of a Fourier series taken of the surface coordinates. More details on

this parameterization will be provided in a later chapter (chapter 7). A big problem with

many of these methods however, is the one of proper initialization. To circumvent that,

recently a method very similar to the pattern learning mechanism of [37] was suggested

[119], that creates a 3D Fourier surface model for the structures of interest from a set of

training images, which also constrain the possible variations to those already experienced

within the training set. As in the 2D case, however, while it makes the problem more

robust, it also severely limits the flexibility of the surface finder.



Chapter 3

Segmentation Models

3.1 Introduction

In the previous chapter we gave an overview of the different methods that have been used

to perform image segmentation. In this chapter we will describe in mathematical detail

the specific boundary-based and the region-based segmentation methods that we will try

to integrate in the subsequent chapters.

3.2 Boundary Finding

As has already been indicated, our interest lies in a whole boundary method. Segmen-

tation by boundary finding using only local information has often been confounded by

among other things, poor contrast, occlusion, adverse viewing conditions and noise. A

model-free interpration is hence problematic due to the under-constrained nature of the

problem. This makes appropriate modeling of the boundary important. One of the

biggest advantages that a good model can bring into the boundary finding procedure

is that it constrains the optimization process to handle missing or noisy data [62, 116].

33
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Also, it allows us to introduce prior information about the shape if available. Without

these constraints the optimization process might get unnecessarily complicated particu-

larly because our aim is to find boundaries of continuously deformable objects (examples

of which are abundant in the medical imaging domain) as opposed to shapes that have

an obvious decomposition [52].

As has already been discussed in the previous chapter, various boundary param-

eterizations are available in the literature. While none of them can be considered to be

optimal under all circumstances, each one has its own advantages and disadvantages.

Each has particular properties that make it suitable for a certain class of problems. For

example, operations such as the calculation of geometric properties such as area or mo-

ments are directly available from some representations. Similar is the case with the

calculation of an inside-outside function that specifies the relation of a point with respect

to the object boundary. On the other hand, such approaches also impose a limitation

on the domain of shapes that can be handled. Some restrictions, such as smoothness

can actually be advantageous as they build in a necessary constraint directly into the

representation. For problems, such as matching, it is important that a bijective map-

ping exist between the shape and its parameterization. This mapping should also be

continuous and stable so that small deformations in shape result in small changes in the

parameterization. This would allow for matching to take place in the parameter space. It

is also desired, especially for optimization purposes, that the parameterization be concise.

This saves both memory and time.

In any case, the point to note is that there are various parameterizations available

and the choice of any one of them should be guided by the problem at hand. In the last

chapter we gave an overview of the different methods available. Here, we will describe
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for the sake of completeness the shape constrained deformable boundary model of Staib

& Duncan [116] which we use for the class of problems that we are interested in. This

is primarily so, because we are mainly concerned with objects, whose shape often vary

around an average shape, an information that can easily be used as shape priors within

this formulation.

3.2.1 Shape-based Deformable Boundary Finding

The shape-based deformable boundary finding method of Staib & Duncan [116] uses

orthogonal representations to describe the boundary. Thus, the curve is expressed as a

weighted sum of some known functions. Use of an orthonormal set makes the parameters

distinct. This becomes particularly helpful during the optimization process.

The functionX(t) on the interval (a, b) in terms of the basis φk(t) can be expressed

as,

X(t) =
∞
∑

k=1

pkφk(t) (3.1)

where

pk =

∫ b

a
X(t)φk(t)dt (3.2)

The coefficients ~p (the projection of X(.) onto the basis functions) form the parameter

vector. In order to use this representation however, the sum must be truncated. We shall

have more to say about it in a later section.

Sinusoids are the most popular basis functions [102] even though other orthogonal

basis could be used as well. The main advantage with sinusoids is their ease of represen-
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tation and their familiar association with frequencies making the parameterization more

meaningful.

The Fourier representation has a few advantages that have motivated us in using it

for the work presented here. It is a good representation in the sense that closed curves are

naturally periodic in arclength and a Fourier parameterization captures this inherently. It

can be made invariant to the starting point, scale, and 2D translation and rotation [116].

Also, it has the capability to incorporate prior information as we shall soon see. Being

concise and orthogonal, it makes the optimization easier through redundancy removal.

For most biomedical applications that we are interested in, we only need a few parameters

simplifying the optimization process even further. Finally, the conversion between the

parameterization and the actual coordinates can be easily and directly obtained via the

fast Fourier transform.

The standard Fourier representation of [116] is based on (3.1) and (3.2) using

sinusoids as the basis functions. Hence,

φ =

{

1

2π
,
cos x

π
,
sin x

π
,
cos 2x

π
,
sin 2x

π
, .........

}

(3.3)

These can be used along with the direct representation to parameterize closed curves.

Many biological objects like cells, organelles, parts of the brain (like the corpus callosum)

and the heart (like the epicardium and the endocardium) which often interest us and

form the main application areas for this work can be delineated using a closed boundary.

A closed curve can be represented by two periodic functions of t, where t ∈ [0, 2π], x(t)

and y(t), one for each of the coordinates. The Fourier decomposition in the matrix form
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gives the elliptic Fourier representation [51, 69].

v(t) =









x(t)

y(t)









=









a0

c0









+
∞
∑

k=1









ak bk

ck dk

















cos(kt)

sin(kt)









(3.4)

where, v(t) is the contour vector consisting of the x and y coordinates and ak, bk, ck and

dk are the corresponding Fourier coefficients given by:

a0 =
1

2π

∫ 2π

0
x(t)dt (3.5)

c0 =
1

2π

∫ 2π

0
y(t)dt (3.6)

ak =
1

π

∫ 2π

0
x(t)cos(kt)dt (3.7)

bk =
1

π

∫ 2π

0
x(t)sin(kt)dt (3.8)

ck =
1

π

∫ 2π

0
y(t)cos(kt)dt (3.9)

dk =
1

π

∫ 2π

0
y(t)sin(kt)dt (3.10)
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The closed curve is thus represented by

~p = (a0, c0, a1, b1, c1, d1, ....) (3.11)

This particular version of Fourier boundary representation has the advantages already

mentioned before. Also, a geometric interpretation in terms of ellipses is provided in

[116] that can help better understand the effects of the individual parameters.

Figure 3.1: Contour (dark line) is constructed from three component ellipses shown at
three different times (taken from [116])

In (3.4) the first two coefficients a0 and c0 determine the overall translation of

the shape. Each term in the above summation is the parametric form for an ellipse. If

akdk − bkck = 0, the ellipse degenerates to a straight line. The matrix determines the
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characteristics of the ellipse. The boundary can be viewed as a composition of rotating

phasors, each defining an ellipse, the speed of rotational being proportional to their

harmonic number k. This can be seen in Figure 3.1, where a contour is shown to be

constructed from three component ellipses forming a sort of a planetary system. The

straight lines represent the phasors for each ellipse at three different time instants. Thus,

the point Ci,j traces out the ith ellipse at the jth time instant. Each point is the center

of the next higher ellipse C0 is the center of the first ellipse. Points C31, C32 and C33 are

three different points on the final curve.

It is desired that the curves be continuous. Discontinuities slow down the speed

of convergence due to the presence of the high frequencies. Also, since the contour is

closed, the functions are periodic, with a period of 2π.

Number of Harmonics

In a practical situation, it is necessary to work only with a limited number of harmonics.

This smoothes the curve but decreases the accuracy of the representation. Since, now only

smooth representations are possible, high frequency variations are automatically filtered

out when we use this representation to estimate the boundary of an object from a noisy

image. This is analogous to regularization in ill-posed problems. The difference is that,

unlike in regularization, where a functional is devised that adds smoothing constraints,

here the solution space is restricted to accommodate only smooth functions depending

of course on the number of harmonics used. Smoothing, by reconstructing a truncated

Fourier elliptic representation is in general a good method because it avoids the shrinkage

problem that is accompanied with normal smoothing. The choice of the number of

harmonics is a design trade-off that is made between accuracy, conciseness and the degree

of smoothing. Most of the biological forms that we are interested in are relatively smooth



40

and unconvoluted. Hence, they can be represented by a limited number of harmonics.

However, one might choose to have a larger number of harmonics for more complicated

structures at higher computational cost. A good selection of the number of harmonics

necessary, can be made by calculating the modeling error for the types of objects under

investigation and choosing the least number (of harmonics) that produces an error smaller

than a pre-determined limit.

The Parameter Probability Distributions

In order to use the prior information, probability distributions are associated with the

parameters. This prior information can then bias the boundary finder to search for

a particular range of shapes. When a sample is available, using experience, the prior

knowledge can be obtained. However, an initial estimate of the boundary will still be

necessary. The images in a sample will differ due to the variability in the object shape

and the view. The importance of the prior is that it considerably reduces the search

space by enforcing a very reasonable assumption which states that instances of the same

object found under different circumstances should have similar shapes. For example, it

is reasonable to assume that neuroanatomical structures such as the corpus callosum for

different patients (as seen in MRI) should have similar shapes. This knowledge can be

built in as a prior with a distribution around a mean shape. This prior distribution

can be obtained by decomposing the boundaries of the sample objects in terms of their

parameters and then taking statistics. In order to do so, the boundaries of the sample

objects can be obtained either by manual segmentation or by running this method without

using prior information.

[116] models the prior by using a multivariate Gaussian distribution with known
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means and variances for the N parameters. Hence,

P (~p) =
N
∏

i=1

P (pi) =
N
∏

i=1

1

σi
√
2π

e
−

(pi−mi)
2

2σ2
i (3.12)

Here, mi and σi are the mean and variance respectively of pi, the i
th component of the

parameter vector, (~p).

3.2.2 Boundary Estimation

The estimation process involves finding optimum values of the parameters that describe

the boundary given the image data.

This is based on the expectation that the target object can be differentiated from

the background by some measure of the boundary strength and direction (if available),

computed from the image. This section describes the objective function that is being

optimized based on a maximum a posteriori (MAP) formulation after [115].

A maximum a posteriori formulation is used since this method is interested in

using prior shape knowledge while estimating the boundaries from the true image data.

Let Ib(x, y) be the image which depicts a set of objects and t~p(x, y) be an image template

that corresponds to the parameter vector ~p, which needs to be estimated. The goal is to

detect the object boundary, which in turn is given by the most probable such boundary

given the prior shape knowledge and the image information. This is done by maximizing

P (t~p|Ib), the probability of the template given the image, where the maximization is done

over ~p. Using Baye’s rule, this is equivalent to:

argmax
~p

P (t~p|Ib) = argmax
~p

P (Ib|t~p)P (t~p)

p(Ib)
(3.13)
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where in the above MAP formulation, P (t~p) is the prior probability of the template and

P (Ib|t~p) is the likelihood that the template conforms to the cues available from the image.

Ignoring the denominator of the RHS (which is not a function of ~p, with respect to which

the optimization is carried out), and taking the logarithm of the above gives,

argmax
~p

M(Ib, t~p) = argmax
~p

[lnP (t~p) + lnP (Ib|t~p)] (3.14)

In the above, M(.) is the general form of the objective function that is being optimized.

The first term in the RHS is obtained from the prior information, and can be computed

from (3.12). The other term is the data-driven likelihood term and is discussed below.

A Gaussian noise model assumption is used. Consequently, the image Ib is as-

sumed to consist of one of these templates t~p corrupted by additive white Gaussian noise

(AWGN), i.e. Ib = t~p + n. Hence,

P (Ib|t~p) ≡ P (Ib = t~p + n) = P (n = Ib − t~p) (3.15)

and the noise at each pixel n(x, y) is given by:

n(x, y) = Ib(x, y)− t~p(x, y) (3.16)

Due to the white noise assumption (which implies independence between the pixels), the

joint probability over the entire area A is identical to the product of their individual

probabilities. The conditional probability of obtaining Ib given the underlying structure
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is that of the template is then given by

P (Ib|t~p) =
∏

A

P (n(x, y)) (3.17)

If the mean of the Gaussian is zero and the standard deviation is σn, then

P (Ib|t~p) =
∏

A

1

σn
√
2π

e
−

(Ib(x,y)−t~p(x,y))2

2σ2
n (3.18)

By taking the logarithm and substituting the result in (3.14), the expanded objective

function becomes

M(Ib, t~p) = lnP (t~p) +
∑

A

ln
1

σn
√
2π
−
∑

A

(Ib(x, y)− t~p(x, y))
2

2σ2n
(3.19)

This represents the MAP function for the images under the AWGN assumption. The first

term is the prior term, the second one is a constant, and the last one represents the data

likelihood term. It is easy to see that as long as
∑

A t
2
~p(x, y) does not vary too much, the

last term in (3.19) is similar to a correlation term.

As already indicated before, the boundary of the target object in this method [116]

is represented by the template t~p(x, y). The templates are assumed to form a continuum,

each having a corresponding value of the parameter vector ~p. Essentially, the boundary

is 1D, but it is embedded in a 2D image by assuming that t~p(x, y) is constant along

the contour and is zero everywhere else. Thus, Ib(x, y) is considered to be a boundary

measure applied to the raw image data i.e. Ib(x, y) = b(I(x, y)). Generally, the boundary

measure is given by the gradient magnitude or, by both the gradient magnitude and the

direction of the original image. Only points that lie on the contour are considered because
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those are the only points at which the template is non-zero. Now, (3.19) becomes:

M(Ib, t~p) = lnP (t~p) +
∑

A

ln
1

σn
√
2π

− 1

2σ2n





∑

A

I2b (x, y) +
∑

C~p

(

−2Ib(x, y)t~p(x, y) + t2~p(x, y)
)



 (3.20)

where C~p is the curve defined by the boundary (x(~p), y(~p)) in the template t~p. Since

t~p(x, y) is constant over the curve that it defines,

M(Ib, t~p) = lnP (t~p) +
∑

A

(

ln
1

σn
√
2π
− I2b (x, y)

2σ2n

)

+
1

2σ2n

∑

C~p

(

2Ib(x, y)t~p(x, y)k − k2
)

(3.21)

where k is the template magnitude at any point which is assumed to be a constant

and is chosen to be the maximum boundary response. It can be observed that the first

summation term in the above doesn’t change with respect to variations in ~p. Further,

the last term that involves k2, is proportional to the length of the contour which is not

assumed to change appreciably when compared to changes in the boundary measure. In

view of that, we ignore that term, and redefine (after simplification) M() as:

M(Ib, t~p) = lnP (t~p) +
1

σ2n

∑

C~p

Ib(x, y)t~p(x, y)k (3.22)

where the first term in the RHS is once again the prior, the second one being the likelihood

term. As a note, it would be appropriate to mention here that the above equations can

also be written in the continuous form (simply by replacing the summation by an integral)



45

which for (3.22) becomes (see [116] for the details)

M(Ib, t~p) = lnP (t~p) +
k

σ2n

∫

C~p

Ib(x, y)ds (3.23)

It is important to mention here that this white noise assumption is valid only if the

template or model has a shape that fairly closely resembles that of the true object.

However, when that is not the case, i.e. the boundary is not close to the object boundary,

the white noise assumption may not hold, but, the resultant matching term given by (3.23)

can still be used to guide the contour to the true object. This interpretation is consistent

with the fact that it is necessary to initialize the contour close to the true object, or

otherwise it is likely to fail. Use of a region-based term (see next chapter) makes the

process more robust to this initialization.

3.3 Region-Based Segmentation

The goal of region-based image segmentation is to partition the image into contiguous re-

gions, based on some similarity criteria (see the previous chapter for a formal definition).

Segmentation in this case is performed by assigning each pixel one of the allowed classes

(or region types) based on some local processing on the neighborhood of the pixel. As we

have already pointed out in the background section, statistical techniques have recently

become popular. The images are modeled as realizations of random fields and for seg-

mentation statistically optimal estimation techniques, such as minimum mean squared

error (MMSE), maximum likelihood (ML), and maximum a posteriori (MAP) estimation

are used [12, 31, 41, 40, 47, 54]. Optimization is achieved by using dynamic programming

[40, 54], stochastic relaxation/simulated annealing [47, 31], and deterministic relaxation
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[12, 31].

Here, in this work we shall use the Markov Random Field (MRF) formalism to

do our region based segmentation. Following, we first represent the MRF formalism and

then discuss two related algorithms to do the segmentation.

3.3.1 Markov random field image model

MRFs are an important class of stochastic models and have been applied to problems

like image estimation and texture segmentation. Once the model-variables have been

chosen, the MRF is completely specified by a joint distribution over these variables. In

this section, the MRF image model similar to the ones in [11, 12, 47, 73, 75] is presented.

Assume that all the images are defined on an M ×M lattice S = {(i, j) 1 ≤ i ≤

M, 1 ≤ j ≤M}. Let xi,j denote a random variable associated to the site (i, j) ∈ S. Thus

the image

x = {xi,j 1 ≤ i ≤M, 1 ≤ j ≤M} ∈ RM×M (3.24)

may be considered as a collection of M ×M random variables forming a random field on

the lattice S. By definition, the image x is a Markov random field if

P (xi,j |xS/(i,j)) = P (xi,j |xNi,j ) (3.25)

where,

xS/(i,j) = {xk,l k = 1, 2, .., i− 1, i+ 1, ..,M ; l = 1, 2, .., j − 1, j + 1, ..,M} (3.26)
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i.e. S/(i, j) denotes the set of all sites excluding (i, j), and Ni,j ⊆ S denotes a set of

sites forming a neighborhood of site (i, j) and xS/(i,j) and xN(i,j)
denote respectively the

random variables associated with these sites. A first order neighborhood consists of the

four nearest pixel sites (Figure 3.2a), a second order neighborhood consist of the eight

nearest neighborhood sites (Figure 3.2a), and so on. In order to be able to specify the

joint probability distribution function, the concept of clique is necessary[47]. A clique is

a set of one or more sites such that each site in the clique is a neighbor of all the other

sites in the clique. The cliques for an isotropic first and second order MRFs are shown

in Figures 3.2b and 3.2c respectively. MRF’s on a 3D lattice can be defined in a similar

Clique types associated with a 

first order neighborhood

Structure of the Markov Random Field

neighborhood.  The numbers indicate

the order of the model relative to X

5 4 3 4 5

2 1 2 4

3

4

1 1 3

4 2 1 2 4

5 4 3 4 5

Clique types associated with a second order neighborhood

X

Figure 3.2: (a) Left: Neighborhood structure of a Markov random field; (b) Right,top:
Clique types associated with a first order neighborhood; (c) Right,bottom: Clique types
associated with a second order neighborhood [111, 47].
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way.

Since the idea is to do probabilistic optimization, it is necessary to define the joint

probability of x. To do this without violating the assumption in equation (3.25), one needs

to use the Hammersley-Clifford Theorem [11, 113] which states that a random field defined

on a lattice and satisfying the condition that if P (xi) > 0 ∀i, then P (x1, x2, ....) > 0, is a

MRF if and only if the joint distribution is a Gibbs function of the form,

P (x) =
1

Z
exp(−U(x)/β) (3.27)

where Z and β are constants and U(.), called the energy function is of the form

U(x) =
∑

c∈C

Vc(x) (3.28)

where Vc(x) are a set of potential functions depending only on the values of x at the sites

in the clique c, C denotes the set of all cliques, and Z, the normalizing constant

Z =
∑

x

exp(−U(x)/β) (3.29)

is also called the partition function. Finally, β stands for “temperature” and it controls

the degree of peaking in the probability density, i.e. larger the value, larger is the peaking.

Thus, if this model is used as an image prior, a large value of β would mean that the

prior is very strong, resulting in a minimal emphasis on the data.

The power of this result is that the potential functions could be arbitrary as long

as the RHS in equation (3.28) is summable (integrable) over all allowed values of x. The

potential functions are chosen to reflect the desired properties of the image so that the
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more likely images have a lower energy and are thus more probable. Also, the Gibbs

energy formalism has the added advantage that if the likelihood term is given by an

exponential, and the prior is obtained through a MRF model, the posterior probability

continues to be a Gibbsian. This makes the MAP problem equivalent to an energy

minimization.

In the following sections we will discuss two popular algorithms that rely on the

MRF formalism to do image segmentations and later point out in subsequent chapters

how we tend to use them.

3.3.2 Image segmentation through image estimation

The problem can be succinctly stated as follows: it is necessary to obtain an estimate

of a noisy image which at the same time yields a convenient representation in terms

of piecewise homogeneous regions. Adopting the MRF viewpoint, the degradation is

assumed to be corruption by additive noise and the prior belief is that the image is

composed of piecewise homogeneous regions. Thus once we can remove the noise through

the process of estimation, we are left with contiguous homogeneous regions. This leads

to what is called the weak membrane model [91, 14, 46, 90].

3.3.2.1 Weak membrane model

Here, it is assumed that the image can be modeled by

y(i, j) = x(i, j) + n(i, j); 1 ≤ i ≤M ; 1 ≤ j ≤M (3.30)

where n(i, j) corresponds to additive white Gaussian noise (AWGN). Now, as for x(i, j),

a further assumption that it can be modeled as a collection of homogeneous regions of
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uniform or slowly varying intensities is made. Note that this is the same assumption

that was made at the beginning of the present section which was simply restated here

for continuity. At the edges one assumes that the variation can be approximated by a

Gaussian step edge profile as in [59]. In this method, besides the intensity x, there are

also the binary- valued vertical v and the horizontal h line processes which locate the

discontinuities in the intensity process which are to be estimated.

For recovering piecewise smooth functions as hypothesized in this problem, a

method similar to the weak membrane model [91, 14] is used. Hence, maximizing the

probability P (x|Y ) (where x is the segmented image and Y is the image data) becomes

equivalent to minimizing the energy function (to estimate x,

U(x,v,h) =
∑

i,j

[yi,j − xi,j ]
2

+ λ2
∑

i,j

[

(xi,j − xi−1,j)
2(1− v(i, j)) + (xi,j − xi,j+1)

2(1− h(i, j))
]

+ α
∑

i,j

[v(i, j) + h(i, j)] (3.31)

The first term in the above equation is the data fidelity term, a measure of how closely

the estimated process fits the observed data. The next term is the smoothness term and

measures how much the function is deformed and the last term is the penalty term that is

a measure of the discontinuities in the intensity function. If discontinuities were absent,

then the reconstruction would be like a membrane that is continuous everywhere giving

it the name, weak membrane.
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Actually the above can be simplified through the elimination of the line variables

giving the following,

U(x) =
∑

i,j

[yi,j − xi,j ]
2

+
∑

i,j

g∗((xi,j − xi−1,j)
2) +

∑

i,j

g∗((xi,j − xi,j−1)
2) (3.32)

where,

g∗(fp) =















λ2f2p λ2f2p < α

α λ2f2p ≥ α

(3.33)

Here, fp is used as a generic symbol for the intensity gradient. Thus, fx(i, j) = (xi,j −

xi−1,j) and fy(i, j) = (xi,j − xi,j−1).

3.3.2.2 Optimization

The energy function as represented in equation (3.32) is non-convex due to the nature

of the g∗(.) function. What makes the problem difficult is that discontinuities are in-

corporated into the reconstructed functions. Several researchers [14, 76] have proposed

a variety of continuation methods which essentially are convex formulations to the non-

convex functionals at hand. Following, we shall first discuss the optimization for problems

that do not have discontinuities and then indicate how the same can be modified to handle

discontinuities.

If it is not necessary to solve for the discontinuities then a gradient descent based

algorithm will do the job. That is equivalent to switching the line variables off resulting
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in

U(x) =
∑

i,j

[yi,j − xi,j ]
2

+ λ2
∑

i,j

[

(xi,j − xi−1,j)
2 + (xi,j − xi,j+1)

2
]

(3.34)

If for some reason it is known that there are discontinuities along some contour, the energy

function is modified by clamping the line variables “on” at those particular locations.

When all the line variables are fixed (either on or off as the case may be), this

energy minimization becomes a classical problem of solving for zero gradient i.e. the

desired minimum, x is obtained from

∂U

∂xi,j
= 0 ∀(i, j) (3.35)

Since the energy is quadratic in x, this results in a linear system of equations. Further,

U(.) is strictly convex guaranteeing an unique solution.

There are many ways of minimizing such a function, most of which involve chang-

ing the variables to decrease the energy until no further change decreases the energy.

A good way to reduce the search space is to use the gradient ∂U
∂xi,j

as a guide to how

xi,j should be changed in order to reduce the energy fastest. Terzopoulos [122] used the

Gauss-Seidel algorithm which is a special case of the Successive Over-relaxation (SOR)

algorithm (see [14] for details).

When the line variables are not turned off, one can still use the above method

using the g∗() functions defined before in (3.32). However, as has already been pointed

out, in that case the above in itself will not achieve good optimization results. Thus the
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graduated non-convexity (GNC) algorithm was proposed which optimizes a sequence of

functions derived from the original objective function. There is a control parameter which

at it’s initial setting produces a very smooth convex approximation to the original energy

function. This is first optimized and the result from this is passed on as an initial estimate

of the next objective function of the sequence, which is obtained by a different parameter

setting that makes it closer to the original function. Then this function is optimized and

the result is passed on to the next function in the sequence and so on. This process is

continued until the control parameter setting is such that the derived objective function

actually is identical to the actual objective function. While this method will not guarantee

a global optimization, it however leads to good sub-optimal results satisfactory for most

applications.

Besides the graduated non-convex method other methods have been tried to op-

timize non-convex optimization problems. The first of these is simulated annealing [47].

Here, instead of direct descent, some randomness is introduced in the descent path. This

avoids sticking to the local minima. The degree of the randomness is controlled by a

temperature parameter, which is initially high. As the system approaches the global

minima, the system is allowed to cool down. For a detailed description, the reader is

referred to [47, 88]. The second one is Hopfield’d neural network construction [57] which

is a compromise between the true energy function and some convex approximation to the

same. That procedure is actually similar to the GNC algorithm [14] described before.

3.3.3 Image segmentation through region labeling

In this method, the objective is to classify the pixels in the image as belonging to one of

a variety of classes. This method is not just limited to the segmentation (classification)

of intensity images, but also can be used for segmenting texture images. It is important
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to be able to handle texture images because a large group of naturally occurring images

have information about underlying objects that can be distinguished only by analyzing

the texture properties and not just the intensity distributions. In the medical imaging

domain, ultrasound images are instances of such images.

The main difficulty in classifying images is that the segmentation and the param-

eters necessary to do so, both are unknown. To compute the parameters effectively, the

segmented image is needed and to compute the segmented image it is necessary to have

a good estimation of the parameters. One way to solve this is to do simultaneously both

parameter estimation and image classification. But that often turns out to be compu-

tationally too expensive. To get around this problem it has been suggested that first

parameter estimation be carried out on known parts of the image and then use those pa-

rameters to do the classification. As has been shown in [83] there is almost no noticeable

difference in performance by breaking up the process and doing them sequentially rather

than doing them simultaneously as performed in [73].

Before describing the mathematical details of the model, it is important to remark

that there are two random fields involved here. One is the raw image and the other

is a label set that defines the classified image. Below, we describe the mathematical

formulation of the method that we use, part of which has been borrowed form [83, 111]

and the rest from [75].

3.3.3.1 Image model

The intensity image is modeled as a Gaussian Markov random field (GMRF). This model

has been used by many researchers to model texture and other image variations [28]. It

is used here to model the conditional probability density of the image intensity given the

classification.
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As already defined, S denotes the M ×M lattice, i.e. S = {(i, j), 1 ≤ i, j ≤M}.

Let {Ls, s ∈ S} and {Ys, s ∈ S} denote the labels and the zero mean array obtained

from the image data respectively. Let Ns denote the neighborhood of a site s. The

neighborhood scheme is as shown in Figure (3.2). Thus for the second order neighborhood

there are eight neighbors. Now, if it is further assumed that all the nearest neighbors of

s also have the same label as s, one can write the following expression for the conditional

density of the intensity at the pixel site s [83, 111]:

P (Ys = ys|Yr = yr, r ∈ Ns, Ls = l) =
exp(−U(Ys = ys|Yr = yr, r ∈ Ns, Ls = l))

Z(l|yr, r ∈ Ns)

(3.36)

where Z(l|yr, r ∈ Ns) is the partition function of the conditional Gibbs distribution, and

U(Ys = ys|Yr = yr, r ∈ Ns, Ls = l) =
1

2σ2l



y2s − 2
∑

r∈Ns

Θl
s,rysyr



 (3.37)

In (3.37), σl and Θl are the GMRF model parameters of the lth region class. Also, the

model parameters satisfy:

Θl
s,r = Θl

s−r = Θl
r−s = Θl

r

Further, the joint probability in a window Ws, centered at s can be written as:

P (Y ∗
s |Ls = l) =

−U1(y
∗
s |Ls = l)

Z1(l)
(3.38)
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where Z1(l) is the partition function for that window, and

U1(y
∗
s |Ls = l) =

1

2σ2l

∑

r∈Ws







∑

r∈N∗|r+τ∈Ws

Θl
ryr(yr+τ + yr−τ )







(3.39)

y∗s represents the intensity array in the window Ws. The above assumes a free boundary

model. For a more complex boundary model, one can look at [61]. N ∗ is a set of shift

vectors corresponding to the second order GMRF model:

N∗ = {τ1, τ2, τ3, τ4} = {(0, 1), (1, 0), (1, 1), (−1, 1)}

3.3.3.2 Parameter estimation

In the last section, the model that was used to characterize the intensity values of the

image was described. However, before it can be used to do the classification, it is necessary

to estimate the parameters of the model. For every region class, there are a set of

parameters that identify that class. Either one can do a rough segmentation of the image

and use that as a mask on which to base the estimation of the parameters, or as was done

here, have the user identify points representative of a particular class, and then base the

estimation on a window around that point.

The parameter estimation is done in a similar way as has been done in [111] and

for completeness is described below.

There are many methods to estimate the parameters of a GMRF, but none of them

can guarantee consistency (estimates converging to the true value of the parameters) and

stability (the covariance matrix in the expression for the joint probability density of the

MRF must be positive definite) together. Normally an optimization algorithm is used to
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obtain stable estimates. The GMRF parameters are used for obtaining certain measures

for segmentation and not for doing the region/texture synthesis. Hence, it makes sense

to use computationally less expensive methods that can provide reasonable estimates of

these parameters for the segmentation process to work on, even if they do not necessarily

guarantee the stability of these estimates. A least squares estimate [61] was used as a

tradeoff between simplicity and stability.

Consider a region of size K × K consisting of a single region/texture. (For our

implementation, this could mean providing a seed point around which a K ×K window

is chosen.) Let Ω be the lattice under consideration, and let ΩI be the interior region of

Ω, i.e. if ΩB is the boundary,

ΩI = Ω− ΩB,

ΩB = {s = (i, j),

s ∈ Ω and s± τ /∈ Ω for at least some τ ∈ N ∗} (3.40)

Let,

Qs = [ys+τ1 + ys−τ1 , ....., ys+τ4 + ys−τ4 ]
T (3.41)

Then the least squares estimate of the parameters are:

Θ̂ =





∑

ΩI

QsQ
T
s





−1 



∑

ΩI

Qsys



 (3.42)

σ̂2 =
1

N2

∑

ΩI

[

ys − Θ̂TQs

]2
(3.43)
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If µ̂ is the mean in the sub-image under consideration, then the feature vector for the

region is denoted by:

F = (θ1, θ2, θ3, θ4, µ̂, σ̂
2) (3.44)

3.3.3.3 Optimization

The label field Ls is modeled as a first or second order MRF. It is not involved directly in

the parameter estimation described before. If N̂s denotes the appropriate neighborhood

for the label field, then the distribution function for the region/texture label at site s

conditioned on the labels on the neighboring sites can be written as [111]:

P (Ls|Lr, r ∈ N̂s) =
exp(−U2(Ls|Lr))

Z2
(3.45)

where Z2 is a normalizing constant and

U2(Ls|Lr, r ∈ N̂s)− β
∑

r∈N̂s

δ(Ls − Lr), β > 0 (3.46)

where β denotes the degree of clustering and δ(i− j) is the Kronecker delta. Now, using

the Bayes rule one can get,

P (Ls|Y ∗
s , Lr, r ∈ N̂s) =

P (Y ∗
s |Ls)P (Ls|Lr, r ∈ N̂s)

P (Y ∗
s )

(3.47)

Since, Y ∗
s the data in the observation window is known, the denominator in (3.47) is

just a constant. The numerator is a product of two exponential functions and can be
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expressed as [111]

P (Ls|Y ∗
s , Lr, r ∈ N̂s) =

1

Zp
exp(−Up(Ls|Y ∗

s , Lr, r ∈ N̂s) (3.48)

where Zp is the partition function and Up(.) is the posterior energy corresponding to

(3.47). From equations (3.39) and (3.46) it is possible to write,

Up(Ls|Y ∗
s , Lr, r ∈ N̂s) = w(Ls) + U1(Y

∗
s |Ls) + U2(Ls|Lr, r ∈ N̂s) (3.49)

The second term in (3.49) relates the observed pixel intensities to the region/texture labels

and the last term specifies the label distribution. The bias term w(Ls) = logZ1(Ls) is

dependent on the region/texture class and it can be evaluated explicitly for the GMRF

model considered here [61]. Finally, the posterior distribution of the texture labels for

the entire image given the intensity array is:

P (L|Y ∗) =
P (Y ∗|L)P (L)

P (Y ∗)
(3.50)

Maximizing (3.50) gives the optimal Bayesian estimate. Stochastic relaxation

techniques [47, 73] would yield an optimal solution at the cost of huge computational

overhead. However, sub-optimal results obtained using methods like deterministic re-

laxation [111] or the ICM approach [75, 98] produces almost similar results without the

computational burden that is often associated with global optimization procedures like

simulated annealing or dynamic programming.

In our results, we have used the coordinate-wise descent, similar to the iterated

conditional mode (ICM) algorithm [11, 12]. This is adapted from the method given in
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[75].

As already stated, the aim is to maximize the a posteriori probability given in

(3.50). But in the coordinate wise descent algorithm, one instead tries to find the local

optimum. In this algorithm, one starts with an initial labeling, L0 and then iterates

sequentially (or in parallel) through each pixel, replacing the current label at that pixel

with the label that maximizes P (Ls|Y ∗, LS/s) where LS/s represents the label set for the

whole image except the site s, and the other symbols have the same connotations as

before.

Thus, the aim is to maximize,

P (Ls|Y ∗, LS/s) = P (Ls|Y ∗, Lr, r ∈ N̂s) (3.51)

The above is obtained through the use of the Markov property. Now, using the Bayes

theorem we get:

P (Ls|Y ∗, LS/s) =
P (Y ∗, Ls, Lr, r ∈ N̂s)

P (Y ∗, Lr, r ∈ N̂s)

=
P (Y ∗|Ls, Lr, r ∈ N̂s)P (Ls, Lr, r ∈ N̂s)

P (Y ∗, Lr, r ∈ N̂s)

=
P (Y ∗|Ls, Lr, r ∈ N̂s)P (Ls|Lr, r ∈ N̂s)P (Lr, r ∈ N̂s)

P (Y ∗, Lr, r ∈ N̂s)

=
P (Y ∗|Ls, Lr, r ∈ N̂s)P (Ls|Lr, r ∈ N̂s)

P (Y ∗|Lr, r ∈ N̂s)

∝ P (Y ∗|Ls, Lr, r ∈ N̂s)P (Ls|Lr, r ∈ N̂s) (3.52)
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The last step is valid because the denominator is essentially a normalizing term. Thus,

using Bayes theorem on the first term of the RHS in (3.52) gives:

P (Y ∗|Ls, Lr, r ∈ N̂s) = P (y∗s , Y
∗
S/s|Ls, Lr, r ∈ N̂s)

=
P (y∗s , Y

∗
S/s, Ls, Lr, r ∈ N̂s)

P (Ls, Lr, r ∈ N̂s)

=
P (y∗s |Y ∗

S/s, Ls, Lr, r ∈ N̂s)P (Y ∗
S/s, Ls, Lr, r ∈ N̂s)

P (Ls, Lr, r ∈ N̂s)

= P (y∗s |Y ∗
S/s, Ls, Lr, r ∈ N̂s)P (Y ∗

S/s|Lr, r ∈ N̂s) (3.53)

The last equation follows because the vector Y ∗
S/s does not include y∗s and while opti-

mizing over Ls second order effects are ignored. Consequently, the second term (in the

multiplication) on the right hand side in (3.53) is independent of the label at site s.

Thus combining equations (3.52) and (3.53), the ICM algorithm proposed here,

needs to compute

max
Ls

P (y∗s |Y ∗
S/s, Ls, Lr, r ∈ N̂s)P (Ls|Lr, r ∈ N̂s) (3.54)

for each of the sites s.

The functional in (3.54) is optimized at each step where the first term is the

conditional probability (likelihood) term and is given by (3.37) and the second term is

the prior term given by (3.46). To summarize the algorithm, at each iteration, each pixel

is updated to maximize (3.54) using the data at site s and the neighborhood, and the

current estimate of the labels of the neighborhood. This continues so long as the number

of changes is above a certain fraction of the image size. The issue of the number of classes
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is left as an user choice, making it a supervised classification algorithm as opposed to a

non-supervised classification algorithm where the algorithm has the ability to choose the

number of classes. From a practical point of view, the number of classes is chosen by

first assigning one class to the target region and then the rest of the image is divided into

the least number of classes that is necessary to keep the separate identity of the target

region.

3.4 Conclusions

In this chapter we discussed some of the popular segmentation methods in detail that we

shall use in the following chapters. First, we discussed a shape-based deformable boundary

finding method that we have adopted for our work. Then region-based segmentation

methods that have widely been used in the literature and which we plan to use in our

work were discussed. In the following chapters we will show how the information from

these methods can be integrated resulting in superior techniques.



Chapter 4

Deformable Boundary Finding

influenced by Region Information

4.1 Introduction

The objective of this chapter is to develop an integrated method so that region information

can be used in addition to gradient information within the boundary finding framework.

As we have already mentioned in chapter 1 two popular approaches to image

segmentation [5] are region-based segmentation and gradient-based boundary finding.

While the presence of noise is always a limiting factor for any image process-

ing method, region-based methods are less affected by it than gradient-based boundary

finding as the gradient is very noise sensitive. Also for an image, if the high frequency

information is either missing or is unreliable, boundary finding is more error-prone com-

pared to region-based segmentation. Shape variations, on the other hand, can be better

handled using a deformable boundary finding framework when we consider them to vary

around an average shape. Such information can easily be incorporated as priors [116].

63
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Further, since conventional boundary finding relies on changes in the grey level, rather

than their actual values, it is less sensitive to changes in the grey scale distributions such

as spatially-varying shading artifacts than is region-based segmentation. Also, gradient-

based methods in general do a better job of edge localization. Hence, we observe that

both the methods have their limitations and advantages.

Integration can produce better results by removing some of these limitations

through the combination of the strengths of these methods. As the results will show,

the integrated approach performs remarkably better both against increasing noise and

poor initialization.

4.2 Integration

In this section, we first discuss the motivation behind our approach and then describe it

mathematically.

As an input to the problem, we have both the actual image I and the region

classified image Is, which is obtained from I after passing it through either one of the

region-based segmentation steps discussed in the last chapter. This information is in-

troduced as an added prior into the gradient-based boundary finding framework. In its

simplest form, this region term forces the boundary to enclose a single region in Is. As

we shall later see, this assumption is not strictly necessary, but for the sake of simplic-

ity, we will continue with it. Modifications to it will be discussed later. The traditional

boundary finding problem does not use the original image directly. Being a gradient-

based approach, it uses instead the gradient image Ig. As in the Staib and Duncan [116]

approach, which we have explained in the previous chapter, we shall use the magnitude

of the gradient vector at each pixel location. In the last chapter, we used a generic de-
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scription Ib as the image derived from the original image on which the boundary finding

procedure is based. For the following development, we have Ib = Ig. Gradient direction

along with the magnitude can also be used (see Worring et. al [132]), but for the sim-

plicity of analysis here, we shall stick to the previous approach [116] of using gradient

magnitude only. We obtain Ig by first convolving the image I with the derivative of a

Gaussian and then taking the magnitude of the corresponding vector image. Thus finally,

the input to the system is the gradient image Ig and the region classified image Is.

The above boundary estimation problem using gradient and region homogeneity

information can be posed in the maximum a posteriori framework. The aim is to maximize

P (~p|Ig, Is), where as described in the previous section, ~p is the vector of parameters used

to parameterize the contour.

Now,

P (~p|Ig, Is) =
P (~p, Ig, Is)

P (Ig, Is)
(4.1)

=
P (Is|Ig, ~p)P (p, Ig)

P (Ig, Is)
(4.2)

=
P (Is|Ig, p)P (Ig|~p)P (p)

P (Ig, Is)
(4.3)

Thus ignoring the denominator which does not change with ’~p’ it is necessary to determine,

~p∗ = argmax
~p

P (~p|Ig, Is) ∝ argmax
~p

P (Is|Ig, ~p)P (Ig|~p)P (~p) (4.4)

or,

argmax
~p

P (~p|Ig, Is) ≡ argmax
~p

[lnP (~p) + lnP (Ig|~p) + lnP (Is|Ig, ~p)] (4.5)



66

In the last equation (4.5), we have just taken the natural logarithm, which is a monoton-

ically increasing function. Knowledge of Ig may be used to calculate Is, through the use

of line processes [47, 14]. However, if we do not use that information, we are effectively

discarding information rather than assuming extra information. Thus, finally, the above

can be written in the following form:

argmax
~p

M(~p, Ig, Is) = Mprior(~p) +Mgradient(Ig, ~p) +Mregion(Is, ~p) (4.6)

where as just mentioned, we have assumed that the calculation of Is, assumes the knowl-

edge of Ig. Exact probabilistic definitions of the above, if available can be used. However,

that is non-trivial. Consequently, we use intuitively appealing analogous matching terms

instead (i.e. we try to match the estimated boundary with the gradient and the region-

segmented image), designed after the probabilistic terms.

4.2.1 Prior shape term

The first term in equation (4.6) corresponds to the prior shape term. This can be obtained

from previous experience or from expert knowledge about the natural structures that exist

in the image. When it is non-uniform, it biases the model towards a particular range

of shapes. Use of prior boundary information can especially be important in clinical

applications like the outlining of the corpus callosum or the endocardium of the heart,

where the nature of the shape does not change a great deal from individual to individual

even though the exact reconstruction is different. Prior boundary information under

such circumstances can be obtained from previously outlined boundaries. These are first

parameterized and then the mean and variance of these parameters are calculated to

obtain a multivariate Gaussian prior (as discussed in the last chapter), which could then
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be used to constrain the optimization at a later stage for further instances of similar

structures (see [115, 116] for more details). Since there might be other objects in the

image, we would always need an initial estimate of the boundary to start the optimization

process. The prior shape, if available, can be used for this purpose as well. The prior

information could be of particular importance if at some point in an image the boundary

is ill-defined. We will show one such example later.

4.2.2 Gradient term

The second term in equation (4.6) depends on the gradient image. It is a measure of

the likelihood of the contour of the described object being the true boundary, once the

parameters defining the boundary are given. This is expressed in terms of a contour

integral where the integral is computed over C~p, the curve described by the boundary

(x(~p, t), y(~p, t)). At each point on the contour, the strength of the boundary is evaluated

by the magnitude of the gradient at that particular point, given by the gradient image.

Thus the likelihood of the whole contour being the true boundary becomes proportional

to the sum of the magnitude of the gradients at all the points that lie on the boundary.

Thus the match between the estimated contour and the gradient image is expressed as

the following line integral (Staib and Duncan [116]):

Mgradient(Ig, ~p) ∝
∫

C~p

Ig(x(~p, t), y(~p, t))dt (4.7)

We note that the first and the second term in equation (4.6) together form the right

hand side of equation (3.23) that was developed in the last chapter with the assumption

the Ib = Ig.
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4.2.3 Region term

Region of Interest

Given Contour

Figure 4.1: An example demonstrating the use of region information in the boundary
finding process

The last term ( of equation (4.6) ) incorporates the region information into the boundary

finding framework. Once again, we note here that the As we have already mentioned,

we would like the boundary to enclose within it a homogeneous region. In other words,

we expect the interior of the boundary to be filled with the region of a single class. This

realizes the expectation that the variations within an object are assumed to be smaller

than those between objects. We emphasize here that this similarity measure may be
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based on image intensity, texture properties or any other image attribute that can be

handled by the region process. However, this method can also deal with situations like

outlining an annulus, which has the shape of a torus, where the central part might belong

to a separate class.

To describe this term mathematically, let us consider the cartoon situation shown

in Figure 4.1 showing a hypothetical region segmented image and the boundary at any

instance during the optimization process. For simplicity’s sake let us assume there are

only two regions and we want to segment out the object in the center from the surrounding

background. As we can see, the boundary does not include the entire central region. At

some points it includes the background and at other places it excludes points that belong

to the central region. We would like to penalize cases where points from the surrounding

regions are included and would like to reward if more and more of the central region is

included. A very simple way of doing this would be to do the following. Let us consider

for this simple image, all points that lie inside the central region to have value 1.0 and

all points that lie outside a value −1.0. Now as the criteria function sums up the values

of all the points that are inside the contour, it is clear that the sum achieves a maxima

when the contour is so placed such that it includes all of the points with a value 1.0 and

excludes all of the points that have a value of −1.0, that lie on the surrounding region.

Even though this might appear to be a separate step, it can be incorporated into the

region classification step.

If more than one region is involved, all pixels of the region that needs to be

segmented out can be assigned a positive value and the remaining ones negative values,

the magnitudes of which reflect how much one expects the target region to be dissociated

from the remaining regions. Hence, remote regions are expected to have high negative



70

values, representing larger penalty for including remote points. This way multiple regions

can be handled. For an annulus, e.g. the myocardium in a transaxial heart image, it does

not matter what value the points have in the region within the inner boundary the annulus

circumscribes. Further, we can also relax the assumption that the interior of a region

needs to have a single region. If we know that the target object consists of more than one

region, than all those regions are assigned positive values and those that lie outside are

assigned negative ones. Thus the only requirement is that the points immediately inside

the boundary needs to be of a different type than those that are to be found immediately

outside.

The above assignments work very well when the region-segmented image is ob-

tained by region classification or a labeling procedure. Alternately, a region-segmented

image might be obtained through image estimation (noise removal) along with the piece-

wise continuity assumption as has been described in the previous chapter. In that case,

if we know the means of the different regions, then we could translate the image intensi-

ties in such a way that the target region has positive values and the other regions have

negative values.

Thus, from the above discussion, we find that region can be expressed as:

Mregion(Is, ~p) ∝
∫ ∫

A~p

Is(x, y)dA (4.8)

4.2.4 Simplified Integration using Greens theorem

The objective function involving all the above three terms can be expressed as:

argmax
~p

M(~p, Ig, Is) = argmax
~p

[Mprior(~p) +Mgradient(Ig, ~p) +Mregion(Is, ~p)]
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≡ argmax
~p

[

Mprior(~p) +K1

∫

C~p

Ig(x, y)dt

+ K2

∫ ∫

A~p

Is(x, y)dA

]

(4.9)

where K1 and K2 are the weighting constants which signifies the relative importance

of the two terms in the above equation. Normally, one should choose them such that

the contributions from each one of the terms are comparable. A better choice will be

suggested in the following chapter.

Of the last two terms in (4.9), one is an area integral and the other is a line

integral. In general, computing a line integral is much less expensive compared to an

area integral. Thus we would save a lot of computation, especially when we carry out an

iterative optimization procedure, if we could convert the area integral to a line integral

which we have to compute anyway, as the second term which is present even in the original

boundary finding method involves computing a line integral. Actually, the above can be

obtained using Greens theorem [9] as follows.

Let,

Ms(x, y) =

∫ x

0
Is(z, y)dz (4.10)

and,

Ns(x, y) = −
∫ y

0
Is(x, z)dz (4.11)
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Hence, using Greens Theorem,

∫ ∫

A~p

Is(x, y)dA =
1

2

∫

C~p

[Ns(x, y)
∂x

∂t
+Ms(x, y)

∂y

∂t
]dt

Thus, finally we have,

argmax
~p

M(~p, Ig, Is) = argmax
~p

[Mprior(~p)

+

∫

C~p

(K1Ig(x, y)

+ K2{Ns(x, y)
∂x

∂t
+Ms(x, y)

∂y

∂t
} )dt] (4.12)

Thus, in this section we have presented a boundary finding procedure that incorporates

information that we might obtain from region-based segmentation. Further, using Greens

theorem we reduce the whole problem to computing line integrals only rather than both

line and area integrals. Since, Ms and Ns are evaluated only once for every image,

and is not repeated at every iteration the computational speedup due to the use of

the Green’s theorem formalism is from O(area) to O(perimeter) where the area and the

perimeter measures refer to those of the target object.

It is essential to point out here that in practice, the functions Ms and Ns are

evaluated by simply adding up the pixel values of Is in either the x or y direction. Thus,

Ms(i, j) =
∑i

k=0 Is(k, j). We do the same thing along the other coordinate for Ns().

Hence, even though Is is discontinuous, Ms() and Ns() are continuous in the x and y

direction respectively. Further, the derivatives of these functions which are necessary for

the gradient calculation yield Is. Thus for most of the computations, these differentiations

are not being carried out numerically due to the way the objective function is constructed.
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The calculation of the gradient terms that need to be used for the optimization are done

in Appendix A which justifies the above statement. We emphasize here that at no stage

are we taking derivatives of Is, which is discontinuous. We would also like to note here

that even though Is is discontinuous, it is still integrable (summable) in a discrete sense

because it is defined for all the pixel locations. Optimization of the above expression

(eqn. (4.12)) is achieved using the conjugate gradient method.

4.3 Results

Experiments were carried out both with synthetic and natural images to verify the perfor-

mance of the above mentioned method. No prior information was used for the synthetic

images. For the real images, only in Figure 4.11 prior information was used.

4.3.1 Synthetic Images

The output of all these experiments are object boundaries. We have set up experiments

using synthetic images to quantitatively evaluate the method.

For our purposes we created a synthetic image that has one target object in the

center surrounded by a background as shown in Figure 4.2(a). To be noticed is that

the target object has both convex and concave parts to it. Further, it also has some

high curvature points to make the boundary finding process non-trivial. To make it

even more complicated we have smoothed the image using a Gaussian kernel so that the

edges become fuzzy. On top of that white noise was added which would again affect the

boundaries the most as they were smoothed out. Thus, in a way it represents many of the

difficulties associated with structure segmentation in biomedical images. The advantage

of using synthetic images is that we know exactly the actual boundary location. No prior
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information was used for these images. As for the region-based segmentation, it was

carried out using only the mean and the variances of the two regions under consideration.

For evaluation we used the following procedure. First, the true boundary was

evenly sampled into 256 points. The boundary finding process was initialized with a

boundary that is spatially distant from the true boundary and depending upon the situ-

ation results in an output boundary. This was then evenly sampled into as many points.

To find out how closely the output boundary approximated the true boundary, we need to

calculate the distance between them. To solve the problem of pointwise correspondence,

we keep the true boundary fixed, and vary the starting point of the other boundary point

by point, calculating at each step the total distance as a sum of the distances between

each corresponding points. Thus for example, in the first instance, point 1 of the first

boundary is matched with point 1 of the second, point 2 with point 2 of the second and

so on. Next the second boundary was shifted by one point so that point 1 of the first

goes with point 2 of the second, point 2 matches with point 3 of the second and point

256 compares with point 1 of the second boundary. Thus we end up with 256 values of

probable distances between the two boundaries. The minimum of these is considered to

be the reported value of the distance.

The comparisons were done using three versions of the objective function. When

only the gradient-based term in the objective function was used, we have the traditional

gradient-based boundary finding. The second method only uses the region based term,

where information only from the region classified image is used. Finally, the proposed

method, uses both of the above terms in a combined way.



75

4.3.1.1 Experiment 1

Here the aim is to compare the performance of the three methods under varying amounts

of noise. Each time, the noise in the same image was increased and then the three methods

were tried upon it using the same initial boundary placement. The three methods were

allowed to run roughly for the same number of iterations or as long as the change between

successive iterations is above a certain predetermined threshold.

Figure 4.3 shows a comparison of the three methods. Here, the X-axis corresponds

to the noise level given by the standard deviation of the noise used. The SNR varies

from 4.0 to 1.0. The Y-axis gives a measure of the distance between the approximated

contour and the true one. (This is a scaled version of the square of the distance between

the contours calculated as described above.) Here in this and all the following plots,

’Gradient’ represents the gradient-based method, ’Region’ corresponds to the boundary

found based only on the region classified image, and ’Combined’ refers to the proposed

integration method. As we might expect, the performance of all the three methods worsen

as we increase the amount of noise. However, as can be seen, the combined method is

the least sensitive to noise. Also, it performs much better compared to the traditional

gradient-based method. Since the gradient-based method relies upon the first derivative,

it is more susceptible to noise than the region-based method, which uses homogeneity

within the image. On the other hand, the combined method seems to give uniformly

better results.

In Figure 4.2 we show the result for a particular value of the noise given by SNR =

2.0. Here we can see the comparison between the different methods visually. The initial

boundary is considerably displaced and disfigured as compared to the actual boundary.

At some places, it is inside the central region and at some other places it is moved in
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Figure 4.2: Performance of the three methods for a noisy image (SNR = 2.0).
(a)Top,Left: Original image; (b)Top,Right: Gradient image; (c)Middle,Left: Region
Grown image; (d)Middle,Right: Output of Boundary finding using gradient informa-
tion only; (e)Bottom,Left: Output of Boundary finding using region information only;
(f)Bottom,Right: Output of Boundary finding using an integrated approach. In the last
three images, the more gray contour represents the initial boundary placing and the
brighter one the final derived boundary.
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Figure 4.3: Performance under noise using the three methods (SNR varies from 4.0 to
1.0)

the background. Neither region-based segmentation nor gradient-based boundary finding

works well for this noisy image. However, as we can easily see, the combined method

produces the best result.

The next part of the experiment is to see how fast the methods converge. Fig-

ure 4.4 shows the situation when the image used has a noise level given by SNR=2.0

and has the same starting position shown in Figure 4.2. Clearly, the combined method

performs better than the other two, especially compared to gradient-based boundary find-

ing. Due to the global nature of the region term, initially the convergence is faster for the

region-only method. But once it comes close to the actual boundary, due to the better

localization property of the integrated method (which comes from the gradient term),
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Figure 4.4: Convergence speed using the three methods (SNR=2.0)

the integrated method outperforms the region-only method. As for the gradient-only

method, the effect of noise and fuzzy boundaries resist it from getting the best match.

The next plot, Figure 4.5 shows the situation under different starting positions.

The initial contours vary from each other not only by translation and rotation, but also

in terms of their exact shapes. We can observe that when the initial contour is close to

the actual one, there is very little to choose among the three methods. However, when

the initialization is far enough, the integrated method does considerably better than the

gradient-only method. The region-only method comes close, the difference being due to

the better localization property of the integrated approach. It must be noted that for the

results shown in Figures 4.3, 4.4, 4.5 and 4.7 the experiments were repeated ten times

under exactly the same settings, the only variation being that the noise sample is different
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Figure 4.5: Performance under different Initializations (SNR=2.0)

even though the noise distribution is the same. The reported results were obtained by

taking the average of the above which filtered out minor variations that might have arisen.

One needs to do this because even though the noise distribution remains the same, the

pixel values of the noise could be different. Thus it makes the plots more realistic.

4.3.1.2 Experiment 2

In the previous experiment, we were handling situations where both the methods that

were combined produced reasonable results at least under low noise situations. As we

increased the amount of noise, the gradient-based method started making more and more

errors. However, there might be situations where one or both the methods might produce

unrealistic results. To investigate such a situation, we devised an experiment with a
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synthetic occlusion.

If we look at Figure 4.6 (a) we can see that for a part of the image the intensity is

lowered to a level slightly above the background. However, as it touches the background

there is a further fall in the intensity level. On top of this as in the previous case, we

smooth the boundaries and add noise to it. A similar thing might happen in a medical

X-ray image where an object may be just behind part of another object which is of

interest. Partial volume effect might also result in such spatial variations. Now if we do

region based segmentation under the assumption that there are two regions, then that

part of the central region beyond the artificial occlusion boundary will be classified with

the background as can be seen in the figure. Thus as far as the region-based segmentation

is concerned, it sees an occlusion. Now, if we base the boundary finding on this region

classified image, it would tend to pull its boundary to the occlusion boundary. For those

parts where there is no occlusion, it would still work. But for those parts where there is

occlusion it would make gross mistakes resulting in a huge overall error. But the gradient-

based method doesn’t see much of a difference as it searches for a local gradient maxima,

which is still there. Since the initialization is closer to the actual boundary than the

occlusion boundary, the gradient-based method ignores the occlusion boundary. Under

these circumstances, if we try to get the performance plot in the same way as we did in

the previous case, we get the plot in Figure 4.7 where the axes and the legends have the

same meaning as before.

Once again we can observe that the combined method performs much better

compared to all the other methods. As expected, under low noise situations, the gradient-

based method and the proposed integrated method are close. But as we increase the

amount of noise the deterioration is very rapid for the gradient method. But the combined
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Figure 4.6: Performance of the three methods for an occluded image. (a)Top,Left:
Original image; (b)Top,Right: Gradient image; (c)Middle,Left: Region Grown
image; (d)Middle,Right: Output of Boundary finding using gradient information
only; (e)Bottom,Left: Output of Boundary finding using region information only;
(f)Bottom,Right: Output of Boundary finding using an integrated approach. In all the
above, the darker contour represents the initial boundary placing and the brighter one
the final derived boundary.
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Figure 4.7: Performance of the three methods under occlusion

method shows little sensitivity to increased amounts of noise. This confirms the results

that we had in the last experiment. But a very interesting thing happens with the

region-based method. The plot seems to suggest an unreasonable thing: as the amount

of noise increases, the performance improves. This apparent anomaly can be explained

as follows. Since there is an occlusion, under low noise, the boundary comes close to

the actual one where there is no occlusion, but where the occlusion is present, it pulls

the boundary to the occlusion boundary. This results in large amounts of error. As we

increase the amount of noise it becomes more probable for the optimization process to get

trapped in a local minima resulting in smaller amount of movement. Thus it makes more

mistakes at those positions where there is no occlusion, but at positions where there is

occlusion it makes less error compared to the low noise case. This is so as long as the true
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boundary is closer to the initial boundary than the occlusion boundary. However, as we

keep increasing the noise level, the characteristics flatten out and would again start rising

for a further increase in noise. Figure 4.6 shows the occluded image and the performance

of the different methods as described previously when applied on this image. It is easy

to observe that the combined method performs the best.

Thus even if one of the methods fail partly, the integrated approach still seems

to give reasonable results as it uses information from both the methods. We note here

that a potential further work would be to use this method in conjunction with methods

to handle occlusions (see [90] for example, which preserves depth information) for better

results. We also note that if the initialization was close to the occlusion boundary, of

course, none of the methods would be working anymore and for all the cases including

the integrated method we would get grossly wrong results. It is precisely in situations

like this that the importance of the prior boundary information can be realized which

can serve as an initial boundary estimate as well. Let us note here that one might use a

third region label to characterize the occluded region, and then try to find the boundary

in such a way that the interior could be either of two regions used to characterize the

target object.

4.3.2 Real Images

In this section we apply the algorithm to real world clinical images. As is often the

case, neither gradient-based boundary finding nor region-based segmentation may give

satisfactory results on their own.

Figure 4.8a shows such an image which is a short axis Magnetic Resonance (MR)

image of a dog heart. The aim is to outline the endocardium. The region classified

image is shown in Figure 4.8b. Figure 4.8c shows the initial contour used. Figure 4.8d
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Figure 4.8: Example with an MR heart image. (a)Top,Left: Original image;
(b)Top,Right: Region classified image; (c)Middle,Left: Original Image with the initial
contour; (d)Middle,Right: Original image with the contour of the endocardium drawn
by an expert; (e)Bottom,Left: Output of Boundary finding using gradient information
only; (f)Bottom,Right: Output of Boundary finding using an integrated approach using
the same initialization.
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shows the probable edge as outlined by an expert. We display this only for the sake of

comparison. It wasn’t used otherwise. Region-based segmentation was done for three

regions- endocardium, epicardium and the background using only the means and the

variances. Once again, as in the synthetic examples, in this example and in the other

examples no prior information was used. While we maintain that the use of appropriate

prior information will only make the solution better, the purpose of this effort is to find

out how the algorithm performs based solely on the image-derived information sources,

without the introduction of expert knowledge. As we can see the image quality is very

poor and the edges seem to be very fuzzy. Thus the gradient information is very weak. If

we apply gradient-based boundary finding, due to a lack of strong edge information the

boundary seems to diverge after a few iterations as shown in Figure 4.8e. Figure 4.8f shows

the results of the integrated method, which though not perfect, is much better compared

to the other method. (It needs to be mentioned, that like all the other experiments, we

used the same initialization and the same number of harmonics to describe the boundaries

in either cases.) The main reason for this improved performance is that neither region-

based segmentation nor gradient-based boundary finding will actually fail as there is some

information in both the gradient and the region classified image. But by themselves they

have the limitations previously described and thus neither method produces desirable

results. But once we combine them, the output seems to improve due to the information

fusion, which relieves some of the limitations found when using the algorithms separately.

Figure 4.9 shows a similar sequence using a mid sagittal MR brain image, where

the task comprises of segmenting out the corpus callosum. Once again, the expert drawing

is used only for the sake of comparison. Region-based segmentation was done for three

regions- the corpus callosum, the grey matter and the background (that includes the
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Figure 4.9: Example with an MR brain image. (a)Top,Left: Original image;
(b)Top,Right: Region classified image; (c)Middle,Left: Original image with the initial
contour; (d)Middle,Right: Original image with the contour of the corpus callosum drawn
by an expert; (e)Bottom,Left: Output of Boundary finding using gradient information
only; (f)Bottom,Right: Output of Boundary finding using an integrated approach using
the same initialization.
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CSF) using only the means and the variances. This is a better quality image compared

to the previous application, and thus the improvement in performance is less, but even

here one can easily visualize the improvement.

In Figure 4.10, the task is to outline the epicardium on an MR image of a dog

heart. As in the example for the endocardium, region-based segmentation was done for

three regions- endocardium, epicardium and the background using only the means and the

variances (see 4.10(b) ). This is a particularly difficult image because the right ventricle is

not at all conspicuous and thus only an expert eye can point out the epicardial boundary

as shown in Figure 4.10c. Without any constraints, the output of a normal gradient-

based boundary finding algorithm is as shown in Figure 4.10e. One way of introducing

constraints, where otherwise there are no image features, would be to mark out areas

beyond which the boundary should not go. This can simply be done in the present

framework by negating the pixels of the classified image in these forbidden areas. The

forbidden region removes the right ventricle (parts of which can be differentiated in the

region classified image, and essentially, the forbidden region just connects them). In this

example, a region was roughly pointed out as forbidden for the epicardium by the user

depending on a rough estimate of where the epicardial wall separates the right ventricle.

Using this procedure, the output of the integrated approach is as shown in Figure 4.10f.

Finally, we consider a case which shows the importance of prior knowledge es-

pecially when both gradient and region information is inadequate primarily due to the

nature of the image. Figure 4.11(a) shows an axial MR brain image. Our aim is to

identify the left thalamus. Due to striations of white matter and due to partial volume

effects, the two lobes of the thalamus cannot be differentiated using image features alone.

Consequently, the prior information becomes important. Figure 4.11(c) shows the prior
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Figure 4.10: Example with a canine MR heart image where the task is to outline
the epicardium; (a)Top, Left: Original image; (b)Top,Right: Region classified image;
(c)Middle,Left: Initial boundary; (d)Middle,Right: Original image with the contour of
the epicardium drawn by an expert; (e)Bottom,Left: Output of Boundary finding using
gradient information only, without any constraints; (f)Bottom,Right: Output of Bound-
ary finding using an integrated approach using region-based constraints and under the
same initialization as in (e). As explained in the text, a region was described as forbidden
at the left side of the image close to the epicardial wall separating the right ventricle, so
that the final contour does not go inside the right ventricular region. Without this in the
absence of any features the contour diverges.
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Figure 4.11: Example to show the importance of prior information. (a)Top,Left: An
axial MR brain image; (b)Top,Middle: Region classified image; (c)Top,Right: Initial
contour. In the last two results this was used both as the initialization and the prior;
(d)Middle:Left: Output of gradient-based boundary finder without using prior informa-
tion; (e)Middle,Right: Output of integrated boundary finder without using prior infor-
mation; (f)Bottom,Left: Output of a gradient-based boundary finder using prior infor-
mation; (g)Bottom,Right: Output of an integrated (gradient + region) boundary finder
using prior information.
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which was also used as the initialization. This was used only as an initialization for the

results shown in Figures 4.11(d) and Figures 4.11(e) and was used both as the initializa-

tion in Figures 4.11(f) and Figures 4.11(g). Clearly, without prior information, both the

gradient-only case and the integrated (gradient + region) approach diverges. However,

when the prior information was used, it constrained the search space and the output is

more reasonable. (Note: The skull was stripped using the integrated boundary finding

approach.)

4.3.3 Reproducibility

Since there is still some human operator interaction required to use our proposed algo-

rithm, we present results aimed at testing the reproducibility of the boundaries generated

by the algorithm. We test the algorithm’s reproducibility against results generated by

a human operator (ie. manual tracing). We hypothesize that our approach will have a

smaller variance, implying better reproducibility.

First, a bank of ten images were selected. These MR images constitute a canine

heart from the apex to the base. For each one of these images, the algorithm was executed

ten different times to find out the boundary of the endocardium from different initial

settings as provided by an human operator. Note, that for the initialization, the operator

quickly clicked a few points around the boundary. However, for manual tracings, the

human operator carefully drew the boundary. The output of the algorithm consisted of

the boundary of the endocardium. The boundaries were uniformly sampled to always

have the same number of points. After that the mean and the variance in the contour

position was calculated for each one of these images. The variance was then divided by

the number of points on the contour.

For the manual tracings by a human operator, a domain expert traced carefully
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the boundaries for each of these images ten times and the same procedure as above was

repeated. To minimize the effect of memorizing, the order of the images were randomized

and the tracings were considerably spaced out in time. The results are shown in Table

1. Figure 4.12 shows the mean contours (human and algorithm generated) overlayed on

Figure 4.12: Four of the images used in the Reproducibility experiment with the mean
contour as hand traced by an operator, and as found by the algorithm overlayed. The
darker one represents the hand traced one and the brighter one the algorithmic.
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four of the images, where the broken contour represents the human drawn and the solid

one the algorithmic version. As we can see from the table, the variance is always at least

twice as much for the human tracings when compared to the algorithmic results. This

constitutes a significant deviation in reproducibility between the two methods. That this

is indeed the case, is born out by a standard pairwise T-test on the variance data which

shows that the difference between the two cases is highly significant (p < 0.001).

We note again that this experiment clearly shows two important things. First,

as demonstrated in Figure 4.12, the results from the algorithm and the human tracings

are in close agreement. Second, the result of the T-test shows that the variability in the

algorithm is significantly smaller when compared to human tracings. Thus, the algorithm

produces results that reasonably agree with a human expert’s desired result, but provides

a much more stable (i.e. less variable) estimate of the boundary location.

4.4 Conclusions

We have presented in this chapter a new technique for integrating the method of region-

based segmentation into gradient-based boundary finding. This is separate from the

other related works in the same way as edge detection is different from boundary finding.

Our method was motivated by a Bayesian framework of maximization of the a posteriori

probability. As the examples show, the integrated approach is more robust to both

increased amounts of noise as well as increasingly displaced initialization of the initial

boundary. Almost uniformly there is an improvement over the conventional gradient-

based boundary finding. To prove this, we have devised a variety of experiments and the

results from all of them are favorable.

Application of this method on real medical images results in noticeable improve-
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Image Number Algorithm based Human

1 0.631 1.47

2 0.5 1.50

3 0.576 1.371

4 0.67 1.7

5 0.53 1.85

6 0.72 1.81

7 0.75 1.71

8 0.83 1.99

9 0.24 1.4

10 0.576 2.1

Table 4.1: Variations Using Human Hand drawn and automated tracings.

ment as has been shown. We are using it for clinical research purposes for outlining the

endocardial and epicardial boundaries of the heart and the results are much better than

what we had achieved using the purely boundary based method of Staib and Duncan

[116].



Chapter 5

Multi feature Integration for

Deformable Boundary Finding

5.1 Introduction

In the previous chapter, we found out that it is important to use both region and gradient

information within an integrated deformable boundary finding framework to produce bet-

ter segmentation results. In this chapter, our aim is to go a step further in the integration

process. However, we continue with the same feature integration within the deformable

boundary finding paradigm described in Chapter 1. Here, we introduce an integrated

framework to handle the segmentation problem using not only gradient information, but

region and curvature information as well. Further, we will also analyze the strengths and

weaknesses of the different types of image-derived sources of information and under which

circumstances each source of information should be given precedence over the others.

In the previous chapter we reasoned and demonstrated that low signal-to-noise

ratio (SNR) and poor initialization can be better handled through the use of region

94
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information along with gradient information within the boundary finding framework.

Besides the issue of low SNR, as indicated in chapter 1, another problem with the gradient-

based boundary finder is that it has a tendency to smooth out sharp corners. To improve

on the localization error, we propose using higher order information like curvature along

with the gradient. We note here, the grey level curvature is used as an added feature

that actually guides the boundary finder (towards the optimum boundary) in addition to

the gradient information.

Once again, we will make use of the Bayesian framework as a guide to integrate

the different sources of integration. However, integration may not lead to the desired

result if any one of the sources of information is either too noisy or inaccurate. While the

localization properties of derivative information like gradient and curvature are superior

to those of the region-based information, the latter can handle noise better. Thus for

a noisy image, more emphasis should be put on the region information. On the other

hand, if the SNR in an image is not too low, a better localization can be achieved by

giving more importance to the derivative information. The problem with spurious peaks

is essentially similar to the low SNR problem and can be circumvented by enforcing

the region information over the derivative features. The curvature information becomes

important when the outline of the object curves sharply. If the image contrast is not high

enough, this important feature may not be well captured by the gradient.

Thus, besides being able to combine the different image-derived features, it is also

important to integrate them properly. We present experimental analysis to investigate

circumstances under which particular combinations of different information sources are

better than the others. Simple one-dimensional analysis is provided to back up these

experimental results in the appendix (Appendix B). It also justifies the necessity of using
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region information along with derivative features.

5.2 Image-Derived Features

In this section, we shall briefly describe the methods used to acquire the three different

data fields from the original image, all of which are used for estimating the right boundary.

5.2.1 Gradient information

The traditional way of doing edge detection or boundary finding is by making use of the

gradient information. We obtain the gradient image in the traditional way of convolving

the original image with the first derivative of the Gaussian kernel as in [116, 43]. Thus

we get the gradient image while at the same time smoothing to some extent the effect of

noise. We have already discussed this in chapters 3 and 4.

5.2.2 Curvature information

In this section, we will point out the importance of using curvature along with the gradient

and the region information as suggested in the beginning of this chapter. The meaning of

curvature is intuitively clear, it is a measure of the derivative of the tangent information

(i.e. it measures the local deviation from the tangent line [114]). Information about the

tangents to the isophote lines (lines of equal grey level intensity) can be obtained through

the grey level gradient. But the information about curvature which is a second order

feature cannot be obtained through the gradient, which is a first order feature.

When we want to place a boundary separating two regions in a grey level image,

what we are interested in is to place the boundary in such a way that the difference

between the points on either side of the boundary hits a local maximum. To do that, we
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must first look at the local structure of the image.

A completely continuous image can be considered as an analytic function L(~r) =

L(x, y), with,

L : R×R −→ R (5.1)

Locally, we may approximate L by its Taylor series:

L(~r + ~dr) = L(~r) + ~∇L · ~dr + 1

2
~dr ·H[L] · ~dr + .... (5.2)

with

~∇L =

(

∂L

∂x
,
∂L

∂y

)

= (Lx, Ly)

being the gradient and with

H[L] =









Lxx Lxy

Lxy Lyy









being the Hessian matrix. Now, since we intend to place the boundary at locations where

the local pixel-wise difference in the grey level value reaches a maximum, we are interested

in points, where

L(~r + ~dr)− L(~r) = ~∇L · ~dr + 1

2
~dr ·H[L] · ~dr + .... (5.3)
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is largest. The first term in the RHS of the above is clearly proportional to the gradient

term and the second term is the second order term. Substituting from the Hessian, we

get for the second order term,

~dr ·H[L] · ~dr = Lxxdx
2 + 2Lxydxdy + Lyydy

2 (5.4)

The above is what is known as the second fundamental form for curves. Now, the curva-

ture is proportional to the second fundamental form [114]. Thus one way of incorporating

the second order information along with the gradient information would be to use the

curvature. We conclude hence, that the use of curvature is important to improve the

accuracy of the boundary estimation process. However, it needs to be used alongside the

gradient, as it contains second order information that cannot be captured by relying on

the gradient alone. This is especially true in the case of objects with sharp corners. The

caution here is that, being a second order feature, it is much more sensitive to noise.

Thus for an extremely noisy image this information may be misleading.

Calculation of the isophote curvatures (which approximate the curvature in the

image grey level) directly from the grey level image can be obtained as in [15, 43, 64]. At

every point, a local coordinate frame is assigned so that one of the axes coincides with

the gradient direction and the other becomes normal to it. Calculation of the curvature

then reduces simply to taking second derivative of the normal with respect to the gra-

dient direction. This is then mapped back to the original coordinate frame. It can be

shown that the expression for curvature at a location (x, y) in the image is given by [43]

κ =
2LxLyLxy−L2

xLyy−L2
yLxx

(L2
x+L2

y)
3/2 . Those points at which the gradient becomes zero (i.e. the

denominator in the above goes to zero) are (must be) excluded from the curvature calcu-
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lation, because the curvature is not defined at those points. In the following discussion

Ic() is calculated by computing κ at all the image positions.

5.2.3 Region information

Methods to acquire region information have already been described in great detail in

chapters 3 and 4. We could use any of the two methods that were discussed in chapter

3. However, for most of the examples in this chapter (as in the last chapter) we used

the MRF-based classification method. We note here again that the region information

includes texture information as well.

5.3 Integration

Once, the data have been acquired from the original image in the form of region, gra-

dient and curvature information, our aim here is to combine them using the maximum

a posteriori framework. This is suitable for incorporating a priori shape information if

available. Without the priors, it becomes similar to the maximum likelihood estimation

problem.

Thus, we want to maximize P (~p|Ig, Ic, Is), where as described in previous chapters

(chapters 3 and 4), ~p is the vector of parameters used to parameterize the contour, Ig is

the gradient image, Ic is the curvature image, and Is is the region classified image.

Now,

P (~p|Ig, Ic, Is) =
P (~p, Ig, Ic, Is)

P (Ig, Ic, Is)

=
P (Is|Ig, Ic, ~p)P (~p, Ig, Ic)

P (Ig, Ic, Is)
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=
P (Is|Ig, Ic, ~p)P (Ic|Ig, ~p)P (Ig, ~p)

P (Ig, Ic, Is)

=
P (Is|Ig, Ic, ~p)P (Ic|Ig, ~p)P (Ig|~p)P (~p)

P (Ig, Ic, Is)
(5.5)

Thus ignoring the denominator P (Ig, Ic, Is), which is not a function of ~p the aim is to

find:

argmax
~p

P (~p|Ig, Ic, Is) ∝ argmax
~p

P (Is|Ig, Ic, ~p)P (Ic|Ig, ~p)P (Ig|~p)P (~p) (5.6)

≡ argmax
~p

[lnP (~p) + lnP (Ig|~p) + lnP (Ic|Ig, ~p)

+ lnP (Is|Ig, Ic, ~p)] (5.7)

In equation (5.8), we have just taken the natural logarithm, which is a monotonically

increasing function. Now, once again realizing that the use of derivative information can

be used in the calculation of Is, in an identical fashion as was done in Chapter 4, the

final form can be written as a combination of the following matching terms:

argmax
~p

M(~p, Ig, Ic, Is) = argmax
~p

[Mprior(~p) +Mgradient(Ig, ~p)

+ Mcurvature(Ic, ~p) +Mregion(Is, ~p)] (5.8)

The first term in equation (5.8) corresponds to the prior shape term which we

have already discussed in chapter 4. The second term in equation (5.8) is actually the

likelihood term which depends on the gradient image and is identical to the second term

in (4.6) of chapter 4 and has already been discussed. The third term is dependent on

the curvature information, and can be treated in exactly the same way as the gradient
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term. It can be considered to give additional information for local difference in the pixel

strength that may not have been captured by the gradient term. This term will be most

effective at those places where the gradient information is not particularly strong, yet

there are sharp changes in the curve e.g. at corner locations. Thus,

Mcurvature(Ic, ~p) ∝
∫

C~p

Ic(x, y)dt (5.9)

In the above, Ic(x, y) is the curvature image (derived directly from the grey scale values

as described before).

However, as has already been mentioned, curvature being a second order feature

is highly susceptible to noise. To avoid the effects of noise one could emphasize the

importance of curvature at those locations where we expect it to play an important role

and de-emphasize it at other locations. One way to do it is to weigh the curvature term

along the boundary by the curvature of the contour itself. Thus, where the contour curves

rapidly, the curvature information is given more importance and vice-versa. Noise from

the curvature image thus enters the optimization process only where the curvature has a

significant value. Thus,

Mcurvature(Ic, ~p) ∝
∫

C~p

α2(x, y)Ic(x, y)dt (5.10)

In the above, α2(x, y) is the scaled curvature of the contour (to be calculated only at the

contour points).

The last term in (5.8), incorporates the region information into the boundary

finding framework. It is equivalent to the last term in (4.6) of chapter 4 and is evaluated
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in a similar way. Hence, finally we have,

argmax
~p

M(~p, Ig, Ic, Is) = argmax
~p

[Mprior(~p) +Mgradient(Ig, ~p)

+ Mcurvature(Ic, ~p) +Mregion(Is, ~p)] (5.11)

≡ max
~p

[

Mprior(~p) +K1

∫

Cp
{Ig(x, y)

+ α2(x, y)Ic(x, y)} dt

+ K2

∫ ∫

A~p

Is(x, y)dA

]

(5.12)

where K1 and K2 are the weighting constants which signifies the relative importance

of the two terms in the above equation and α2(x, y) is a scaled version of the contour

curvature as previously described. It would be appropriate to restate here that while the

approach is motivated by the maximization of the a posteriori probability method, in the

final formulation, intuitively appealing definitions rather than exact probabilistic terms

are used.

As in chapter 4 we could once again combine the line and area integrals using

Green’s theorem and the result is as follows.

argmax
~p

M(~p, Ig, Ic, Is) ≡ argmax
~p

[Mprior(~p)

+

∫

C~p

(K1 {Ig(x, y)

+ α2(x, y)Ic(x, y)} dt

+ K2{Ns(x, y)
∂x

∂t
+Ms(x, y)

∂y

∂t
} )dt]

(5.13)
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where, Ms(.) and Ns(.) are as in equations (4.10) and (4.11). Thus, finally in this section,

we have presented a boundary finding procedure that integrates along with the gradient,

curvature and region information.

While the above gives us a model to combine the different sources of information,

how much of what needs to be combined remains an issue. The quantity α2(x(p, t), y(p, t))

controls the relative importance of the curvature term to the gradient term. From our

discussion regarding the curvature term, it is clear that under high SNR conditions it

could be as important as the gradient term. Hence, it should have a maximum value

of unity. The relationship between K1 and K2 controls the relative importance of the

derivative and region information. We shall have more to say about this in the discussion

and in Appendix B.

Optimization of the above is achieved using the conjugate gradient method as

before.

5.4 Results

In this section, we show some results that reinforces not only our claim that integration

as explained above results in a better boundary finding procedure, but also explains the

circumstances that make a particular piece of information more useful than the others.

First, we shall consider the importance of using gray level curvature. As we have

already mentioned, this is second order information and thus cannot be used alone to do

boundary finding. It has to be used in conjunction with the gradient information. This

information becomes particularly important when we are trying to trace an object that

does not have a very strong contrast with the background. In other words, cases under

which the gradient information is not strong enough. In such situations, especially if the
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object curves strongly, curvature information could be quite helpful. However, it must

be ensured that the SNR of the image is not too low because in an image with low SNR,

the isophote curvatures (grey-level curvature) cannot be computed reliably.

One such example is shown in Figure 5.1(a). As we can see, the contrast is low.

The SNR for this image is 3.0 where the signal strength is assumed to be the difference

in intensity between the target region and the background, and the noise power is given

by the variance of the added zero-mean Gaussian noise. In Figure 5.1(c) the output of

boundary finding using just the gradient information is shown. The darker contour shows

the initialization, and the brighter boundary is the final output. Figure 5.1(d) depicts

the same when we use both the gradient and the curvature information.

Clearly, the integrated method does a much better job. Figure 5.1(e) shows the

outputs from the two methods overlayed on the true object. The darker boundary is

the one due to the first method, where only the gradient information is used, and the

brighter one corresponds to the later method. As expected, the difference is prominent

where there are sharper features, i.e. at the location of the high curvature points.

In the next example, we continue with the same object but drastically reduce

the SNR. For this image (shown in Figure 5.2(a)), the SNR = 1
3 . As we have argued

previously, under such low SNR situations, unless we have a very good initialization, it

is profitable to give more emphasis to the region information. This is especially true if as

in this case, the size of the object is not negligible. Figure 5.2(b) shows the result of the

boundary finder using only gradient information. Curvature information is not used due

to the extremely low SNR. Once again, as in the previous case, the darker contour is the

initialization, and the brighter contour the final version. It fails to latch on the true object

boundary. On the other hand, if we use both the region and the gradient information
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Figure 5.1: Example with a synthetic image to show the importance of integrating curva-
ture information into the boundary finding framework along with gradient information.
For this image, the SNR = 3.0, but the contrast is low. (a)Top,Left: The original im-
age; (b)Top,Right: Curvature image; (c)Middle,Left: Output of boundary finding using
gradient information only. The darker contour represents the initialization, the brighter
one the final output. (d)Middle,Right: Output of boundary finding using gradient and
curvature information. The darker contour represents the initialization, the brighter one
the final output. (e)Bottom: The outputs overlayed on the template of the object out of
which the noisy image was generated. The brighter contour is the one generated using
both gradient and curvature information and the darker contour is the one generated by
using just the gradient. Note that the one using gradient and curvature is superior to the
gradient-based boundary finder (shown by the darker contour) is evident wherever the
object curves sharply.
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Figure 5.2: Example with a synthetic image to show the importance of integrating region
information into the boundary finding framework along with gradient information. For
this image, we have a very low SNR = 1

3 . (a)Top, Left: The original image; (b)Top,
Right: Output of boundary finding using gradient information only. The darker contour
represents the initialization, the brighter one the final output. (c)Bottom, Left: Output of
boundary finding using gradient information. (d)Bottom, Right: The outputs overlayed
on the template of the object out of which the noisy image was generated. The brighter
contour is the one generated using both gradient and region information. That it is
superior to the gradient-based boundary finder (shown by the darker contour) is evident.
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as shown in Figure 5.2(c), we get a reasonable output. For this example we gave equal

weighting to the gradient and the region term. Figure 5.2(d) shows the two outputs

overlayed on top of the actual object. The brighter one is the output of the integrated

version. However, if we look carefully to the brighter contours in Figures 5.2(d), and

5.1(d), we notice that the one in 5.1(d) is better localized. This is to be expected since

the one in Figure 5.2(d) relies more on the region information, which when compared to

gradient information has a higher localization error. This is so as in the previous image,

derivative information (gradient and curvature) is used, whereas in the latter case, it is

the region information that decides the final output.
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Figure 5.3: Performance under varying noise conditions. The SNR varies from 3.0 to 0.5.
(Explanations are given in the results section of the text.)

To further verify the circumstances under which a particular piece of informa-
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tion should be used, we formulated experiments similar to [25] where under the same

initialization, the distance between the final output and the true contour was compared

under different circumstances and under different situations of information fusion. The

x-axis for Figure 5.3 represents noise values (The SNR varies from 3.0 to 0.5). The y-

axis represents the error measure which is a scaled version of the Euclidean distance (see

the previous chapter and [116, 25] for details) between the final contour the algorithm

produces and the actual boundary. For all these examples, once again, we gave equal

weighting to the gradient and the region term.

From Figure 5.3, we observe that some form of information fusion is almost always

beneficial. As we would expect, however, performance of all the methods deteriorate with

increasing noise. However, when the noise is too high, the curvature information becomes

extremely unreliable, resulting in a huge overall error. Clearly, the stability of the region

information is obvious. Initially, the method combining gradient and region information

does not perform as well as the method that combines gradient and curvature because

under high SNR, the curvature and the gradient information are very reliable. So the

primary source of error is the localization error which is higher for the region information.

But soon, as the noise increases, the advantage that derivative information might have

over the region information is more than nullified by the better noise performance of

the method that combines region and gradient information. Thus for images with a

low SNR, this is the preferred method. Any method that uses derivative information

predominantly is likely to get trapped in a false minima under low SNR conditions.

The integrated method which combines all three sources of information does better for

the most part, except when the noise is too large. When the noise is too large, due

to unreliable curvature information, it starts performing worse than without it i.e., the
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method that only combines gradient and region information and excludes the curvature

information. We note here that while the above conclusions are related to the results

shown, our experience with a host of other real world clinical images also conform to the

above.

In the following example we consider the case of outlining the endocardium of the

heart. Figure 5.4(a) shows a short axis MR image of a canine heart. From our experience

this is one of the most difficult images of its type. Figure 5.4(b) shows the expected

boundary as outlined by a domain expert. In Figure 5.4(c) we see the results of using

just the gradient-based boundary finder and in Figure 5.4(d), the results of an integrated

boundary finder using both region and curvature information along with the gradient

information. In the last two images, the white contour represents the initialization,

and the black one the final output. Obviously, the integrated method has a superior

performance. The gradient-based method fails due to the lack of strong gradient features.

Once again, in this example, we gave equal weighting to the gradient and the region term

as it was not possible to choose one source of information over the other.

In the final example, we consider the case of an ultrasound image of the heart

as shown in Figure 5.5(a), where the task is to outline the left ventricle. This is an

ideal example where the texture and not just the pixel intensity is important. Region

classification was done using texture properties and is shown in Figure 5.5(b). A gradient-

based method alone is not likely to produce good results. Thus, as shown in Figure 5.5(d),

using a gradient-based boundary finder does not give us desired results. On the other

hand, the boundary finder in the integrated case as shown in Figure 5.5(e) does not diverge

and the result looks reasonable. Here, we gave the region term three times the weight

of the gradient term. The region information was derived using a texture segmentation
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Figure 5.4: Example with a short axis MR image of a canine heart. (a)Top, Left: Original
image; (b)Top, Right: Original image with the contour of the endocardium drawn by an
expert; (c)Bottom, Left: Output of Boundary finding using gradient information only. It
seems to be diverging; (d)Bottom, Right: Output of Boundary finding using an integrated
approach using the same initialization. The output looks reasonable. In both (c) and (d),
the black contour is the initialization, and the white one is the final output. The superior
output in (d) is due to the use of additional features as compared to that in (c).
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procedure described in chapter 3. Clearly, the boundary finder in this integrated case does

not diverge and the result looks reasonable although no claim is made about quantitative

accuracy.

5.5 Discussion

In the section in which we described the integration method, and again in the results

section, we pointed out the significance of the observation that while information fusion

Figure 5.5: Example with an ultrasound image of the heart. (a)Top,Left: Original image;
(b)Top,Middle: Region classified image; (c)Top,Right: Initial boundary; (d)Bottom,Left: Output
of a gradient-based boundary finder. That it diverges is clear; (e)Bottom,Right: Output of an
integrated (gradient + region) boundary finder which looks quite reasonable.
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is helpful in general, it needs to be done appropriately. This is so as there might be cases

(as we have already seen) where a particular source of information may be much more

reliable than others and vice versa. Under such circumstances, the proper way to combine

information would be to give more importance to the reliable features.

While the relation between the gradient and the curvature information is clear, the

relationship between the region and the derivative information (gradient and curvature)

is not so obvious.

Here we shall try to address that issue through a very brief mathematical analysis.

In part motivated by earlier efforts, [21], we shall consider the effects of localization, the

output signal to noise ratio, and response to spurious peaks.

To keep the analysis tractable, we will do the analysis for the 1-D equivalent

of a boundary as has been done by many other researchers including those by [21] and

[59]. Thus the boundary reduces to a step and the purpose of the procedure is then

to estimate precisely the location of the step. Further, as in the above references, we

shall model the edge as a Gaussian step and the noise as additive white Gaussian noise.

Gaussian edge profile is used because most of the commonly encountered edges can be

approximated by this model [21] and other kinds of profiles are either far less common or

can be constructed from linear combinations of steps [59]. Further, the blurring caused

by the imaging system can be reasonably approximated by the Gaussian kernel.

The details of the analysis are provided in Appendix B. However, we note the

following:

1)If we look at the expressions for the localization error and the SNR for the gradient-

based boundary finding (see equations (B.11) and (B.24) in appendix B), we can easily

observe that for the cases where the edge blur is smaller than the smoothness (σs ≤ σc,
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which constitute the reasonable choices, where as defined in the appendix, σs is the

standard deviation of the Gaussian that is used to approximate the edge-blur, and σc

is the standard deviation of the Gaussian smoothing kernel), both the localization error

and the SNR are proportional to σc. Thus as we increase the amount of smoothing, for

a noisy image, the output SNR improves, but the localization error increases as well.

On the other hand, for region-based boundary finding (see equations(B.20), (B.28)

in appendix B), we note that there is no such tradeoff. The localization error for this

method is proportional to σ2s . Thus, if σs is small and particularly if it is smaller than

unity but if the noise is high, it will require a larger value of σc to get a reasonable value

of the SNR for the gradient only case. Under such circumstances we find that the region-

based method would result in a much better localization. In other words, if the step

is almost perfect but the noise is high, there are circumstances, when the region-based

method will have a lower localization error. But, in the general case of a non-perfect step,

the localization error would be higher in the case of the region-based term.

2) The localization error gives a measure of the maximum deviation that can take place

once the edge has been found, i.e. the boundary finding process has converged close to the

true boundary. But the criteria that drives a process to that end, i.e. helps a process to

converge is the output signal to noise ratio. If the SNR is high, in general the convergence

is fast. The SNR in the gradient-based process, as seen in (B.24) is proportional to σc,

so there is some scope of improving it, at the cost however of increased localization error.

On the other hand, the output SNR from the region-based method (B.28) is

proportional to
√
L/2 where L is the size of the region. Thus, in general the SNR in

this case would be much larger than the gradient-based method. The only exception to

this would be the case when L is small. But, then these are precisely the cases when
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we would want the output SNR to be low, because a small L would mean a tiny region

which could be due to spurious peaks and we are not interested in allowing the boundary

finder to be attracted to it. Thus we observe, that the SNR is in general larger in the

case of the region-based method (as used here) and it depends on the size of the region

beyond the step. This is a stronger global property than what the SNR is based on in

the gradient-based method.

3) Regarding the response to spurious peaks, as the equations (B.30) and (B.31) in

appendix B point out, not surprisingly the conclusions are similar to that based on SNR.

Since the region-based method is a more global approach, the significance of spurious

peaks are smaller. This is so as in the region-based case, the response is proportional to

α/
√
L. Thus as long as the width of the spurious peak is small compared to the width

of the region that we are trying to find the boundary of, the significance of the spurious

peak is negligible.

Thus we might infer based on both the 1D analytical results and the experimental

results that for an integrated framework, we should do the following,

(i) If the image has an high SNR, we should emphasize the gradient information over

the region information to take advantage of the low localization error of the gradient

information.

(ii) If the initialization is far away, or if the SNR is low, we should emphasize the region

information to avoid false boundaries or divergence. In a real world example, of course it

is not possible to know how far the initialization is. In that case, the confidence the user

has in the initialization becomes important.

(iii) If we are interested in a particular value of the SNR, the above analysis allows us to

get an optimal combination of K1 and K2. However, for most images, exactly quantifying
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the weights may be very difficult and could involve too much of preprocessing. In that

case, a reasonable weighting scheme would be to use K1 = 1 and K2 = 1/SNR in

equation (5.13) i.e. give more weight to the region term as the noise increases.

5.6 Conclusions

We have, presented in this chapter a novel method to integrate features within the de-

formable boundary finding framework, namely region (which includes texture) and cur-

vature information along with the gradient information. We would like to point out that

here we used the grey level curvature in the image as an added source of information to

enhance the performance of the boundary finding procedure.

Also, we have presented experimental and analytical results to point out what the

benefits could be of using the different sources of information and under which circum-

stances which information should be given more importance.

While gradient information is in general useful, under low SNR conditions, region

information is more helpful. Also, it is more robust to outliers such as spurious peaks and

shallow minimas. Curvature information is particularly useful when the object has sharp

corners. However, if the noise is high it should not be used as it is extremely susceptible

to it. When used judiciously the integrated method improves the performance of the

boundary finding procedure and this is obvious from the results presented both with the

synthetic and clinical images. However, we note that while the treatment in this and

the previous chapter uses both, gradient and region information, it does not exploit the

coupling that exists between them in an optimal way. Also, the use of isophote curvatures

has its drawbacks in the sense that sometimes in real images, the isophotes may not be

well defined.
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Finally, we note that one might argue using higher order features (beyond second

order) within the deformable boundary finding framework. Theoretically, that would

mean using more terms in the expansion given in equation (5.2) and should further

improve the final solution. But in reality, realizing this gain may almost be impossible.

First, we have the problem of noise. The second order derivatives are already very noise

sensitive as we can expect and was borne out by the experiments. Third and higher orders

are likely to be even more noise sensitive, making the whole system unstable. Next, even

when the noise is low, points at which third and higher order derivatives are likely to be

useful would be very few. We noted before that the second order information would make

a difference only at those points where the curves turn sharply, making the first order

information inadequate. But these are the corners on the curve. The corners along with

the flat portions are adequate in defining most of the contours, making third and higher

order information almost redundant except for curves which undergo topological changes

at the corners. However, since such instances are rare and are likely to be an effect of noise

rather than real physical object boundaries, use of such information might in practice not

only increase the computational burden unnecessarily, but also might make the system

highly noise sensitive. Consequently, we do not further extend the feature integration

framework by adding further higher order information within the deformable boundary

finding framework.



Chapter 6

Game Theoretic Integration

6.1 Introduction

In the last two chapters, we discussed methods for doing feature based integration within

the deformable boundary finding framework. There we used additional information be-

sides gradient to perform boundary finding. As we observed, this improved the boundary

estimate. Region information was first acquired from the raw image, and was subse-

quently used within the boundary finding framework. But no effort was made to improve

the region information itself. Effectively, it was thus a one way flow of information. The

basic premise of this chapter is that we could do even better by refining the boundary

and region information at the same time and feeding back these complimentary sources

of information to each other. Our strategy will be to carry out the above as module

integration where the image segmentation problem is modeled as an integration of two

computational modules, one region-based and the other, boundary based. Integration

in this case will be achieved using a game theoretic framework as already discussed in

chapter 1. This consists of allowing the region and boundary modules to assume the roles

117
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of individual players who are trying to optimize their individual cost functions within a

game theoretic framework. This keeps them decoupled in the sense that each module up-

dates its own output only. The flow of information is restricted to passing only the results

of the decisions between the modules allowing us to easily combine the incommensurate

objectives involved. For any one of the modules, the results of the decisions of the other

modules are used as priors. This makes it unnecessary to construct a giant objective

function and optimize all the parameters simultaneously. The solution of the problem is

given by the equilibrium achieved as a consequence of this rational decision making. We

also note that this is technically more general than the single objective approach mainly

because the modules are allowed to have a different view of the world, i.e. work under

different probability spaces. When the probability spaces are identical, the equilibrium

solution becomes equivalent to that of the single objective approach [79]. Further, the

decoupling also makes the computation easier.

Module integration is expected to improve the outputs of both the modules, as

improvement in one of the modules automatically means improvement for the other mod-

ule as well because related information from one module is fed back to the other and vice

versa. As we had already noted in the introduction, feature integration as described in

the last two chapters can be considered to be a special case of module integration. This

is so because in the feature integration case, optimization is carried out over a set of

parameters, while another set of parameters remains unchanged. However, in the case of

module integration, we optimize over the whole set of parameters corresponding to both

the modules.

Another issue that is worth mentioning over here is the rationale behind our use

of Bayesian strategies to motivate the work. In the game-theoretic integration framework
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discussed here, flow of information consists of passing the output of each one of the

modules to the other modules in the form of prior information. Here, a module has

no authority to change the outputs of other modules. Thus it can use the information

regarding other’s output to update its own output, but cannot manipulate the information

it gets from others. This use of prior information clearly makes a Bayesian framework

suitable. Further, the use of Bayesian strategies also gives us the flexibility to incorporate

other kinds of relevant information, if available.

In this chapter, we shall first briefly mention (without details) some preliminaries

of game theory that we shall use later, and then go on to discuss in detail the non-

cooperative Nash game as applied to our image segmentation problem. This includes a

mathematical description of the modules under consideration. We will then present the

results of this novel method.

6.2 Game Theory

Game theory as a concept has its roots in decision making under conflicting and often

hostile environment. The theory of finite zero-sum games, which is the most elementary

type of game, dates back to Borel in the early 1920s, [16]. Borel introduced the notion

of a conflicting decision situation that involves more than one decision maker and some

other important concepts such as pure and mixed strategies (we shall shortly see what

these are) but didn’t develop a complete theory of games. The foundations of game

theory as we know it today, were laid down by Von Neumann in his pioneering book with

Morgenstern [93]. Other enlightening works include those due to Mckinsey [86], the two

volumes edited by Kuhn and Tucker [70, 71] and others.
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6.2.1 Preliminaries

In this section, we will discuss some of the keywords in game theory that will be important

for our subsequent discussions.

A game is a set of rules and conventions for playing. A play is a particular possible

realization of these rules. A move is a point in a game at which one of the players picks

out an alternative from a set of alternatives. The set of alternatives that are available

to a player constitute his strategy space. The particular alternative that the player picks

from that set is considered to be his choice, strategy or decision.

Games can be distinguished as one-person, two-person and so on, dependent on

the number of players (teams) that are playing the game. In an N-person game the rules

are such that the players fall into N mutually exclusive sets in such a way that players

within each set have identical interests. Every player is associated with a payoff function

that evaluates the performance of the player based on his decision and those of his co-

players. Thus, the rational choice of every player is to make his move in the strategy

space in such a way that he maximizes his payoff function. It incorporates goals that are

purely internal to the player as well as constraints imposed on him by the other players.

A further classification of games are based on the characteristic of their payoff

functions. Accordingly, they can be either zero sum or non-zero sum. In a zero sum

game what a player gains is necessarily at the expense of one or more players who incur

a loss. In a non-zero sum game no such restriction is present. The game that we will be

considering falls under this category. Games can also be grouped as either noncooperative

or cooperative [96]. In a noncooperative game any type of collusion such as correlated

strategies and side payments are forbidden. In a cooperative game, any such cooperation

is permitted. In this work, we shall only be concerned with noncooperative games. De-
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pending upon the number of choices that are available to the decision makers, a game

can be either finite or infinite. In a finite game the number of choices available to the

players are limited while in the infinite case they are unlimited.

A game is said to have reached its equilibrium when there is no incentive for any

unilateral deviation by any one of the players.

6.2.1.1 Noncooperative Finite Games: Two-person Zero-sum

The most elementary type of games are where there are two agents that are fighting to

share a fixed amount of resources. Thus necessarily, the gain of one of the players is

at the expense of the other. These games can be viewed in a matrix form where the

matrix coefficients describe the gains for one of the players or alternately, the loss to the

other. Thus at every turn, one player tries to maximize his gain and minimize his loss.

The dimension of the matrix is determined by the alternatives that are available to the

players. In a pure form of the game, the equilibrium is determined by a min-max strategy

which leads to a saddle point. Sometimes the game is not carried out in a pure form and

is instead carried out in a mixed form. A mixed strategy for a player is a probability

distribution on the space of his pure strategies. Saddle-point equilibrium in such cases

can also be attained by a similar minimax strategy. For a more detailed discussion and

an elegant proof of the min-max theorem one can look in [8, 86]. In our work, we would

only be interested in pure strategies.

6.2.1.2 Noncooperative Finite Games: N-person Nonzero-sum

The main distinction between the nonzero-sum and the previous zero-sum games is that

the outcome of a decision process in the present case does not necessarily dictate the

verdict that what one player gains culminates in a loss to some other player.
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Keeping this in mind, the two person matrix games of the previous case can

be easily extended to form what can be termed as a bimatrix game. Accordingly, a

bimatrix game is comprised of two matrices, A = {aij} and B = {bij}, with each pair of

entries (aij , bij) denoting the outcome of the game corresponding to a particular pair of

decisions made by the players. Thus, the strategies for the players P1 and P2 are defined

respectively by the rows and the columns.

Stipulating that there exists no collaboration between the players and that the

players make their decisions independently, the equilibrium is defined as follows:

Definition: A pair of strategies, {row i∗, column j∗ } is said to constitute a noncooper-

ative (Nash) equilibrium solution to a bimatrix game (A = {aij}, B = {bij}) if for all i

and j it satisfies,

ai∗j∗ ≤ aij∗

bi∗j∗ ≤ bi∗,j (6.1)

Furthermore, the pair (ai∗j∗ , bi∗j∗) is known as a noncooperative (Nash) equilibrium out-

come of the game.

Probably the most famous example of the bimatrix game is the so called Prisoners

dilemma. It characterizes a situation in which two criminals are held on suspicion of

having committed a certain crime. Since there is no direct evidence against them, their

conviction depends on their confessions. If both confess, both get a sentence of 8 years, if

neither confesses, they each get 2 years, and if one confesses and the other doesn’t then

the one that does confess is set free and the other one gets 30 years. It is easy to see that

this symmetric game has a dominant strategy for both the players under which both of
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them confess in order to reduce their risk. Since, this is a non-cooperative game, they

cannot collude. Thus, the equilibrium solution is that both prisoners get 8 years. This

simple example not only illustrates the existence of a Nash equilibrium for this problem

but also shows that it can be different from the general notion of optimum. This clearly

shows that the solution obtained under a game theoretic setting may not be identical to

the one obtained by optimizing a single objective function.

As in the previous case, the bimatrix games can also be extended to have mixed

strategies. A very powerful result regarding such games say that every bimatrix game has

at least one Nash equilibrium solution in mixed strategies.

The theory of the finite N-person nonzero-sum games is almost identical to the

bimatrix games that we just discussed.

6.2.2 Noncooperative Infinite Games

The main difference between this and other types of noncooperative games is that here

at least one of the players has at his disposal an infinite number of alternatives to choose

from.

Here it is assumed that all the players have effectively an infinite number of

strategies to choose from. The game may be either sequential or parallel. In a sequential

game, the decision makers (players) follow a certain sequence in making their moves. In

the parallel mode on the other hand, the players make their moves simultaneously. This

difference in the mode of decision making results in different equilibria for the two cases.

While in the sequential case, the game achieves what is called the Stackelberg equilibrium

which depends upon who the leader is, in the other case, it achieves the Nash equilibrium.
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6.2.2.1 ε-Equilibrium Solutions

Let us assume that there are N decision makers or players, D1, D2, ...., DN where F i,

the payoff of Di, the ith player depends not only on this player’s actions, but also on

those of some or all of the other players. Di ’s action is denoted by pi, which belongs

to his strategy space, i.e. pi ∈ P i. Then, the following [8] is a precise definition of an

ε-equilibrium solution in N -person games within the context of pure strategies.

Definition: For a given ε ≥ 0, a N -tuple {p1∗ε , ...., pN
∗

ε }, with pi
∗

ε ∈ P i, i ∈ N , is called

a (pure) ε-Nash equilibrium solution for an N -person nonzero-sum infinite game if

F i(p1
∗

ε , ...., p
N∗

ε ) ≤ inf
piε∈P

i
F i(p1

∗

ε , .., p
(i−1)∗

ε , pi, p(i+1)∗

ε .., pN
∗

ε ) + ε, i ∈ N (6.2)

For ε = 0, one simply speaks of equilibrium instead of 0-equilibrium solution in which

case, we denote the equilibrium strategy of Di by p
i∗
ε . From the viewpoint of each player,

its Nash decision is locally optimal. If all the module’s objectives require only individual

optimality, the Nash equilibrium is a natural definition for rationality. In the following

we describe the connection between rationality and Nash Equilibrium in more details.

6.2.2.2 Rationality and Nash equilibria

A pure-strategy Nash equilibrium solution in infinite games can be obtained as the in-

tersection point of the reaction curves of the players. Formally we have the following

definition [8].

Definition: In a two person game, let the minimum of F 2(p1, p2) with respect to p2 ∈ P 2,
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be attained for each p1 ∈ P 1. Then, the set R2(p1) ⊂ P 2 defined by

R2(p1) = {ξ ∈ P 2 : F 2(p1, ξ) ≤ F 2(p1, p2), ∀p2 ∈ P 2} (6.3)

is called the optimal response or the rational response of D2. If R
2(p1) is a singleton for

every p1 ∈ P 1, then it is called the reaction curve or reaction function ofD2 and is denoted

by l2(p
1). The reaction set and curve of D1 are similarly defined (simply by interchanging

the indices). In Figure 6.1, the constant level or iso-cost curves of F 1(.) and F 2(.) have

P
2

p  1

l
1

2

1

l
2

F = constant

p  1-

F = constant  

Nash Equilibrium

Figure 6.1: Constant level curves for F 1(.) and F 2(.) and the corresponding reaction
curves (l1 and l2) of D1 and D2 respectively.

been drawn for a specific game with P 1 = P 2 = R. For fixed p1, say p1 = p̄1, the best D2

can do is to minimize F 2 along the line p1 = p̄1. Assuming that this minimization problem
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admits an unique solution, the optimal response of D2 is determined in the figure as the

point where the line p1 = p̄1 is tangent to an iso-cost curve F 2(.) = constant. For each

different p̄1, a different unique optimal response can be found for D2, and the collection

of all these points form the reaction curve of D2 indicated by the curve l2 in the figure.

The reaction curve of D1 is similarly constructed: it is the collection of all points (p1, p2),

where horizontal lines are tangent to the iso-cost curves of F 1, and is indicated by l1 in

the figure. By definition, the Nash solution must lie on both reaction curves, and thus if

these curves meet at only one point, the Nash solution exists and is unique.

With this background, in the following sections, we shall first characterize the

two-person game for our segmentation problem and then describe the actual modules.

I*s

p*

Region  Based

Boundary Finding

p Is

Segmentation

Image

Figure 6.2: Flow diagram for game-theoretic integration of region-based segmentation
and boundary finding. The outputs of each of the modules, Is for the region module and
p for the boundary module are fed back to each other after every decision making step.
The game stops when none of the modules can improve their positions unilaterally. The
final solution pair, (I∗s , p

∗) constitutes the Nash Equilibrium
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6.3 Game theoretic integration of Segmentation modules

Our goal here is to develop a fully bi-directional framework for integrating boundary find-

ing and region-based segmentation as shown in Figure 6.2. This would lead to a system

where the two modules would operate in parallel so that at each step the output of each

module gets updated using information from the outputs of both the modules from the

previous iteration and the data itself. Thus as the game progresses, both the modules

improve their positions through mutual information sharing. Even though the modules

produce related outputs, they often produce separate complimentary information. For

example, in an image we might be interested in the shape and precise location of some

structures, while for some other structures (which are not well located) it might be im-

portant to quantify them i.e. to find the total activity. Clearly, neither boundary finding,

nor region-based segmentation by themselves are going to be able to provide us with all

the necessary answers because while region-based segmentation is not likely to give us

precise information regarding shape and location, boundary finding may not be feasible

if some of the structures are not well located. We have already seen before in chapters 4

and 5 how the use of region information refines the boundary estimate. Use of boundary

information can also be useful if for example there is an overlap in the region types of

one of the poorly located structures which needs to be quantified with that which can be

well isolated using boundary finding. We will show such an example later. However, even

if we are interested in either of the modules, it is necessary to improve the solution of

the other module because, as the goals are related, an improved solution for one module

automatically means a better solution for the other one too. Thus, if for instance, we are

interested in the final boundary finding output (see Figure 6.2) it is important to improve

the region module too (which might be necessary for other purposes) as the output of
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that module is used to find the boundary. A clinical example of this could be to delin-

eate the endocardial boundary of the heart (as in Figure 6.5) to analyze its shape, but

maintain the hypothesis that the region interior (the left ventricular (LV) blood pool)

should be roughly homogeneous. On the other hand, sometimes the region information

could be more important. For analyzing the size of a cancerous growth, we might want to

calculate the area of a tumor due to certain Magnetic Resonance Image signal properties

but preserve a rough, physician guided shape.

In the following, we pose the image segmentation problem as a 2-person, non-zero

sum, non-cooperative game.

6.3.1 Nash equilibrium for the Two-player Segmentation problem

The game is played out by the two segmentation modules, who assume the role of the

players. Thus, N = {1, 2} is the player set, P 1 and P 2 the strategy spaces of the decision

makers D1 and D2 respectively and

F 1 : P 1 × P 2 −→ R

is the cost function for decision maker 1 and,

F 2 : P 1 × P 2 −→ R

is the cost function for decision maker 2. Decision maker 1 corresponds to the region

module and Decision maker 2 is the boundary module.

The normal form of the game is described by {F 1, F 2} where it is assumed that P 1

and P 2 are the appropriate Hilbert spaces and we have the following definition of Nash

equilibrium from (6.2)

Definition: A pair of strategies ( p̄1 ∈ P 1, p̄2 ∈ P 2 ) constitutes a Nash Equilibrium
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solution if ∀p1, p2

F 1(p̄1, p̄2) ≤ F 1(p1, p̄2) (6.4)

F 2(p̄1, p̄2) ≤ F 2(p̄1, p2) (6.5)

Definition: If we consider k to be the time (i.e. iteration) index, then a parallel decision

making game theoretic algorithm can be viewed as [79]:

p1k+1 = arg min
p1∈P 1

F 1(p1, p2k) (6.6)

p2k+1 = arg min
p2∈P 2

F 2(p1k, p
2) (6.7)

where p10 ∈ P 1 and p20 ∈ P 2 is the initial point.

As of now, we have assumed arbitrary cost function structures for the payoff

functions. But for the segmentation problem, we shall assume that the cost functions

have the following structure:

F 1(p1, p2) = f1(p
1) + αf21(p

1, p2)

F 2(p1, p2) = f2(p
2) + βf12(p

1, p2) (6.8)

where α and β are some scaling constants.

We also consider the following constraints on F 1 and F 2.

(i) F i is bounded in pi ∈ P i.

(ii) F i is continuously second order differentiable in pi ∈ P i.

(iii) ∃ a closed neighborhood ui ⊆ P i such that F i is strongly convex in U i. For the above
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assumptions, we have the following which can be considered to be a corollary to a more

general theorem in [79] but is more relevant to our image analysis problem:

Theorem

For the given above structure of F 1(p1, p2) and F 2(p1, p2) there exists a locally stable

Nash Equilibrium solution, i.e. for any p1 ∈ U1 ⊆ P 1 and p2 ∈ U2 ⊆ P 2, the sequence

of rational choices generated by the parallel decision making process converges and the

limit point is a Nash equilibrium solution if α and β satisfy the following condition:
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We present the proof below, which follows similar reasoning as those in [79]. The

first few steps are similar and are given here for continuity. However, the bulk of it is

different because we are looking at a different set of requirements, suitable for our image

analysis problem.

Proof

By strong convexity and continuous second order Freschet differentiability, the operators

∂2

∂p1∂p1F
1(p1, p2)and ∂2

∂p2∂p2F
2(p1, p2)exist, are continuous and are strongly positive in U 1

and U2. Hence, ( ∂2

∂p1∂p1F
1(p1, p2))−1 and ( ∂2

∂p2∂p2F
2(p1, p2))−1 exist and thus by the

implicit function theorem on Banach spaces (Hilbert spaces) [60] ∃ L1 and L2 such that

L1 : U2 −→ U1 (6.10)
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L2 : U1 −→ U2 (6.11)

both continuously locally Freschet differentiable such that

∂

∂p1
F 1(p1, p2)

∣

∣

∣

∣

p1=L1(p2)

= 0 (6.12)

∂

∂p2
F 2(p1, p2)

∣

∣

∣

∣

p2=L2(p1)

= 0 (6.13)

in the neighborhood of some given pair, (p̃1, p̃2) ∈ U1×U2 ⊆ P 1×P 2. Since, this is true

for any such pair and L1, L2 are unique in each case due to the strong convexity, the

parallel decision making model is equivalent to

p1k+1 = L1(p
2
k) (6.14)

p2k+1 = L2(p
1
k) (6.15)

∀(p10, p20) ∈ U1 × U2 ⊆ P 1 × P 2. Hence, for any p̄1 ∈ U1, ∃(p1, p2), such that

p1 = L1(p
2) = L1(L2(p̄

1)) (6.16)

Let’s denote,

T : U1 −→ U1 (6.17)
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ie. T = L1L2 is a self mapping. Hence,

∂

∂p1
T (p1)

∣

∣

∣

∣

p̄1

= L̇1(p
2)L̇2(p̄

1) (6.18)

or

Ṫ (p1)
∣

∣

∣

p̄1
= L̇1(p

2)L̇2(p̄
1) (6.19)

Now, we are interested in that value of p1 that satisfies

p1 = argminF 1(p1, p2) (6.20)

Hence,

∂

∂p1
F 1(p1, p2) = 0 (6.21)

Thus, for that p1,

∂

∂p2

[

∂

∂p1
F 1(p1, p2)

]

= 0 (6.22)

or, changing the order the differentiation,

∂

∂p1

[

∂

∂p2
F 1(p1, p2)

]

= 0 (6.23)
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or,

∂

∂p1

[

∂

∂p2

{

f1(p
1) + αf21(p

1, p2)
}

]

= 0 (6.24)

or, noting that p1 = L1(p
2),

∂

∂p1

[

∂

∂p1
f1(p

1)
∂p1

∂p2
+ α

∂

∂p1
f21(p

1, p2)
∂p1

∂p2
+ α

∂

∂p2
f21(p

1, p2)

]

= 0 (6.25)

or,

∂

∂p1

[

∂

∂p1
f1(p

1) L̇1(p
2) + α

∂

∂p1
f21(p

1, p2) L̇1(p
2) + α

∂

∂p2
f21(p

1, p2)

]

= 0 (6.26)

or,

[

∂2

∂p1∂p1
f1(p

1)L̇1(p
2) + α

∂2

∂p1∂p1
f21(p

1, p2)L̇1(p
2) + α

∂2

∂p1∂p2
f21(p

1, p2)

]

= 0

(6.27)

Thus,

L̇1(p
2) = −

(

∂2

∂p1∂p1
f1(p

1) + α
∂2

∂p1∂p1
f21(p

1, p2)

)−1

α

(

∂2

∂p1∂p2
f21(p

1, p2)

)

= −
(

α−1 ∂2

∂p1∂p1
f1(p

1) +
∂2

∂p1∂p1
f21(p

1, p2)

)−1 (
∂2

∂p1∂p2
f21(p

1, p2)

)

(6.28)
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Similarly, it can be shown,

L̇2(p
1) = −

(

β−1 ∂2

∂p2∂p2
f2(p

2) +
∂2

∂p2∂p2
f12(p

1, p2)

)−1(
∂2

∂p2∂p1
f12(p

1, p2)

)

(6.29)

Substituting the above in the expression for T , we get,

Ṫ (p1) = L̇1(p
2)L̇2(p̄

1) (6.30)

=





(

α−1 ∂2

∂p1∂p1
f1(p

1) +
∂2

∂p1∂p1
f21(p

1, p2)

)−1(
∂2

∂p1∂p2
f21(p

1, p2)

)









(

β−1 ∂2

∂p2∂p2
f2(p

2) +
∂2

∂p2∂p2
f12(p

1, p2)

)−1(
∂2

∂p2∂p1
f12(p

1, p2)

)





(6.31)

Now, by the use of the condition stated in (6.9) we get,

∣

∣

∣

∣

∣

∣Ṫ (p1)
∣

∣

∣

∣

∣

∣ < 1 (6.32)

Thus for any p11 and p12 ∈ U1 ⊆ P 1, using the Mean Value Theorem, we get

∣

∣

∣

∣

∣

∣T (p11)− T (p12)
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣p11 − p12

∣

∣

∣

∣

∣

∣× sup
0<θ<1

∣

∣

∣

∣

∣

∣Ṫ (p12 + θ(p11 − p12))
∣

∣

∣

∣

∣

∣ (6.33)

<
∣

∣

∣

∣

∣

∣p11 − p12

∣

∣

∣

∣

∣

∣ (6.34)
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The second line in the above equation is obtained via the use of equation (6.32). This

proves that

∣

∣

∣

∣

∣

∣L1L2(p
1
1)− L1L2(p

1
2)
∣

∣

∣

∣

∣

∣ <
∣

∣

∣

∣

∣

∣p12 − p12

∣

∣

∣

∣

∣

∣ (6.35)

Hence, by the above equation, we have shown that the operator

L1L2 : U1 −→ U1 ⊆ P 1 (6.36)

is a contraction mapping.

Similarly, it can be shown that, the operator,

L2L1 : U2 −→ U2 ⊆ P 2 (6.37)

is also a contraction mapping.

This proves that the parallel decision making model converges. The convergence

is achieved by minimizing at each step the cost function of each one of the players keeping

the other’s output fixed. Consequently, the convergence point is by definition also the

Nash Equilibrium. Further, it also shows that for problems having a cost function struc-

ture defined in equation (6.8) Nash equilibrium exists, provided the inequality constraint

given in the theorem is satisfied. Consequently, it proves that an appropriate choice of

the coupling coefficients can assure the existence and stability of the Nash equilibrium.

However, we note that since it is an inequality constraint, it need not be an unique value.

Further, we can also make some simplification to the requirement of (6.9) to shed more

light on the role of the constants α and β. To do that, we proceed as follows:
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Let A = ∂2

∂p1∂p1 f1(p
1), B = ∂2

∂p1∂p1 f21(p
1, p2), C = ∂2

∂p1∂p2 f21(p
1, p2), D = ∂2

∂p2∂p2 f2(p
2),

E = ∂2

∂p2∂p2 f12(p
1, p2) and G = ∂2

∂p2∂p1 f12(p
1, p2). Then the condition in (6.9) can be

restated as

||[(α−1A+B)−1C][(β−1D + E)−1G]|| < 1 (6.38)

If we assume that the coefficients α and β are small, and in particular if the norm

of αA−1B and βD−1G are small compared to the identity matrix (meaning that the

objective function of the two modules are dominated by their own terms and not by that

of the influence from the other module), then we have

||αβ|| ||A−1CD−1G|| < 1 (6.39)

Since we want the above to be true for all values in the neighborhood i.e. ∀(p1, p2) ∈

U1 × U2 ⊆ P 1 × P 2, let

γ = sup
(p1,p2)∈U1×U2

||A−1CD−1G|| (6.40)

Hence, an approximate relation between α and β is given by

||αβ|| < γ−1 (6.41)

The above suggests a relationship that the two coupling coefficients should follow to

guarantee the existence of Nash Equilibria. One way to choose appropriate values for α

and β would be to fix either one of them to a reasonable value and then let the constraint
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(6.41) dictate the selection of the other one. Note that the above also assumes that A−1

and D−1 exists, which means that the modules by themselves are also convex in the

vicinity of the Nash Equilibria.

6.4 Interacting Modules

As already mentioned, the modules that we consider here are the two types of segmen-

tation procedure (see Figure 6.2), one region-based and the other boundary based. Even

though the method can be extended to work for other more general image models, for

simplicity of analysis, we shall assume that the image can be modeled as

y(i, j) = x(i, j) + n(i, j); 1 ≤ i ≤M ; 1 ≤ j ≤ N (6.42)

where n(i, j) corresponds to additive white Gaussian noise (AWGN). Now, as for x(i, j),

we make the further assumption that it can be modeled as a collection of homogeneous

regions of uniform or slowly varying intensities. As noted in the previous chapters, this

assumption merely states that the intra-region variability is smaller than the inter-region

variability, something that can be safely assumed to be true for many image segmentation

applications. Here, we describe mathematically the two interacting modules. Without

any interaction, the modules have already been discussed in Chapter 2. The interaction

is represented by an extra term in the cost function and we shall show that the form of

the cost functions will represent that of the parallel decision theoretic model that we had

described earlier in (6.8).

Both the modules will be posed in a Bayesian framework for reasons mentioned

in section 6.1 of this chapter.
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6.4.1 Region based segmentation influenced by boundary finding

We have already described the region-based segmentation method. Initially the require-

ment was to develop a region module given the raw image and the prior knowledge which

was modeled using a MRF which emphasized smoothness. Now, besides the input im-

age and the smoothness constraint, we also have as a prior, the output of the boundary

finder, the parameterized contour ~p. Thus the aim is to find argmaxx P (x|Y, ~p), where

as already defined, Y is the raw image data and x is the segmented image. Now,

P (x|Y, ~p) =
P (x, Y, ~p)

P (Y, ~p)

∝ P (Y |x)P (~p|x)P (x)

P (Y, ~p)

=
P (x|Y )P (~p|x)P (Y )

P (Y, ~p)
(6.43)

In the second step of the above equation, we have ignored the dependence of p on Y

because p is obtained as a prior for this module and is not modified within this module.

Since we are concerned with maximization w.r.t. x, we have,

argmax
x

P (x|Y, ~p) ≡ argmax
x

P (x|Y )P (~p|x) (6.44)

The first term in the above equation is derived from the image data and the previous

output of this module, whereas the second term represents the influence of the previous

output of the boundary finding module. Now, taking the logarithm in the previous

equation, we get,

argmax
x

lnP (x|Y, ~p) ≡ argmax
x

lnP (x|Y ) + argmax
x

lnP (~p|x) (6.45)
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As we can recognize, the first term in the above equation (6.45) is the same as

that in the stand alone module in (3.31). The second term,however corresponds to the

information derived from the boundary finding module.

Even though this procedure can be extended to images with more than two re-

gions, for the time being, we shall continue with the assumption that there are only two

regions, one of which represents the target object. Thus the contour vector ~p represents

the boundary of that object. Now, let A~p correspond to the points that lie inside the

contour and Ā~p those points that lie on the background. Thus, A~p
⋃

Ā~p = {(i, j); 1 ≤

i ≤M, 1 ≤ j ≤ N} ie. the whole image consists of those two parts only.

A very simple model to represent this information is thus given by,

lnP (p|x) ∝
∑

(i,j)∈A~p

(xi,j − ui,j)
2 +

∑

(i,j)∈Ā~p

(xi,j − vi,j)
2 (6.46)

where ui,j represents the information regarding the intensity of those points that lies

inside the contour and vi,j of those that lie outside. For most simple images with uniform

regions, they could actually represent just the expected value of the pixels at those points,

something that can easily be computed a priori [83]. We explained this in chapter 3. If

we assume that the image can be segmented to simple uniform regions, then of course

we simply have u = ui,j =
∑

(i,j)∈A~p
xi,j and v = vi,j =

∑

(i,j)∈Ā~p
xi,j . However, more

complex modeling of the intensity information, (e.g. in the case of a texture image) can

also be done. Thus, finally the region-based module including the interacting term is

mathematically equivalent to the minimization of the following:

min
x

E = min
x





∑

i,j

[yi,j − xi,j ]
2 + λ2





∑

i,j

(xi,j − xi−1,j)
2 +

∑

i,j

(xi,j − xi,j+1)
2
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+ α





∑

(i,j)∈Ap

(xi,j − ui,j)
2 +

∑

(i,j)∈Āp

(xi,j − vi,j)
2



 (6.47)

= minx[f1(x) + αf21(x, p)]

We note that the above poses the problem in the format of the parallel decision making

structure of (6.8) as shown in equation (6.47), with the first term of the objective function

f1(x) representing the contribution of the region-based module by itself (which is identical

to the expression in (3.34) and the other term f21(x, ~p) representing the interaction term

which uses the latest available output ~p of the boundary module (via the definitions ui,j

and vi,j .

6.4.2 Boundary finding influenced by region-based segmentation

The aim of this module is to estimate the boundary using besides gradient information,

region information as well. Once again, the entire problem will be posed in a Bayesian

framework (for reasons already mentioned in section 6.1) as we shall shortly see. Thus, we

want to maximize P (~p|Ig, Is), where as described in the previous section, ~p is the vector

of parameters used to parameterize the contour and Ig represents the gradient image and

Is (obtained from x of the region module) is the region segmented image.

We shall not describe mathematically this module as it has already been discussed

in chapter 4. The relevant equation (4.12) that we carry over from that development is:

max
~p

M(~p, Ig, Is) = max
~p

[Mprior(~p)

+

∫

C~p

(K1Ig(x, y)

+ K2{Ns(x, y)
∂x

∂t
+Ms(x, y)

∂y

∂t
} )dt] (6.48)
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We now rewrite this equation as follows:

max
~p

M(Ig, Is, ~p) = max
~p

[Mprior(~p)

+

∫

C~p

Ig(x(~p, t), y(~p, t))dt}

+ β

∫

C~p

{Ns(x, y)
∂x

∂t
+Ms(x, y)

∂y

∂t
} dt] (6.49)

= max~p[f2(~p) + βf12(Is, ~p)]

Here, K1, K2 and β are constants. We first fix K1 = 1 and then we have β = K2.

The functionsNs() andMs() has been described in equations (4.10) and (4.11). As before,

the intuition behind using f12(.) is that if we could identify the target region by positive

values, and the other by negative values, the above area integral is maximum when the

boundary correctly encircles the target region. For the simple two region problem, after

the segmentation has been done, we could linearly translate the intensity values to satisfy

the above requirement. Here, that would just mean subtracting out the mean of the means

of the two characteristic regions. In other words, for this case, Is(i, j) = x(i, j)−m, where

(i, j) represents the pixel location and m is the mean of the means of the two regions.

For a more sophisticated image model a better representation for m could be used.

We note that the construct of the objective function is once again consistent with

the game theoretic framework of (6.8) as shown in equation (6.49) where f2(p) is the

contribution of the gradient-based boundary finder and f12(Is, p) is the interaction term

that uses the latest available output from the region module. This along with the theorem

stated and proved in section 6.3.1 assures us that a right choice of coupling coefficients

will allow the problem to converge to a Nash equilibrium.
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6.5 Results

Experiments were carried out both with synthetic and real biomedical images to verify

the performance of game theoretic integration.

6.5.1 Synthetic Images

The first part of the experiments involved synthetic images with known amounts of noise

and with objects of known shape.

Comparisons were made first between the outputs generated using game theoretic

integration and the corresponding outputs obtained without using information fusion.

The equations (6.47) and (6.49) jointly describe the outputs of the game-theoretic inte-

gration where equation (6.47) gives the region output and equation (6.49) the boundary

output under the integrated framework. When the coupling coefficients α and β are set

to zero, we have the stand alone modules.

In the first experiment, we created a synthetic image that has one target object

in the center surrounded by an uniform background. We used the same template that

was used in the previous chapters. Figure 6.3(a) represents a noisy (with added Gaussian

noise) version of the above mentioned image. The signal to noise ratio (SNR) for this

image is 0.67. For this image we applied the region-based method and the gradient-

based boundary finding without information sharing as described before and also the

game-theoretic procedure with information sharing as has already been discussed. Figure

6.3(b) shows the output of the region-based method when it is used by itself. Figure 6.3(c)

represents the output of the gradient-based boundary finder. For this figure and in Figure

6.3(e), the darker contour represents the initialization and the brighter contour the final

boundary found. Figure 6.3(d) represents the output of the region-based segmentation
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Figure 6.3: Example with a synthetic image to show the effects of game theoretic inte-
gration. (a)Top,Left: Original image with SNR = 0.67. (b)Top,Right: Output of region-
based segmentation without using game-theoretic integration. (c)Middle,Left: Output of
boundary finding without using game-theory; The dark contour represents the initializa-
tion, and the brighter one is the final output. (d)Middle,Right: Output of region-based
segmentation using game-theoretic integration. (e)Bottom,Left: Output of boundary
finding using game-theory; The dark contour represents the initialization, and the brighter
one is the final output. (f)Bottom,Right: The final boundary outputs generated by the
two methods overlayed on top of the template. The dark contour represents the output
of the gradient-based boundary-finder without using game-theory, and the brighter one
is the final output using game-theoretic integration.
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module under the game theoretic framework. Figure 6.3(e) on the other hand, corresponds

to the output of the boundary finding module under the game theoretic framework. As

we would expect, the output in Figure 6.3(d) is much better than that in Figure 6.3(b)

where there is no information fusion. Similarly, the final contour output in Figure 6.3(e)

with information fusion is much better than that in Figure 6.3(c) without integration.

In Figure 6.3(f) we overlay the boundary outputs on top of the true image so that the

difference in performance can easily be compared. The darker contour represents the

output without information fusion and the brighter one with it. The output in Figure

6.3(c) using just gradient-based boundary finding shows divergence.
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Figure 6.4: Comparison of region module with and without game-theoretic information
sharing under increasing noise conditions. Clearly, the error is larger without information
sharing than what we get using game-theoretic integration.

Next, we try to analyze the effects of integration for both the modules under
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Figure 6.5: Comparison of boundary finding with and without game-theoretic information
sharing. Clearly, the error is larger without information sharing than what we get using
game-theoretic integration.
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Figure 6.6: Plot showing performance of boundary module with and without region
update. Clearly, the performance is better when we use game-theoretic integration where
the region module is also updated.
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increasing amounts of noise. In Figure 6.4 we compare the output of stand alone region-

based segmentation (α = 0) with the same output obtained using game-theoretic inte-

gration (α 6= 0) as in equation (6.47).

In Figure 6.5 we compare the output of stand alone gradient-based boundary

finder (β = 0) with the same output obtained using game-theoretic integration (β 6= 0)

as in equation (6.49). We use the same template as in Figure 6.3. The contrast difference

between the background and the target is 200.0 and the x-axis in the Figures 6.4 and 6.5

correspond to the standard deviation σ for the white noise added. Both the experiments

had noise varying from σ = 25 to σ = 400. In other words, the SNR varies from 8.0

to 0.5. As for the y-axis, in Figure 6.4, it represents the average per-pixel intensity

error, and in Figure 6.5, it represents a scaled version of the average Euclidean distance

between the true contour and the final one obtained. In the last chapter we described the

details of this. For every point in the above two plots, the experiments were repeated ten

times with the same initialization. One needs to do this because even though the noise

distribution remains the same, the pixel values of the noise could be different. Clearly,

the results are superior for both the modules when there is game-theoretic information

fusion. We also compared the game-theoretic output with integration achieved in the

manner described in Chapter 4, where the boundary module used the information from

the region module, but the region module wasn’t updated. We argued that this feature

integration framework can be considered to be a special case of the more general module

integration framework considered here. The result of this comparison is shown in Figure

6.6. As expected, the result of the game-theoretic method is superior to the integrated

method without region update.

The next part of the experiments using synthetic images involved comparisons of
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the game-theoretic method with a single objective function approach that simply adds

together the objective functions involving the region and the boundary processes. As in

[18, 17], a single objective function involving both the region and boundary process was

created by merely adding the functions in the equations (6.47) and (6.49). Optimization

was achieved using gradient descent. Figure 6.7 shows the boundary output for the same

image and the same SNR=0.67. We can see that the game theoretic output is superior

to the output obtained using the single objective function approach.

Figure 6.8 shows a noise comparison of the game-theoretic approach with the

single objective function method. Once again, we use the same template as in Figure

6.3. The contrast difference between the background and the target is 200.0 and the

x-axis in figure 6.8 correspond to the standard deviation σ for the white noise added

which varies from σ = 25 to σ = 400, i.e. the SNR varies from 8.0 to 0.5. Clearly, the

game-theoretic method produces better results. Further comparing the figures 6.7 and

6.8 with the corresponding figures 6.3 and 6.5 reveal that the result of the single objective

approach is not significantly better than the individual modules, primarily due to the non-

optimal combination to form the single objective function in the way described before.

However this does not mean that an optimal solution is not possible. But what it does

indicate is that integration using a single objective function is much more complicated, at

least in the present case. We note that this is similar to the conclusion achieved in [18].

The biggest practical advantage of the game-theoretic approach is that not only does

it produce superior results, the computational costs are also much lighter as compared

to the single-objective approach. We further did an analysis to see how sensitive the

outputs of the two integration methods were to the weighting coefficients. The same

template and the same initialization as in the previous experiments were chosen. Once
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Figure 6.7: Comparison of game theoretic integration with the single objective function
approach. (a)Top,Left: Original image with SNR = 0.67. (b)Top,Right: Output using
a single-objective function approach. The dark contour represents the initialization, and
the brighter one is the final output. (c)Bottom,Left: Output using game-theory; The
dark contour represents the initialization which is the same as in (b), and the brighter
one is the final output. (d)Bottom,Right: The final boundary outputs generated by the
two methods overlayed on top of the template. The dark contour represents the output
of the single-objective function approach and the brighter contour represents the game
theoretic output.
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Figure 6.8: Comparison of the game-theoretic approach with the single-objective function
approach under varying amounts of noise.

again an SNR = 0.67 was selected. First, the value of α was varied, while the value of

β was held constant at β = 0.4. The result is shown in Figure 6.9(a). Next, the value

of β was varied, while the value of α was held constant at α = 0.2. The result is shown

in Figure 6.9(b). While both the methods are somewhat sensitive, the game theoretic

method generally provides the better result. With low values of α and β, the difference

between the two methods is smaller. This is to be expected because then the coupling is

really low. However, for larger values of α and β, the game-theoretic method deteriorates,

probably because of the non-existence of Nash equilibrium resulting in the fact that if

one of the modules make a wrong move, both the modules are effected by it considerably.
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Figure 6.9: Sensitivity comparison of the game-theoretic approach with the single-
objective function approach. The y-axis gives the distance error between the true contour
position and the final output found as the coupling coefficients were varied. (a)Top: Plot
showing the variation with α as β was held fixed at β = 0.4. (b)Bottom: Plot showing
the variation with β as α was held fixed at α = 0.2.
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Figure 6.10: Example with a short axis MR image of a canine heart. (a)Top,Left: Original
image; (b)Top,Right: Boundary of the endocardium hand-traced by a domain expert;
(c)Bottom,Left: Output of gradient-based boundary finding without using game theoretic
integration. The dark contour represents the initialization, and the brighter one is the
final output. (d)Bottom,Right: Output of gradient-based boundary finding using game
theoretic integration. The dark contour represents the initialization, and the brighter one
is the final output.
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Figure 6.11: Example with an MR image of the brain. (a)Top,Left: Original im-
age; (b)Top,Right: Boundary of the corpus callosum hand-traced by a domain expert;
(c)Bottom,Left: Output of gradient-based boundary finding without using game theoretic
integration. The dark contour represents the initialization, and the brighter one is the
final output. (d)Bottom,Right: Output of gradient-based boundary finding using game
theoretic integration. The dark contour represents the initialization, and the brighter one
is the final output.
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6.5.2 Real Images

The next part of the experiment utilizes clinical images. Figure 6.10(a) shows the short

axis MR image of a canine heart taken from one of our clinical studies, the task being to

be able to segment out the endocardium. It is one of the more difficult images of its type.

Figure 6.10(b) shows the hand traced result by a domain expert. It is used for the sake of

comparison. Figure 6.10(c) shows the result of the stand-alone boundary finder. In Figure

6.10(d), we show the output of the boundary finder under game theoretic integration with

the same initialization. The superiority of the final output in this case is obvious. Both

in Figures 6.10(c) and 6.10(d), the darker contour represents the initialization, and the

brighter contour represents the final output. The reason for the failure of the stand-alone

boundary finder is a combination of fuzzy edges and poor initialization.
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Figure 6.12: Plot showing performance under different initializations for a heart image
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To further investigate this, we compared the outputs of the two methods (i.e. the

stand-alone boundary finder and the game-theoretic method) under different initializa-

tions against the expert-driven boundary and the result is shown in Figure 6.12. As we

can see, there is almost no difference in the performance between the two methods when

the initialization is close to the true contour. But as the initialization moves further away,

the integrated method outperforms the stand-alone module.

Next, we investigate the situation with a MR image of the brain shown in Figure

6.11(a), where the aim is to segment the corpus callosum. Figures 6.11(c) and 6.11(d)

represents the output using just a gradient-based boundary finder and the game-theoretic

boundary finder respectively.
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Figure 6.13: Plot showing performance under different initializations for a brain image

As in the previous case, we compared the outputs under different initializations
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against the expert-driven boundary and the result is shown in Figure 6.13. Once again,

the performance of the two methods are almost identical when the initialization is close

to the true contour. But as the initialization moves further away, the integrated method

outperforms the stand-alone module.

While in the heart image, noisy and fuzzy edges coupled with poor initialization

seem to be the problem for the stand-alone module, in the brain image the issue is

primarily the poor initialization. However, the game theoretic outputs in both the cases

are satisfactory. This clearly demonstrates the robustness of the game theoretic method.

Next, we show the same heart example shown previously, where our aim is to not

only find out the endocardial boundary, but also to find good region estimates for the

blood pool, muscles etc. Since it is not possible to extract all the small substructures

via boundary finding, region information is considered important. However, there is a

considerable overlap between the intensity levels resulting in erroneous results if only

region-based segmentation without using integration is done. We can see the output in

Figure 6.14(d). However, if we do a game-theoretic integration, the output of the region

module gives a much more reliable estimate as shown in Figure 6.14(e). The better

output can be explained by the fact that the algorithm uses the information that it is

unlikely to find blood pools outside the two ventricles and that within each blood pool

muscles cannot exist. The region process gets this information from the boundary module.

Without integration, the region method has no way of using this information. Further, it

also effectively isolates the regions of stray misclassified pixels of high intensity in a more

effective way. Local smoothness is not as effective under such circumstances. This shows

that the integrated algorithm has a natural way of handling image consistencies.
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Finally, we show two examples, where once again we consider a case where the

region information is of primary importance. Figure 6.15(a) shows a Nuclear Medicine

Single Photon planar radioisotope image (histogram equalized) of the kidney taken from

a clinical study performed to study the quantitation of renal function [139]. Because of

the poor quality of the image it is very difficult to do quantification using stand-alone

region-based segmentation. Results using region-based segmentation alone is shown in

figure 6.15(d), which clearly is inaccurate. On the other hand, the region output of the

Figure 6.14: Example to demonstrate the use of region information in an MR heart image.
(a)Top,Left: Original image; (b)Top,Middle: Initial boundary for the right and the left
ventricle; (c)Top,Right: Final boundaries for the right and left ventricles; (d)Bottom,Left:
Region-based segmentation output without integration; (e)Bottom,Right: Region-output
with game-theoretic integration;
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integrated game-theoretic method shown in figure 6.15(e) looks much more reasonable.

Once again, the improvement in the performance can be attributed to the sharing of

information that is possible through the game-theoretic method. Thus the region process

can use the information that it is not looking for radioisotope activation outside the

kidney. Another such example is shown in Figure 6.16 for a patient who has only one

functional kidney. This example is more difficult than the other Nuclear Medicine image

example. However, we note once again, that the integrated method produces a much

Figure 6.15: Example to demonstrate the use of region information in a nuclear medicine
image. (a)Top,Left: Original image; (b)Top,Middle: Initial boundary for the two kid-
neys; (c)Top,Right: Final boundaries; (d)Bottom,Left: Region-based segmentation out-
put without integration; (e)Bottom,Right: Region-output with game-theoretic integra-
tion;
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Figure 6.16: Example to demonstrate the use of region information in a second nuclear
medicine image. (a)Top,Left: Original image; (b)Top,Middle: Initial boundary for the
kidney and the bladder; (c)Top,Right: Final boundaries; (d)Bottom,Left: Region-based
segmentation output without integration; (e)Bottom,Right: Region-output with game-
theoretic integration;

better region estimate.

6.6 Discussion

6.6.1 Existence of Nash Equilibrium

In the above we described a game-theoretic method to integrate boundary finding and

region-based segmentation, whereby both the modules improve their position through
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mutual sharing of information. We also stated and proved a theorem for the existence of

Nash equilibrium for the types of objective functions that we had for the segmentation

problem. It turned out that the requirements were in effect an inequality constraint on the

coupling coefficients α and β in equation (6.8). The results show a definite improvement

due to the integration of the modules. But direct verification of the requirements of the

theorem (6.9) could be non-trivial. However, as shown in Appendix C, it is possible to

argue the existence of the Nash equilibrium. There, we have shown the existence for the

equivalent 1D problem and have argued extensions to 2D.

6.6.2 Convergence to Nash equilibrium

While for simple problems it might be possible to mathematically choose right values for

α and β in (6.8), often for complicated problems it is almost impossible. Fortunately

however, they are inequality constraints rather than equalities. Thus the exact values are

not important. But even then, finding a reasonable value may not be trivial. However,

for most of the cases, a reasonable guess gives satisfactory results. Further, the simplified

formulation given in (6.41) gives a much simpler relation between the coupling coefficients,

which could be used as well. It effectively provides an upper bound for the coupling

coefficients. But then by no means it guarantees convergence to the actual desired Nash

Equilibrium. Similar to the case with multiple optima, multiple Nash Equilibria might

exist, and we may very well converge to the ones that are not desirable. However, since

we are likely to give a reasonable initialization to the problem, we may expect the process

to converge to the appropriate one.
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6.6.3 Moving towards Nash Equilibrium

Once we have defined the existence of an equilibrium, or rather a point of convergence,

the next issue is an algorithm to achieve it. Here, we do parallel gradient descent on

the corresponding objective functions when the players have their turns. It was shown

in [79, 17] that this process of decision making is acceptable and the algorithm indeed

converges to the Nash equilibrium. Thus at each turn rather than reaching the optima

of the cost functions, the players (modules) take steps in the right direction, i.e. go in

the direction in which their cost changes in the desired manner. For the region module

that means making a move to decrease the energy defined in (6.47) and for the boundary

module, that means making a move to increase the objective function given in (6.49).

The starting point for the boundary module is the user-provided initialization and for

the region module it is the output of a simple thresholding procedure.

6.7 Conclusions

We have presented in this chapter a new technique for integrating region-based segmenta-

tion and gradient-based boundary finding using the game theoretic framework. We have

posed this as a non-zero sum two-person non-cooperative game where the cost functions

of both the modules are motivated using the Bayesian theory of maximization of the a

posteriori probability. The main advantage of using the game-theoretic integration is that

it can bring together the incommensurate region and boundary methods that operate in

different probability spaces into a common information sharing framework of rational de-

cision making. This leads to an improved output for both the modules without extensive

computational overload. As the examples show, the integrated approach is much more

robust to both noise and poor initialization. Application of this method on synthetic and
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natural images results in noticeable improvement as has been shown.



Chapter 7

Extensions to 3D

So far all the work that we have done, and all the examples that we have considered,

involved two dimensional images. However, the ideas that we have presented in this work

can be extended to three dimensional images as well. In this chapter, we extend the idea

of integrating region information within the surface finding framework (the counterpart

of which for 2D images was described in chapter 4) to 3D images.

7.1 Introduction

Three dimensional image analysis is important especially in the medical imaging domain

due to the wide availability and use of three dimensional images from such modalities as

magnetic resonance imaging (MRI), computed tomography (CT), single photon emission

computed tomography (SPECT) [42]. In most of these cases, the analysis is comprised of

precisely identifying and quantifying structures and abnormalities. Often, it is standard

practice is to treat the 3D image as a stack of 2D images (see for example [36]), thereby

reducing it essentially to a 2D image analysis problem. While successful in many cases, the

162
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problem with such methods is that they tend to either oversimplify or ignore altogether

the true 3D properties of the structures under consideration. Thus, it is important to

use 3D image analysis methods for these images. Our interest here lies in finding the

surface boundaries of relevant structures. However, as in the 2D case, boundary finding

using only local information in 3D images is problematic due to the effects of noise, poor

contrast, unfavorable viewing conditions, presence of other objects in the near vicinity

etc. In addition, some of the methods that are applicable in 2D can no longer be used

for 3D images. For example, pixel search methods that follow an optimal path through

the two dimensional images cannot naturally be extended to three dimensions because

the voxels in a surface have no such ordering. Hough transform methods [5] can be

used, but for three dimensional images it is very expensive both in terms of storage and

computational costs. To overcome these problems, once again, as in the 2D case, the use

of whole boundary methods have been advocated. This allows us to augment imperfect

image data with shape information provided by a geometric model [115, 118, 112]. The

main idea is to form over-constrained estimates that use a few parameters to describe a

large number of points.

We adopt the Fourier parameterization of [115, 118] primarily because we consider

it suitable for the class of problems that we are looking at and because of its flexibility

of using prior information easily, when such information becomes available. Also, it is

a natural extension to our adopted 2D boundary parameterization. Besides the Fourier

representation [115, 118] that we describe below after [118] other approaches to three

dimensional parametric modeling include generalized cylinders [103], superquadrics [112],

hyperquadrics [72], finite element methods [32, 34, 35], etc. Some of this was discussed

in the background section in chapter 2.
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7.2 Fourier surface representations

A surface in three dimensions can be represented by three coordinate functions of two

surface parameters as x(u, v) = (x(u, v), y(u, v), z(u, v)), where u and v are the free

parameters that very over the surface. Since there are two free parameters, a function of

two parameters is necessary to describe a surface. The Fourier representation of [115, 118]

uses the following basis:

φ = {1, cosmu, sinmu, cos lv, sin lv, cosmu cos lv, sinmu cos lv,

cosmu sin lv, sinmu cos lv, ... (m = 1, 2, ...; l = 1, 2, ...)} (7.1)

The functions x(., .), y(., .) and z(., .) are composed as weighted sums of the elements of

the above basis and has the following form:

f(u, v) =
K
∑

m=0

K
∑

l=0

λm,l[ am,l cosmu cos lv + bm,l sinmu cos lv

+ cm,l cosmu sin lv + dm,l sinmu sin lv] (7.2)

where,

λm,l =































1 for m = 0, l = 0

2 for m > 0, l = 0 or m = 0, l > 0

4 for m > 0, l > 0

The series is truncated at K, i.e. only a finite number of harmonics are used. This

again is similar to the case in 2D, and is done to constrain the space of functions. Taken
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together, the coefficients form the parameter vector,

~p = (ax, bx, cx, dx, ay, by, cy, dy, az, bz, cz, dz) (7.3)

The four basic classes of surfaces in three dimensions are tori (closed tubes), open

surfaces (with one edge), tubes (open surfaces with two edges) and closed surfaces.

The torus, which is periodic in both the surface variables is formed with the entire

basis in equation (7.1). Closed surfaces, which we are most interested in, is given by the

Figure 7.1: Two closed surface examples using upto four and eight harmonics (taken from
[118])

representation:

φclosed = {1, sin lv, cosmu sin lv, sinmu sin lv, ....} (7.4)
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which forces the functions to be constants at v = 0, π, 2π. But this forces the ends to

be together as well. The ends need to be separated by adding a weighted term to each

coordinate of the form sin(v−π/2) resulting in three more additional shape parameters.

Two closed surfaces shown in Figure 7.1 demonstrates the capability of the above men-

tioned parameterization. We note here that it is also possible to represent open surfaces

and tubes by this parameterization, details of which can be found in [118].

7.3 Region information

As in the 2D case, the idea here is to classify the image into a number of regions or

classes. Thus for each voxel in the image, we need to decide or estimate which class it

belongs to. We have described two methods to do region based segmentation in chapter 3

and any of those could be used here. However, we choose to use the region classification

method that was described in detail in chapter 3, the final equation for which is given

by equation (3.54). Note that the ICM method for optimization was used here. That

equation continues to hold and the procedure remains the same in 3D. Thus every pixel

is classified to belong to a particular class depending on its actual pixel characteristics

(i.e. the grey level value) and those of its neighbors. This neighborhood information is

again modeled using a MRF model. A first order neighborhood system has been used

which has six neighbors (2 neighbors along the three axes) instead of the four that we

had in the 2D case.

7.4 Integrated surface finding objective function

In this section, we shall define the objective function, optimizing which would result in

the estimated surface parameters. The development is similar to the 2D version in section
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4.2 of chapter 4.

As in the 2D case, the input to the problem consists of the actual image I and

the region classified image Is, which is obtained from I after passing it through a region

based segmentation step as discussed above. We shall also assume that the interior of

the boundary that we are trying to find belongs to a single region in Is. Let us note

here that similar to the 2D case, all that this assumption requires is that the intra region

variability should be smaller than the inter region variability. Further relaxations to this

can be attained in a similar way as was achieved in the 2D case (see chapter 4 for details).

The traditional surface finding problem does not use the original image directly. Being

a gradient based approach, it uses instead the gradient image Ig. As in the Staib and

Duncan [118, 115] approach, we shall use the magnitude of the gradient vector at each

voxel location. Ig can be obtained from I either by convolving the input image I with

the derivative (taken in the three directions) of a Gaussian kernel and then computing Ig

to be the magnitude of the above resulting vector image. (Alternatively, one can obtain

Ig from I by first convolving with a Gaussian to smooth the effects of noise followed by

taking a finite difference approximation to the partial derivatives in the three directions

and then calculating the magnitude of the gradient vector at each voxel location.) Thus

finally, the input to the system is the gradient image Ig and the region classified image

Is.

Parallel to our development for the 2D case, the above surface estimation problem

using gradient and region homogeneity information can be posed in the maximum a

posteriori framework. This is suitable for incorporating a priori shape information if

available.

Our objective is to maximize P (~p|Ig, Is), where as already mentioned, ~p is the
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vector of parameters used to parameterize the surface. This development is identical to

the one in 2D case described in chapter 4, and the relevant equation, that we carry over

here is as follows:

argmax
~p

M(~p, Ig, Is) ≡ argmax
~p

[Mprior(~p) + Mgradient(Ig, ~p) + Mregion(Is, ~p)]

(7.5)

The first term in equation (7.5) corresponds to the prior shape term. When it is

non-uniform, it biases the model towards a particular range of shapes. However, since

there might be other objects in the image, we would always need an initial estimate of the

surface to start the optimization process. The information fusion that we present in this

case increases the reliability of the surface finding procedure under increased uncertainty

in the initial boundary placement. Experimental results to validate this claim will be

provided in the results section.

The second term is the gradient likelihood term. It is a measure of the likelihood

of the surface being the true object boundary given the gradient image. At each point on

the surface, the strength of the boundary is evaluated by the magnitude of the gradient

at that particular voxel, given by the gradient image. Thus the likelihood of the whole

surface being the true boundary becomes proportional to the sum of the magnitude of

the gradients at all the points that lie on the surface boundary. If we assume that the

noise can be approximated by a zero mean Gaussian, and further assume that the voxels

on the boundary are independent, then we may express the above term in the probability

expression as the following area integral (see Staib and Duncan [115, 118] for further



169

details) where σ2n is the variance of the underlying noise process:

Mgradient(Ig, ~p) ∝
∫ ∫

A~p

Ig(x, y, z)dA (7.6)

where the area element on the surface is given by:

dA = |xu × xv|dudv (7.7)

The third term in equation (7.5) is analogous to the corresponding term in (4.6)

and is responsible for incorporating the region information into the surface finding frame-

work. Again, the notion is that we would expect the bounding surface to include a

homogeneous region inside it. We note that the comments made before regarding the

homogeneity assumption are valid here as well. For simplicity’s sake, if we assume that

we are dealing with an image where the target object is surrounded by a single back-

ground, we could as in the previous chapters, assign positive values to the interior of

the object and negative values outside. However, as explained before in chapter 4, this

assumption of a single target object in an uniform background is not necessary. Once

we have associated positive values with the target object and negative values with points

that lie outside, a volume integral that sums up all the points inside the surface is taken.

Clearly, this integral would be a maximum when the bounding surface is optimally placed

over the object. Thus the third term in (7.5) is given by:

Mregion(Is, ~p) ∝
∫ ∫ ∫

V~p

Is(x, y, z)dV (7.8)
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Hence finally we have,

argmax
~p

M(~p, Ig, Is) = max
~p

[Mprior(~p) +Mgradient(Ig, ~p) +Mregion(Is, ~p)]

≡ max
~p

[

Mprior(~p) +K1

∫ ∫

A~p

Ig(x, y, z)dA

+ K2

∫ ∫ ∫

V~p

Is(x, y, z)dV

]

(7.9)

where K1 and K2 are the weighting constants which signifies the relative importance of

the two terms in the above equation.

Of the last two terms in (7.9), one is an area integral and the other is a volume

integral. In general, computing an area integral is much less expensive compared to a

volume integral. Thus we would save a lot of computation, especially when we carry out

an iterative optimization procedure, if we could convert the volume integral to to an area

integral which we have to compute anyway, as the second term which is present even in

the original surface finding method involves computing an area integral. The above can

be done using Gauss’ divergence theorem [9] which states

Gausses’ Divergence Theorem: If W is a simple region in R3 and if (∂W,N) be the

positively oriented boundary of W , then for any C1 vector field F : W ⊆ R3 −→ R3

∫ ∫

F · dA =

∫ ∫ ∫

divF dV (7.10)

For our problem we let,

Fx(x, y, z) =
1

3

∫ x

0
Is(α, y, z)dα (7.11)
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Fy(x, y, z) =
1

3

∫ y

0
Is(x, β, z)dβ (7.12)

Fz(x, y, z) =
1

3

∫ z

0
Is(x, y, γ)dγ (7.13)

where F = (Fx,Fy,Fz). We note that the definition of F () is done in such a way that

the C1 continuity requirement in the statement of the above theorem is met. Under the

above assumptions, we have,

∫ ∫ ∫

V~p

Is(x, y, z)dV =

∫ ∫

F · dA (7.14)

=

∫ ∫

A~p

F · (xu × xv)dudv

= 3

∫ ∫

A~p

Fx(yuzv − zuyv)dudv

= 3

∫ ∫

A~p

Fy(zuxv − xuzv)dudv

= 3

∫ ∫

A~p

Fz(xuyv − yuxv)dudv

=

∫ ∫

A~p

[Fx(yuzv − zuyv) + Fy(zuxv − xuzv)

+Fz(xuyv − yuxv)]dudv (7.15)

Substituting the above in (7.9) we finally get,

max
~p

M(Ig, Is, ~p) = max
~p

[Mprior(~p)

+ K1

∫ ∫

A~p

Ig(x, y, z)dA

+ K2

∫ ∫

F · dA] (7.16)
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Let us note here that the calculation of Fx(), Fy(), and Fz() are done only once at

the start of the optimization process. Also, we note that these calculations merely involve

summing up the values of the voxels in the image Is in the three directions. Further their

derivatives, which we need during the optimization process results in the values of the

image Is itself. We mention this to point out that the use of the extra information hardly

introduces any extra computational burden.

In the above, we have presented a surface finding procedure that introduces a prior

term that incorporates information that we might obtain from region based segmentation.

Further, use of Gauss’s divergence theorem allows us to reduce the whole problem to

computing surface integrals only rather than both surface and volume integral.

7.5 Evaluation and Optimization

The objective function in equation (7.16), can be evaluated by numerical integration. The

gradient of the objective is necessary for optimization. The derivative of the objective is

given by,

∂M

∂px
=

∂Mprior(~p)

∂px
+K1

∫ ∫

A~p

[

Ig(x, y, z)
∂

∂px
|xu × xv|

+
∂Ig(x, y, z)

∂x

∂x(~p, u, v)

∂px
|xu × xv|

]

dudv

+ 3K2

∫ ∫

A~p

Is(x, y, z)(yuzv − zuyv)
∂x(~p, u, v)

∂px
dudv (7.17)

and similarly for y and z. This expression can also be evaluated by numerical integration.

Expressions like
∂Ig(x,y,z)

∂x can be obtained using discrete derivative calculation. Other

expressions like ∂x(~p,u,v)
∂px

and xu and xv can be obtained analytically from equations (7.1)
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and (7.2). The derivatives of the prior terms can be obtained in exactly the same way as

in the 2D case.

Optimization is achieved using conjugate gradient method which is a local opti-

mization method. For surface finding even local maximization involves a lot of compu-

tation. Thus to avoid even further computational burden, global optimization methods

were not considered at the cost however of not being able to guarantee global convergence.

However, since the method is initialized close to the actual location, global optimization

methods may not be required.

7.6 Results

Experiments were carried out both with synthetic and clinical images to verify the per-

formance of the above mentioned method. However to evaluate it, we need a method to

calculate the error between two surfaces expressed parametrically. We do this using the

same definition (given below) as the one used in [118]. The error is defined as the average

distance between each point on the estimated surface and the closest point on the true

surface. That is, the error between surfaces S and Ŝ is defined as

e(S, Ŝ) =

∫

(u,v)∈Ŝ min(u′,v′)∈S |S(u′, v′)− Ŝ(u, v)|dA
∫

(u,v)∈Ŝ dA
(7.18)

This can be computed discretely by first taking a distance transform of a binary volume

representing the true surface [118]. This is then correlated with the binary volume repre-

senting the estimated surface, which gives the minimum distance between the estimated

and the true surface. This is then normalized by the area of the estimated surface.
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We first used a synthetic example to evaluate the algorithm developed. This

is useful because for this case we had exact knowledge of the true surface boundary.

Comparisons of the integrated method was done against the traditional gradient based

surface finding approach.

Figure 7.2 shows a simple synthetic example of a closed surface with added Gaus-

sian noise. The SNR for this image was 1.6. The initial surface was roughly placed on

the target object. Clearly, we can observe that the combined method performed better.

It can be observed from the wireframe diagrams that the surface finder diverges under

these noise conditions when using gradient information alone which is not the case for

the integrated method.

Figure 7.3 shows a comparison of the two methods under increasing noise condi-

tions. Here, the X-axis corresponds to the noise level given by the standard deviation

of the noise used. The Y-axis gives a measure of the distance between the estimated

surface and the true one using equation (7.18). Once again, it is obvious that the inte-

grated method is superior under high noise conditions. This upholds our claim that the

proposed integrated method is robust to noise which is even more dramatic in 3D.

Now, as for the initialization, Figure 7.4 shows the performance when the vertical

shift was varied from the true position, keeping the initialization for the other parameters

fixed. It shows that the integrated method has a larger capture region. In other words, the

integrated method converges to the desired target object, which is much further off when

compared to the gradient-only case. Thus the the region within which the initialization

should be is larger for the integrated algorithm.

In Figure 7.5 we try out the proposed algorithm on a three dimensional cardiac

image of a dog’s heart obtained using the Dynamic Spatial Reconstructor (DSR). The
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Figure 7.2: Surface finding for a synthetic image with and without region information.
(a)Top: Three perpendicular slices through the 3D image (48× 48× 48) are shown with
the initial surface along with and the wireframe. (b)Middle: The same slices through the
same 3D image are shown with the surface obtained using only the gradient information
and the corresponding wireframe. (c)Bottom: The same slices through the same 3D image
are shown with the surface obtained using both the gradient and the region information
and the corresponding wireframe.
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Figure 7.3: Noise performance of the surface finder with and without region information.
Clearly, the combined method is superior
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Figure 7.4: Performance of the surface finder with and without region information un-
der different starting positions. This was varied by shifting the initialization vertically.
Clearly, the combined method is superior
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Figure 7.5: Surface finding for a DSR image of a canine heart with and without region
information. (a)Top: Three perpendicular slices through the 3D image (98×100×110) are
shown with the initial surface and the wireframe. (b)Middle: The same slices through the
same 3D image are shown with the surface obtained using only the gradient information
and the corresponding wireframe. (c)Bottom: The same slices through the same 3D image
are shown with the surface obtained using both the gradient and the region information
and the corresponding wireframe.
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DSR is 3D imaging device based on high speed x-ray computed tomography [105]. An

expert cardiologist can observe that the combined method performs better. One can see

that, by noting that the integrated method does a better job of capturing the blood pool

(the bright area) in the slices shown.

7.7 Conclusions

We have presented in this chapter an integrated method for doing surface finding using

both region and gradient information. As the examples show, the integrated approach

is more robust to both increased amounts of noise as well as increasingly displaced ini-

tialization of the initial boundary. Almost uniformly there is an improvement over the

conventional gradient based boundary finding. To prove this, we have devised a variety

of experiments and the results from all of them are favorable. Application of this method

on real medical images results in noticeable improvement as shown.



Chapter 8

Conclusion

This thesis has developed a systematic approach to the problem of integrated methods

for image segmentation. The failure of any single image segmentation method using

a single image-derived source of information for a wide range of images with a variety

of image content has generated considerable interest for integrated methods in recent

years. This thesis has provided a step in that direction. It develops and portrays the

integration problem from two inter-related viewpoints, feature integration and module

integration. Feature integration within the boundary finding framework was achieved by

introducing region and curvature information in addition to gradient information within

the deformable boundary finding framework. This vastly improved the performance of

the boundary finder when compared to the traditional approach of using gradient infor-

mation alone. While the use of region information made the process significantly robust

to noise and poor initialization, the use of curvature information bolstered its localization

accuracy. Then we considered the more general case of module integration where com-

putational modules representing the region and the boundary processes were integrated

within a game theoretic framework. Thus unlike in the feature integration case, both
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the region and boundary processes were simultaneously improved. While being able to

produce better results using an integrated method constitutes a significant contribution,

the way it was achieved is also important. Often in computer vision, integration is con-

sidered synonymous with optimizing a global single objective function. This is not only

inadequate on certain occasions, but also may be impossible or at least computationally

very expensive due to the incommensurate nature of the objectives involved. We circum-

vent this by using a novel game theoretic framework where the incommensurability is not

considered to be a problem. The proposed integrated method yields significantly better

results which has been proved by examples involving both synthetic and real image data.

However, there remain areas of potential improvements. While experimental re-

sults pointed out that an integrated method results in an improvement, further theoreti-

cal analysis can be done to bolster that argument through the development of theoretical

bounds as is often done in the signal processing literature. More rigorous theoretical

analysis can also be performed regarding the existence and uniqueness of Nash equilib-

rium for the segmentation problem considered. Another issue is regarding the use of

game theoretic Nash equilibrium as opposed to the optima of a global objective function.

While it is true that it might be difficult to frame many problems like the present one

within the global objective framework, it is not impossible. Thus the question remains

as to which is likely to lead us to a better solution. It has been shown that these two

different methodologies may result in different answers [17], but the superiority of one

over the other hasn’t yet been clearly established. It is possible that one might want to

further investigate in that direction. On a more related theme, it is possible to extend

the whole methodology to three dimensions. This thesis showed preliminary results that

indicated that it most likely will generate improvements. We are in the process of doing
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further research in that direction.



Appendix A

Gradient Calculation

In Chapter 4, we developed an integrated method for doing deformable boundary finding

using region information in addition to gradient. Here, we show how the gradient of the

objective function developed can be calculated. We have from equation (4.9)

M(~p, Ig, Is) =

[

Mprior(~p) +

∫

C~p

K1Ig(x, y)dt+K2

∫ ∫

A~p

Is(x, y)dA

]

(A.1)

Taking the gradient of the above with respect to ~p, we get,

∇~pM(~p, Ig, Is) =
∂

∂~p
Mprior(~p) +K1

∫

C~p

∂

∂~p
Ig(x, y)dt+K2

∂

∂~p

∫ ∫

A~p

Is(x, y)dA

(A.2)

We shall make the simplifying assumption that dt is not a function of ~p. For Gaussian

prior distributions as in (3.12) the first term on the RHS of (A.2) is

∂

∂pi
Mprior(~p) = −

pi −mi

2σ2i
(A.3)
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Now, for the second term, we have

∫

C~p

∂

∂~p
Ig(x, y)dt =

∫

C~p

[

∂Ig(x, y)

∂x

∂x

∂~p
+

∂Ig(x, y)

∂y

∂y

∂~p

]

dt (A.4)

Before going to the third term in the RHS of (A.2), we observe the following from Green’s

theorem:

∫ ∫

A~p

Is(x, y)dA =
1

2

∫

C~p

[

Ns(x, y)
∂x

∂t
+ Ms(x, y)

∂y

∂t

]

dt

=

∫

C~p

Ns(x, y)
∂x

∂t
dt =

∫

C~p

Ms(x, y)
∂y

∂t
dt (A.5)

where M(.) and N(.) is as defined in equations (4.11) and (4.10).

We also observe that ~p = (~px, ~py) where

~px = (a0, a1, b1, a2, b2, ...........) (A.6)

and

~py = (c0, c1, d1, c2, d2, ...........) (A.7)

Thus from the observations in (A.5), (A.6) and (A.7), we get

∂

∂~px

∫ ∫

A~p

Is(x, y)dA =
∂

∂~px

∫

C~p

Ms(x, y)
∂y

∂t
dt =

∫

C~p

(

∂

∂~px
Ms(x, y)

)

∂y

∂t
dt

=

∫

C~p

Is(x, y)
∂x

∂~px

∂y

∂t
dt (A.8)
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and

∂

∂~py

∫ ∫

A~p

Is(x, y)dA =
∂

∂~py

∫

C~p

Ns(x, y)
∂x

∂t
dt =

∫

C~p

(

∂

∂~py
Ns(x, y)

)

∂x

∂t
dt

= −
∫

C~p

Is(x, y)
∂y

∂~py

∂x

∂t
dt (A.9)

The partials of Ig(.), the gradient image can be obtained by using a central divided

difference approximation. As for the partials of x and y with respect to ~p, we can

calculate them from equation (3.4) as:

∂x(t)
∂a0

= 1 ∂y(t)
∂a0

= 0

∂x(t)
∂c0

= 0 ∂y(t)
∂c0

= 1

∂x(t)
∂ak

= cos(kt) ∂y(t)
∂ak

= 0

∂x(t)
∂bk

= sin(kt) ∂y(t)
∂bk

= 0

∂x(t)
∂ck

= 0 ∂y(t)
∂ck

= cos(kt)

∂x(t)
∂dk

= 0 ∂y(t)
∂dk

= sin(kt)



Appendix B

Performance analysis

As mentioned in the Discussion section of chapter 5, for the one dimensional analysis we

shall model the received edge as:

r(x) = IΦ(
x− l

σs
) + n(x) (B.1)

where I is the intensity of the edge, l is the location of it, and σs is the amount of blur

and Φ is the step response of a Gaussian. We assume that L is the extent of the image

(here, the 1-D signal), i.e. x ∈ [0, L]. The noise is distributed as:

n(x) ∼ N(0, σ2n)

B.1 Localization

In this section assuming the model chosen above, we shall analyze the localization er-

rors for boundary finding using just the gradient information and using just the region
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information.

B.1.1 Gradient based

This is the equivalent to first convolving the image with a linear filter and then finding

the maxima. This is exactly the way the gradient information is used in a lot of boundary

finding and edge detection methods that include for example [21, 59, 116, 62]. It has been

concluded that the best filter comprises of the Gaussian kernel. Since we are interested in

finding the maxima of the changes we convolve with a Gaussian and then take derivatives.

Thus mathematically this is equivalent to:

argmax
x

[φ̇σc(x) ∗ r(x)] (B.2)

where

φ̇σc(x) =
−x√
2πσ3c

e
− x2

2σ2
c

is the first derivative of the Gaussian and σc controls the smoothness. We shall assume

that the integration window is of width 2Tx around the point of observation. Now, finding

the maxima of the derivative as in above is also equivalent to solving for

φ̈σc(x) ∗ r(x) = 0 (B.3)

or,

φ̈σc(x) ∗ [s(x) + n(x)] = 0 (B.4)
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where s(x) is the edge in the received signal.

We are trying to analyze the localization error l̂ − l of a linear operator (see also

[21]) since convolution is a linear operation. Let H represent the convolution filter in the

last equation. Thus it becomes:

Hs(l̂) + Hn(l̂) = 0 (B.5)

Our interest is in finding the localization error l̂− l when the assumption is that the true

edge is located at l. However, without loss of generality, we could choose l = 0 and then

l̂ becomes the localization error. By expanding Hs(.) about the origin, in a Taylor series

we get,

Hs(0) + l̂ Hxs(0) + O(l̂2) +Hn(0) = 0 (B.6)

In the above, we have replaced Hn(l̂) by Hn(0) using the assumption that n(.)

is a uniform noise field. Hx represents ∂
∂xH. Neglecting the effect of the second order

terms and solving the above gives:

l̂ = −Hn(0)

Hxs(0)
(B.7)

= −
∫ Tx
−Tx

φ
′′

σc(z)n(z)dz
∫ Tx
−Tx

φ′′′

σc(z)IΦ(
z
σs
)dz

(B.8)

We can now obtain the mean and the variance as:

E(l̂) = 0 (B.9)
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V ar(l̂) = E(l̂2) = − σ2n
∫ Tx
−Tx

(φ
′′

σc(z))
2dz

[
∫ Tx
−Tx

φ′′′

σc(z)IΦ(
z
σs
)dz]2

(B.10)

Using integration by parts and assuming that Tx >> max(σc, σs) (the integrating window

for convolution is much larger than the standard deviation of the smoothness) it can easily

be shown that

V ar(l̂) =
σ2n
I2

3
√
π

4σ5c
(σ2s + σ2c )

3 (B.11)

B.1.2 Region based

The simplest equivalent of region based classification can be posed as a hypothesis testing.

As a matter of fact we use a slightly more complicated version of the same approach in

real 2D images as we have already seen. For the simple 1D equivalent of an edge, we

basically have two hypothesis. One where there is no signal, ie. before it encounters the

step, and the one after it where the mean signal strength is I. One can then construct

the following likelihood ratio [125] test and if it is greater than unity, it is assigned to the

class with signal and to the other class otherwise. Note that this is basically what the

image classification process does. (The smoothness effect is ignored here.)

λ(R) =
exp(−(r − I)2/2σ2n)|r=s+n

exp(−r2/2σ2n)|r=n
(B.12)

It can easily be shown that this is equivalent to the following test:

2r − I > 0 or r > I/2 (B.13)
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Thus, simply the two classes could be characterized by the positivity of the above. Hence,

all that is positive belongs to one class and all that is negative belongs to the other. It is

easy to see that for the step edge shown, points after the step edge has values +I/2 and

points before that have value, −I/2. At the boundary the values change gradually. As

σs → 0 the only values are I/2 and −I/2. We shall use this output itself. For a perfect

noiseless image this in itself corresponds to region based classification.

Since we are looking to place the boundary to differentiate homogeneous regions,

the boundary should be placed such that the following is satisfied.

argmax
l

∫ L

l
(r(x)− I/2)dx (B.14)

where l is the precise location of the image, and L is the limit point of the 1D image.

Taking derivatives, the location of the boundary can be given by:

r(l)− I/2 = 0 (B.15)

or,

IΦ(l/σs) + n(l)− I/2 = 0 (B.16)

Once again as in the previous case, we may assume without loss of generality l = 0 and

then expand it around the origin. Ignoring the higher order terms, we get,

IΦ(0) + l̂Iφσs(0) + n(0)− I/2 = 0 (B.17)
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Again we have assumed uniformity of the noise field. Thus we finally get the estimate

which is also the localization error,

l̂ = − n(0)

Iφσs(0)

= −
√
2πσs

n(0)

I
(B.18)

It is easy to calculate the mean and the variance for this expression given by:

E(l̂) = 0 (B.19)

and

V ar(l̂) = 2πσ2s
σ2n
I2

(B.20)

B.2 Signal to noise ratio

In this section our aim is to calculate the SNR at the location of the edge or boundary in

this simple 1D image. We first start with the method that uses gradient only and then

later on go to do the same for the region based one. We will once again assume the same

model that we started with along with the assumption that the true step is located at

the origin.
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B.2.1 Gradient based

From equation(B.2) the signal power at the location of the boundary is given by:

S =

[

∫ Tx

−Tx
φ
′

σc(z)IΦ(
z

σs
)dz

]2

(B.21)

Once again, using the approximation, Tx >> max(σc, σs), it can be shown that

S =
I2

2π(σ2c + σ2s)
(B.22)

and the noise power is given by:

N = σ2n

∫ Tx

−Tx
[φ

′

σc(x)]
2dx

=
σ2n

4
√
πσ3c

(B.23)

Hence, the SNR is given by:

SNR =

√

S

N
=

I

σn

√
2

π
1
4

σ
3
2
c

(σ2c + σ2s)
1
2

(B.24)

The above gives an expression of the SNR at the location of the edge.

B.2.2 Region based

From equation(B.14) the signal power at the location of the boundary is given by:

S =

[

∫ L

0
(IΦ(

x

σs
)− I

2
)dx

]2

(B.25)
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It can be shown that assuming L >> σs is true, the above integration reduces to:

S = I2
(

L

2
− σs√

2π

)2

(B.26)

The noise power is given by:

N = σ2nL (B.27)

Thus, the SNR is given by:

SNR =

√

S

N
=

I

σn

(√
L

2
− σs√

2πL

)

≈ I
√
L

2σn
(B.28)

Thus the SNR not only depends on the local characteristics, it also depends on L, which

is the width of the region we are trying to find the boundary of. This is actually a more

global characteristic.

B.3 Response to spurious peaks

A very simple way to introduce spurious peaks in our simple signal model is:

r(x) = i1Φ(
x− x1
σp

) + i2Φ(
x− x1 − α

σp
) + IΦ(

x− l

σs
) + n(x) (B.29)

Thus there is a fluctuation, the signal has an overall increase of value i1 at x1 and then

decreases by i2 at the location x1+α. If i1 = i2 = i, this represents a small peak of width

equal to α.
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Now, if α > σc, the increase in SNR at the location x = x1 is given by:

SNR increase at x1 =
i

σn

√
2

π
1
4

σ
3
2
c

(σ2c + σ2s)
1
2

(B.30)

On the other hand the increase in SNR in the other case, due to region based method

alone is given by:

SNR increase at x1 =
i

σn

α√
L

(B.31)



Appendix C

Existence of the Nash equilibrium

for the Segmentation problem

As mentioned in the Discussions section of Chapter 6, this appendix discusses the issues

regarding the existence of the Nash Equilibrium for the image segmentation problem.

The cost functions have the structure defined in (6.8) and the modules have the cost

function given in (6.47) and (6.49). We shall consider the modules one by one. As we

will see, under some restrictions, for the region module, the conditions for the existence

of the Nash equilibrium are satisfied. However, for the boundary module, for the general

2D case verifying them is extremely difficult. For the equivalent 1-D case, we prove that

the requirements are met. We then try to extend those arguments qualitatively to the

2D case, without actually proving them.

C.1 Region module

The objective function for this module is given by the equation (6.47).
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Now, as for the boundedness requirement, since we are dealing in discrete images

with finite intensity values, it is always met. Also since all the terms in the equation are

positive semidefinite ( being quadratic ), the minimum value is zero and the maximum

value is limited by the maximum level over which the intensity function can fluctuate.

We can also see that all the terms in the above function are quadratic in the

different elements i.e. xi,j , thus they are indeed continuously differentiable with respect

to each one of those variables.

The same characteristic ensures strong convexity. Hence, all requirements of the

theorem are met.

C.2 Boundary module

The objective function for this module is given by the equation (6.49). This module is

mathematically much more complicated than the previous model. So what we shall do

is that we will do the analysis for the equivalent 1-D model, and then try to extend the

arguments to a 2D case as has been done for example in [21].

Let us assume the 1−D input is given by:

r(x) = s(x) + n(x) (C.1)

where s(x) and n(x) represent the signal and the noise component of the input, where

as usual, we shall assume zero mean additive white Gaussian noise. This represents the

cross section in the x-direction, for any fixed y. We note here that here x corresponds to

the location of the edge and is thus equivalent to the existence of a boundary in a 2D

image. The intensity values are modeled by the signal level r(). If we are in the vicinity
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of an edge and the X-axis is aligned in the direction perpendicular to the edge, as in [59],

r(x) can be approximated by a Gaussian step edge profile:

r(x) = IΦ

(

x− l

σs

)

+ n(x) (C.2)

where

Φ

(

x

σ

)

=
1√
2πσ

∫ x

−∞
exp

(

−z2/2σ2
)

dz (C.3)

I is the intensity of the edge, l is the location of the edge and σs is the blur of the Gaussian

edge.

For the 1-D problem the question reduces to estimating l, the location of the edge.

If x ∈ (−L,L) and if i(x) represents the segmented image (in the region sense) then the

equivalent of (6.49) is given by:

max
x

[

φ
′

σc(x) ∗ r(x) + α

∫ L

x
i(z)dz

]

(C.4)

where, φσc is the Gaussian smoothing kernel.

φσc(x) =
1√
2πσc

exp(−x2/2σ2c ) (C.5)

The first term in the above equation represents the gradient term, which looks for the

maxima of the gradient. As is normally the case, here also, we convolve with the gradient

of the Gaussian and look for the maxima of the resultant output.
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Taking derivatives is in general not well defined, but convolution with a Gaussian

makes it well defined [128]. This assures that the first term is continuously second order

differentiable.

As for the other requirement, we need to show concavity rather than convexity

since this is a case of maximization rather than than minimization. If we assume that

the width of the smoothing kernel large enough, i.e. if we assume that the limits of

integration in the convolution (−Tx, Tx) are large enough, then we may ignore the effects

of noise in the first term as we had assumed that the noise is zero-mean. Without loss

of generality we shall also assume that the edge we are looking for is located at x = 0,

i.e. l = 0. Now, if we take the second derivative, of the first term in (C.4) we get due to

convolution with the Gaussian,

φ
′′′

σc(x) ∗ r(x) =
∫ Tx

−Tx
φ
′′′

σc(y)IΦ(−y/σs)dy (C.6)

Using integration by parts, and assuming that Tx À max(σc, σs), it can be shown that

φ
′′′

σc(x) ∗ r(x) = −
1

√
2π(σ2c + σ2s)

3
2

(C.7)

Since the right hand side of the above equation is assuredly negative, the concavity

condition is met.

For the second term in (C.4) we can assume that i(x) the output of the region

based procedure is given by:

i(x) = s(x) +m(x) = IΦ

(

x

σs

)

+m(x) (C.8)
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where, m(x) is a derived process from the original AWGN, n(x). If we ignore the effect of

the residual noise process, m(x), then once again the second term in (C.4) is continuously

differentiable and the second derivative is given by:

−Iφσs(x) = −
I√
2πσs

exp(−x2/2σ2s) < 0 (C.9)

Hence, this term is also concave. Since, the sum of two concave functions is a concave

function as well,we see that in the simple 1-D case, the requirements of the existence of

a Nash equilibrium are met.

In the 1-D case, the problem was reduced to basically finding the location of the

step edge. However, in two dimensions, both the location as well as the orientation is

important. Since the whole contour is represented as a collection of points, it is equivalent

to locate the best edge around the initial placement of the contour. If all the other points

remain constant, locating the position of one particular point can actually be reduced

to the 1-D approximation already discussed. This is so as we can approximately always

detect the orientation of the edges in the same way as done in [21] using a directional

operator, and then search in that direction. As long as the points on which the search

is performed are not too far away from the optimum locations, and if they are not too

close to each other then the objective function in (6.49) can be broken down to an array

of smaller functions similar to the 1-D problem discussed. Since, the 1-D problem was

shown to be strictly concave we can expect a similar behavior from the actual 2D function

(6.49). However, we must emphasize that the above is not intended to be a proof. It only

indicates a possibility of existence and uniqueness of the Nash equilibrium, which is true

for the 1-D case.
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