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This thesis develops an information theoretic registration framework where the segmen-

tation and registration of dual anterior–posterior and left lateral portal images to a treat-

ment planning three–dimensional computed tomography (CT) image is carried out simul-

taneously and iteratively. The proposed registration framework is termed the minimax

entropy registration framework as it has two steps, the max step and the min step. Ap-

propriate entropies are evaluated in each step in order to segment the portal images (the

max step) and to estimate the registration parameters (the min step). The registration

framework is based on the intuition that if some structure can be segmented in the portal

image, the segmented structure, in addition to the gray–scale pixel intensity information,

can be used to better estimate the registration parameters. On the other hand, given

an estimate of the registration parameters, information from the high resolution 3D CT

image dataset can be used to guide segmentation of the portal images. Performance

analysis and comparisons to other registration methods demonstrates the robustness and

accuracy of the proposed registration framework.



To further improve the estimated segmentation of the portal images and the ac-

curacy of the estimated registration parameters, correlation among the image pixel in-

tensities is modeled using a one–dimensional Markov random process. Line processes

are incorporated in the Markov random process model which estimate the edges between

the segmented regions. As a future research direction, we propose to incorporate the

estimated edges in the min step to further improve the registration. The proposed frame-

work is independent of the image dataset and hence, in general, can be straightforwardly

extended to register any low resolution, low contrast image to a high resolution, high

contrast image.
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Chapter 1

Introduction

1.1 Introduction to the Problem

Medical images using different modalities, for example computed tomography (CT), single

photon emission computed tomography (SPECT), positron emission tomography (PET),

magnetic resonance imaging (MRI), ultrasound and functional MRI (fMRI) are usually

obtained for clinical diagnosis, planning and evaluation of a therapy. Images from different

modalities often depict different aspects of the same anatomical region. For example, the

CT image dataset is useful for highlighting the bony anatomy of a region but it captures

very little soft tissue information. On the other hand, the soft tissue information is best

captured using MRI.

Integration or fusion of the information obtained from different modalities can

greatly assist the physician in diagnosis, planning and evaluation of a treatment. For

example, in external beam radiotherapy (EBRT) of cancer, a CT scan is needed for dose

distribution calculations, while MRI is best for contouring the target lesion. Similarly,

the integration of functional information from PET, SPECT and fMRI and anatomical

1
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information from MRI can be used to improve the reconstruction of PET or SPECT and

also to localize the anatomy. While fusion or registration of information from different

modalities can greatly assist clinicians, the presence of different information in the images

makes automated registration a difficult task. Recently, mutual information based regis-

tration method [117, 28] has been successfully used for the registration of multi–modality

images.

While registering images from different modalities, often one of the images to be

registered is of low resolution and contrast (for example, PET, SPECT, fMRI) and the

other image is of high resolution and contrast (for example, MRI, CT). A knowledge of

the segmentation of the low resolution image can greatly assist in robust and accurate

registration of the images. On the other hand, if a low contrast image is accurately

registered to a high resolution image, information from the high resolution image can

be used to help segment the low resolution image. However, a segmentation of the low

resolution image is almost never available, nor do we have an accurate registration of the

images.

The segmentation of a low resolution, low contrast image and its registration to

a high resolution, high contrast image are thus dual problems in the sense that a seg-

mentation of the low resolution image can be used to estimate accurate registration of

the images and an accurate registration can be used to estimate segmentation of the low

resolution image. Thus, while registering a low resolution image to a high resolution im-

age, there is a need for a registration framework where the segmentation of an image and

its registration is carried out simultaneously and iteratively. The intuition behind such a

framework is that a rough estimate of the registration can help estimate a segmentation

of the low resolution image which in–turn can be used to better register the images and
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so on.

1.1.1 Patient Setup Verification in EBRT

For this thesis, we are interested in the patient setup verification during external beam

radiotherapy (EBRT) of prostate cancer. Many treatment centers around the country

are moving towards providing full 3D conformal EBRT [109, 99] with the overall goal

of reducing the irradiated volume to a minimum while still covering the target volume.

Such conformal schemes may reduce treatment–related morbidity while providing the

same tumor cure rate. However, in general, as the irradiated volume becomes smaller

and more complex in shape and as the doses are escalated, the sensitivity of the treatment

to uncertainties, especially those due to patient positioning and organ motion, increases.

Also, currently there is no robust and effective methodology to automatically co–register

information, primarily image–based, derived from the different setup verification sources.

Treatment planning 3D CT image data sets, obtained using diagnostic energy

X–rays (40 KeV to 100 KeV), are used for segmenting the prostate, treatment planning

and dosimetric calculations. High quality two–dimensional (2D) simulator images, in the

anterior–posterior (AP) and the left–lateral (LL) directions are usually obtained, using

diagnostic energy X–rays. When the patient is moved to the treatment room, low quality

portal images, again in the AP and LL directions, are obtained using treatment energy

X–rays (6 MeV–20 MeV) before the full fraction of the dose is given to the patient. The

registration of the portal images to the simulator or the 3D CT image dataset is used to

verify the position of the patient on the treatment table.

In many radiotherapy centers, the state–of–the–art method of registering portal

images to simulator images involves manual registration of the images by a clinician. In

addition to the errors introduced by the human operator, the presence of out–of–plane
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rotations in the portal images further increases the registration errors. To account for

out–of–plane rotations in the images, it is necessary to register the portal images to the

3D CT image. As the 3D CT data set is obtained using diagnostic energy X–rays, the

CT images are usually of high contrast and high spatial resolution. On the other hand,

the portal images, obtained using treatment energy X–rays, are of low contrast and low

spatial resolution. Thus, automated registration of the portal images to the 3D CT

dataset becomes a very difficult problem.

1.2 Main Contributions

This dissertation develops an information–theoretic integrated registration framework

where the segmentation of the portal images and their registration to the 3D CT image

dataset is carried out simultaneously and iteratively. This framework leads to an accurate

and robust registration algorithm with sub–pixel accuracy in the estimated parameters.

The major contributions of the dissertation can be listed to be

• The problem of estimating a segmentation of the portal image and the registration

parameters is posed for the first time as a maximum a–posteriori (MAP) prob-

lem where both the segmentation labels and the registration parameters are being

explicitly estimated.

• The problem is then setup in the expectation–maximization (EM) [32] framework

where the segmentation labels are treated as hidden variables.

• Noting some restrictions of the EM algorithm for the registration of images from

different modalities, we setup a unique information–theoretic minimax entropy reg-

istration framework for the estimation of the registration and the distribution on
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the segmentation labels.

• A coordinate descent interpretation of the minimax entropy registration framework

is presented which provides an intuition about the convergence of the algorithm to

a local optimum.

• To better segment the portal images, the portal images are modeled as 1D Markov

random fields (MRFs). Line processes [43] are introduced into the MRF model to

improve the segmentation of the portal image.

• As future work, this dissertation develops a framework for the incorporation of edges

into the registration framework for further improving the accuracy of the estimated

registration parameters.

1.3 Overview of the Thesis

The next chapter, Chapter 2, reviews relevant background literature on various methods

used for image registration, especially the methods used for multi–modal image registra-

tion and the methods used for registering dual portal images to 3D CT datasets.

Chapter 3 discusses, in brief, the mathematical details of image formation models,

the MRF based image segmentation method, the EM algorithm, different methods used

for estimating probability density functions from a given sample of data and various

relevant concepts from information theory.

Chapter 4 first formulates the problem of estimating the portal image segmenta-

tion and its registration to 3D CT dataset as a MAP problem where both the segmentation

labels and the transformation parameters are being estimated explicitly. Due to some

of the problems noted for such an approach, the problem is then formulated in an ML
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framework where only the transformation parameters are estimated explicitly, with only

the probability distribution on the segmentation labels being evaluated in each step. The

ML transformation parameters are proposed to be estimated by using the EM algorithm.

Chapter 5 notes some of the restrictions of the ML based formulation of the prob-

lem and proposes the minimax entropy based registration approach where appropriate

entropies are being manipulated to estimate both the registration parameters and the

distribution of the segmentation labels. The performance of the proposed framework is

then evaluated using single and dual simulated portal images. The framework is also

extended to register 2D simulator images to 2D portal images. Finally, the performance

of the proposed framework is evaluated using real dual portal images.

Chapter 6 evaluates and compares the performance of the proposed minimax

entropy framework with the performance of the mutual information based registration

method [117, 28] and the ridge–based [44] registration framework.

Chapter 7 incorporates the correlation among the neighboring pixel intensities in

the portal image by using 1D MRF model. Line processes are incorporated to better

segment the portal images. As the portal image is to be segmented into two classes

and also to reduce the computational load, a simplified 1D Ising chain model is used to

formulate pixel correlations. The joint conditional entropy of the 1D Markov random

processes is then minimized to estimate the transformation parameters.

Chapter 8 evaluates and compares the performance of theminimax entropy (MIME)

registration framework with the performance of the mutual information based registra-

tion method. The algorithm is again extended to register 2D simulator images to 2D

portal images. First, the results are presented for registering 2D images. Then the per-

formance of the two algorithms is compared using simulated dual portal images. Finally,
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the performance of the proposed framework is evaluated on real dual portal images.

Chapter 9 points out some of the future directions of the thesis and also points

out that for the purpose of external beam radiotherapy (EBRT), localization of the soft

tissue, the prostate, is of critical importance. The registration of portal images to the 3D

CT dataset is driven, in the proposed framework, mostly by the bony anatomy. However,

due to the rectal filling, the prostate can move by as much as 2 cm with respect to

the bony anatomy. Thus, for conformal EBRT of the prostate cancer, it is necessary to

account for the movement of the prostate.

Finally, chapter 10 summarizes the contributions of the dissertation.



Chapter 2

Related Work

Many radiotherapy centers are planning to move towards providing full conformal ra-

diotherapy for prostate cancer treatment. This technique aims at delivering a specific

amount of dose, with high precision, to the cancerous tissue, avoiding exposure to the

radio-sensitive healthy tissue that may exist near the tumor. However, to be effective,

such a strategy requires accurate positioning of the patient during the external beam

radiotherapy. A lack of treatment precision can lead to adverse outcomes [123, 36]. Tra-

ditionally, alignment of the patient is often achieved by using crosses and lines drawn on

the skin and aligning them with lasers in order to determine the irradiation coordinate

system. However, the accuracy of this method is susceptible to numerous sources of er-

rors. To ensure complete immobilization of the patient, stereo-tactic frames have been

proposed [47, 98]. In addition to being invasive, the fixation cannot be reproduced from

day to day within the fractionated radiotherapy procedure [99] and also patient fixation

is difficult for parts of the body other than head and neck.

A more convenient, and possibly more accurate, approach is to use multi-modal

images, such as, a treatment planning 3D CT dataset and high energy intra-operative 2D

8
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portal images, to determine patient setup errors using software registration techniques.

Various semi–automated and automated methods have been proposed in the literature,

which assess patient setup errors with varying degrees of accuracy. These techniques can

be broadly classified into two categories. First, techniques which utilize two–dimensional

image information: the simulator and the portal images. These methods can estimate

only the in–plane movements of the patient. However, in the presence of out–of–plane

movement, the accuracy of the estimated patient setup error, using these methods, can

be compromised. Second, techniques that evaluate the patient setup in the three dimen-

sions, utilizing 3D CT dataset and the 2D portal images. These techniques are essential

to accurately estimate out–of–plane rotations and thus for the introduction of complex

conformal treatment plans.

2.1 Two–Dimensional Analysis

In this section we describe techniques, proposed in the literature, that evaluate the patient

setup in two dimensions utilizing the simulator images and the portal images. These

techniques are further classified as the feature based (or the sparse field) methods and

the dense field methods depending upon the information utilized to bring the images into

alignment.

2.1.1 Feature Based

Feature based (or sparse field) methods aim at extracting homologous features from the

images to be registered. The extracted features are then utilized to estimate the alignment

between the two images. These methods tend to be fast. However, the accuracy of these

methods is limited by the accuracy of the preprocessing step, that is, the extraction of
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the features. Since most feature extraction methods require taking derivatives of the

images, the accuracy of these methods is limited by the accuracy of the feature detection

and localization step. These methods also assume that corresponding features have been

extracted from the images to be registered, an assumption especially problematic with

multi–modal images.

2.1.1.1 Core–Based

Core, or the multi-scale medial axis, based registration of the simulator and the portal

image has been proposed in [40, 87, 41]. Cores aim at capturing the middle and width

properties of an object at multiple spatial scales. They are skeleton like structures that

run down center of the objects, with an additional dimension, scale, which is proportional

to the width of the object at each spatial position on the core. A core point represents

the spatial position and the size of the medialness kernel that is a best fit locally, both

in position and scale. Due to the representation of the cores on different scales, cores for

large–scale objects can be robust to noise and blur.

The evaluation of all cores in the images is computationally expensive and hence

Fritsch et al. [40] proposed a method in which a few cores are selected from the reference

image. These selected cores are then utilized for the calculation of cores of similar scales

and position in the acquired image. Once the cores in the two image sets have has been

selected, the authors propose two methods to estimate the transformation parameters.

First, the authors use Balter’s curve matching algorithm [3]. Second, they utilize the

chamfer matching algorithm.
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2.1.1.2 Chamfer Distance Based

Chamfer based registration has been proposed [70, 46, 75], where the authors propose to

extract anatomical feature and the field edges automatically from the portal and simu-

lator images. Registration of images using the chamfer distance method proceeds in the

following two steps. First, one of the feature images is distance transformed, the most

popular distance transform being the chamfer distance transform [18]. Leszczynski et al.

[70], utilize the 5–7–11 5 × 5 chamfer distance proposed in [18]. The 5–7–11 distance

kernel for propagating local neighborhood distance is defined as

14 11 10 11 14

11 7 5 7 11

10 5 0 5 10

11 7 5 7 11

14 11 10 11 14

Second, the features from the other feature image are mapped onto the distance trans-

formed image, at the current estimates of the transformation parameters. Optimizing

cost, as a function of the pixel values in the transformed image under the mapped fea-

tures, determines the optimal transformation. The advantage of the chamfer matching

method lies in the fact that this method can be easily automated, does not require identifi-

cation of the corresponding features in the images and can be extended to the registration

of multi–model images. However, again this method assumes that the automatic feature

extraction method works well. Gilhuijs et al. [46] utilize an arithmetic mean of the pixel

values of the distance transformed image as a cost function whereas Leszczynski et al.

[70] utilize both the arithmetic mean and the root of mean square distance.
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2.1.1.3 Open Curves–Based

Cai et al. [23] proposed to register the simulator and the portal images by matching open

curves [3] extracted from the images. The algorithm samples corresponding points along

the curves and a global transformation matrix is obtained by matching the point set. The

proposed algorithm does not require the evaluation of the curvature of the curves.

2.1.2 Dense Field–Based

Dense field methods directly manipulate image pixel intensities and tend to be robust to

noise and blur. However, these methods in general tend to be computationally expensive.

2.1.2.1 Least Squares Template Matching

Berger et al. [11] utilize a least squares template matching (LSM) algorithm for the

registration of digitally reconstructed radiographs (DRRs) to portal image. The proposed

LSM method is an area based method which does not require extraction of features from

the images to be registered. In addition to the estimation of transformation parameters,

the proposed algorithm tries to estimate and correct a linear relationship between pixel

intensities in the two images. In this approach, authors assume the following relation

between the images, f(u) and g(u) to be registered:

f(u) + e(u) = g(x)

where, g(u) = α + βg(u) define the linear relation which adjusts pixel intensities radio-

metrically, and x = ψ(η, u) defines the geometric transformation. Square error eTPe,

where P is an optional weight matrix, is minimized to estimate the geometric and inten-
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sity transformation parameters. A multiple template approach, instead of using one large

template, can possibly compensate for a global bias field. To compensate for out–of–plane

rotations in portal images, the authors propose using an affine transformation. However,

note that this strategy can account only for the in–plane transformation parameters.

2.1.2.2 Correlation–Based Methods

Hristov et al. [54] propose a correlation–based registration method to bring portal and

simulator images into alignment. This method uses a fast–Fourier–transform based cross–

correlation operator to find the optimal in–plane rotation and translations. The authors

compare the performance of two cross–correlation operators: the Pearson’s linear cor-

relation coefficient (PCC) and the normalized correlation coefficient (NCC). Let g(x, y)

and f(x, y) denote the two images to be registered. Let w(x, y) denote a search win-

dow within the image g(x, y), enclosing a feature to be matched in the image f(x, y). Let

fα(x, y) denote the image obtained after transforming f(x, y) by the set of transformation

parameters α. Then, for each point (m,n) in the image fα(x, y), the similarity between

w(x, y) and the region of fα(x, y) can be evaluated as, the negative of the Pearson’s linear

correlation coefficient (PCC),

Lm,nP (fα, w) = −rα(m,n) =
∑

x

∑

y[fα(x, y)− fα(m,n)][w(x−m, y − n)− w]
√

∑

x

∑

y[w(x−m, y − n)− w]2
√

∑

x

∑

y[fα(x, y)− fα(m,n)]2

where w and fα denote the average intensity of the mask and the average value of fα(x, y)

in the region coincident with w(x, y).
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The negative normalized cross–correlation coefficient (NCC) is evaluated as

Lm,nN (fα, w) = −cα(m,n) =
∑

x

∑

y fα(x, y)w(x−m, y − n)
√

∑

x

∑

y w
2(x−m, y − n)

√

∑

x

∑

y f
2
α(x, y)

Note that NCC is invariant under scaling of the image intensities, i.e. under the trans-

formation g(x, y)→ C1 · g(x, y) and PCC is invariant under the transformation g(x, y)→

C1 · g(x, y) + C2, for some constants C1, C2.

Dong et al. [35] register portal images to megavolt digitally reconstructed radio-

graphs (DRRs) by optimizing the cross–correlation coefficient in the regions of interest

(ROIs). The megavolt DRRs are obtained by first mapping the CT attenuation coeffi-

cients from the therapeutic energy X–rays to the coefficient at the treatment energy and

then obtaining a projection through the transformed CT in the prescribed direction. The

resulting megavolt DRR pixel intensities are then transformed by histogram–matching

to the histogram of the portal image pixel intensities before estimating the registration

parameters.

2.2 Three–Dimensional Analysis

The previous section summarizes various strategies proposed in literature for the esti-

mation of patient setup error utilizing two dimensional portal and simulator images.

An inherent problem with the two dimensional strategies is that they cannot account

for out–of–plane patient rotations. The out–of–plane rotations will lead to distortion of

the anatomy between the portal and the simulator images, thus limiting the accuracy

of the algorithms. These mis-registration errors will become significant while providing

conformal radiotherapy. Hanley et al. [49] study the effect of out–of–plane rotations on
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two–dimensional image registration and conclude that dosimetrically, errors introduced in

the patient position by two–dimensional image registration for out–of–plane rotations of

2o or more have significant consequences. Thus, it is necessary that out–of–plane rotation

errors be accurately estimated.

This section briefly reviews various strategies proposed in the literature which es-

timate patient setup error by three–dimensional image registration, that is, by registering

a treatment planning 3D CT dataset to 2D portal images. These methods can again be

classified as either feature based methods or dense field methods.

2.2.1 Feature–Based

2.2.1.1 Bony Ridge–Based

Gilhuijs et al. [44] describe an automated registration method for the verification of pa-

tient setup in three–dimension using a 3D CT data set and two orthogonal (the anterior–

posterior (AP) and the left–lateral (LL)) portal images. In this method, bony ridge

features are detected either automatically using a morphological top–hat operator or

manually. This method is based on the intuition that the location of the bony ridges

in the portal images concurs with the local maximum in the trajectory of the X–rays

through the bone. The optimization procedure thus adjusts the pose of the 3D CT to

maximize the distances of the X–rays through the bone between the irradiation source

and the bony ridges in the portal images. The authors utilize Powell’s minimization [89]

and the downhill Simplex method [80] to optimize the cost function. We implemented

this method for comparisions (See chapter 6).
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2.2.1.2 Two–Dimensional Silhouette Based

Lavallee et al. [66] propose a general method for registering a 2D image to a 3D dataset.

The algorithm assumes that the 2D image has been pre–processed and a silhouette has

been extracted from it. The 3D image data set is also assumed to have been pre–processed

to extract a 3D surface. The algorithm assumes that when the 3D surface is properly

aligned, the radiation lines from the irradiation source to the 2D silhouette are tangential

to the 3D surface. A signed distance metric is proposed which measures the sum of

square distances of the rays from the 3D surface. This distance is minimized to estimate

the optimal transformation parameters. To reduce the computational complexity of the

algorithm, the authors utilize fast distance computation using octree–splines.

This approach is further extended by Hamadeh et al. [48] who exploit the duality

between registration and segmentation in a model–based vision system. This method

associates a likelihood value to each pixel in the projection images that corresponds to

the probability that the pixel belongs to the silhouette of the 3D object on interest. Such

a likelihood–based scheme is necessary as an automated edge detection method may lead

to the detection of many spurious edges. The likelihood of a pixel belonging to a contour

depends on three features: the gray scale gradient at the pixel, the length of the connected

component to which the pixel belongs and the distance between the pixel and the contour

projected from the 3D surface at its current estimated position. The cost function is then

appropriately modified to utilize the additional information, leading to an automated and

accurate registration method.
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2.2.2 Dense Field–Based

2.2.2.1 Correlation Based

Lemieux et al. [69] present an automated pixel intensity correlation based technique

for registering 3D CT image data to two portal images. In this strategy, digitally re-

constructed radiographs (DRRs) derived from the CT dataset, at different scales and

positions, are aligned iteratively with portal images to estimate the transformation pa-

rameters. Note that in each iteration, complete projections of the CT dataset in two

different directions are obtained, thus increasing the computational complexity of the al-

gorithm. The authors assume that the initial pose of the CT data set is close to the true

pose and utilize Powell’s multidimensional directions set method to search the optimal

parameters.

2.2.2.2 Pattern Intensity

Weese et al. [120] propose pattern intensity as a similarity measure for the voxel based

registration of 3D CT images and the intra–operatively acquired X–ray fluoroscopies.

This approach requires segmentation of the vertebra in the pre–operative CT images and

pseudo projections are computed using only a small part of the CT image, covering only

the outlined vertebra. Thus, the pseudo projections show intensity variations only due to

the vertebra. The pseudo projections are subtracted from the x–ray images to generate

difference images. If the 3D CT is properly aligned to the x–ray images, the vertebra

will not show in the difference image; otherwise some structure will show. The authors

propose the following measure of structuredness, called the pattern intensity Pr,σ(Idiff ),
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in the difference image:

Pr,σ(Idiff ) =
∑

(x,y)

∑

{(v,w)|(x−v)2+(y−w)2≤r2}

σ2

σ2 + (Idiff (x, y)− Idiff (v, w))2

where Idiff denotes the difference image, r defines the size of the neighborhood in which

gray–value variations are considered and σ acts as a threshold, estimated empirically,

defining whether a gray–value variation is to be considered a structure or not. Pattern

intensity is a function of the transformation parameters and is optimized to estimate

the parameters. However, the pattern intensity remains an ad–hoc method at–best and

requires pre–processing of the images.

2.2.3 Interactive Methods

The image registration methods described above can be broadly classified as being auto-

mated or semi–automated; that is, they require little or no interaction from the user.

Gilhuijs et al. [45] have proposed an interactive image registration technique for

three dimensional patient setup verification using 3D CT data set and dual portal images.

Three different methods for interactive patient setup verification are suggested. In the

first method, the DRRs and the portal images are compared side by side. In the second

method, anatomical structures extracted from the portal images are overlaid onto the

DRRs. In the third strategy, DRRs and the corresponding portal images are rapidly

alternated on the screen. A translation mismatch is perceived as a shifting motion and

a rotational mismatch is perceived as a rocking motion. The authors found the third

approach to be most sensitive to mismatch between the corresponding images.

Mubata et al. [78] have also proposed an interactive technique to register the

portal images to the corresponding simulator images. Note that since two–dimensional
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images are being used, this technique can estimate only the in–plane patient setup de-

viations. Neva et al. [82] propose to visually assess corresponding portal images and

simulator images to correct for patient setup deviations. They found this strategy to be

sufficient for detecting errors in the lateral direction, but not for errors in the longitudinal

direction.

2.3 General Registration Methods

The problem of registering image datasets between the same and different modalities

has been studied in the medical image analysis community for a variety of applications.

Excellent reviews of these methods, with classification, have been published [113, 65, 21,

73]. Similar to the classification of methods in the previous section, these methods can

also be classified as either dense field or sparse field based methods.

2.3.1 Feature–Based or Sparse–Field Methods

2.3.1.1 Point–Based Matching

Point based registration methods assume that if corresponding landmark points can be

identified in the two images to be registered, then bringing these points into alignment

will register the two images. Let X = {xi} and Y = {yi} for i = 1, . . . , N denote the two

sets of points to be aligned. If we assume a transformation T that will align these points,

then we can define a mean square cost function to be,

D(T ) =
N
∑

i=1

‖xi − T (yi)‖2
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The cost function D(T ) is then minimized to estimate the transformation parameters. A

singular value matrix decomposition method, proposed by Arun et al. [2], can be utilized

to estimate the parameters if a rigid transformation is assumed between the set of points.

However, note that this procedure assumes that the correspondence between the points

in the two point sets is known and the two sets to be registered have same number of

points. However, this is not true in general. Iterative closest point (ICP), proposed by

Besl et al. [15], only requires a procedure to find the closest point on a geometric entity to

a given point. The ICP algorithm has been shown to always converge to the nearest local

minimum monotonically. Two other interesting approaches, discussed below, estimate

both the correspondence and the transformation parameters between two sets of points.

Statistical Point Matching. Wells et al. [121] present a statistical approach to object

recognition. The authors propose a probabilistic model for the correspondence between

image features, edge points, and features belonging to either the object or to the back-

ground. In the Maximum A–posteriori (MAP) formulation, the authors explicitly solve

for the correspondence between the feature and the pose parameters of the 3D model.

Then the authors propose a maximum–likelihood (ML) formulation where only the pose

of the 3D model is evaluated, which is solved using the expectation–maximization (EM)

algorithm [32]. Correspondence between the feature points falls out as a by–product of

this method. Note that this algorithm can handle a different number of features in the

two feature sets. However, multiple image features can be mapped to a single feature

belonging to the object or the background.

Robust Point Matching. Kosowsky et al. [63] propose an approach which solves for

one–to–one correspondence between two sets of feature points. Using statistical physics,
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the authors construct an effective energy and use steepest descent to derive an algorithm

to solve the correspondence problem. However, note that this method, though solving

for one–to–one correspondence, cannot handle different number of features in the two

points set to be registered. Rangarajan et al. [91] extend this work in the following ways.

Rangarajan et al. [91] develop an algorithm, within an optimization framework, that

can handle a different number of points in the point sets to be registered and yet solve

for one–to–one correspondence and the transformation parameters which will bring the

two feature sets into alignment. Since the two feature sets can have a different number

of features which cannot be mapped onto features into the other image some of the

features are marked as outliers, automatically. This method provides a robust method

of handling two sets of features and also, with a deterministic annealing schedule, the

algorithm can converge to a global optimum. The algorithm has been further extended

to utilize Procrustes distance [92] and also to the problem of articulated motion [84].

2.3.1.2 Surface–Based

Surface–based techniques aim at extracting surfaces of corresponding anatomical regions

from the images which are then utilized to estimate the registration between the images.

After preprocessing images, these methods can also be easily extended to register images

from different modalities. If the extracted surfaces are represented as sets of points, then

an ICP [15] based strategy can bring them into alignment.

Various surface matching algorithms for registering multi-modal images have been

proposed [86, 74, 110]. Pelizzari et al. [86] align multi-modality images by matching

corresponding surfaces extracted from the images. For registering MR and PET brain

images, skin surfaces are semi–automatedly delineated in each slice of the MR and PET

images to form 3D surfaces. A simple threshold boundary following algorithm is used to
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extract surface contours in each slice. Manual editing of the surfaces is done as needed.

A very interesting feature based approach is described by Zubal et al. and Tagare

et al. [125, 107] which supports complex landmark structures, including points, curves,

planes and volumes. In this approach, the user can also specify whether the two structures

correspond fully or partially.

2.3.1.3 Ridge Operator–Based

Van den Elsen et al. [111, 112] proposed using differential operators in scale–space for

matching images from different modalities. Florack et al. and Romeny et al. [39, 96]

proposed multi-scale differential operators to study the differential structure of the images.

These operators are derived from the Gaussian function and its partial derivatives. The

width of the Gaussian function, σ, determines the level in the scale space. An image

is embedded into scale space by simply convolving it with a Gaussian function. Let L0

denote the original image. The scale space image L(x, y, σ) at scale σ is obtained as

L(x, y, σ) = L0 ∗G(x, y, σ)

where G(x, y, σ) is a zero mean Gaussian kernel of standard deviation σ and ∗ denotes

convolution between the images. The differential image in scale space is obtained by

convolution between the image and appropriate derivative of the Gaussian kernel, as

follows:

Lx(x, y, σ) = L0 ∗Gx(x, y, σ)
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where Lx(x, y, σ) denotes the derivative image along the x–axis, at scale σ, and Gx(x, y, σ)

denotes the derivative of the Gaussian function along the x–axis.

Van den Elsen et al. [111] define a differential ridgeness operator, denoted as Lvv,

to enhance the ridges in the images to be registered. The differential operator Lvv denotes

the second order derivative of the image in the direction v, where v is perpendicular to

the direction of the local gradient, denoted by w. Using local Cartesian derivatives, Lvv

can be computed as follows:

Lvv =
1

‖v‖2 (v · ∇)
2L =

L2yLxx − 2LxLyLxy + L2xLyy
L2x + L

2
y

For registering two images, both images are transformed by convolving the images with

the ridge operator Lvv. Of the two resulting binary images, one image is distance–

transformed using chamfer distance transform. The two images are then registered by

transforming the binary image. The sum of square distance is utilized as a match metric

to evaluate the optimal spatial transformation parameters. Van den Elsen et al. [111]

used this strategy to register a 2D CT image slice to a corresponding 2D MRI slice. The

extension of the 2D ridge operator to three–dimensions is not straightforward and some

early work has been proposed [38].

2.3.2 Dense–Field Methods

2.3.2.1 Correlating Gradient Images

Brown et al. [20] propose registering 2D real and simulated radiographs by first intensity–

correcting the real radiograph. Intensity–corrected radiographs are then correlated with

gradient operator to obtain gradient images. The resulting gradient images are then
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correlated to estimate rigid in–plane transformation parameters.

2.3.2.2 Variance of Ratio Intensities

Woods et al. [124] proposed a method for the registering 3D images based on the intuition

that when the two images are registered, the variance of the ratio of intensities in the

overlapping regions of the images will be minimized. Note that this algorithm directly

manipulates the pixel intensities from the anatomical regions in the image and hence can

be used retrospectively and is robust to noise. Let ai denote a voxel value in the first image

and bi denote the corresponding voxel value in the second image, let ri = ai/bi denote

the ratio of the corresponding voxel values in the two images. The proposed algorithm

evaluates ri, ∀i in the overlapping regions of the two images. Let σr and rmean denote the

variance and mean values, respectively, of the random variable ri. The algorithm seeks

to minimize the ratio

ν =
σr

rmean

This is an interesting measure as it can be seen as a precursor to other popular methods

based on mutual information. However, this measure remains largely heuristic.

2.3.2.3 Mutual Information Based

Viola et al. [116, 117] and Collignon et al. [27] proposed an information theoretic based

match method which aligns two images by optimizing mutual information between the

images. Let x and y denote two random variables. If p(x) and p(y) denote the prob-

ability density functions of the random variables x and y respectively, then the mutual
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information between the random variables is defined as [83, 103]:

I(x, y) = H(x) +H(y)−H(x, y)

whereH(x) denotes the entropy of the random variable x defined asH(x) = −
∫

p(x) ln p(x) dx

and H(x, y) denotes the joint entropy of the random variables defined to be H(x, y) =

−
∫ ∫

p(x, y) ln p(x, y) dx dy. The probability density function p(x, y) denotes the joint

density function of x and y.

As opposed to cross–correlation based methods, which assume a linear intensity

relation between the images to be registered, mutual information based methods can

successfully register images with a non–linear relation between the pixel intensities. This

allows successful registration of multi-modal images.

Viola et al. [117] proposed a Parzen window–based [37] stochastic gradient descent

implementation for estimating the optimal parameters, whereas Collignon et al. [27] used

a histogram based approach.

2.3.2.4 Normalized Mutual Information

The mutual information–based methods described above assume that the images being

registered contain similar portions of the structure. However, when registering a small

image to a large image, say registering a brain MR image to a whole body MR image,

it might be necessary to normalize the entropies in the overlapped region to obtain an

accurate registration. Studholme et al. [105] proposed an overlap–normalized entropy

measure which can handle these situations correctly. The cost function to be optimized
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is defined as

C(x, y) =
H(x) +H(y)

H(x, y)

which is a ratio of the sum of marginal entropies to the joint entropy of the random

variables.

In this work, to search for the optimal transformation parameters, a multi-scale

strategy is employed, both to reduce the computational complexity and to increase ro-

bustness to noise. At each scale, or resolution of the images, optimal parameters are

estimated by sampling the parameter space. At low resolution, the parameter space is

coarsely sampled over a wide range. At high resolution, the parameter space is finely

sampled over a small range of parameters. Optimal parameters estimated at one scale

are passed to the next scale as the initial estimate of parameters.

2.3.2.5 Incorporation of Segmentation Information

While registering multi-modal images, regions of the same anatomical structures may not

be connected in one modality whereas they might appear connected in the other modality,

especially when registering MR and PET images. Studholme et al. [104] utilize a region

labeling information channel, in addition to the pixel intensity channels usually utilized

in mutual information based methods. These labels are used to specify the regional

connectivity which can possibly be derived from the images to be registered. However,

the images are manually segmented and labeled [104].
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2.3.2.6 Using Joint Density Function

Leventon et al. [71] proposes a maximum–likelihood method for registration of multi-

modal images. Before registering a set of multi-modal images, a parametric joint density

function of the pixel intensities is estimated by using a pre–registered training set of

images from the same modality. This supervised method of learning determines the

parameters of the joint density function. Once the parameters of the joint density function

are estimated, the log of the joint density function is optimized for the images to be

registered, to estimate the rigid transformation parameters using Powell’s [89] method of

optimization.

2.3.3 Non–Rigid Image Registration

The image registration methods described above aim at estimating a rigid transformation

between a set of images to be registered. However, for some applications, it is necessary

to assume a non–rigid transformation between the images to be registered. For example,

in this project, the prostate is a soft tissue which deforms and so the registration of

prostate in the ultrasound images and the 3D CT image would require non–rigid image

registration strategy. There is a rich literature of methods that estimate a non–rigid

transformation between a set of images [100, 115, 81, 108, 26] and we discuss only a few

methods here. Gaens et al. [42] extended the mutual information–based match method

to non–rigid multi-modal image registration.

2.3.3.1 Optical Flow Based Methods

Vemuri et al. [115] propose an interesting image registration algorithm based on optical

flow computation, where the registration between two same modality images is formulated
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as a motion–estimation problem. The flow field is represented using B–splines basis

functions, thus implicitly incorporating smoothness in the estimated field. Further, a

hierarchical optical flow motion model is employed to capture both the global and local

flow fields. Utilizing the technique proposed in [34, 22], Vemuri et al. [115] use a modified

Newton’s method of optimization using Hessian of the energy function pre-computed at

the optimal point.

2.3.3.2 Elastic Model Based

The non–rigid, fluid flow–based, registration methods proposed in the literature suffer

from the under–constrained, ill–posed [12] nature of the problem. Wang et al. [118, 119]

propose incorporating statistical shape model, proposed by Cootes et al. [29], into elastic

model–based registration to help constrain the problem, thus hopefully leading to an

accurate image registration algorithm. The statistical shape models are used to model the

physical deformations of elastic solids. Using these shape models, the object of interest

is segmented from the images. As a point–based shape model is used to segment the

objects, this step also establishes correspondence between a set of points in the images to

be registered. As the corresponding points in the two images should match, these points

are further used to constrain the elastic model based registration of the images.

2.4 Summary

This chapter summarized a large number of techniques proposed in the literature to reg-

ister 3D–CT image datasets to dual portal images and also described methods popularly

used in the medical image analysis field. The methods have been broadly classified into

two categories, first the sparse–field or the feature–based methods and second the dense–
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field methods. The sparse–field methods are, in general, computationally less expensive

as compared to the dense–field based methods. However, the accuracy of the sparse–field

methods is limited by the accuracy of the feature extraction algorithms. Dense–field

methods are robust to noise and blur but might be poor in accuracy. All the strategies

have some merits and some down-sides. Our proposed registration framework simulta-

neously performs registration and segmentation, integrates segmentation results into the

registration process, and uses both intensity–based and feature–based information as part

of the registration process.



Chapter 3

Image formation models and

background

3.1 Introduction

The previous chapter reviewed various registration methods proposed in the literature.

This chapter briefly discusses the mathematical details of the methods used in the reg-

istration framework proposed in this thesis. The first section of this chapter details the

physics of image formation. This section, in particular, discusses the formation of di-

agnostic energy 3D CT images, megavolt portal images, the rendering method used to

obtain digitally reconstructed radiographs (DRRs) and the projection model. The sec-

ond section describes the expectation–maximization (EM) algorithm [32], discusses its

strengths and its weaknesses, highlights the problem it solves and works out a simple ex-

ample. The third section discusses the mathematics of the Markov random fields (MRF)

and their application to region based image segmentation. This section also discusses

the Ising model, which is a special case of MRFs. Stochastic relaxation [43] is a popular

30
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approach to estimate the MRF based image segmentation of image. We present a mean

field based approximation to the Ising model to estimate image segmentation. The last

two sections discuss the mathematics behind the mutual information based method and

some popular methods used to estimate probability density functions.

3.2 Formation of Images

This section will briefly describe how different modality images, which are the main focus

of this thesis, are formed. Christensen et al. [25] provides an excellent overview of the

subject. In particular, we are interested in diagnostic quality 3D CT datasets and the

treatment energy 2D portal images. From 3D CT datasets, 2D digitally reconstructed

radiographs (DRRs) are rendered, after the 3D CT voxel values have been mapped from

diagnostic energy to those at treatment energy using conversion tables [56]. For rendering

DRRs, a perspective projection model is assumed and will be briefly described.

3.2.1 Computer Tomography Images

Computed tomography (CT) reconstructs internal structures of an object from multiple

projections of the object. In X–ray CT, the projections are formed using the X–ray

projections in many different directions. Thin cross–sections of a body are reconstructed,

one at a time, by taking projections from different angles with a narrow X–ray beam. The

numerical data from the projections for each cross–section is then computer processed to

reconstruct an image.

Each cross–sectional layer is divided into tiny blocks, called voxels. Each voxel

is assigned a number proportional to the degree it attenuates the X–ray beam. A linear

attenuation coefficient, µ, is used to measure the amount of attenuation caused by each
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Figure 3.1: Attenuation of Photons

voxel. A monochromatic X–ray source is assumed which has an attenuation coefficient µ0

for the tissue in a voxel (Note that the attenuation coefficient is a function of the tissue

type and energy of the X–rays). If x is the thickness of the voxel, N0 are the number of

X–ray photons entering the voxel, then the number of photons, N , leaving the voxel is

given as:

N = N0 exp(−µ0 x)

If there are two voxels in the path of the beam, each of width x, see figure 3.1 (b), then
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the equation becomes:

N = N0 exp(−(µ1 + µ2) x)

Given N and N0, this equation cannot be solved to estimate µ1, µ2. One more equation

is required to uniquely estimate the attenuation coefficients. Consider figure3.1 (c). Pro-

jections for a 4×4 array of voxels are obtained from two different directions which allows

us to construct four different equations:

N1 = N0 exp(−(µ1 + µ2) x)

N2 = N0 exp(−(µ3 + µ4) x)

N3 = N0 exp(−(µ1 + µ3) x)

N4 = N0 exp(−(µ2 + µ4) x)

Note that these equations can now be uniquely solved to estimate the linear attenuation

coefficients, µ1, µ2, µ3 and µ4 and hence reconstruct the 4× 4 array.

If there are n voxels with attenuation coefficients µ1, µ2, . . . , µn in the path of the

X–ray, then the number of photons leaving at the end of the nth voxel is given by the

relation:

N = N0 exp(−(µ1 + µ2 + · · ·+ µn) x)

To solve for the linear attenuation coefficients, at-least n more simultaneous equations

are required. Thus, this shows the necessity of obtaining projections from many different



34

directions for the reconstruction of a single slice.

Filtered Back–Projection [97] is the most popular method of reconstructing a slice

of data from a set of projections. Filtered back–projection, as the name suggests, first

filters the projection data and then back-projects it to reconstruct a slice. Filtering

is carried out to counterbalance blurring within a slice due to sudden changes in the

intensities.

3.2.1.1 CT Numbers

For each pixel in a slice, the calculated linear attenuation coefficient is normalized to

the attenuation coefficient of water (µw), multiplied by a scaling constant (K), usually

1000, converted to next the higher integer, and reported as a new number called the CT

number. Thus, the CT numbers are evaluated as follows:

CT Number = K
µp − µw
µw

where µp is the calculated linear coefficient of a pixel.

3.2.2 Portal Images

Portal images are X–ray projection images obtained with treatment energy photons (2

MeV – 25 MeV). As noted in the previous section, the linear attenuation coefficients

of tissues are functions of the energy of the photon energy. For higher energy photons,

differences in the attenuation coefficients of different tissues are reduced, leading to low

contrast X–ray images. This section derives a mathematical relation between the CT

voxel values and the pixel intensity value of the portal image. Usually the portal images

are obtained on an X–ray film (as opposed digital detector), further affecting the quality
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of the image. Brown et al. [20] also present a similar relationship.

Assume that the linear attenuation coefficients associated with the CT voxel val-

ues have already been mapped from diagnostic energies to those at treatment energies.

Further assume that the X–rays are of monochromatic energy. Let r0 be an X–ray from

radiation source to a pixel in the portal image, v be a small volume along the X–ray

through the CT volume and β(v) denote the linear attenuation coefficient of the volume

v. If Nin denotes the number of photons entering the 3DCT volume, then the number of

photons exiting, Nout, is given as:

Nout = Nin exp

{

−
∫

r0
β(v) dv

}

or

ln

(

Nout

Nin

)

= −
∫

r0
β(v) dv

The information content of the X–ray image must be transferred on an X–ray film to

be visible. Portal images are usually obtained on a film. The blackening of a film is

directly related to the intensity of the radiation reaching the film, which is measured as

photographic density and usually called the density of the film. If, I0 is the light intensity

incident on a film, It is the light intensity transmitted, then the density, D, of the film is

defined to be:

D = ln
I0
It

In the linear part of the characteristic curve of a film, the density of the film is directly
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proportional to the logarithm of the exposure. Thus, in the linear part of the characteristic

curve:

ln

(

Nout

Nin

)

∝ ln I0
It

Thus, we have:

ln
I0
It
∝ −

∫

r0
β(v) dv

When the X–ray film is digitized, the intensity of a pixel, Ir, is proportional to It, the

intensity of the light transmitted by the film. Thus, we can write,

Ir ∝
(

It
I0

)

Assuming that the digitizer performs a linear transformation of the transmitted intensity,

we have:

a1Ir + b1 =

(

It
I0

)

and hence,

ln

(

1

a1Ir + b1

)

∝ −
∫

r0
β(v) dv
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Figure 3.2: Setup for 3D CT and DRR

which can further be reduced to

ln(Ir + k) ∝
∫

r0
β(v) dv (3.1)

The equation (3.1) thus specifies the relation between pixel intensity of a digitized portal

image to the voxel values along the projection X–ray.

3.2.3 Projection Model

For obtaining digitally reconstructed radiographs (DRRs) from the 3DCT dataset, a

perspective projection model is assumed. The radiation source is assumed to be a point

source and the various projection parameters are also assumed to be known. Figure 3.2

shows how the 3DCT, radiation source and the DRR plane are setup in three space.
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The pixel intensity in the DRR is obtained by summing the 3DCT voxel values along

the projection ray from the pixel to the radiation source. The CT values have been

mapped to the values at treatment energy X–rays using the procedure as follows. First

assuming a monochromatic X–ray beam, the tissue composition of each voxel in the CT

volume is estimated by knowing the energies of the diagnostic energy X–rays and the

linear attenuation coefficient of each voxel. Second, since we know the tissue type in each

voxel and the energies of the X–rays at the treatment energy X–rays, the attenuation

coefficient for each voxel is calculated using the attenuation tables in [56]. Note that

these tables take care of the Compton scattering and the photo–electric effects at various

X–ray energies. Also, equation (3.1) describes the relation between the pixel intensity

in the projection image and the sum of the CT voxel values along a projection ray. To

estimate the CT value at the point where a projection ray intersects a slice of 3DCT,

bilinear interpolation of the four neighboring voxel values is used. The various perspective

parameters, the distance between the radiation source and the origin (of the 3D coordinate

system) and the distance between the DRR and the origin are assumed to be known.

3.3 The EM Algorithm

The Expectation–Maximization (EM) [32] algorithm is an iterative computation of maximum–

likelihood (ML) estimates of parameters of a distribution. Each iteration of the algorithm

consists of two steps, the expectation step, followed by the maximization step, and hence

the name, the EM algorithm. This algorithm is especially useful for problems where the

observed data can be viewed as incomplete data, that is, when there is a many–to–one

mapping from an underlying distribution to the distribution governing the observations.

Some of the situations where this might arise are when outcomes are clumped before they
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are observed, e.g. in histogram operations, or situations where the information regarding

the class to which a data belongs to has been lost. Mixture models are the most popular

models used in the last situation. Meng et al. [76] give an excellent historical account

of the application of the algorithm with a summary of extensions. Moon [77] gives an

excellent introduction of the algorithm to the signal processing community.

3.3.1 Problem Definition

In this section, we will follow the introductory flavor of Tagare [106]. Consider a maximum–

likelihood (ML) problem of parameter estimation. Let

x = (x1,x2, . . . ,xn)
T

be a set of observations from n experiments, a random vector with a specified probability

density function px(x|θ), which is a function of parameters θ:

θ = (θ1, . . . , θm)
T

Given the observation vector x, the problem is to estimate the parameter vector θ which

best explains the observation in the maximum–likelihood (ML) sense. If it is known that

θ is a random vector and if the probability density function for θ is also specified, then

this can be used as prior information in a maximum a–posteriori (MAP) formulation of

the parameter estimation. Mathematically, if θ̂ is the optimal parameter, then the ML

principle states that it should be chosen as

θ̂ = argmax
θ

p(x|θ)
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and θ̂ is then called the maximum–likelihood estimate (MLE) of the parameter vector

θ. For mathematical convenience, this is converted into the log–likelihood estimation

problem by taking log of the likelihood probability density function:

θ̂ = argmax
θ
ln p(x|θ) = argmax

θ
l(θ|x)

If l(θ|x) is a continuous function of θ, standard gradient descent–based optimization

methods can be utilized to estimate the optimal parameters θ̂.

3.3.2 Intuition

Why do we need anything more? In some of the applications, x can be best viewed as

incomplete data, which can be obtained from complete data y through a many–to–one

mapping. However, the complete data y is not known but ironically the joint density

function py(y|θ) might turn out to be in an analytically much simpler form than the

density function px(x|θ). Thus, we would like to use py(y|θ) in the parameter estimation

problem, but without having to worry about additional missing data. The EM algorithm

provides a solution to this problem.

Mathematically, there are two sample spaces, X and Y, and there is a many–to–

one mapping from Y to X . The observed data x, called incomplete data, is a realization

of X . The corresponding y, called complete data in Y is not observed. Let Y(x) denote

the subset in Y from which the observed data x can be obtained. If px(x|θ) is the

probability density function of the observed data over the sample space X , and py(y|θ)

is the corresponding probability density function of the complete data over the sample
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space Y, the two density functions are related as follows:

px(x|θ) =
∫

Y(x)
py(y|θ) dy

Notice that for a given incomplete data specification px(x|θ), there are many possible

complete data statistics py(y|θ) that will generate px(x|θ). The EM algorithm aims at

estimating the value of θ which maximizes px(x|θ) given the observed data, but in doing

so it uses the associated family py(y|θ). From these comments, it is obvious that the EM

approach is useful only for the problems where, first, the statistics py(y|θ) are obvious

from the given px(x|θ) and, second, where using py(y|θ) is analytically more tractable

than px(x|θ).
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Consider a probability density function labeled p(x) in Figure 3.3, which is a func-

tion of three parameters, θ1, θ2, σ. Further, assume that p1(x) and p2(x) are two Gaussian

density functions with parameters θ1, σ and θ2, σ respectively. The parameter estimation

problem is stated as follows: Given a set of observations {x1, x2, . . . , xn} distributed ac-

cording to the probability density function p(x), estimate the set of parameters θ1, θ2, σ.

Note that even for this simple problem, analytically it is difficult to write the density

function p(x). It is easier to consider p(x) to be a mixture of densities, p1(x), p2(x), and

write:

p(x) = p(c = 1) p1(x) + p(c = 2) p2(x)

where c denotes the class from which an observation xi is drawn. If an observation belongs

to class 1, it is distributed according to the density function p1(x) and if it belongs to class

2, it is distributed according to p2(x). Dependence on the set of parameters θ = {θ1, θ2, σ}

can be explicitly shown as

p(x|θ) = p(c = 1) p1(x|θ) + p(c = 2) p2(x|θ)

However, for the estimation of the parameters θ, only the set of observations {x1, x2, . . . , xn}

are given, the information about which class each observation belongs to is lost. This be-

comes a typical example where the EM strategy can be utilized to estimate θ, by assuming

the class information as the missing data, thus simplifying the problem analytically.

As a closing note for this section, it should be noted that the EM algorithm leads

to only a maximum–likelihood estimation of the parameters of the density function.
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3.3.3 General Statement

As discussed above, random variables x and y are defined over the sample spaces, X and

Y respectively, and there is a many–to–one mapping from Y to X . Y(x) denotes the

subset in Y from which the observed data x can be obtained. The relation between the

density functions px(x|θ) and py(y|θ) is described in the previous section. Then, the two

steps in the EM algorithm to compute the parameters θ are derived to be:

E Step: Compute

Q(θ|θk) = E[ln p(y|θ)|x, θk]

where the expected value is evaluated with respect to the density function p(y|x, θk).

M step: Estimate

θk+1 = argmaxθQ(θ|θk)

The E–step requires evaluation of the expected value of ln p(y|θ), the reason being

to integrate out the missing data, and thus, to write the objective function only in terms of

observed data and the parameters to be estimated. Taking the expectation with respect

to the density function p(y|x, θk) is of core importance to the iterative nature of the

algorithm. Note that as the expectation is taken with respect to the density function

with parameters estimated from the previous iteration, θk, this helps give an iterative

nature to the algorithm. The other advantage to using this density function is that it

allows using Jensen’s inequality [51] to simplify the E–step. The EM algorithm consists

of choosing an initial estimate of the parameters θ0 and iterating the two steps until

convergence. The EM algorithm has been shown to monotonically converge to a local

minima.

The M–step, in all its simplicity, is a classical optimization problem. Except for
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some simple cases, it is not possible to form a closed form solution for the optimal set

of parameters θk+1. Thus, one must resort to standard numerical techniques to estimate

θk+1 which increases Q(θ|θk), but may not maximize it. Estimation of such a sequence of

parameters is also shown to converge to a local optimum and such a procedure is called

the generalized EM (GEM) algorithm [32].

3.3.4 Mixture Model

Redner et al. [93] provide an in–depth analysis of the mixture density problem with

maximum likelihood and EM based solutions. Duda et al. [37] provide a concise overview

of the problem.

The problem of interest is a parametric family of finite mixture densities of the

form

p(x|θ) =
m
∑

i=1

αi pi(x|θi), x ∈ <m

where each αi ≥ 0, also called the mixing proportions which satisfy the constraint

∑m
i=1 αi = 1. Each pi is a valid probability density function parameterized by θi, and is

also called the component density function.

3.3.5 Alternate Views

Neal et al. [79] and Hathaway [52] provide a coordinate descent interpretation of the EM

algorithm for mixture distributions, which is used to study the convergence properties

and justify some of the incremental variants of the EM algorithm.

Let x be the observed random variable and y be the missing data. The parameters

of density function θ are to be estimated. The joint density function is given as p(x, y|θ)
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and the marginal density function of x is then

p(x|θ) =
∫

p(x, y|θ) dy

The EM algorithm starts with an initial estimate of the parameters θ0 and proceeds

iteratively, until it converges to a local optimum, by applying the the E and M steps:

E Step:

Compute a density function p̃t over the range of y such that p̃t(y) = p(y|x, θt−1)

M step:

θt = argmaxθ Ep̃t [ln p(x, y|θ)]

Neal et al. [79] show that the two steps of the EM algorithm can be seen as

increasing the same function F (p̃, θ) defined as:

F (p̃, θ) = Ep̃[ln p(x, y|θ) +H(p̃)

where H(p̃) = −
∫

p̃(y) ln p̃(y) dy is the entropy of the distribution p̃. F (p̃, θ) can also

be written in terms of the Kullback–Leibler divergence (see definition 3.2) between the

distributions p̃(y) and p(y|x, θ) as:

F (p̃, θ) = −D(p̃(y)‖p(y|x, θ)) + l(θ|x)

Now the EM steps are equivalent to the following two steps:

E Step:
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p̃t = argmaxp̃ F (p̃, θ
t−1)

M step:

θt = argmaxθ F (p̃
t, θ)

3.3.6 Numerical Advantages

In addition to the above stated reasons, there are many numerical reasons for the widespread

popularity of the EM algorithm. In principle, the EM algorithm is simple. Every iteration

of the algorithm increases the likelihood function, until convergence. Thus, the conver-

gence to a local optimum is guaranteed. Also, unlike most other optimization techniques,

the EM algorithm does not require computation of gradients or Hessians of the cost func-

tion, nor is it necessary to worry about setting the step size parameters, as required in

gradient based techniques.

3.4 Markov Random Fields

Region–based segmentation techniques aim at assigning each pixel in the image to a class

depending on the local neighborhood characteristics of the image. A number of region–

based segmentation techniques have been proposed, of which statistical techniques have

become recently popular. Statistical techniques model an image as a random field. As-

suming an image to be a homogeneous and ergodic random field allows maximum like-

lihood (ML) and maximum a–posteriori (MAP) formulations of the image segmentation

and reconstruction problems. Dynamic programming [33, 50], stochastic relaxation [43],

simulated annealing [62], and deterministic relaxation [13, 14, 67] techniques have been

proposed to optimize the cost function to estimate a segmentation of the image.
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Markov random field (MRF) models have been successfully used for image analysis

and texture segmentation, especially for noisy images [43]. Leahy et al. [67] utilized an

MRF model for medical image analysis. Image segmentation and analysis is in general

an ill–posed [88] problem. Prior information is usually used to have a regularizing effect

on the problem so that more likely images are favored. In texture segmentation and

image analysis problems, images usually consist of different regions with slowly varying

pixel intensities, except at region boundaries. Prior information which captures the local

characteristics of the image will be a powerful tool for solving many image processing

problems. MRFs provide a systematic way to incorporate the prior information, in terms

of local smoothness of the image regions, to regularize the problems. Further, region

boundary information can also be incorporated into the problem by using line processes

[43].

Let Z = {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ M} denote the M ×M integer lattice over

which the image pixel intensities are defined. Let the random variable xi,j denote the

pixel intensity at the site (i, j) ∈ Z. An image is represented as a random field, X, which

is a collection of the random variables xi,j and can be written as:

X = {xi,j , 1 ≤ i ≤M, 1 ≤ j ≤M} ∈ <M×M

Let XZ/(i,j) denote the set of all random variables except for xi,j , and let Ni,j be the sets

of sites neighboring the site (i, j). Thus, the random variables XZ/(i,j), XNi,j
are the set

of random variables, on the lattice Z:

XZ/(i,j) = {xu,v : ∀(u, v) ∈ Z : (u, v) 6= (i, j)}



48

XNi,j
= {xu,v : ∀(u, v) ∈ Ni,j}

Let Ω define all possible configurations of X:

Ω = {ω = (x1,1, x1,2, . . . , xM,M ) : xi,j ∈ <}

and let pX(ω) be a valid probability density function over Ω. Then, the random field X is

said to be a Markov random field if the conditional probability density function satisfies

the following relation:

p(xi,j |XZ/(i,j)) = p(xi,j |XNi,j
)

that is, the conditional density function of xi,j depends only on its neighbors on the

lattice Z. Neighborhoods in MRF models can be defined with great flexibility, which can

be tuned to the problem to be solved. Figure 3.4 shows example neighborhood systems.

In the 0th order neighborhood system, each site is a neighbor of itself only. The 1st order

neighborhood system consists of the four nearest sites, a 2nd order neighborhood systems

consists of the eight nearest sites and so on. Once a neighborhood system has been

decided for the random field, X, cliques are defined. A clique is a set of one or more sites

such that each site is neighbor to all the sites in the set, for that neighborhood system.

Figure 3.4 shows that for higher order neighborhood systems, the number of cliques can

increase rapidly.

Conditional probability density functions capture the correlation between neigh-

boring sites, which allows us to build priors on the possible set of images with neigh-

borhoods that are small enough to ensure feasible computational loads and yet still rich
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cliques for 0th
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Figure 3.4: Neighborhood Systems and Cliques

This figure shows 0th, 1st and 2nd order neighborhood systems and some of the possible

cliques for the corresponding neighborhoods.

enough to model and restore interesting classes of images and textures.

However, by itself, there are two problems with the MRF formulation so far:

• Even though specifying the conditional probability density functions should uniquely

determine the joint density function, it is not apparent what is the joint density

function.

• It is very difficult to know when a given set of functions are conditional density
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functions for some probability density function on Ω.

The problem is overcome by using the Hammersley–Clifford theorem [13]. The

advantage of the Hammersley–Clifford theorem is that one needs to specify only the

potential functions Vc(X) for the cliques of a random fields, where the potential functions

are usually chosen to reflect the desired properties of the image. The only condition one

needs to satisfy is that the potential functions be summable. The images with these

desired properties will have low energy and hence will be more probable. This prior

information is used, along–with a likelihood term, for MAP estimation and segmentation

of images.

3.4.0.1 Stochastic Relaxation

Geman et al. [43] proposed a stochastic relaxation optimization technique for estimating

a segmentation of an image. The stochastic relaxation based approach has been shown

to converge to a global optimum. Note that stochastic relaxation (SR) is a very different

approach to solving the image segmentation and analysis algorithm than the relaxation

labeling (RL) algorithm [57, 97]. SR and RL have shared features and shared goals,

locality and parallelism, but RL remains ad hoc and heuristic. RL is a non–stochastic

process, both in the interaction model between the sites and in the updating algorithms,

and there is no joint probability law over the configurations.

3.4.1 Ising Model

This section describes the 1D Ising model which has been studied extensively in the sta-

tistical physics literature [85, 24] to study the phase transition properties of the materials.

The Ising model can be seen as a simple MRF.
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Consider a discrete 1D lattice with a spin si at the ith site on the lattice, where

si ∈ {+1,−1}. In the presence of an external, site dependent, field hi, the energy of the

system is written as

HI = −
J

2

∑

(i,j)

sisj − µ
∑

i

hisi

where the sum over i and k is taken over the nearest neighbor and J is called the coupling

constant. J > 0 favors a configuration where the neighbors are aligned in the same

direction. The simplicity of the Ising model is deceptive. Even after the first introduction

of the Ising models, exact solutions for the model are available for only in one–dimension

with uniform field and in two–dimensions at zero field. Mean field approximations have

remained as an attractive method to evaluate approximate solutions.

3.4.2 Mean Field Approximations

This section briefly discusses the mean field approximation solution to the 1D Ising model.

Chandler [24] discusses the approximate solution for the site independent external field

case and obtains a closed form solution for the problem. For the site dependent external

field see Parisi et al. [85]. For the mean field development followed in this thesis, see

Hofmann et al. [55].

Consider the problem with a site–independent external field. The Ising model

problem can be defined to be the problem of evaluating the Boltzmann weighted sum:

Q =
∑

s1,s2,...,sN

exp[−βE(s1, s2, . . . , sN )]
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where

E(s1, s2, . . . , sN ) = −
J

2

∑

(i,j)

sisj − µ
∑

i

hsi

In the variational analysis, a mean field approximation of the energy function is of the

form:

EMF (s1, s2, . . . , sN ) = −µ(h+∆h)
∑

i

si

The above energy function models a system with independent spins, where the spins are

being influenced by a static site–dependent field and a mean field due to its neighbors.

Note that this analysis is called the mean field approximation because the effects of the

field due to the neighboring sites are reduced to a mean value of the field. Fluctuations

away from the mean value of the field are being ignored, which leads to a model of a

system where all the spins are independent. The partition function for the system with

this energy function can simply be written as:

QMF =
∑

s1,s2,...,sN

N
∏

i=1

exp[−βµ(h+∆h)si]

= {2 cosh[βµ(h+∆h)]}N

The average spin, < si >MF , at the ith site is then given as:

< si >MF= tanh[βµ(h+∆h)]
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which is site independent. The variational treatment comes into the picture when one has

to estimate the optimal ∆h, which can be seen as the parameter of that model. Following

the treatment in Chandler [24], it can be easily shown that the optimal ∆h is:

∆h = 2J < s1 >MF /µ

The mean field approximations will be utilized in section 7.2.2.1, chapter 7, for the in-

corporation of 1D MRFs into our proposed minimax entropy registration framework.

3.5 Density Estimation

Estimating the joint and marginal density functions of pixel intensities from a set of

sample values is key to the image registration framework developed in this thesis. Prob-

ability density estimation methods can be classified into two categories, parametric and

non–parametric density estimation methods. Duda et al. [37] provides an overview of

various density estimation methods.

3.5.1 Parametric Methods

Parametric density estimation methods assume that the form (Gaussian, exponential,

Rayleigh, etc.) of the density function to be estimated is known, with the only variables

to be estimated being the parameters of the functions. Suppose that it can be reason-

ably assumed that px(x) is a normal density with mean µ and covariance matrix Ψ, this

assumption simplifies the problem of estimating the function px(x) to that of estimating

the parameters µ and Ψ. Although these density estimation methods seem restrictive,

they become important for cases where the dimensionality of the feature vector x is large
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and the available samples are too small. Maximum likelihood and Bayesian estimation

methods are two popular methods for estimating the parameters. Maximum likelihood

estimation methods assume that the parameters to be estimated are fixed unknowns

whereas in the Bayesian estimation methods the parameters are viewed as random vari-

ables with known prior distributions.

3.5.2 Non–Parametric Methods

The parametric methods described in the previous section assume that the form of the un-

derlying density function is known. All of the classical parametric densities are unimodal,

but practical problems involve multi-modal density functions. One way to solve the prob-

lem is to estimate the density function px(x) using non–parametric density estimation

methods.

3.5.2.1 Parzen Window Method

Duda et al. [37] provide an excellent overview of the Parzen window based density estima-

tion. This method approximates a density function at a point by a linear combination of

window functions, ϕ(u), centered at the sample values. In general, the window function

can be any valid density function, which satisfies:

ϕ(u) ≥ 0, ∀u

and

∫

ϕ(u) du = 1
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The probability density, at a point x, can then be estimated using n samples:

pn(x) =
1

n

n
∑

i=1

1

Vn
ϕ

(

x− xi
hn

)

where hn is the length of a hypercube with volume Vn. A few points which are obvious

from the above formulation is that the estimated density at point x, pn(x), is a function

of the window function ϕ(u) and its width. Since a window function is placed at each

sample and the density estimate is a linear combination of these window functions, the

Parzen window estimate of the density computes a neighborhood average of the samples,

where the neighborhood of a point x is determined by the size of the window function.

The Parzen window method can be used to estimate any smooth density function;

the smoothness requirement is obvious from the previous section. The construction of

the density function is also simple: a window function is placed at each sample. However,

evaluation of the density involves time complexity proportional to the size of the data.

This method also requires computation of the parameters of the window function used,

for example, the variance of a Gaussian window function.

The most common window functions are unimodal functions which decay quickly

to zero away from the mean value. The zero mean Gaussian function, gψ(u), with variance

ψ, is the most popular window function. Using this window function, the Parzen window

estimate of density function p(x), using a set of samples a of size n, can be written as:

pn(x, a) =
1

n

∑

xa∈a
gψ(x− xa)

The only parameter that needs to be estimated is the variance ψ. Maximum likelihood

estimation can be used to estimate the variance ψ. However, a procedure which minimizes
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the entropy of the density function is utilized. To estimate empirical entropy of the

density pn(x, a) two sets of samples a and b, of sizes Na and Nb respectively, are selected

at random. If only a single sample of data is used to estimate both the density function

and the entropy of the distribution, then the variance ψ will tend to zero. This will be

so because a density function with delta functions at each sample has minimum entropy.

Thus, the Parzen window estimate, with Gaussian window of variance becoming zero, will

effectively put a delta function at each sample to estimate the density function. Using

two sets of samples avoids this degenerate case. The reason for this can be seen as follows.

One set of samples are used to estimate the density function. The other set of samples

are then used to estimate the entropy of this distribution. If the variance of the Gaussian

window functions tends to zero, then the empirical entropy will increase towards positive

infinity. However, we are estimating the variance which minimizes the entropy, hence

avoiding the degenerate case of zero variance.

An important technical note. A very important technical point to note in non–

parametric estimation of density function using Parzen window method is that the esti-

mated density function, in the limit, is independent of the variance of the Gaussian kernel

and for that matter, is even independent of the kernel used in estimating the density func-

tion [37]. Thus, if a density function is estimated from a sample of pixels its entropy is

independent of the variance of the Gaussian kernels used to estimate the density func-

tion. However, for a finite sample size, the entropy of the estimated density function will

vary with the variance of the Gaussian kernel. Thus, the variance of the Gaussian kernel

which minimizes the entropy of the estimated density function is chosen to be the optimal

variance.
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3.6 Mutual Information

Papoulis [83] provides an excellent overview of probability and stochastic processes with

some introduction to information theory. Cover and Thomas [30] and Reza [94] are

excellent books on the subject. This section gives a brief overview some of the concepts

related to the work in this thesis.

3.6.1 Entropy

Entropy as a measure of information was first proposed by Shannon [103]. Assume that

a random variable x is distributed according to the probability mass function Px(x). If

an experiment is carried out, where the output is governed according to Px(x), then the

information generated by the experiment, for each output, is determined by the entropy

of the distribution Px(x). Said another way, entropy measures the uncertainty in the

output value generated by the experiment. Starting with three basic axioms, Shannon

[103], derived a mathematical measure of the entropy, H(x), of a probability distribution

to be:

H(x) = −
∑

x

Px(x) lnPx(x)

It should be noted that even though entropy is conventionally written as H(x), it is a

functional, a function of a probability mass function. Many other definitions of entropy

have been proposed but the above one remains the most popular and useful [58, 59].

Following are some of the definitions used in the thesis.
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Definition 3.1: The joint entropy, H(x,y), of random variables x and y dis-

tributed according to the joint probability mass function P (x, y) is defined as:

H(x, y) = −
∑

x

∑

y

P (x, y) lnP (x, y)

Definition 3.2: The Kullback–Leibler distance, D(P‖Q), between two probability

mass functions P (x) and Q(x) is defined as:

D(P‖Q) =
∑

x

P (x) ln
P (x)

Q(x)

It can be easily shown that D(P‖Q) ≥ 0, with equality if and only if P (x) = Q(x), ∀x.

However, D(P‖Q) 6= D(Q‖P ) in general and it does not satisfy the triangle inequality of

distance metrics. Thus, Kullback–Leibler distance is not a distance between probability

distributions and to make this distinction, it is also called, Kullback–Leibler divergence.

Definition 3.3: Mutual Information between random variables x and y, dis-

tributed according to the joint probability mass function P (x, y) and marginal probability

mass functions P (x) and P (y), is defined as:

I(x, y) = D(P (x, y)‖P (x)P (y)) =
∑

x

∑

y

P (x, y) ln
P (x, y)

P (x)P (y)

Positivity of mutual information follows from the positivity of the Kullback–Leibler di-

vergence. Usually, mutual information is written in terms of entropies as:

I(x, y) = H(x)−H(x|y)
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= H(x) +H(y)−H(x, y)

3.6.1.1 Differential Entropy

While most of the definitions and results for continuous random variables follow those

for the discrete random variables, there remain some important differences which warrant

careful observation. To stress differences between the continuous and the discrete random

variables, the entropy of the continuous random variable is also called differential entropy.

Definition 3.4: The differential entropy h(x) of a continuous random variable x

with a probability density function p(x) is defined as:

h(x) = −
∫

p(x) ln p(x) dx

Differential entropy provides only a relative measure of randomness, that is if h(x) > h(y),

then the random variable x is more unpredictable than the random variable y. However,

for some density functions, the differential entropy can even be negative.

Example 3.1: If x is uniformly distributed on an interval [0, 18 ], then the differ-

ential entropy of the random variable, h(x), is -3.

The differential entropy of a discrete random variable can be considered to be

negative infinity. Definitions and properties of the mutual information and Kullback–

Leibler divergence are the same as those for discrete random variables.

3.6.2 Relation to Correlation Function

To see the relation between correlation coefficient and mutual information, consider two

images I1 and I2 which are to be registered. Image I2 is transformed, according to the
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transformation parameters T , yielding image IT . Assume that the random variable x

denotes the distribution of the pixel intensities of image I1 and the random variable y

denotes the distribution of the pixel intensities of the transformed image, IT . Further

assume that the random variables x and y are jointly Gaussian distributed, that is,

px(x) =
1

σx
√
2π
exp

(

−1
2

(x− µx)2
σ2x

)

py(y) =
1

σT
√
2π
exp

(

−1
2

(y − µT )2
σ2T

)

Note that the mean, µT , and variance, σT , of y are a function of the transformation

parameters T . Let

rT =
E{(x− µx)(y − µT )}

σxσT

be the correlation coefficient of x and y. The joint Gaussian density function can now be

written as:

px,y(x, y) =
1

2π|Ψ|1/2 exp









−1
2
(x− µx y − µT )Ψ−1









x− µx

y − µT

















where Ψ denotes the covariance matrix of the joint density function, given as,

Ψ =









σ2x rTσxσT

rTσxσT σ2T








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and

|Ψ|1/2 =
√
DetΨ = σxσT

√

1− r2T

If, I(x, y) denotes the mutual information between x and y, then after some arithmetic,

see appendix A, it can be shown that:

I(x, y) = − ln
√

1− r2T (3.2)

Thus, for this simple example, maximization of mutual information, I(x, y) to bring I1 and

I2 into registration is equivalent to maximization of rT . However, if we define sensitivity

of a registration measure with respect to transformation parameters as a small change in

value for a small change in transformation parameter, then differentiating equation (3.2)

by transformation parameters T , we have,

dI(x, y)

dT
=

(

rT
1− r2T

)

drT
dT

This relation shows that a small change in transformation parameters, close to the true

registration, leads to a large change in the mutual information measure as compared to

the change in the correlation coefficient. Thus, it can be concluded that even for the

registration of same modality images, the mutual information measure is more sensitive

to registration as compared to the correlation coefficient.
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3.6.3 Empirical Estimation of Entropy

In this thesis, non–parametric Parzen window estimates will be used to estimate both

the marginal and the joint probability density functions. The analysis will closely follow

the work of Viola et al. [117]. Let X denote the reference image and Y denote the

transformed test image. Let x and y be the random variables denoting the distribution of

pixel intensities in the reference and the transformed images respectively. Parzen window

estimates are used to estimate the two density functions. Let gψ(·) be the Gaussian

kernel, with zero mean and variance ψ, used in the density estimation of y. Assume that

a set a of samples, of size Na, is selected at random from the image Y . Then the Parzen

window estimate of the density of y is:

py(y, a) =
1

Na

∑

ya∈a
gψ(y − ya)

To estimate the entropy of distribution py(y, a) another set of samples b, of size Nb, is

selected from the image Y and the entropy, H(y), is estimated as a sample mean as

follows:

H(y) = Eb {ln (py(y, a))}

=
1

Nb

∑

yb∈b
ln py(yb, a)

A stochastic gradient descent method is used as the optimization technique to estimate the

optimal parameters. Viola [116] provides a convergence analysis of the descent algorithm

for this problem.
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3.6.4 Maximum Entropy Principle

Jaynes [58, 59] proposed that the maximum entropy principle forms a fundamental princi-

ple both in statistical mechanics and probability theory. Jaynes [60] showed that, starting

with Shannon’s definition of entropy, the maximum entropy principle can be used to derive

the Bernoulli distribution law for the distributions of successes in repeated experiments.

The maximum entropy principle aims at estimating a density function of a random

variable, x, under specified constraints which has the maximum entropy. This problem

is formulated using variational calculus where the function to be estimated is a density

function. The following example will clarify the basics of the principle.

Example 3.2: Suppose that density function p(x) of the random variable x is to

be estimated under the constraints

∫

p(x) dx = 1

and n specified values ηi, expected values of known functions gi(x):

E{gi(x)} =
∫

gi(x) p(x) dx = ηi; i = 1, . . . , n

Thus, the Lagrange multipliers method can be used to set up the calculus of variations

problem as follows. Estimate p(x) which maximizes

−
∫

p(x) ln p(x) dx− (λ0 − 1)
(∫

p(x) dx− 1
)

−λ1
(∫

g1(x) p(x) dx− η1
)

− · · · − −λn
(∫

gn(x) p(x) dx− ηn
)
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Using the calculus of variation, it can be shown that p(x) is an exponential distribution:

p(x) = exp {−λ0 − λ1g1(x)− · · · − λngn(x)}

The Lagrange multipliers are estimated by solving the set of constraint equations.

Following is another example [16] which shows that the maximum entropy method

(MEM) principle is a fundamental principle.

Example 3.3: Estimate the discrete probabilities pi for i = 1, . . . , N when it

is known that these probabilities lie close to some prior knowledge ri, which is a valid

probability mass distribution. To estimate pi, we maximize the function h as a function

of G:

h(p) = −
∑

pn ln pn +G(p, r)

To find the optimal pn differentiate h with respect to each pn and set it to zero.

∂h

∂pn
= −(1 + log pn) +

∂G

∂pn
= 0 when p = r

A non–trivial function which satisfies the above relation is

G(p, r) = pn + pn ln rn +G1(p1, . . . , pn−1, pn+1, . . . , pN , r)
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Repeating this for other pi yields

G =
N
∑

n=1

(pn + pn ln rn) = 1 +
N
∑

n=1

pn ln rn

Thus, the objective to maximize to estimate pi’s then becomes

h(p) = −
N
∑

n=1

pn ln
pn
rn

where we have ignored the constant 1. Note that

∂2h

∂p2n
= − 1

pn
≤ 0 ∀n

Thus, h(p) has one maximum at ∂h
∂pn

= 0, which subject to the integration constraint

∑

pn = 1 yields pn = rn ∀n.

In retrospect, the solution to example 3.3 seems obvious from the Kullback–Leibler

divergence between two density functions. However, this example shows that the princi-

ple of maximum entropy is more fundamental principle, where the Shannon’s definition

of entropy is utilized. The principle of maximum entropy leads to estimation of a proba-

bility density function p(x) which satisfies the consistency axioms: (1) uniqueness of the

solution, (2) invariance to choice of coordinate system, (3) system independence, and (4)

subset independence.

Consider an example where only L of the N values of rk are specified.

Example 3.4: Suppose the density function p(x) of a random variable x is to

be estimated where only L of the N values of rk are specified, with the remaining M
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unknown. From the previous example, we have,

G(p, r) =
L
∑

l=1

(pl + pl ln rl)

This gives the function h′ to be maximized to be

h′ = −
L
∑

l=1

pl ln pl +
L
∑

l=1

(pl + pl ln rl)−
N
∑

m=L+1

pm ln pm

= −
L
∑

l=1

pl ln

(

pl
rl

)

+
L
∑

l=1

pl −
N
∑

m=L+1

pm ln pm

Taking second derivatives of h′ with respect to pk yields

∂2h′

∂p2k
= −1/pk

for all l and m and so the function h′ has only one maximum. The maxima is found by

solving the equations ∂h′

∂pk
= 0 for each l such that 1 ≤ l ≤ L. Solving these equations

yields, as in the previous example, pl = rl. To solve for the remaining values of pm for

L < m ≤ N , equations ∂h′

∂pm
= 0 are solved subject to the constraint

L
∑

l=1

pl +
N
∑

m=L+1

pm =
L
∑

l=1

rl +
N
∑

m=L+1

pm

= 1

Solving these equations yields pm = A, a constant, which evaluates to

A =
1−∑L

l=1 rl
M
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by using the previous equations.

Example 3.4 shows that the maximum entropy principle is a general formulation to the

problem of probability density estimation.

3.7 Summary

This chapter briefly described various mathematical methods that are used to develop

the registration framework presented in this thesis. The interested reader is pointed to

various sources which cover every topic in more detail.



Chapter 4

Segmentation–Integrated

Registration

4.1 Introduction

Portal images acquired during the EBRT treatment of the prostate cancer are noisy and

are of low contrast. Thus, accurate patinet setup verification using portal images is a

difficult task. However, since we already have a high quality treatment planning 3D CT

image dataset, acquired using diagnostic energy X–rays, we utilize this information to

help segment some structure from the portal images and then use this estimated seg-

mentation to help better estimate the registration parameters. In this chapter we outline

the integrated registration framework for patient setup verification in EBRT of prostate

cancer where the segmentation of the portal image is carried out simultaneously and

iteratively. As mentioned in Chapter 2, the registration methods proposed in the litera-

ture can be broadly classified into two categories of registration methods, the sparse–field

or feature–based and dense–field. The sparse field methods typically aim at extracting

68
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sparse feature information from the given image data to be registered. The registration of

two images is then accomplished by registering the two feature sets. Usually, the feature

extraction process involves first or higher order derivatives of the intensity images. For

example, edge detection might require second order derivatives of the image. Hence, the

accuracy of the feature–based methods is sensitive to the noise in the images. However,

if the features have been accurately detected and localized, these methods can accurately

estimate the registration parameters. The dense field methods, for example gray scale

correlation, directly manipulate image pixel intensities to estimate the registration pa-

rameters. As these methods do not, in general, require evaluating higher order derivatives

of the images, these methods tend to be robust to noise. However, these methods are

computationally more expensive as compared to the feature based methods. Feature

based methods were usually preferred for multi–modality image registration because if

homologous features can be extracted from the images then the two image datasets can

be registered irrespective of the modalities used to acquire the image data. However,

recently a mutual information [117, 28] based dense field method has been successfully

used to register multi–modal images.

Both of these strategies have some merit and some problems. There are funda-

mental tradeoff between the two strategies which are relevant to the registration approach

presented in this thesis:

• Accurate feature identification–based and/or portal object segmentation–based strate-

gies are good for registration localization and accuracy, but are sensitive to noise

and blur.

• Intensity–based strategies are typically poor in localization accuracy, but will be

more robust to noise and blur.
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In this thesis we propose that the segmentation and the registration of portal

images to the 3D CT data should be carried out simultaneously and iteratively. The

framework is based on the intuition that if we have a rough estimate of the segmentation

of a portal image, then it can be used to better estimate the registration parameters.

Estimated registration parameters can then, in turn, be used to better segment the portal

image. The iterative registration framework is of special interest for the registration of

portal images to 3D CT data set as the portal images are usually of poor quality. Usually,

the 3D CT dataset is of high quality data. Thus, the key idea is to utilize the information

from 3D CT to help better segment the portal images. A better segmentation of the

portal images can then be used to better register portal image and 3D CT image data.

However, the 3D CT information can possibly guide segmentation of the portal image

only if it is in registration in the first place, making this a chicken–and–an–egg problem.

The next section mathematically defines the image registration problem. It should

be noted that we are primarily interested in estimating the registration parameters. Next

the problem is formulated as a maximum a–posteriori (MAP) estimation problem where

both the segmentation labels and the registration parameters are being explicitly esti-

mated. We note some of the difficulties with such an approach and propose a maximum

likelihood (ML) based approach. The EM algorithm–based formulation is then presented

to estimate the maximum–likelihood registration parameters. We note that this approach

overcomes some of the weaknesses of the proposed MAP formulation. However, for our

problem, the EM formulation has some weaknesses, which leads to the information the-

oretic minimax entropy registration framework proposed in the following chapter.
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4.2 Problem Definition

Let, X= {x(i)}, for i = 1, . . . , N 2 denote the N ×N random field from which the portal

images are sampled. Let, G= {g(i)}, for i = 1, . . . , N 3 denote the random field from

which 3DCT images are sampled. Let Y(T) = {y(i, T )} for i = 1, . . . , N 2 denote the

N × N random field from which the projections from the 3DCT data set are sampled,

at a given set of transformation parameters T = T . In the following we will assume a

rigid transformation and hence T represents a set of six parameters, three translations

(tx, ty, tz) and three rotations (θXY , θXZ , θY Z). The projected 3DCT images are also

called the digitally reconstructed radiographs. Note that we index pixels in the images

using a single index, even though the images are 2D (or 3D) images. For simplicity in

the formulations below, we have assumed that the portal and the projected 3DCT are of

the same dimensions. However, this need not be true. We further assume that the pixels,

for all the random fields, are independently distributed (This assumption will be later

relaxed in chapter 7). Thus, the probability density function of the random field X can

be written in factored form as pX(X) =
∏

i pxi(xi). Since the only structure visible in the

portal images is the bone, each pixel is being classified as belonging to one of two classes,

bone or no–bone (everything else), and the pixel intensities in each class are assumed to

be identically distributed according to the probability density function of its class. Since

the pixels are assumed to be independently distributed, we can determine the random

field from which the portal images are sampled. Note that for notational simplicity, we

shall now write x(i) as xi and y(i, T ) as yi, where the current transformation parameters

for which a DRR is obtained should be clear from the context.

Segmentation information is incorporated into the problem by considering the

joint density function p(xi, yi) as a mixture density (see section 3.3.4 in the last chapter).
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To set up the joint density function into a mixture density form, let A = {bone, no–bone}

= {1,2}, denote the set of classes. Note that the set of classes can also be denoted by

a set of vectors, {(0, 1), (1, 0)}. Such a representation allows us to introduce the concept

of indicator variables, where the indicator variables are primarily used to simplify the

mathematics. Since X–rays pass through both bone and tissue before hitting the portal

image, a clarification of the classes bone and no–bone is necessary. We seek to classify

pixels in the portal image as bone for which the X–rays passed through at least some bone

tissue. The other pixels we seek to label no–bone. Let, M= {m(i)}, for i = 1, . . . , N 2

denote the N ×N random field on the segmentation of the portal images.

Let Z be the N2× 2 classification matrix, with each row zi of the matrix defining

a set of random variables zi = (z1i, z2i), defined to be:

z1i =















1, if mi = bone

0, if mi = no–bone

, z2i =















0, if mi = bone

1, if mi = no–bone

The expected values of the random variables zai, ∀a, denoted by <zai>= P (mi = a),

satisfy the constraint,
∑

a∈A <zai>= 1. Note that the random variables z1i, z2i are

negatively correlated random variables, with the random variable zi taking only two

possible values, {(0, 1), (1, 0)}.

We first pose our problem in a maximum a–posteriori (MAP) framework where

both the segmentation, M, and the transformation parameters, T, are being estimated

explicitly. As noted earlier, we want to estimate a segmentation of the portal image in

order to help the registration process. The problem of segmenting the portal image is for-

mulated as a labeling problem in which each pixel is labeled either as bone or no–bone. To

incorporate the segmentation information, the joint density function, px,y(x, y), is written
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as a mixture density where the labels on the portal image pixels are treated as the missing

information. Note that MAP leads to a particular estimate of the segmentation labels,

M, and the transformation parameters, T. However, we note some restrictions with this

approach for our problem and thus we propose a maximum likelihood (ML) framework to

overcome these restrictions. One approach for computing the MLE from incomplete data

is the expectation–maximization (EM) algorithm [32]. Our first thoughts were to select

the EM algorithm to compute the estimates due to its proven monotonic convergence

properties, ease of programming and the fact that it does not require computation of the

Hessian. Also, unlike other optimization techniques, there is no need to set a step–size

parameter. Thus, the EM algorithm is used to estimate the pose parameters which also

leads to an estimate of the posterior probability of the label at each pixel. However,

for our problem, the EM approach has several restrictions too, as noted below. These

problems lead us to propose our new minimax entropy strategy which is described in the

next chapter.

4.3 Maximum A–Posteriori Formulation

An estimate of the segmentation of the portal image, M, can be used to help estimate

pose, T, of the 3DCT dataset. One straight forward way to capture this strategy would

be to set up a MAP (Maximum A–Posteriori) strategy as follows:

(T̂ , M̂) = argmax
T,M

p(T,M |X,G) (4.1)

Taking the logarithm of the expression and assuming that the pose parameters, T, are

uniformly distributed and that G is independent of T and M, equation (4.1) can be
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simplified, using Bayes’ rule, as follows:

(T̂ , M̂) = argmax
T,M

ln p(T,M |X,G)

= argmax
T,M

ln

(

p(X,G|T,M) p(T,M)
p(X,G)

)

Ignoring p(X,G) as this is constant for a given data set,

(T̂ , M̂) = argmax
T,M

ln (p(X,G|T,M) p(T,M))

As we are not using prior information on T andM, uniform priors can be assumed. Thus,

ignoring p(T,M), we can further write:

(T̂ , M̂) = argmax
T,M

ln p(X,G|T,M)

= argmax
T,M

ln (p(X|G,T,M) p(G|T,M))

Now, since G is independent of T and M, and p(G) is a constant, we can reduce the

above equation further to:

(T̂ , M̂) = argmax
T,M

ln p(X|G,T,M)

= argmax
T,M
{ln p(X|Y (T ),M)} (4.2)

because X depends on G through projected digitally reconstructed radiograph Y (T ).

The portal image pixel intensities are not Gaussian distributed. For the development

of the algorithm, we will model the joint density function, p(X,Y ), as a mixture den-
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sity, consisting of two component densities. One component density function models the

intensities of the no–bone pixels and the other component density function models the

intensities of the bone pixels. The joint density function, p(xi, yi), can thus be written in

terms of the component density functions as (where P denotes probability and p denotes

probability density function):

p(xi, yi) =
∑

a∈A
P (mi = a) p(xi, yi|mi = a)

=
∑

a∈A
P (mi = a) pa(xi, yi)

=
∑

a∈A
Pi(a) pa(xi, yi)

where mi is the random variable denoting the label at the ith pixel, and pa(xi, yi) is the

joint density function of the pixel intensities, also called the component density function,

given that the ith portal image pixel is labeled a. To simplify the notational complexity,

we abbreviate pxiyi(xi, yi|mi = a) by pa(xi, yi) and similarly for other probability density

functions (pdfs), where the random variables in the abbreviated form should be clear

from the context.

Starting from equation (4.2), and assuming that the pixel intensities are statisti-

cally independent, we can write:

(T̂ , M̂) = argmax
T,M
{ln p(X|Y (T ),M)}

= argmax
T,M

{

∑

i

ln p(xi|yi,mi)

}

(4.3)
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This follows from the fact that under the statistical independence assumption the joint

conditional density p(X|Y (T ),M) can be written in factored form as:

p(X|Y (T ),M) =
∏

i

p(xi|yi(T ),mi)

=
∏

i

p(xi|yi,mi)

Now consider the conditional probability p(xi|yi,mi) at the ith pixel.

p(xi|yi,mi) =
p(xi, yi|mi)

p(yi|mi)

=
p(xi, yi|mi)

p(yi)

where we assume that the pixel intensities of the DRR are independent of the portal

image segmentation label. This assumption is true especially when the two images are

not registered. Even when the algorithm converges, for real images some errors in the

estimated registration parameters and the estimated segmentation are expected (as the

DRR and the portal image are usually of different sizes). Hence, we felt it safe with the

independence assumption. Thus, under this assumption we have,

p(xi|yi,mi) =
p(xi, yi|mi)

p(yi)

=

∏

a∈A[p(xi, yi|mi = a)]zai

p(yi)

=

∏

a∈A[pa(xi, yi)]
zai

p(yi)
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or, taking logarithm on both sides of the equation yields,

ln p(xi|yi,mi) =
∑

a∈A
zai ln pa(xi, yi)− ln p(yi) (4.4)

Thus, from equations (4.3) and (4.4), the MAP formulation for estimating M and T

becomes:

(T̂ , M̂) = argmax
T,M

{

∑

i

(

∑

a∈A
zai ln pa(xi, yi)− ln p(yi)

)}

(4.5)

Equation (4.5) can be solved to estimate both the optimal transformation parameters

and the segmentation of the portal image.

4.3.1 Drawbacks

While the MAP strategy brings out the rationale of our approach, we feel that such a

strategy is limiting for our purposes for three reasons. First, this approach requires the

algorithm to estimate a unique segmentation of the portal image, for a unique estimate

of the pose parameters T. An estimated segmentation will effect the estimate of the

pose parameters. Since we feel that the true segmentation of the portal image, in gen-

eral, cannot be accurately estimated, we prefer not to commit the algorithm to find an

optimal transformation parameters for a particular segmentation. Second, segmentation

labels are discrete variables whereas the pose parameters are effectively continuous pa-

rameters. Solving for both, discrete variables and continuous variables, will be difficult

and computationally expensive. Once we have a good estimate of the pose parameters

the segmentation labels can be easily estimated and so we propose estimation of pose

parameters only. Third, this formulation assumes that the component density functions,
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pa(xi, yi), and the marginal density function p(yi) are known.

Given these limitations, we instead pose our problem in a maximum–likelihood

framework, with segmentation labels are viewed as hidden variables. Such an approach

could be captured using an expectation–maximization (EM) algorithm. We will describe

the limitations of this approach here and propose our information theoretic minimax

entropy registration framework in the next chapter.

4.4 Maximum Likelihood Formulation

The ML estimate of the pose parameters can be formulated as:

T̂ = argmax
T
ln p(T |X,G) (4.6)

= argmax
T
ln

(

p(X,G|T ) p(T )
p(X,G)

)

Assuming uniform priors on the pose parameters T and ignoring the constant

term p(X,G), we have,

T̂ = argmax
T
ln p(X,G|T )

= argmax
T
ln (p(X|G,T ) p(G|T ))

= argmax
T
ln p(X|Y (T ))

= argmax
T
[ln p(X,Y (T ))− ln p(Y (T ))]

= argmax
T

∑

i

[ln p(xi, yi(T ))− ln p(yi(T ))] (4.7)



79

where we ignore the term p(G|T ), since the 3DCT data set,G, is statistically independent

of the pose parameters, T. In equation (4.7) we assume that the image pixels are inde-

pendent. The logarithm of the likelihood function is taken to simplify the mathematical

formulation. Note that we first formulate the problem of pose estimation as a MAP prob-

lem which, however, is reduced to ML estimation problem by assuming uniform priors on

the pose parameters.

Maximum–likelihood estimation of the transformation parameters, as formulated

above, is ideally suited for the EM framework.

4.4.1 EM Formulation

Using a mixture density model, we can now write the joint mixture density model, from

equation (4.7), for the portal image and DRR as, at pixel i:

p(xi, yi) =
∑

a∈A
P (mi = a) pa(xi, yi)

=
∑

a∈A
Pi(a) pa(xi, yi)

Using this notation, the two steps of the EM algorithm [32] (see section 3.3 of

chapter 3) for the mixture model are written as, at the kth iteration (see appendix B for

the development of the two steps):

E–Step:

Q(T, T (k−1)) =
∑

i

(

∑

a∈A
<zai>

k ln pa(xi, yi)− ln p(yi)
)

(4.8)
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M–Step:

T k = arg max
T

Q(T, T (k−1)) (4.9)

where,

<zai>
k=

(

<zai>
k−1 pa(xi, yi)

∑

b∈A <zbi>k−1 pb(xi, yi)

)

(4.10)

where, yi = y(i, T (k−1)). Note that <zai>k can be easily shown to be the conditional

probability, given the data set and the current estimate of the transformation parameters,

that the ith pixel belongs to class a, that is, P (mi = a|xi, yi).

Note that the maximum likelihood formulation overcomes some of the drawbacks

of the MAP formulation. In each iteration, only the transformation parameters need to

be estimated. The segmentation labels have been integrated out of the equation. However,

the formulation also leads to an estimate of a–posteriori distribution on the segmentation

labels.

4.4.2 Observations

For our purposes, the EM algorithm has some limitations as highlighted by two key obser-

vations. First, in the EM algorithm for the mixture model as formulated in equation (4.8),

the function Q(T, T (k−1)) is defined only if the component density functions pa(xi, yi), ∀a

are known (i.e. one should know whether they are Gaussian, Rayleigh, exponential etc.).

The component density functions need to be determined for each specific problem. For

multi-modal image registration it is difficult, at best, to know a–priori the joint den-

sity function between the pixel intensities in the two images. For example, in EBRT of
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prostate cancer, the joint density functions need to be determined from the projection

model, taking into account the physics of interaction of high energy X–rays with matter.

If the joint density functions are not known, then usually a simplified model is assumed.

In the next chapter we propose to estimate the unknown density functions from the given

data instead of using simplified models. However, such an estimated density function

cannot be directly used in the ML parameter estimation framework (see appendix C for

details). The second observation comes from Neal et al. [79] who provide a view of the

general EM algorithm as a coordinate descent algorithm where the coordinates axes are

the joint density functions on the missing information and the parameters to be esti-

mated. This insight into general EM as a coordinate descent algorithm is important (a

similar view of the EM algorithm for parameter estimation of mixture density models has

been given by Hathaway et al. [52]). In the EM framework, for the mixture density for-

mulation, the prior probabilities on each pixel, Pi(a), are required to be known. If these

probabilities are not known, then they can also be estimated within the EM framework,

assuming that the segmentation labels on each pixel are independently and identically

distributed. For our problem this is definitely not the case.

In the next chapter we propose to overcome the restrictions of the EM algorithm

by borrowing the idea of averaging over the estimated density function from mutual

information. Mutual information as a match measure has been first proposed and suc-

cessfully applied for multi–modality image registration by Viola et al. [117] and Collignon

et al. [28]. However, the mutual information match measure formulation in the litera-

ture assumes that all the pixels in the image are independent and identically distributed

(i.i.d.), an assumption not true in general. The minimax entropy algorithm described in

the next chapter, proposes an information theoretic framework which aims at combining
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the strengths of both the EM algorithm and the mutual information–based registration

approach, to simultaneously segment and register images.

4.5 Summary

This chapter first formulated the problem of estimating the segmentation of the portal

images and registration to the 3DCT image data in a maximum a–posteriori (MAP)

framework where both the segmentation and the registration parameters are being ex-

plicitly estimated. However, as the true segmentation of the portal image is unknown, we

do not want the estimated registration parameters to depend on a particular estimated

segmentation of the portal image. Therefore, the image registration problem is posed in a

maximum likelihood (ML) framework where only the transformation parameters are be-

ing explicitly estimated. In this framework, only a probability distribution on the portal

image pixel labels is being evaluated. The ML registration parameters are then proposed

to be estimated by using the EM algorithm. However, we note that the maximum like-

lihood estimates of the registration parameters require knowledge of the form of various

joint and marginal density functions in the mixture model, which is almost never avail-

able, especially for multi–modal image registration. Taking cues from the formulation

of the EM algorithm, the next chapter proposes our new minimax entropy registration

framework.



Chapter 5

Minimax Entropy Algorithm

5.1 Introduction

In the last chapter, automatic and iterative segmentation and registration of 2D por-

tal images to 3DCT data sets was first formulated as a maximum a–posteriori (MAP)

problem where both a segmentation of the portal image and registration parameters were

being explicitly evaluated. However, two drawbacks of such a strategy were pointed out,

which lead to a maximum likelihood (ML) formulation of the problem where only the

transformation parameters, T, were explicitly estimated. To overcome the restrictions of

the ML formulation, we propose the minimax entropy algorithm, developed in this chap-

ter, for the estimation of both the transformation parameters,T, and the segmentation

of the portal image M.

5.2 Minimax Entropy Formulation

The proposed minimax algorithm for solving the basic problem posed by equation (4.6),

in a computational form similar to EM, has two steps, the max step and the min step,

83
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which are evaluated iteratively to determine the registration parameters and the proba-

bility distribution of the portal image segmentation. This framework builds on the EM

formulation of the ML estimates given by equations (4.8) and (4.10).

5.2.1 Formulating the MAX step

The max step estimates the probability distribution function P (M). As mentioned in

the previous chapter, the E–step, equation (4.10), in the EM algorithm evaluates the

conditional probability distribution function, P (M |X,Y ). The principle of maximum

entropy [58, 59], is invoked in the max step to estimate the distribution P (M) under the

given constraints.

Thus, given P (M |X,Y ), under the constraint ∑M P (M) = 1, the max step es-

timates P (M) which is closest to P (M |X,Y ) and has maximum entropy under given

constraints. Thus, to estimate P (M), we maximize the function h′, as a function of Q:

h′(P (M)) = −
∑

P (M) lnP (M) +Q(P (M), P (M |X,Y ))

Thus, following the formulation of Bevensee [16] and example 3.3, section 3.6.4

which determines the function Q, the max step can be concisely written as a follows:

Max Step:

P k(M) = arg max
P (M)

[

−
∑

M

P (M) lnP (M) +
∑

M

P (M) lnP (M |X,Y (T (k−1)))
]

(5.1)

under the constraint
∑

M P (M =M) = 1, whereM is the random variable whose domain

is the set of possible segmentations of the portal image, where each pixel can be labeled

from the set of labels A. We assume that pixel labels are statistically independent, i.e.,
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MAX Step:
  (a) Estimate Segmentation of Portal From
      Posteriori Estimate (equation (5.1))
  (b) Modified Estimate with Annealing
      (equation (5.2))

MIN Step:
 (a) Use Segmentation Densities to Estimate Joint
     Densities (equation (5.4))
 (b) Segmentation Densities Form Weights on 
     Information Measures (equations (5.3),(5.5))
 (c) Minimize Joint Conditional Entropy to
     Estimate T (equation (5.3))

Figure 5.1: The Minimax Entropy Algorithm

P (M = M) =
∏

i P (mi = a) =
∏

i Pi(a). It can be seen that the max step above is

simply minimizing the Kullback–Leibler (KL) divergence between the two distributions.

As formulated above, the max–step simply states that the maximum entropy estimate

of the probability P (M = M) is the posterior probability on the segmentation of the

portal image, i.e P (M |X,Y (T (k−1))), given the current estimate of the transformation

parameters, T (k−1), the portal image, X, and the DRR, Y [16]. This simple formulation

of the estimated probability of a segmentation of the portal image allows us to systemat-

ically put constraints on the segmentation probability function, as we show below. The

analytical solution to equation (5.1) estimates the probability of a segmentation label at
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the ith pixel to be:

P ki (a) =

(

P k−1i (a) pk−1a (xi, yi)
∑

b∈A P
k−1
i (b) pk−1b (xi, yi)

)

where the component density functions, pk−1a (xi, yi), are estimated in the next step.

Note that the P ki (a)’s, in the kth iteration, form the weighing terms in the Parzen

window estimates, in equation (5.5) below, of the component density functions, pa(x, y).

The component density functions, in turn, are used to estimate the joint entropies,

Ha(x, y) = −
∫ ∫

pa(x, y) ln pa(x, y) dx dy, which are minimized in the min step to

estimate the registration parameters.

5.2.1.1 Modified Max Step

In order to better incorporate subjective information into the problem, an annealing

schedule [62] is imposed on the estimated probability of a segmentation of the portal

image pixel. The modified max step, equation (5.1), can thus be written as:

Modified Max Step:

P k(M) = arg max
P (M)

[

− 1
β

∑

M

P (M) lnP (M) +
∑

M

P (M) lnP (M |X,Y (T (k−1)))
]

(5.2)

under the constraint
∑

M P (M = M) = 1, where β = 1
t , and t is the temperature which

determines the annealing schedule. The annealing schedule, as formulated above, can

be understood in terms of estimation of the prior probability of the segmentation of the

portal image (prior information should reflect our state of knowledge about the random

variables [60]). Initially, for small values of β, irrespective of the conditional probability

estimate, the above formulation incorporates our knowledge of total ignorance about the
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pixel labels. This is essential as our initial estimate of the transformation parameters

is expected to be poor and thus will lead to a poor estimate of the conditional density

and the component density functions estimated from the given data set. However, as our

confidence in the transformation parameters improves, the estimated component density

functions will be close to true densities. Now the pixels can be classified into two classes

using the minimum–error–rate classification, [37] (which is actually the Bayes decision

rule for the zero–one loss function).

The connection to the Bayes decision rule for the zero–one loss function can

be easily seen as follows. Using the annealing schedule formulation of the problem,

equation (5.2), the probability that the label of the ith pixel is a, is given as

P ki (a) =

[

P k−1i (a|xi, yi)
]β

∑

b∈A
[

P k−1i (b|xi, yi)
]β

=

[

P k−1i (a) pk−1a (xi, yi)
]β

∑

b∈A
[

P k−1i (b) pk−1b (xi, yi)
]β

(5.3)

According to the Bayes decision rule, to minimize the conditional risk using the zero–one

loss function, the ith pixel should be classified as belonging to class a if the posterior

probability for this class is greater that the posterior probability for the class b, that is,

Decide label a if Pi(a|xi, yi) > Pi(b|xi, yi)

which is equivalent to saying

Assign Pi(a) = 1 if Pi(a|xi, yi) > Pi(b|xi, yi)

If the two class posterior probabilities are the same, a pixel can be labeled as either class

without increasing the conditional risk. Note that using an annealing schedule on the
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segmentation probability density function, as proposed above, leads to such a classification

of the pixel labels for large values of β.

Thus, the annealing schedule, as proposed above by using a simple term 1
β , allows

us to incorporate, analytically and systematically, the above discussed subjective infor-

mation into the estimation of the probability of a segmentation of a portal image. Note

also that the current estimate of the posterior probability is used in the max step thus

to update our knowledge on the segmentation of the portal image. This updated knowl-

edge of the portal image segmentation is then used as the prior information, in the next

max step, for the estimation of the posterior probability. In summary, we are updating

our information on the segmentation of the portal image using the only objective infor-

mation we have, P (M |X,Y (T (k−1))). The subjective information about the goodness of

this posterior probability is incorporated into the maximum entropy framework by using

the 1
β term. Given this subjective and objective information about the segmentation of

the portal image, the maximum entropy estimate of the probability is the only unbiased

estimate of our state of knowledge, [60], about the segmentation of the portal image.

The estimated probability, P (M), is the probability distribution for the ensemble

of the portal images obtained from the patient, in a particular position. The reason why

we can estimate such a distribution from a single portal image, rather than requiring a

whole ensemble of images, is because we assume that the intensities of the pixels belonging

to the class are distributed according to the same probability density function, that is, we

are assuming a stationary random field. In other words, we assume that the intensities of

the pixels of a class in a portal image are representative of the intensities at a particular

pixel in the ensemble.
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5.2.2 Formulating the MIN step

The EM algorithm requires knowledge of the form of the component density functions

pa(xi, yi). To overcome this restriction, we propose estimating the component densities,

pa(xi, yi), from the given data set at the current estimated transformation parameters

(Note that we utilize the Parzen window method [37] for non–parametric density func-

tion). However, these estimated joint density functions cannot be used in the EM algo-

rithm (see appendix C.1 for a discussion). Instead, we propose to estimate pa(xi, yi) from

the given data, at the current estimate of the transformation parameters and then eval-

uate the expected value of Qi(T, T
(k−1)) with respect to the density function, p(xi, yi).

An upper bound on the expected value, negative joint conditional entropy, −H(M,X|Y ),

is then maximized (i.e. H(M,X|Y ) is minimized) to estimate T (see appendix C.2 for

details).

Thus, the min step is developed to be:

Min Step:

T k = argmin
T
H(M,X|Y )

= argmin
T





∑

a∈A





1

N2

N2
∑

i=1

P ki (a)



Ha(x, y)−H(y)


 (5.4)

The component density function for class a, pa(x, y), is estimated as the weighted sum

of Gaussian kernels, Gψ(x) = (2π)
−n
2 |ψ|−1

2 exp(−12xTψ−1x), using the Parzen window

method as follows:

pka(x, y) ≈
1

∑

(xi,yi)∈I P
k
i (a)

∑

(xi,yi)∈I
P ki (a) GΨa(x− xi, y − yi) (5.5)
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where, P ki (a) = P k(mi = a) is the probability that the ith pixel in the portal image

belongs to class a, estimated in the max step, equation (5.1), Ψa is a 2–by–2 covariance

matrix, which is assumed to be diagonal (Note that this assumption does not means

that the random variables x and y are independent). I, J denote sets of sizes NI and

NJ , respectively, of pixels sampled at random from the portal image, X, and the DRR,

Y . The joint entropy functions, which are the expected value of the log of the joint

probability density functions, are approximated as the statistical expectations using the

Parzen window density estimates as follows:

Ha(x, y) = −
∫ ∫

pa(x, y) ln pa(x, y) dx dy

≈
(

−1
∑

(xj ,yj)∈J P
k
j (a)

)

∑

(xj ,yj)∈J
P kj (a) ln





1
∑

(xi,yi)∈I P
k
i (a)

∑

(xi,yi)∈I
P ki (a) GΨa(xj − xi, yj − yi)



 (5.6)

Similarly, the entropy of the DRR, H(y), is estimated as:

H(y) = −
∫

p(y) ln p(y) dy

≈
(−1
NJ

)

∑

yj∈J
ln





1

NI

∑

yi∈I
GΨ(yj − yi)





It is easy to see the relation between the min step and the mutual information (MI) mea-

sure which is currently popular in the medical image analysis community. We have found

MI to be more robust than other interesting measures (e.g. correlation. See appendix A

where we present the relation between the two measures and show that the MI is more

sensitive to mis–registration than correlation). While MI assumes that pixels are i.i.d., we
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circumvent this assumption by using mixture densities. Studholme et al. [104], register

images with mutual information as a match measure while incorporating segmentation

information on one of the images. However, the image was pre–hand segmented and thus

remains fixed throughout the registration. In our proposed algorithm, the portal image

segmentation is estimated simultaneously and iteratively with the transformation param-

eter estimations. It should be noted that in our registration framework, the segmentation

information is being utilized implicitly in the min step. In the initial iterations of the

algorithm, when there is no information on the segmentation of the portal images, the al-

gorithm effectively seeks to maximize the mutual information on the whole image. Later,

when there is an estimate on the segmentation, the algorithm is effectively increasing the

mutual information in the different segmented regions of the image.

5.2.3 Stochastic Gradient Descent Based Optimization

We follow the optimization strategy of stochastic gradient descent [117], which is described

below and adapted for the inclusion of segmentation information. From equation (5.4),

let the cost function be denoted by F (T ), that is,

F (T ) =
∑

a∈A





1

N2

N2
∑

i=1

P ki (a)



Ha(x, y)−H(y) (5.7)

which is minimized to estimate the transformation parameters, given the current estimates

of the segmentation of the portal image. The transformation parameters are updated

according to the following rule, until a pre-specified number of iterations.

I ← Set of pixels, of size NI , drawn randomly from X,Y
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J ← Set of pixels, of size NJ , drawn randomly from X,Y

T ← T + λ
d

dT
F (T ) (5.8)

where λ is called the learning factor. The transformation parameters are updated ac-

cording to the equation (5.8) until convergence. Note again that the randomly sampled

set of pixels, I and J, are used to estimate, both, the Parzen window estimates of the

component density functions, equation (5.5), and the joint entropy terms, equation (5.6).

The parameter λ needs to be set empirically. In our simulations, λ was set to 0.02 (also

see appendix C.6). The parameter update strategy, equation (5.8), is analogous to the

gradient descent optimization strategy, where the stochastic nature of the updates arises

from the fact that the cost function, F (T ), is only a stochastic approximation of the true

energy function. The stochastic nature of F (T ) is due to the fact that a small sample

of pixels, sampled at random from the images, is used to estimate the various density

functions. In the gradient optimization strategy, where the gradient needs to be evaluated

often, this strategy leads to considerable savings in computation. However, according to

stochastic approximation theory [95, 53], the stochastic gradient can be used instead of

true gradients only when the following three conditions are satisfied:

• The gradient estimate is unbiased. That is, the average of the estimated gradient

should be the true gradient.

• The parameter update rate asymptotically converges to zero. This condition is

required for the algorithm to converge to a minimum.

• The error surface is quadratic in the parameters. If the surface is smooth and

non–linear, then there is no guarantee that the algorithm will converge to a global
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minimum.

Appendix C.4 develops derivatives of various terms in equation (5.8). It is expected that

the stochastic nature of the parameter update may help the algorithm escape a local

optimum and converge to the global optimum.

5.2.4 Estimation of Covariance Matrix

The covariance matrices of the Gaussian kernels, in the Parzen window estimates of the

joint density functions, are another set of parameters to be estimated. These covariance

matrices are assumed to be diagonal, that is,

Ψa = DIAG(σ
2
axx, σ

2
ayy)

However, note that this assumption does not mean that the marginal density functions of

the pixel intensities of the two images are independent. In the Parzen window estimates

of the probability density functions, the same Gaussian kernel is used for all the sampled

pixel intensities. Thus, only two parameters need to be estimated for each joint density.

The covariance parameters are estimated using a strategy similar in form to the

estimation of the transformation parameters (as in [117]), by minimizing the empirical

entropy using a stochastic gradient descent method.

I ← Set of pixels, of size NI , drawn randomly from X,Y

J ← Set of pixels, of size NJ , drawn randomly from X,Y

σaxx ← σaxx + λ
d

dσaxx
Ha(x, y) (5.9)
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Appendix D.6 develops the derivative in equation (5.9). σayy and σy are estimated like-

wise.

5.3 Coordinate Descent Interpretation

The minimax entropy algorithm above is developed within a probabilistic framework.

However, within the optimization framework the algorithm can be viewed as a coordinate

descent approach which seeks to optimize a cost function by iterative estimation of the

parameters along different coordinates. Let

FH(P̃ , T ) = −H(M,X|Y ) +H(M)

=

∫ ∫

dX dY
∑

M

p(M,X, Y ) ln p(M,X|Y )−
∑

M

P̃ (M) ln P̃ (M)

=

∫ ∫

dX dY
∑

M

p(X,Y |M) P̃ (M) ln p(M,X|Y )−
∑

M

P̃ (M) ln P̃ (M)

Optimization of the energy function FH(P̃ , T ) utilizing the coordinate descent approach

leads to the following two steps (see appendix C.5 for details):

Step 1:

P̃ k(M) = argmax
P̃

FH(P̃ , T
k−1) (5.10)

under the constraint
∑

M P̃ k(M) = 1.

Step 2:

T k = argmax
T

FH(P̃
k, T ) (5.11)
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Note that in step 1 the energy function FH(P̃ , T ) is being optimized to estimate P̃ (M),

utilizing the transformation parameters T estimated from previous iteration, under the

constraint
∑

M P̃ (M) = 1, is equivalent to the max step. Thus, the estimation of the

density function P̃ (M), a variational calculus problem within the optimization frame-

work, is interpreted as the maximum entropy estimation of a density function within the

probabilistic framework. Furthermore, step 2, where we optimize FH(P̃ , T ) to estimate

T, utilizing current estimates of P̃ (M), is equivalent to the min step as the marginal

entropy term H(M) and is independent of the transformation parameters T.

5.4 Utilizing Dual Portal Images

The algorithm described above utilizes only one portal image, typically the anterior–

posterior (AP) portal image, to estimate the pose of 3DCT data set. It is expected that

utilizing another portal image, typically the left–lateral (LL) portal image acquired in

the orthogonal direction during the treatment, will greatly enhance the accuracy of the

estimated pose as while utilizing two orthogonal portal images only one rotation angle

will be out–of–plane rotation angle to be estimated. Thus, we extend the algorithm to

utilize two portal images, AP and LL, for the estimation of the pose. Both, the min step

and the max step, are modified to incorporate the information. While estimating the seg-

mentations of the two portal images, in the max step, we assume that the segmentations

of the two portal images are statistically independent. In the max step for the 2–portal

case, P k(MAP ) and P
k(MLL) are estimated by repeating equation (5.2) for the two portal

images separately. Note that though there are two portal images, whose segmentation is

being estimated separately, there is only one set of transformation parameters, T , which is

to be estimated from both the portal images. In the initial formulation of the algorithm,
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we estimate the optimal pose that is a compromise between the best map that matches

each portal image. The initial formulation of the max step and min step utilizing dual

portal images is now written as:

Max Step:

P k(MAP ) = arg max
P (MAP )



−
∑

MAP

P (MAP ) lnP (MAP ) +
∑

MAP

P (MAP ) lnP (MAP |XAP , Y1(T
(k−1)))





(5.12)

P k(MLL) = arg max
P (MLL)



−
∑

MLL

P (MLL) lnP (MLL) +
∑

MLL

P (MLL) lnP (MLL|XLL, Y2(T
(k−1)))





(5.13)

Min Step:

T̂ k = argmin
T
[H(MAP , XAP |Y1) +H(MLL, XLL|Y2)] (5.14)

where XAP , XLL denote the AP and the LL portal image respectively, and Y1, Y2 denote

the DRRs obtained from the 3DCT data set, at the current estimate of the parameters,

in the AP and LL directions.

5.5 Extension to 2D/2D Image Registration

The proposed algorithm has been extended to register a 2D portal image to a 2D simulator

image (see earlier discussion of simulator images). The extension is straightforward, with

the random variableY now denoting the transformed simulator image, rigidly transformed

using current estimates of the transformation parameters. Note that while registering a
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(a) (b)

Figure 5.2: (a) Volume rendered 3DCT phantom for which the simulated portal images

were calculated. (b) Real portal image of the phantom obtained by taking the high energy

X–ray of the phantom in the treatment room.

set of 2D images, we are assuming a rigid transformation between the set of images and

hence the transformation parameters consist of only two translations and a rotation.

5.6 Results

This section evaluates the accuracy and robustness of the proposed minimax algorithm

using both real patient and simulated data. To obtain the simulated data, a polymethyl

methacrylate (PMMA) pelvic bone phantom was scanned to provide the 3DCT dataset.

The phantom consists of real human pelvic bone encased in PMMA, with a density close

to that of soft–tissue. The phantom was then moved to the treatment room to obtain

real portal images at the treatment energy X–ray level (6 MV). The simulated portal

images are obtained in the following fashion. First, the 3DCT voxel values are mapped

from diagnostic energy values to the values at the treatment energy X–rays using the

attenuation coefficient tables [56]. Second, the 3DCT data set is transformed by known
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Figure 5.3: The set-up of the radiation source, 3DCT data and the simulated anterior–

posterior portal image.

X−Axis
Z−Axis

Y−Axis

Lateral Portal

AP Portal

Phantom

Figure 5.4: The set-up of the radiation source, 3DCT data and the simulated anterior–

posterior (AP) and left lateral (LL) portal images.
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transformation parameters. Third, the digitally reconstructed radiographs (DRRs) are

rendered from the CT data set, both in the anterior–posterior (AP) and the left–lateral

(LL) directions. Two different sets of simulated portal images are then obtained from

the resulting DRRs. To obtain the first set of simulated portal images, varying amounts

of i.i.d. Gaussian noise are added to the DRRs. To obtain the second set of simulated

portal images, the DRRs are blurred using blurring kernels of increasing width, which

simulates the finite size of the radiation source, and low contrast and low sharpness of

the real portal images. Next, the 3DCT dataset is set to its untransformed position

and the algorithm is executed to estimate the transformation parameters. Note again

that this is a 2D/3D registration problem as the 3DCT data set is being registered to

the 2D portal images for the estimation of the registration parameters. Since the true

registration parameters are known for the simulated portal images, these datasets are

used to study the accuracy and robustness of the algorithm under increasing noise and

blur in the images. The perspective parameters are assumed to be known.

Figure 5.2 (a) shows the surface rendering of the pelvic bone of the phantom

dataset. Figure 5.2 (b) shows the real portal image obtained by imaging the phantom

with X–rays at treatment energy level (6 MeV). The real portal image was contrast

enhanced by histogram equalization.

Patient setup verification, in many radiotherapy departments, is still carried out

by aligning the 2D simulator images to the 2D portal images, also referred to as two

dimensional analysis of the patient setup as such an analysis leads to the estimation of the

in–plane transformation parameters only. Thus, we have have modified our registration

algorithm to register 2D simulator images to 2D portal images. First we present some

results registering 2D simulated portal images to 2D simulated simulator images. Next
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tx ty θXY

(pix) (pix) (deg)

True 10.0 5.0 5.0

Estd. 12.11 4.735 5.461

(a) (b) (c)

Figure 5.5: (a) Simulator image. (b) Simulated portal image. The simulator image

was rotated and translated and then blurred using a low pass filter of width 11. (c)

Segmentation of the portal image estimated by the proposed algorithm.

we show the performance of the algorithm registering 2D anterior–posterior (AP) portal

image to 3DCT. Figure 5.3 shows the setup for registering single AP portal image to

3DCT data sets. As the results below suggest, the proposed algorithm is not robust to

the estimation of the out–of–plane transformation parameters when using only a single

AP portal image. Therefore, the proposed algorithm has been extended to utilize dual

portal images, by using two forms of equation (5.1) for each portal segmentation and

a summed version of equation (5.4) for both portal images. Note that the two portal

images can be obtained from two different views which are not necessarily orthogonal.

Figure 5.4 shows the setup of the pelvic phantom and the AP and LL portal images in

three–dimensional space. As is clear from the figure, the in–plane translations for the AP
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Estimated Parameters

tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

2.56 -6.69 2.34 2.51 -1.24 0.73

(a) (b)

Figure 5.6: (a) Portal image with hand–drawn contours. (b) DRR with mapped contours.

portal image consist of translations along the X and Y axes and the in–plane rotation is

the rotation about the Z–axis. For the lateral portal image, the in–plane translations are

the translations of the 3DCT dataset along the Y and Z axis and the in–plane rotation

is the rotation about the X–axis. Note that by using two portal images, now only the

rotation about the Y–axis remains as the out–of–plane rotation for both the images.

Three dimensional analysis of the patient setup was performed using both a single

AP portal image and dual AP and LL portal images. 3D analysis leads to the determina-

tion of 3 translations and 3 rotations which correctly align the patient to the treatment

beam in the treatment room.



102

(a) (b) (c)

Figure 5.7: Estimated segmentation results of the true portal image. (a) Results of using

proposed minimax entropy algorithm. (b) Simple threshold. (c) Clustering algorithm in

commercial package (MEDx [101]) for comparison.

5.6.1 Registration of 2D/2D Images

As noted above, for two dimensional analysis of the patient, the 2D simulator image is

registered to the 2D portal image. A 2D simulator image, shown in figure 5.5 (a), is

obtained by projecting the diagnostic energy 3DCT data. The simulated portal image in

figure 5.5 (b) is obtained by first transforming the simulator image and then blurring it

with a uniform blurring kernel of width 11. The first row of the table in figure 5.5 shows

the true transformation parameters, where tx and ty denote, in pixels, the translations

along the X and Y axis respectively. θXY , in degrees, denotes the in–plane rotation. The

second row of the table shows the parameters as estimated by the proposed algorithm.

Note that although the portal image was blurred by 11 pixels, the algorithm was able to

estimate the X–translation within 2 pixels and Y–translation within 0.25 pixels. The ro-

tation angle was also estimated very accurately. The segmentation of the portal image as

estimated by the proposed algorithm is shown in the figure 5.5(c), showing an intuitively

plausible result.



103

5.6.2 2D/3D Registration

Three dimensional analysis of the patient setup is done using both single (AP) and dual

(AP and LL) portal images. We first present results using the real portal image and then

using the simulated portal images. The simulated portal images are obtained as explained

above. The proposed registration algorithm estimates six transformation parameters,

where the three translations, in voxels, are denoted as tx, ty and tz (along the x–axis,

y–axis and z–axis respectively) and the three rotations, in degrees, are denoted as θY Z ,

θXZ and θXY (about the x–axis, y–axis and z–axis respectively).

5.6.2.1 3D Analysis Using Single Portal Image

In this subsection, the results of registering a real AP portal image of the pelvic phantom

to its 3DCT data set are presented. To study the effect of noise on the accuracy of the

estimated parameters, we also register simulated AP portal images, with increasing noise,

to the 3DCT dataset.

Figure 5.6 (a) shows the real portal image which is registered to the 3DCT dataset.

The parameters estimated by the proposed algorithm, to bring the two datasets into

alignment, are shown in the table in figure 5.6. Figure 5.6 (b) shows the DRR obtained

from the 3DCT dataset at the parameters estimated by the minimax entropy algorithm.

To verify the goodness of the estimated parameters, contours are hand drawn on the portal

image, figure 5.6 (a), by an expert matching the key features (pelvic crest, femur outlines)

closely. These contours are then mapped onto the DRR, figure 5.6 (b), undeformed.

Note that the contours match closely to the corresponding features in the DRR, verifying

the accuracy of the estimated parameters for this dataset. However, a slight mismatch

indicates a rotation about the X–axis.
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Figure 5.8: (a) Simulated portal image with Gaussian noise of std (σ) 10. (b) σ = 30.

(c) & (d) Error in estimated parameters with increasing noise.

Different segmentations of the portal image are shown in the figure 5.7. White

pixels denote estimates of bone and the black pixels denote background. Figure 5.7(a)

shows the segmentation estimated by the minimax entropy algorithm, where the seg-

mentation labels are being estimated using the joint probability density function. Gray

values denote the pixels whose label could not be determined. The estimated segmen-

tation is compared to two other segmentations, a simple threshold based segmentation,

figure 5.7(b), and segmentation obtained by a clustering algorithm in commercial pro-

gram (MEDx [101]), shown in figure 5.7 (c). In this clustering algorithm, the image is
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 15.0 5.0 0.0 0.0 0.0 10.0

Estd. 15.07 4.95 0.045 0.20 0.08 9.95

(a) (b) (c) (d)

Figure 5.9: (a) Simulated AP portal image. (b) Simulated left–lateral portal image. (c)

Segmentation of the AP portal image estimated by the proposed algorithm. (d) Estimated

segmentation of the LL portal image. Note again that in the segmentation images, white

denotes the bone, black denotes the background and gray denotes the pixels mis–classified

by the algorithm. The second row of the table shows the parameters estimated by the

minimax entropy algorithm.

segmented into three classes based on the nearness of the gray values to the user specified

values. In this classification, light gray denotes the bone and the black pixels denote the

background.

As noted earlier, to study the robustness of the algorithm against noise, simulated

portal images with increasing i.i.d Gaussian noise are registered to the 3DCT dataset.

Example simulated portal images with different amounts of noise are shown in the fig-

ures 5.8 (a) and (b). The image in figure 5.8 (a) is obtained by first rotating the 3DCT

dataset by 5o along Z–axis and then adding Gaussian noise of standard deviation (σ)
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10.0 to the rendered DRR. Gaussian noise of standard deviation (σ) 30.0 is added to

obtain the image in figure 5.8 (b). Figures 5.8 (c) and (d) show the graphs of estimated

parameters with increasing noise in the simulated portal image. Simulated portal im-

ages for the graph labeled tx are obtained from the 3DCT in the following fashion. The

3DCT dataset is translated along the X–axis by 5 voxels and then a DRR is rendered.

Now, varying amounts of Gaussian noise are added to the DRR. The 3DCT data set

is then initialized to its untransformed position and the algorithm is run to estimate

the transformation parameters. The difference in the estimated parameter and the true

parameters is plotted along the Y–coordinate in the figure 5.8 (c), with noise standard

deviation along the X–coordinate. From figure 5.8 (d) it appears that the error in the

estimated parameter θXZ saturates for i.i.d. Gaussian noise of standard deviation 30.0

or more in the simulated portal images. However, no such interpretation can be drawn

from the figure. The true rotation angle to be estimated is only 5o and for noise more

than standard deviation 30.0 the algorithm is completely unable to estimate the rotation

angle and remains stuck in its initial position. The results can be summarized as follows.

The minimax entropy algorithm is quite robust against noise for in–plane translations of

the 3DCT dataset, that is, translation along the x–axis and y–axis. However, for both

in–plane and out–of–plane rotations, the estimation of the parameters becomes poor with

increasing noise. This study suggests that the algorithm is robust to noise for in–plane

transformations only. Thus, to increase the accuracy and robustness of the algorithm for

estimating out–of–plane transformation parameters, we have extended our algorithm to

use dual portal images, obtained from two different views.
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 15.0 5.0 0.0 0.0 0.0 10.0

Estd. 15.62 5.19 -0.06 0.43 0.21 10.85

(a) (b) (c) (d)

Figure 5.10: (a) Simulated AP portal image. (b) Simulated left–lateral portal image. (c)

Estimated segmentation of the AP portal image. (d) Segmentation of the LL portal image

estimated by the proposed algorithm. Estimated and the true parameters are shown in

the table.

5.6.2.2 3D Analysis Using Dual Portal Images

Based on the conclusions from the previous section, the algorithm was further developed

(as described in section 5.4) to utilize dual portal images simultaneously to estimate the

transformation parameters. In this section, dual simulated portal images in the AP and

LL directions are used to study the accuracy and robustness of the algorithm.

Figure 5.9 shows the simulated AP and LL portal images registered to the 3DCT

dataset. The first row of the table in the figure shows the true registration parameters

and the second row shows the parameters estimated by the algorithm. Note that the

estimated parameters are within half a voxel of the true parameters. The rotations have

also been accurately estimated. The estimated segmentations of the portal images are
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 15.0 5.0 0.0 0.0 0.0 10.0

Estd. 15.36 5.23 -0.02 -0.06 0.11 10.03

(a) (b) (c) (d)

Figure 5.11: Simulated portal images with noise. (a) AP with std 30.0 (b) Left–lateral

with std 30.0 Estimated segmentation of (c) AP portal image. (d) LL portal image. The

table show the true and the parameters estimated by the algorithm.

shown in figure 5.9 (c), (d).

The simulated portal images are blurred by using a uniform blurring kernel of

width 11 to obtain the portal images in figure 5.10 (a), (b). Figure 5.10 (c), (d) show the

corresponding segmentation of the portal images estimated by the algorithm. Again, the

table in the figure shows the true and the estimated parameters. Note that the estimated

translations are within 1 voxel of the true values, even in the presence of a blur of 11

pixels. The estimates of the rotation parameters are within 0.5o of the true values.

Figure 5.11 (a), (b) shows the simulated portal images with Gaussian noise of

standard deviation = 30.0. Note again the accuracy of the parameters estimated by the

algorithm. Figure 5.11 (c), (d) shows the segmentation of the portal images as estimated

by the algorithm.
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(a) Simulated AP portal (b) Simulated lateral portal
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Figure 5.12: (a), (b) Example simulated portal images with Gaussian noise of 20.0. (c)

The graphs show the error in estimated versus the true rotation angles. (d) These are

the graphs of error in estimated translation versus the true translations. (e) Error in

estimated angles with increasing noise. (f) Error in estimated translation with increasing

noise.
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Figure 5.12 (c) and (d) shows the graphs of error in the estimated parameters

when the algorithm is initialized with varying amounts of rotational and translational

setup variations, in the presence of Gaussian noise of standard deviation (σ = 20.0) in

the simulated portal images. These graphs are obtained in the following fashion. First,

the 3DCT dataset is transformed by a known amount and, AP and LL DRRs are obtained.

Then i.i.d. Gaussian noise of standard deviation 20.0 is added to the DRRs to obtain

the simulated portal images. Example portal images used for these graphs are shown in

figures 5.12 (a) and (b). Then, for the graph labeled θY Z , only the parameter θY Z , which

denotes rotation about the X–axis, is varied to obtain the DRRs. All other parameters are

kept fixed at the true values. The 3DCT is then reset to its untransformed position and

the algorithm is run to estimate the transformation parameters. Note that in this step

all parameters are allowed to vary and are being estimated. The error in the estimated

parameter with respect to the true parameters is then plotted. The graphs show that,

for this dataset, the algorithm could estimate the rotation angles up to 50o accurately.

These figures also show that either the algorithm is quite accurate in estimating the

parameters or it breaks down completely, that is, the estimated parameters are completely

different from the true parameters. This shows that the algorithm gets trapped into a

local minimum if the global minimum is very far from the initial starting position. For

large translations, very little pelvic structure remains in the image, making it easier for

the algorithm to get stuck into a local minimum. Graphs in figure 5.12 (e) and (f) show

the performance of the algorithm under increasing noise. The AP and LL portal images,

for example for the graph labeled θXY , are obtained by first rotating the 3DCT data by

15o about the Z–axis and then rendering the DRRs both in the AP and the LL directions.

Varying amounts of noise are then added to the DRRs to obtain the simulated portal
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images. The 3DCT data set is then initialized to its untransformed position and the

algorithm is run to estimate the transformation parameters. The graph shows the error

in estimated transformation parameters for various amounts of noise. Similarly, for the

graphs labeled θY Z , θXZ , tx, ty, tz, the 3DCT data set was transformed by 30
o, 25o, 20

voxels, 20 voxels and 15 voxels respectively to obtain the DRRs in the AP and the LL

directions.

5.6.3 Performance with Femur Edited Out

The registration of the 3DCT dataset to the portal images, in the proposed minimax

entropy registration framework, is guided primarily by the bony anatomy visible in the

images. Some of the prominent bony features visible in the portal images are due to the

femurs. As the femurs could move with respect to the pelvic cage between treatment

planning and the delivery of the treatment, it may not be a good idea to include them in

the registration. This section evaluates the performance of the minimax entropy frame-

work, and compares it to the performance of the Gilhuijs’ [44] ridge–based registration

algorithm, using image dataset where the femurs have been edited out manually from the

3DCT dataset only. However, the femurs are visible in the simulated portal images. The

simulated AP and LL portal images are obtained at known transformation parameters

with Gaussian noise of σ = 10.0 and are registered to only the 3DCT image data in the

pelvic cage. The results for a range of different translations and rotations are shown in

the figures 5.13 (a) and (b). Comparing these results to the femur–included registra-

tion performed in figures 5.12 (c) and (d), indicate that the algorithm performs almost

equally well with or without femurs. Figures 5.13 (c) and (d) show the performance of the

Gilhuijs’ ridge–based registration algorithm on the same image dataset. However, this

approach required significant manual editing of the ridge–enhanced images to remove the
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Figure 5.13: All the results were performed using simulated AP and LL portal images

with noise level set to σ = 10.0. (a) and (b) show recovery of varying translation and

rotational setup error when using the 3DCT–to–Dual Portal minimax entropy registration

framework with femurs edited out from the 3DCT image. (c) and (d) show the same

result when the algorithm designed by Gilhuijs [44] is run on the same data. However,

the Gilhuijs algorithm required human interaction. Note the smaller range of zero error

for each parameter for the Gilhuijs’ [44] algorithm.

spurious ridges. Note that the Gilhuijs’ ridge–based algorithm has a smaller range of

close–to–zero error for each parameters.

5.6.4 Performance on Real Data

Figure 5.14 shows the results of running the proposed algorithm on real patient data.

Figures 5.14 (a) and (b) show histogram equalized AP and LL portal images, respec-

tively. The DRRs projected through the 3DCT data in its original pose are shown in
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(a) (b) (c) (d)

(g) (h) (e) (f)

Figure 5.14: Recovery of setup variation using actual patient data and an early version

of the registration algorithm proposed in sec. D.1. (a,b) Portal images, (c,d) DRR’s

of 3DCT in original pose, (e,f) DRR’s in corrected pose, (g,h) implicit segmentation of

portals. See more detailed explanation in the text.

the figures 5.14 (c) and (d). Running the algorithm estimates a new pose of the 3DCT

dataset, which differs from the original pose by θXY = −3.2o, θY Z = 2.93o, θXZ = −1.93o,

tx = 4.47 voxels, ty = −27.5 voxels and tx = −14.54 voxels. The DRR projections in the

new pose are shown in figures 5.14 (e) and (f). Segmentations of the AP and LL portal

images, estimated by the algorithm, are shown in figures 5.14 (g) and (h), respectively.

Note that the segmentations of the portal images are being used implicitly by the algo-

rithm. Because of the poor quality of these digitized portal film images, the segmentation

step was initialized manually in several regions where the background and bone were hard



114

to distinguish (We were able to run algorithm completely automatedly after the X–ray

films were digitized using a laser scanner). To access the accuracy of the estimated pose

of the 3DCT data set, contours are hand drawn on the portal images, matching visible

features. These contours are then mapped onto the DRRs, in figures 5.14 (c), (d), (e), (f)

undeformed (note that the contours are used only to visually assess the goodness of the

estimated pose). Note that the contours match closely to the features in DRRs obtained

at the pose estimated by the algorithm.

5.7 Summary

This chapter presents the proposed information theoretic framework in which segmenta-

tion and registration are carried out simultaneously and iteratively, with segmentation

results helping in the registration and vice–versa. Feature–based registration methods

proposed in the literature carry out portal image segmentation as a pre–processing step

in the registration process. Our approach of simultaneously segmenting and registering

the images, using a unified framework, leads to an accurate and a robust algorithm.

The mutual information based registration methods overcome the assumption of

a linear relationship between the pixel intensities of the images to be registered, an under-

lying assumption in the normalized cross–correlation match method. In these methods,

the relationship between the pixel intensities is estimated from the given data itself and

can thus register images from different modalities. At an estimated set of transforma-

tion parameters, a joint density between the images to be registered can be estimated

from the given data. The mutual information assigns a number to each such estimated

density. The transformation parameters corresponding to the density having the largest

mutual information are chosen as the parameters estimated by the algorithm. The EM
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algorithm provides an iterative framework to estimate the parameters of a distribution,

in the presence of missing data. However, the EM algorithm requires that the parametric

form of the distribution be known.

The proposed minimax entropy algorithm overcomes this restriction of the EM

algorithm, by borrowing the idea from the mutual information method of estimating the

joint distribution from the given data. This allows us to invoke other constraints on the

distribution systematically, which we use to impose an annealing schedule. In the follow-

ing chapters, we will impose regularization constraints on the estimated segmentation of

the portal images within the same framework.

This chapter studied the algorithm’s robustness against noise by increasingly

adding Gaussian i.i.d. noise to the simulated portal image. In the initial stages, with no

segmentation information on the portal image, the proposed algorithm basically searches

for the transformation parameters which increases the mutual information. In the later

stages, the algorithm maximizes the mutual information in the separate regions estimated

in the entropy maximization step.

Our experiments showed that using a single portal image led to erroneous estima-

tion of the out–of–plane transformation parameters. Thus, we extended our algorithm to

use dual portal images taken at two views, where the views need not be orthogonal. The

results of the algorithm using dual simulated portal images are very encouraging. The

algorithm was also extended to register a 2D simulator image to a 2D portal image. For

the 2D registration experiments, the algorithm leads to very accurate registration and

reasonably good segmentation.



Chapter 6

Performance Analysis and

Comparisons

6.1 Introduction

The previous chapter developed the minimax entropy (MIME) registration framework

where the segmentation and registration of the portal images was carried out simulta-

neously and iteratively, with segmentation helping the registration and vice–versa. It is

the hypothesis of this chapter that incorporation of the segmentation information into

the registration framework leads to a more accurate and robust algorithm. To prove the

hypothesis, in this chapter we first present the results, using energy function plots, which

show that incorporating true segmentation information does lead to a more robust and

accurate algorithm, in the presence of both noise and blur in the portal images. Next,

this chapter compares and evaluates the performance of MIME with the performance

of MI and the ridge–based (GL) algorithm [44]. The ridge–based algorithm uses bony

ridges, extracted from the portal images, as the features for registration. We chose these

116
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algorithms for two reasons. First, these algorithms are well–accepted algorithms in the

medical image analysis area and in the radiotherapy treatment area respectively. Sec-

ond, these two algorithms are intended for completely automated use and are from the

opposite ends of the spectrum of registration strategies. Dense field based registration

methods form one end, feature–based registration methods form the other end of the

registration spectrum. Another popular registration method in the external beam radio-

therapy (EBRT) literature is gray–scale pixel intensity correlation. However, recently in

the medical image analysis literature, mutual information–based algorithms have gained

prominence and perform robustly for multi–modal image registration. The min step in

our algorithm is closely related to the MI algorithm. Thus, we chose to compare the

performance of our algorithm to MI rather than the normalized cross–correlation based

algorithms.

6.2 Performance Evaluation Strategy

In order to evaluate the performance of our algorithm, we use a treatment planning

3DCT data set obtained from a pelvic phantom and the corresponding simulated portal

images. The simulated portal images are obtained by rendering the 3DCT data in the

anterior–posterior (AP) and the left–lateral (LL) directions, in a manner as described in

the previous chapter. The following subsections briefly discusses the mutual information

and the ridge–based algorithms that will be used for comparison purposes.

6.2.1 Ridge–Based Method

As we have already pointed out, we chose the ridge–based algorithm described in [44] for

comparison because it has been well–received in the EBRT literature as being a completely
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automated registration algorithm for patient setup verification.

In describing this algorithm, we shall closely follow the notation in [45]. We first

describe the cost function, then the optimization procedures and lastly the procedures for

delineation of the bony structures. It should be noted that this algorithm is specifically

designed for the radiotherapy application, that is registration of the CT data set with

portal images.

The cost function which this algorithm seeks to minimize, is based on the insight

that the high intensity ridges in the transmission images are located at the points where

the projection X–rays have local maxima in the trajectory through bone, that is, rays

pass through locally maximal bone structure. Thus, first bone ridges are detected and

localized in the portal images. The rays from detected ridge features are back–projected to

the radiation source through the transformed 3DCT. The negated average of the distance

along the back–projected rays through the bone is then minimized to estimate the optimal

set of transformation parameters. We have implemented an automated method to detect

and localize the bone ridges in the transmission images. The ridges are first enhanced

using the morphological top–hat transformation [102] of the portal images. The pixels

with high values in the transformed images are assumed to correspond to the bone ridges.

In this formulation, the patient setup verification is being carried out by using

two portal images obtained from two different views. Let I1(p) and I2(q) be the two

transmission images obtained from two different views, with p = (i, j) and q = (u, v)

denoting the pixel locations in the two images respectively. Let the set of bone ridge

locations in the two transmission images be L1 and L2 containing N and M elements
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respectively. Thus, the two sets are defined as:

L1 = {pi|pi ∈ D(I1) ∧ i = [1, N ]}

L2 = {qi|qi ∈ D(I2) ∧ i = [1,M ]}

where D(I1) and D(I2) are the domains over which the pixel locations of the two images

are defined. The cost function is defined to be

C(T ) = −
(
∑

p∈L1
rb(p, T )

N
+

∑

q∈L2
rb(q,T)

M

)

(6.1)

where T indicates the pose of the patient. The function rb(p,T) denotes the distance

through the bone on the projection line which connects the ridge located at point p with

the focus, where the 3DCT data set has been transformed according to the transformation

T. The CT data set is now segmented into two groups using a threshold. Voxels above the

threshold, denoting bone, are set to 1 and the other voxels are set to value 0. In order to

evaluate the distance of a projection ray through the bone we just need to sum the voxel

values along the path of the ray. A more complex extraction scheme can also be used to

account for the partial volume effects. Two different minimization strategies, downhill

simplex minimization [80] and Powell’s minimization [19], have been implemented and

investigated. The minimization procedures are restarted once from the first found local

minimum.
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6.2.2 Mutual Information

Due to both its popularity in the literature and the fact that it exemplifies a full–intensity–

based strategy, we have implemented a mutual information match measure–based regis-

tration algorithm for the registration of the portal images and the 3DCT data. In the

medical image processing literature, the method was first described by Viola et al. and

Collignon et al. [117, 28]. Here we follow the work of Viola et al. [117]. In this approach,

the optimal transformation parameters are determined as:

T̂ = argmin
T
[H(I1(p)) +H(I2(T (p)))−H(I1(p), I2(T (p)))] (6.2)

where p = (x, y) are the coordinate locations of the pixels in the image I1 and I2 denotes

the image which is being transformed, M(·) is the mutual information between the pixel

intensities of the two images, defined in terms of the entropies of the two images as,

M(I1(p), I2(T (p))) = H(I1(p)) +H(I2(T (p))) −H(I1(p), I2(T (p))), [83]. The entropy,

H(x), of a random variable, x, is defined to be H(x) = −
∫

p(x) ln p(x)dx , and the

joint entropy of the random variables is defined, in a similar fashion, to be H(x, y) =

−
∫ ∫

p(x, y) ln p(x, y) dx dy .

In the mutual information–based methods, as implemented in the literature,

it is assumed that the pixel intensities are independently and identically distributed

(i.i.d), an assumption which need not be true. The joint intensity density function,

p(I1(p), I2(T (p))) and the marginal density function, p(I2(T (p))) are estimated from the

data using the Parzen density method [37]. A stochastic gradient descent method is used

as the optimization strategy.
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This method differs from the ridge–based method in the following important ways.

First, it is general and is not restricted to this application alone. Since the density is

estimated from the dataset, nothing about the form of the joint or the marginal density

function is assumed. Thus, it can be directly applied for the registration of multi–modality

images where the pixel intensities may be related by a non–linear function. Second, it

computes a registration directly from the pixel intensities, thus it is a dense field method,

without requiring segmentation of the images. Hence, it can be easily automated and is

robust against noise, as demonstrated below.

This method has been implemented to register portal and simulator images, as

well as to carry out 2D/3D registration using single, and also dual, portal images and

3DCT image data sets.

6.3 Comparisons for 2D/2D Image Registration

This subsection, compares MI and MIME algorithms for the rigid registration of 2D

images. Here, a simulator image and simulated portal images, with increasing noise and

increasing blur, are registered. Earlier, we noted that our algorithm is an extension

of the mutual information–based algorithm where the segmentation information is also

evaluated and implicitly used to help registration and vice–versa. It is our working

hypothesis that incorporation of segmentation information in the registration framework

can lead to robust and accurate estimation of the registration parameters. To help verify

our hypothesis, in the following example, we have plotted the MI and the MIME energy

functions. In these figures, the portal image is kept fixed and the simulator image is

translated, both along the X–axis and the Y–axis, from the true registered position, (0,0).

At each new translated version of the simulator image, the MI energy function is evaluated
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using the transformed simulator image and the portal image. The MIME energy function

is evaluated using, in addition to the portal and transformed simulator images, the true

segmentation of the portal image (assumed to be known for demonstration purposes). The

evaluated values are then plotted against the translations of the simulator image. In the

MIME algorithm, when all the pixels are equally likely to be bone or background, we are

effectively maximizing the mutual information between the two images, i.e. minimizing

H(x, y)−H(y). This is true as H(x), the entropy of the portal image, is independent of

the transformation parameters. Also, to be able to compare the MI to the MIME based

method, we have plotted H(x, y)−H(y) for MI and ∑a∈A

(

∑N2

i=1
Pki (a)

N2

)

Ha(x, y)−H(y)

for the MIME algorithms.

Figures 6.1 (b) and 6.1 (c) show the simulated portal images, with blur and

noise respectively, used for evaluating the two cost functions. In the MI algorithm, as

implemented in the literature [117, 27], every pixel intensity is assumed to be i.i.d, with

no information on the pixel location. Intuitively, segmentation information removes this

uncertainty, to some extent, by using a tag on each pixel denoting the region in the image

to which the pixel belongs. Pixels in the same region should have closely related pixel

intensities. When registration parameters are estimated, pixels from the two images

within each region are compared to estimate the homogeneity of the pixel intensities.

This leads to accurate and robust estimation of the registration parameters as compared

to the parameters estimated by the MI algorithm. We will also see that the MIME

estimates rotations more accurately and robustly as compared to the MI algorithm. In

this example, as the MIME algorithm is implicitly using the segmentation information

of the portal images shown in the figures 6.1 (d), we expect that the cost function of

the MIME algorithm to be robust to both noise and blur, with the global optima at



123

(a) (b)

(c) (d)

Figure 6.1: (a) Simulator Image (b) Simulated portal image, obtained by blurring the

simulator image in (a) by a blurring kernel of width 11 pixels. (c) Simulated portal image,

obtained by adding i.i.d Gaussian noise of std. (σ) 30.0 to the simulator image in (a).

(d) True segmentation of image in (b) and (c). This information is implicitly used by the

MIME algorithm.

the true optima. Also, for the MI algorithm, it is expected that increasing blur in the

portal image will make the energy function flat, whereas incorporation of noise will lead

to many local minima. However, the MIME energy function is expected to stay peaked,

with a global optimum at the true parameters, that is, it is robust to increasing noise

and blur. To show this, we have plotted the energy functions on the X and Y axes,

in an anecdotal snapshot of the parameter search space around the global optimum, as

shown in figures 6.2 and 6.3 for large blur and noise respectively. Figures 6.2 and 6.3

support our hypothesis, for the current dataset, that incorporation of the segmentation
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Figure 6.2: Surface plots of the energy functions, shown for only the X and Y translations,

for the MI and MIME energy functions respectively. The blurred portal image, figure

6.1 (b), is being registered to the simulator image, figure 6.1(a). (a) shows the energy

function of MI as a function of X and Y translation. (b) shows the energy function as

viewing it from the top. (c) shows the energy function as viewed along X–axis. (d) shows

the energy function as viewd along the Y–axis. (e) is the MIME energy function as a

function of X and Y translations. (f) shows the top, (g) shows the view along X–axis and

the (h) shows the view along the Y–axes of the MIME energy function.
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Figure 6.3: Surface plots of the MI and MIME energy functions. Here, the noisy portal

image, σ = 30.0, figure 6.1 (c), is being registered to the simulator image, figure 6.1 (a),

(b), (c), (d) are plots of MI as a function of X and Y translation respectively. (e), (f),

(g), (h) are the corresponding plots of the MIME energy function.

information can lead to robust and accurate registration. If the portal image is blurred,

then the MI energy function becomes smooth and flat, as shown in figures 6.2 (a), (b),

(c), (d). Whereas, in the presence of noise in the portal images, the MI energy function

shows many local optima and is flatter, as seen in figures 6.3 (a), (b), (c), (d). On the

other hand, the MIME energy function is robust to both, the noise and blur in the portal

images. Figures 6.2 (e), (f), (g), (h) and 6.3 (e), (f), (g), (h) show that, for this dataset,

the form of MIME energy function remains unchanged. The global optimal parameters

are seen to be the true registration parameters for the MIME energy function, whereas,

there is a small shift in the local of the global optimal parameters for the MI energy
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(a) (b)

(c) (d) (e)

Figure 6.4: (a) Simulator image. (c) Simulated portal image. (c) Simulated portal image

blurred with kernel of width 11. (d) Simulated portal image with Gaussian noise of std.

(σ) 20.0 added. (e) Segmentation of the portal image in (d) as estimated by the MIME

algorithm.

function. On the down side, the true segmentation of the portal image is rarely, if at

all, available. Thus, in the MIME algorithm, the segmentation of the portal image is

estimated simultaneously, using the current estimates of the transformation parameters

and vice–versa, each helping the other.

After verifying our working hypothesis using the true segmentation of the portal

images, we will next compare the MI and MIME algorithms where the MIME algorithm

iteratively estimates the segmentation information. This estimated segmentation infor-

mation will be used to plot the MIME energy function and will be compared to the energy

function of the MI algorithm. Figure 6.4 shows the example images used for comparing
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Figure 6.5: Parameters estimated by the two algorithms. MI: mutual information based

algorithm. MIME: minimax entropy algorithm. Corresponding graphs and labels are

color encoded. Using noisy portal images (a) estimated X, Y translations. Solid lines are

the estimated X–translations. Dash lines are the estimated Y–translations. (b) estimated

in–plane rotations. Using blurred portal images (c) estimated X, Y translations. (d)

estimated in–plane rotations. Arrows on the right are the true parameters, which are 15

(red ←) and 5 (green ←) pixels translation along X and Y axis, respectively, and 10o

(blue ←) in–plane rotation.
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Figure 6.6: Surface plots of the MI and MIME energy functions, respectively, for the

noisy portal image. (a), (b), (c), (d) are the plots of MI based energy as a function of X

and Y translation respectively. (e), (f), (g), (h) are the corresponding plots of the MIME

energy function. The MIME algorithm implicitly used the estimated segmentation of the

portal image.

and evaluating the performance of the MI and MIME algorithms on two dimensional

images. The noise added to the simulated portal image is i.i.d Gaussian distributed with

zero mean and standard deviation (σ) ranging from 0, i.e. no noise, 10.0, 20.0, 30.0, and

40.0. To obtain blurred simulated portal images, blurring kernels of widths 3, 7, 11, 15

are used. The true registration parameters between the portal and the simulator images

are 15 pixels translation along the X–axis, 5 pixels along Y–axis and 10o in–plane rota-

tion. Different amount of mis-registration along the X–axis and Y–axis were purposefully

selected. This should not be taken to mean that the algorithm can estimate only small
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mis-registrations along the Y–axis. Figure 6.5 shows the transformation parameters es-

timated by the two algorithms under increasing noise and blur. Figures 6.5 (b) and (d)

show that the MIME algorithm is more robust and accurate in estimating rotation angle

as compared to the MI algorithm, both in the presence of noise and blur. However, fig-

ures 6.5 (a) and (c) show that the performance of the two strategies is comparable when

estimating the translation parameters.

Further, we have plotted the energy functions for the two algorithms, for the

example when i.i.d Gaussian noise of standard deviation (σ) 20.0 is added to the portal

image. Figures 6.4 (b), (d) show the images used in plotting the MI energy functions.

The MIME algorithm, in addition, implicitly uses the segmentation information, shown

in figure 6.4 (e). This segmentation is iteratively estimated by the MIME algorithm.

The corresponding energy functions are shown in figure 6.6. Note that the MIME energy

function is more peaked with a global optimum at the true transformation parameters.

For the MI algorithm, the global optimum for X–translation and Y–translation, figure 6.6

(b), is shifted from the true value.

6.4 Comparisons for 2D/3D Image Registration

In this subsection, we compare the accuracy and the robustness of three registration al-

gorithms, the ridge (GL) based, MI and MIME, first by using a single anterior–posterior

(AP) portal image and then by using anterior–posterior (AP) and left–lateral (LL) simu-

lated portal images and the 3DCT dataset. Six transformation parameters, three trans-

lations and three rotations of the 3DCT data set, need to be estimated. The simulated

portal images are obtained by first transforming the 3DCT data set by translating it

along the X–axis by 15 voxels, Y–axis by 5 voxels and rotating it about the Z–axis by
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Figure 6.7: Parameters estimated by the ridge–based [44] algorithm. (a), (b) show es-

timates using the downhill simplex method with increasing noise and blur respectively.

(c), (d) show the estimates when the Powell’s conjugate direction optimization method

is employed. True transformation parameters are 15 voxels translation along the X–axis,

5 voxels along the Y–axis and 10o in–plane rotation.
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Figure 6.8: Parameters estimated by (a), (b) MI algorithm under increasing noise and

blur respectively. (c), (d) MIME algorithm with increasing noise and blur respectively.

Parameters to be estimated are tx = 15voxels, ty = 5voxels, tz = 0voxels, θXY = 10
o,

θY Z = 0
o and θXZ = 0

o.
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(a) (b) (c)

Figure 6.9: (a) Simulated portal image with i.i.d. Gaussian noise of std. (σ) 20.0. (b)

Segmentation of the image in (a) estimated by the MIME algorithm. (c) Morphological

top–hat (ridge) transformation of the image in (a).
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Figure 6.10: (a), (b) are plots of the ridge based method energy as a function of X and Y

translation respectively. (c), (d) are the corresponding plots of MI based energy function.

(e), (f) are the corresponding plots of the MIME energy function. Energy functions are

plotted for the images in figure (6.9). The MIME algorithm implicitly uses the estimated

segmentation of the portal image.
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10o. Then DRRs in the orthogonal, AP and LL, directions are rendered by projecting

the 3DCT data set under known perspective parameters. The simulated portal images

are obtained by adding varying amounts of i.i.d Gaussian noise and blur to the DRRs.

6.4.1 3D Analysis Using Single Portal Image

Figure 6.7 shows the transformation parameters estimated by the Gilhuijs’ [44] ridge–

based registration algorithm with increasing noise and blur in the simulated portal image.

The parameters are estimated using both, the downhill simplex method and the Powell’s

conjugate directions method. The optimization strategy is restarted once to escape the

local minima. For both optimization strategies, the algorithm accurately estimates the

registration parameters in the absence of noise and blur, except for estimation of the

translation along the Z–axis. However, the algorithm is not robust to either noise or blur.

With increasing noise and blur in the portal images, human intervention is required for

detection and localization of the ridges in the portal images for any meaningful estimation

of parameters. Otherwise, as figure 6.7 shows, if the ridges are automatically chosen, the

estimated parameters can vary over a large range. This behavior can be attributed to

the fact that with increasing noise or blur, many spurious ridge points are detected by

the automated ridge enhancement transformation of the portal images.

Figure 6.8 shows the transformation parameters estimated using the mutual in-

formation (MI) and the minimax entropy (MIME) algorithm. As for the two–dimensional

analysis, the MIME algorithm is more robust to noise as compared to the MI algorithm.

The performance of the two algorithms is comparable under increasing blur.

We have plotted the energy functions of the three algorithms as a function of

mis–registration along the X–axis and Y–axis. Figure 6.9 (a) shows the simulated portal

image used for evaluating the energy function. The energy functions are evaluated as
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follows. From the true registered position, the 3DCT data set is translated along X–

axis and the Y–axis. At each new translated position the energy functions are evaluated

and plotted. The MIME algorithm implicitly uses the estimated segmentation of the

portal image, shown in figure 6.9 (b). The segmentation was previously estimated by

the MIME algorithm. Figure 6.9 (c) shows the top–hat transformed portal image. Note

that in this transformed image it is very difficult to automatically pick the ridge points,

necessitating human interaction in detection and localization of the ridge points. The

energy functions are shown in the figure 6.10. Note that both MIME and MI algorithms

have their global optima at the true registration parameters. Also note that though the

ridge based method had poor estimates for the transformation parameters at this noise

level (σ = 20.0), its global optimum is close to the true parameters. The performance

of the algorithm described in [44] may therefore be improved by using an optimization

method other than downhill simplex method.

6.4.2 3D Analysis Using Dual Portal Images

The previous chapter showed that the in–plane parameter estimations are more accurate

than the out–of–plane parameter estimations. Therefore, for patient setup verification,

using portal images obtained from two or more different views will likely lead to more

accurate and robust results. We have extended the MIME and MI algorithms to use

anterior–posterior (AP) and left–lateral (LL) portal images. The ridge–based (GL) algo-

rithm [44] registers two orthogonal, AP and LL, portal images to the 3DCT dataset to

estimate the transformation parameters. Example simulated AP and LL portal images

are shown in the figures 6.12 (a), (b), with i.i.d Gaussian noise of σ 20.0 is added.

Figures 6.11 (a), (b) , 6.12 (a), (b) and 6.13 (a), (b) show example simulated

portal images in the AP and the LL directions. Corresponding ridge–enhanced portal
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(a) (b)

(c) (d)

Figure 6.11: (a), (b) Digitally reconstructed radiographs (DRRs) rendered in anterior–

posterior (AP) and left–lateral (LL) directions, respectively. (c), (d) the ridge–enhanced

AP and LL DRRs, respectively, using the morphological top–hat operator.

images are shown in the figures 6.11 (c), (d) , 6.12 (c), (d) and 6.13 (c), (d). These

figures show the difficulty in automatically choosing the ridge features from the ridge

enhanced portal images and hence point to the necessity of human interaction in the

ridge–based registration algorithm.

Figure 6.14 shows the parameters estimated by the ridge–based (GL) algorithm,

for both increasing noise and increasing blur in the portal images. Figures 6.14 (a), (b)

shows the parameters estimated by using the simplex method of optimization, whereas,

in the figures 6.14 (c), (d), the parameters were estimated using the Powell’s meth-

ods. These graphs show that the simplex method leads to more accurate estimation of
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(a) (b)

(c) (d)

Figure 6.12: (a), (b) Simulated AP and LL portal images, respectively, with i.i.d. Gaus-

sian noise of standard deviation (σ) 20.0. (c), (d) Corresponding ridge–enhanced AP and

LL simulated portal images.

the transformation parameters. Thus, for comparing the ridge–based (GL) registration

methods to the MI and MIME registration methods, results using the simplex methods

of optimization will be used.

Figure 6.16 shows the parameters estimated by the three algorithms, GL , MI and

MIME algorithms, with increasing noise and blur. For the ridge–based algorithm, the

parameters are estimated using the downhill simplex method. The optimization strategy

is restarted once, from the first found optimum, to escape local optima. Stochastic

gradient descent is used to estimate the parameters in the MI and MIME algorithms.

As with the two–dimensional analysis, the MIME algorithm seems to be more robust
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(a) (b)

(c) (d)

Figure 6.13: (a), (b) AP and LL portal images, simulated by blurring the DRRs by 11

pixels. (c), (d) show the corresponding ridge–enhanced AP and LL portal images, using

the morphological top–hat operator.

to noise as compared to the MI algorithm. The performance of the two algorithms

is comparable under increasing blur. The GL algorithm leads to accurate parameter

estimation in the absence of noise and blur. However, with increasing noise and blur, the

parameters estimated by this algorithm seem to be random, requiring human intervention

for detection and localization of the ridge–features, for meaningful estimation of the

parameters.

As in the two–dimensional analysis, we expect the MI energy function to be

increasingly flat and have many local optima with increasing noise. On the other hand,

the MIME energy function is expected to have a well–defined global optimum at the true
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Figure 6.14: Parameters estimated by the ridge–based [44] algorithm using dual AP

and LL portal images. (a), (b) show estimates using the downhill simplex method with

increasing noise and blur respectively. (c), (d) show the estimates when the Powell’s

conjugate direction optimization method is employed. True transformation parameters

are 15 voxels translation along the X–axis, 5 voxels along the Y–axis and 10o in–plane

rotation.
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(a) (b)

(c) (d)

Figure 6.15: (a), (b) show the simulated AP and LL portal images, respectively, with

Gaussian noise of std. (σ) 20.0. (c), (d) show the estimated segmentation, by the MIME

algorithm, of the AP and the LL portal images, respectively.

registration parameters. To verify this hypothesis, we plotted anecdotal snapshots of the

energy functions in the parameter search space around the true optima. Figures 6.15

(a), (b) show the dual simulated portal images used for plotting the energy functions.

The minimax entropy algorithm implicitly uses the segmentation information shown in

figure 6.15(c) and (d). Figures 6.17 (c), (d), (e) and (f) show the energy functions of the

MI and MIME algorithm for this dataset. The true parameters are (0,0). Note that for

MIME, the energy function is peaked, with the global optimum at the true parameters.

The MI energy function is flatter with the global optimum for the X–translation being

shifted from the true value. It is instructive to see the energy function for the ridge based
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Figure 6.16: Parameters estimated using dual portal images. Ridge–based (GL) method

used simplex method of optimization to estimate the registration parameters. The dotted

lines in figures (a) and (c) show the estimated Y–translation, ty. The solid lines are the

estimated X–translation, tx. The arrows show the true parameters which are tx = 15

voxels, ty = 5 voxels and θXY = 10
o.
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Figure 6.17: (a), (b) are plots of the ridge based method energy, using dual AP and LL

simulated portal images, as a function of X and Y translation respectively. (c), (d) are

the corresponding plots of MI based energy function. (e), (f) are the corresponding plots

of the MIME energy function. Energy functions are plotted for the dual portal images

shown in figure 6.15 (a), (b). The MIME algorithm implicitly uses the segmentation

information shown in figure 6.15 (c), (d).

algorithm [44], in figures 6.17 (a) and (b). Note that the energy function has a global

optimum close to the true registration parameters. Still, the simplex method was unable

to find this optimum. This indicates that an optimization strategy other than simplex

might lead to better registration results.
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6.5 Summary

In this chapter, we presented our working hypothesis that incorporating segmentation in-

formation in the registration framework can lead to robust and accurate estimation of the

registration parameters. The previous chapter developed the registration framework, [4],

where the segmentation and registration of the portal images to a 3DCT dataset is done

simultaneously and iteratively. Using this framework, and comparing its performance

with other proposed automated registration algorithms, we verified our hypothesis under

increasing noise and blur.

First, using the true segmentation of the portal image, we verified that segmen-

tation information can lead to a peaked energy function, which is more robust to both

noise and blur, as compared to the MI energy function. The MI energy function becomes

flatter with increasing blur and noisier, with many local optima, with increasing noise.

Then we compared the performance of MIME to MI when the segmentation information

is estimated automatically within the MIME framework. These comparisons validate our

hypothesis to be true.

The results from three–dimensional analysis also support our hypothesis, that

MIME is more robust to noise as compared to the MI algorithm. For blur, the performance

of the two algorithms is comparable, with MIME leading to more accurate estimates

of the rotation parameters. The ridge–based (GL) algorithm accurately estimates the

transformation parameters in the absence of noise or blur. However, with increasing

noise and blur the ridge–enhanced portal images show many spurious ridges and thus

human intervention is needed to obtain meaningful estimates of the parameters.

The ridge–based algorithm points to the fact that the feature–based algorithms

can yield accurate registration if the features can be accurately detected and localized.
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Therefore, we will extend our work to incorporate edge and whole boundary information

in the registration framework, for obtaining better segmentation and accurate registration

of the portal images to the 3DCT dataset.



Chapter 7

Incorporating Pixel Intensity

Correlations

7.1 Introduction

Mutual information–based registration methods, as proposed in the literature [117, 122,

28], assume that pixel intensities, in the images to be registered, are independent and

identically distributed (i.i.d.). Such an assumption is not true in general. The mini-

max entropy registration framework developed in chapter 5 overcomes the assumption of

identical distributions by iteratively and simultaneously estimating the registration pa-

rameters and the segmentation of portal images. Pixel intensities in the two segmented

regions are assumed to be distributed according to two different density functions. How-

ever, the pixels were still assumed to be independently distributed. Such an assumption

can lead to poor segmentation of the portal image, especially in the presence of noise in

the images.

Images usually consist of regions in which the pixel intensities vary slowly. In other

144
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words, there is a strong correlation between the neighboring pixel intensities in an image,

except for the pixels at the boundary of two regions. Markov random fields (MRFs) have

been proposed to model such a local dependence between the pixel intensities and have

been successfully applied to image segmentation [67, 43]. MRF’s allow us to incorporate

prior information and thus help to regularize the ill–posed problem of image segmentation.

This chapter develops a minimax entropy registration framework while incorpo-

rating correlation among the neighboring pixel intensities in both the max step and the

min step to help better segment and register the portal images to the 3DCT image data.

To reduce the computational complexity in estimating the registration parameters, each

portal image will be modeled as a 1D Markov random process only, with rows of pixels

stacked one after the other. Each pixel intensity is thus modeled to be correlated only

to either the pixel immediately before or after it. Since the portal images are to be seg-

mented into two regions, bone and background, a 1D Ising model [85] is sufficient to model

the desired correlation between the pixels. In 1D Ising model, each site in a 1D lattice

can take one of the two values (red/white, 1/0, +/-, . . .) and neighboring sites have an

energetic preference to be the same value. Line processes [43] are incorporated into the

1D MRF to model boundaries between the regions to be segmented.

7.1.1 Outline of the Approach

As mentioned above, correlation among the portal image pixel intensities is modeled us-

ing a 1D Ising model. Geman et al. [43] proposed a simulated annealing approach to

estimate the segmentation of the images using MRFs as prior information. Even though

the simulated annealing–based optimization method has been proven to converge to a

global optimal solution, such a method tends to be computationally expensive. Blake et

al. [17] proposed a graduated non–convexity (GNC) approach for image reconstruction.
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Deterministic annealing approaches [90, 68] have also been proposed for image reconstruc-

tion. GNC and deterministic annealing based approaches tend to be computationally less

expensive, compared to simulated annealing, however, these approaches have remained

ad hoc and guarantee convergence only to a local optimum.

In our approach, we first model the correlation between the neighboring pixels as

a 1D MRF. In order not to over–penalize the boundaries between regions, line processes

or edges are introduced into the formulation. The MRF model is used to formulate

the prior density function on the portal image segmentation. Using the data term, the

posterior density function can then easily be formulated. Since the pixels are correlated,

the posterior density function cannot be written in factored form, making it difficult

to manipulate it analytically. Thus, to simplify the posterior density function, we first

propose to integrate out the edges (i.e. sum over all possible combinations of the edges)

from the posterior density function and then approximate it, using the maximum entropy

principle [58], to a density function which can be written into a factored form. The

factored density function can be used to estimate the expected label of each pixel. Mean

field approximations [85], using the original posterior density function, of the expected

pixel labels are derived to show the goodness of the factored density function. Further,

the correlations between neighboring pixel segmentation labels are estimated using a

procedure similar to the mean field approximations. Even though the edges have been

integrated–out, an estimate on the edges is obtained as a by–product of the optimization

process. Once an estimate of the pixel labels is obtained, this information is used in the

entropy minimization step, the min step, to estimate the transformation parameters. It

should be noted that the reason the edges are integrated out, instead of the segmentation

labels, is due to the fact that edges are assumed to be independent of each other. Thus,
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analytically, it is possible to integrate out the edges in the posterior density function,

as shown below, and still write the resulting posterior density function in a closed form

expression.

7.2 Mathematical Formulation of the MAX step

The formulation of the minimax entropy registration framework in chapter 5 assumed that

the pixels in the images are independently distributed. The formulation of the minimax

entropy framework in this chapter overcomes the assumption of independence and models

the correlation using a 1D MRF. Line processes or the edges are also introduced into

the model to achieve better segmentation. Incorporation of neighboring pixel intensity

correlation information in the max step will regularize the ill–posed problem of image

segmentation, especially in the presence of noise.

As mentioned above, images are assumed to be 1D MRF formed by concatenating

rows. Thus, only the pixels immediately preceding or following a pixel in a row are

considered to be neighbors. Further, we assume that the first and the last pixel in the

image are neighbors. Further, note that as the portal images are to be segmented into two

regions only and only the 1st order neighborhood is being considered in the 1D MRF, the

estimated segmentation of an image can be modeled using a 1D Ising model. Note that

such a 1D model can capture only the vertical edges in the image. The horizontal edges

will be lost, that is, they cannot be estimated by the algorithm. To detect horizontal

edges also, a 2D Ising model is necessary. However, there are two reasons why only a

1D model is chosen. First, a 2D Ising model will be computationally expensive when

estimating the transformation parameters. Second, this is our initial effort.

Let ei be a random variable denoting an edge between the i and the i+ 1 pixel,
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with ei ∈ {0, 1}.

ei =















1, if there is an edge

0, otherwise

Let, E denote the set of all edges, that is, E = {ei, ∀i = 1, . . . , N}, where N is the number

of pixels in the image to be segmented. Thus, a segmentation of a portal image can be

described by the set {Z, E}, where Z is the segmentation of the portal image as defined

in chapter 4. Using a 1D Ising model [85], the energy associated with each segmentation

of a portal image can be written as:

E(Z, E) = −
[

1

2

∑

i

(

∑

v∈A
zvizvi+1

)

(1− ei) + λ
∑

i

ei +
∑

i

(

∑

v∈A
hvizvi

)]

(7.1)

=
∑

i

[E1i(Z) + E2i(Z, E)]

where,

E1i(Z) ≡ −
∑

v∈A
hvi zvi

E2i(Z, E) ≡ −
[

1

2

(

∑

v∈A
zvizvi+1

)

(1− ei) + λei
]

(7.2)

The optimal configuration is the one which minimizes the energy function in the equa-

tion (7.1). The term E1i(Z) is also sometimes called the data term in the image processing

literature. We define hvi ≡ ln p(mi = v|xi, y′i), called the external field, in the data term.

Using this definition of the external field, it can be easily shown that the max step devel-

oped in this chapter reduces to the max step formulation in the previous chapter. The
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term E2i(Z, E) has a regularization effect on the estimated segmentation. The first term

on the right hand side of equation (7.2) favors same segmentation labels for the neighbor-

ing pixels. If there is an edge between two pixels, then the two pixels can have different

labels. λ acts as a weighting factor. For large values of λ, a configuration with many

edges is favored and vice–versa for small values. A simple analysis, see appendix D.4,

puts a bound on possible values of λ to be, 0.0 < λ < 0.5.

Exploiting equivalence between Gibbs distribution and MRF [43], the posteriori

probability density function of the segmentation of a portal image can be written as a

Gibbs distribution:

PGb(E(Z, E)) =
1

Z(β)
exp [−β E(Z, E)]

=
1

Z(β)
exp

[

−β
∑

i

(E1i(Z) + E2i(Z, E))
]

=
1

Z(β)
exp

[

−β
∑

i

E1i(Z)

]

exp

[

−β
∑

i

E2i(Z, E)
]

=
1

Z(β)
exp

[

−β
∑

i

E1i(Z)

]

∏

i

exp [−β E2i(Z, E)] (7.3)

where β is inverse of the temperature. The probability density function, in equation (7.3),

is difficult to manipulate analytically for two reasons. First, the density function PGb(E(Z, E))

cannot be further factored as the neighboring pixels are correlated. Second, the presence

of edges requires estimation of both the segmentation labels and the edges, thus increasing

the computational complexity of the problem. Thus, to simplify the posteriori probabil-

ity density function, we first propose to integrate out the edges and then approximate

the resulting density function by a probability density function that can be written in

a factored form. The principle of maximum entropy [58] is employed to determine the
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simplified density function.

7.2.1 Integrating out Edge Information

The posterior distribution of a segmentation of a portal image, given by the Gibbs dis-

tribution in equation (7.3), is first simplified by integrating out the edges. As will be

shown below, although the edges have been integrated out, an estimate of the edges will

be obtained as a by–product of the optimization process. Thus, integrating out the edges

from the probability density function PGb(E(Z, E)), we have,

PGb(E(Z))

=
∑

E
PGb(E(Z, E))

=
∑

E

1

Z(β)
exp [−β E(Z, E)]

=
1

Z(β)
exp

[

−β
∑

i

E1i(Z)

]

∑

E

∏

i

exp [−β E2i(Z, E)]

=
1

Z(β)
exp

[

−β
∑

i

E1i(Z)

]

∏

i

∑

ei∈{0,1}
exp [−β E2i(Z, E)]

=
1

Z(β)
exp

[

−β
∑

i

E1i(Z)

]

∏

i

∑

ei∈{0,1}
exp

[

β

(

1

2

(

∑

v∈A
zvizvi+1

)

(1− ei) + λei
)]

=
1

Z(β)
exp

[

−β
∑

i

E1i(Z)

]

∏

i

[

exp

(

β
1

2

∑

v∈A
zvizvi+1

)

+ exp(βλ)

]

=
1

Z(β)
exp

[

−β
∑

i

E1i(Z)

]

exp

[

β
1

2

∑

i

∑

v∈A
zvizvi+1

]

·

∏

i

[

1 + exp

(

−β
(

1

2

∑

v∈A
zvizvi+1 − λ

))]

=
1

Z(β)
exp

[

−β
∑

i

E1i(Z)

]

exp

[

β
1

2

∑

i

∑

v∈A
zvizvi+1

]

·
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∏

i

exp

[

ln

{[

1 + exp

(

−β
(

1

2

∑

v∈A
zvizvi+1 − λ

))]}]

=
1

Z(β)
exp

[

−β
∑

i

(

E1i(Z)−
1

2

∑

v∈A
zvizvi+1−

1

β
ln

{[

1 + exp

(

−β
(

1

2

∑

v∈A
zvizvi+1 − λ

))]})]

≡ 1

Z(β)
exp [−β (E1(Z) + E3(Z) + E4(Z))]

where Z(β) denotes the partition function which is a function only of the temperature

parameter β. Also, we define:

E1(Z) ≡
∑

i

E1i(Z) = −
∑

i

∑

v∈A
hvi zvi

E3(Z) ≡
∑

i

E3i(Z) = −
∑

i

[

1

2

∑

v∈A
zvizvi+1

]

E4(Z) ≡
∑

i

E4i(Z) = −
∑

i

1

β
ln

{[

1 + exp

(

−β
(

1

2

∑

v∈A
zvizvi+1 − λ

))]}

Note that we have followed the approach in [68] to integrate out the edges to simplify

the probability density function by reducing the number of variables. Thus, the energy

of the configuration, with the edges integrated out, is defined as

E(Z) = E1(Z) + E3(Z) + E4(Z) (7.4)
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and the probability density function of a particular segmentation of a portal image can

now be written as:

PGb(E(Z)) =
1

Z(β)
exp [−β E(Z)] (7.5)

The resulting Gibbs distribution, if anything, analytically seems to be more complex. To

be able to manipulate the density function analytically, it is approximated by a density

function which can be written in a factored form into the next section.

7.2.2 Maximum Entropy Estimation

Analytically, PGb(E(Z)), is still difficult to manipulate because the image pixels are corre-

lated. Thus, PGb(E(Z)) is approximated with a probability density function, PGb(EI(Z)),

which can be written into a factored form. The principle of maximum entropy [58] is uti-

lized to estimate PGb(EI(Z)).

Prior to determining the density function PGb(EI(Z)), define a variable li to be:

li ≡
(

1

1 + exp[−β(12
∑

α∈A zαi zαi+1 − λ)]

)

(7.6)

which can be shown to be the conditional probability that the random variable ei = 0

(See appendix D.4).

Define an energy function EI(Z), which is a function of variables εvi, as

EI(Z) = −
∑

i

∑

v∈A
εvizvi (7.7)
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and the corresponding Gibbs distribution as

PGb(EI(Z)) =
1

ZI(β)
exp [−β EI(Z)] (7.8)

Since the energy EI(Z) is defined as in equation (7.7), the probability density function

PGb(EI(Z)) in equation (7.8) can be easily written in a factored form. However, we need

to determine the variables εvi in equation (7.7). The variables εvi are estimated such

that the density function PGb(EI(Z)) is close to the density function P
Gb(E(Z)). The

maximum entropy principle [58, 59] provides a principled way of estimating a density

function under given constraints. Subscript I, standing for Independence, in EI(Z) is

used to emphasize that the probability distribution PGb(EI(Z)) can be written in the

factored form. Thus, we will follow the maximum entropy principle to estimate the

variables εvi. Before proceeding further, we write the density functions P
Gb(EI(Z)) and

PGb(E(Z)) as:

PGb(E(Z)) =
1

Z(β)
exp [−β E(Z)]

=
1

exp (lnZ(β))
exp [−β E(Z)]

= exp

[

−β
{

E(Z) +
1

β
lnZ(β)

}]

= exp [−β {E(Z)− F (β)}]

where,

F (β) ≡ − 1
β
lnZ(β)
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Similarly, we have,

PGb(EI(Z)) =
1

ZI(β)
exp [−β EI(Z)]

=
1

exp (lnZI(β))
exp [−β EI(Z)]

= exp

[

−β
{

EI(Z) +
1

β
lnZI(β)

}]

= exp [−β {EI(Z)− FI(β)}]

where,

FI(β) ≡ −
1

β
lnZI(β)

The variables, εvi, are estimated such that the density P
Gb(EI(Z)) is a maximum entropy

distribution under the constraint that it is close to the true density function, PGb(E(Z)).

This is equivalent to reducing the Kullback–Leibler (KL) divergence between the two

distributions, where the KL divergence is given as:

KL
[

PGb(EI(Z))||PGb(E(Z))
]

=
∑

Z

PGb(EI(Z)) ln

[

PGb(EI(Z))

PGb(E(Z))

]

= β
∑

Z

PGb(EI(Z)) [(FI(β)− F (β)) + (E(Z)− EI(Z))]

= β [FI(β)− F (β)+ <E(Z)− EI(Z)>] (7.9)

where <E(Z)−EI(Z)> is defined to be the expected value of E(Z)−EI(Z) with respect

to the density function PGb(EI(Z)). In general, the expected value of a random variable

with respect to the density function PGb(EI(Z)) will be denoted by < · >. The optimal
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variables, denoted by ε∗vi, minimize the KL divergence in equation (7.9). Thus, the

variables ε∗vi are estimated by solving the equations:

∂

∂εvi
KL

[

PGb(EI(Z))||PGb(E(Z))
]

= 0 (7.10)

Thus, from equations (7.9) and (7.10), we have:

∂

∂εvi
[FI(β)+ <E(Z)− EI(Z)>] = 0 (7.11)

Solving equations (7.11), it can be shown that the optimal parameters, ε∗vi, are given as

(see appendix D.1 for the intermediate steps):

ε∗αi =
[〈

zαi−1 + zαi+1
2

+ hαi −
1

β
ln(lili−1)

〉]

(7.12)

Thus, the optimal estimate of the variables εαi leads to an estimate of the probability

density function PGb(EI(Z)) which is closest, in the sense of KL divergence, to the density

function PGb(E(Z)) and has maximum entropy. Since PGb(EI(Z)) can be written into a

factored form, it can be used to find the probability that a pixel i has a label a and also

to evaluate the expected value of a label at each pixel.

7.2.2.1 Mean Field Approximation

In the previous section, a density function has been estimated which can be written into

a factored form. This estimated density function is optimal in the sense that it is a

maximum entropy distribution. A factored form of the density function is desirable as

it makes it easy to manipulate it analytically. However, the question still remains as to



156

how good the estimates are. This section shows, using mean field approximations to the

expected value of pixel label, that the maximum entropy estimates of the expected values

are accurate up to first order variations.

After integrating out the edges, the energy function of the probability density

function, PGb(E(Z)), given by the equation (7.4), is:

E(Z) = −
∑

i

[

∑

α∈A
hαizαi +

1

2

∑

α∈A
zαizαi+1 −

1

β
ln li

]

Let Et(Z) denote all the terms in the above summation except for the terms containing

zαi. We can rewrite the energy function as follows:

E(Z) = −
[

Et(Z) +
∑

α∈A
hαizαi +

∑

α∈A

zαi−1 + zαi+1
2

zαi −
1

β
ln li−1 −

1

β
ln li

]

= −
[

Et(Z) +
∑

α∈A
hαizαi +

∑

α∈A

zαi−1 + zαi+1
2

zαi −
1

β
ln(li−1li)

∑

α∈A
zαi

]

= −
[

Et(Z) +
∑

α∈A
zαi

(

hαi +
zαi−1 + zαi+1

2
− 1
β
ln(li−1li)

)

]

= −
[

Et(Z) +
∑

α∈A
zαiε̃αi

]

where ε̃αi is as defined to be:

ε̃αi ≡
[

zαi−1 + zαi+1
2

+ hαi −
1

β
ln(lili−1)

]

Thus, the expected value of zvi, defined as < zvi >E(Z), with respect to the density
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function PGb(E(Z)) is given as:

< zvi >E(Z) =
∑

Z

zviP
Gb(E(Z))

=

∑

Z zvi exp(−βE(Z))
∑

Z′ exp(−βE(Z′))

=
1

∑

Z′ exp(−βE(Z′))
∑

Z

exp(−βE(Z))
∑

{Zi} zvi exp(−βE(Z))
∑

{Zi} exp(−βE(Z))
(7.13)

where {Zi} denotes all possible values in the ith row of the matrix Z, that is, {(0, 1), (1, 0)}.

This follows from the constraints
∑

α∈A zαi = 1 and zαi ∈ {0, 1}; ∀α ∈ A.

The last term in equation (7.13) can be simplified further as:

∑

{Zi} zvi exp(−βE(Z))
∑

{Zi} exp(−βE(Z))
=

∑

{Zi} zvi exp (β (Et(Z) +
∑

α∈A zαiε̃αi))
∑

{Zi} exp (β (Et(Z) +
∑

α∈A zαiε̃αi))

=

∑

{Zi} zvi exp (β
∑

α∈A zαiε̃αi)
∑

{Zi} exp (β
∑

α∈A zαiε̃αi)

=
exp (βε̃vi)

∑

α∈A exp (βε̃αi)
(7.14)

Therefore, from equations (7.13) and (7.14) the expected value < zvi >E(Z) can now be

written as:

< zvi >E(Z) =
1

∑

Z′ exp(−βE(Z′))
∑

Z

exp(−βE(Z)) exp (βε̃vi)
∑

α∈A exp (βε̃αi)

=
∑

Z

exp (βε̃vi)
∑

α∈A exp (βε̃αi)
PGb(E(Z))

=

〈

exp (βε̃vi)
∑

α∈A exp (βε̃αi)

〉

E(Z)

(7.15)

The equation (7.15) is also called the Markov blanket identity. Neglecting second and
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higher order terms (see appendix D.3 for details), and assuming that the variation in ε̃vi

(denoted by δε̃vi = ε̃vi− < ε̃vi >) from its mean value < ε̃vi > is small, the expected

value < zvi >E(Z) can now be approximated to be, see appendix D.3 for details (also note

that the mean value of the variation δε̃vi is zero, that is, < δε̃vi >=< ε̃vi− < ε̃vi >>= 0):

< zvi >E(Z) ≈
exp (β < ε̃vi >)

∑

α∈A exp (β < ε̃αi >)

=
exp (βε∗vi)

∑

α∈A exp (βε
∗
αi)

(7.16)

Thus, the mean field estimate of the expected value < zvi >E(Z), in equation (7.16),

obtained by ignoring the second and higher order variations, is exactly the same as

the expected value of zvi estimated using the density function P
Gb(EI(Z)). Thus, the

maximum entropy density function PGb(EI(Z)) is accurate up to first order variations.

The relation between the expected value, < zvi >E(Z), and P
Gb(EI(Z)) is easy to show

as the variable zvi takes on only two values, {0, 1} and hence,

< zvi >E(Z) =
∑

Z

zvi P
Gb(E(Z))

=
∑

α∈{0,1}
α P (zvi = α)

= P (zvi = 1) (7.17)

The density function PGb(E(Z)) is approximated by PGb(EI(Z)) which can be written

in a factored form as

PGb(EI(Z)) =
1

ZI(β)
exp [−β EI(Z)]
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=
1

ZI(β)
exp

[

β
∑

i

∑

v∈A
ε∗vizvi

]

=
exp [β

∑

i

∑

v∈A ε
∗
vizvi]

∑

Z exp [β
∑

i

∑

v∈A ε
∗
vizvi]

=

∏

i exp [β
∑

v∈A ε
∗
vizvi]

∑

Z

∏

i exp [β
∑

v∈A ε
∗
vizvi]

=

∏

i exp [β
∑

v∈A ε
∗
vizvi]

∏

i

∑

v∈A exp [βε
∗
vi]

=
∏

i

exp [β
∑

v∈A ε
∗
vizvi]

∑

v∈A exp [βε
∗
vi]

=
∏

i

PI(Zi)

where the subscript I is used to clarify that the distribution on the ith pixel labels, PI(Zi)

is according to the distribution PGb(EI(Z)) which can be written in the factored form.

Therefore, PI(zvi = 1) is given as

PI(zvi = 1) =
exp [βε∗vi]

∑

v∈A exp [βε
∗
vi]

(7.18)

Therefore, approximating P (zvi = 1) in equation (7.17) by PI(zvi = 1) in equation (7.18),

the approximated expected value < zvi >E(Z) is given to be:

< zvi >E(Z)≈
exp [βε∗vi]

∑

v∈A exp [βε
∗
vi]

which is the same as that approximated in equation (7.16) using mean field approxima-

tions.
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7.2.3 Estimating Correlations

Correlation between the random variables zvi, zαj , defined as the expected value <

zvizαj >E(Z), is estimated using a procedure similar to the estimation of the expected

value of a label using the mean field approximations. Appendix D.2 develops the approx-

imated values of the correlations which are then used in the min step of the proposed

framework to estimate the transformation parameters. Since PGb(EI(Z)) assumes that

the pixels labels are independently distributed, this probability distribution function can-

not be used to estimated the correlation.

7.3 Formulation of the MIN step

In the min step, the registration parameters are estimated by minimizing the joint con-

ditional entropy [4]. Chapter 5 assumes the pixel intensities to be independently dis-

tributed. In this chapter, the images are modeled as 1D Markov random process where

the neighboring pixel intensities are assumed to be correlated. The correlation among

the neighboring pixels is incorporated into the min step for estimating the registration

parameters.

The transformation parameters are estimated as:

T̂ = argmin
T
H(M,X|G,T )

= argmin
T
[H(X,Y (T )|M)−H(Y (T ))] (7.19)

where the equation (7.19) follows from the fact that entropy of the segmentation, H(M),

remains constant while estimating the transformation parameters, T. Note that X and Y

denote 1D Markov random processes. The joint, p(X,Y,M), the conditional, p(X,Y |M),
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and the marginal, p(Y ), density functions are given as:

p(Y ) =
N
∏

i=2

p(yi|yi−1) · p(y1)

p(X,Y,M) = p(X,Y |M)P (M)

p(X,Y |M) = p(x1, x2, . . . , xn, y1, y2, . . . , yn|m1,m2, . . . ,mn)

= p(xn, yn|xn−1, yn−1,mn,mn−1) · · · p(x2, y2|x1, y1,m2,m1) · p(x1, y1|m1)

=
N
∏

i=2

p(xi, yi|xi−1, yi−1,mi,mi−1) · p(x1, y1|m1) (7.20)

Taking logarithm on both sides of equation (7.20), we get,

ln p(X,Y |M) =
N
∑

i=2

ln p(xi, yi|xi−1, yi−1,mi,mi−1) + ln p(x1, y1|m1)

Hence, the joint conditional entropy H(X,Y (T )|M) can be shown to be, see appendix

D.5.1,

H(X,Y |M) ≈ (N − 1)




∑

{α,β}
Hαβ(x2, y2, x1, y1) < zαzβ > −

∑

α∈A
Hα(x, y) < zα >





and the entropy of DRR, Y , is approximated to be (The intermediate steps are developed

in appendix D.5.2):

H(Y ) =
N
∑

i=2

H(yi|yi−1) +H(y1)

≤
N
∑

i=1

H(yi)

= N ·H(y)
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To estimate the joint and marginal density functions, a set of pixels is sampled at random

from the images. Non–parametric density estimation, using the Parzen window method

which places isotropic Gaussian kernels at each sampled pixel intensity, is used to esti-

mate various density functions. A stochastic gradient descent method is implemented

to estimate the optimal registration parameters. Appendix D.6 gives details of Parzen

window estimates and the derivatives of various terms used in the implementation of

the stochastic gradient descent method. Appendix D.6 details the derivatives of various

terms for the estimation of covariance matrices of the Gaussian kernels used in the Parzen

window estimates of the various density functions.

7.4 Summarizing the Algorithm

To summarize, the max step and the min step of the minimax entropy registration frame-

work, developed in this chapter, can be written as:

MAX step:

< zvi >E(Z) ≈
exp (βε∗vi)

∑

α∈A exp (βε
∗
αi)

where,

ε∗αi =
[〈

zαi−1 + zαi+1
2

+ hαi −
1

β
ln(lili−1)

〉]

and the correlations are evaluated as in appendix D.2. The min step is developed to be:
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MIN step:

T̂ = argmin
T
[H(X,Y (T )|M)−H(Y (T ))]

where, the various joint and marginal entropy terms are estimated as

H(X,Y |M) ≈ (N − 1)




∑

{α,β}
< zαzβ > Hαβ(x2, y2, x1, y1)−

∑

α∈A
< zα > Hα(x, y)





H(Y ) ≤ N ·H(y)

7.5 Convergence of the Minimax Algorithm

The proposed minimax entropy registration framework is an iterative algorithm and hence

it is necessary to show, at least intuitively, that the algorithm will converge to a local

optimum. The convergence of the minimax entropy algorithm is easy to see by first

considering the convergence of the probability distribution of a segmentation of a portal

image. Note that an estimated segmentation distribution, P k(M), is a function of inverse

temperature parameter β. At high temperatures, that is small values of β, the estimated

distribution is forced to be uniform. For low temperatures, that is large values of β, the

probability that a pixel belongs to a particular class is forced to converge to either a 0 or

a 1. Once the probability converges to 0 (or 1), it remains at 0 (or 1) as the estimated

probability in the step k is used as a prior probability in the k+1th step. Thus, once the

estimated densities in the max step converge, the estimated transformation parameters

in the min step will also converge to a local optimum.



164

7.6 Reduction of Formulation Under Pixel Independence

This chapter assumes that the neighboring pixels are correlated whereas in the earlier

formulation of the minimax entropy framework the image pixels were assumed to be

independently distributed. Therefore, it is interesting to see if the minimax entropy

registration framework developed in this chapter reduces to the earlier formulation if the

pixels are assumed to be independent. Mathematically, from equation (7.1), the image

pixel labels will be independently distributed if the random variables ei are set equal to

1 for all i, that is, ei = 1, ∀i.

Assuming that the pixel labels are independently distributed, it is easy to show

that ε∗vi = hvi = ln P (mi = v|xi, yi). For this case the expected value < zvi >E(Z) can

be simplified to be:

< zvi >E(Z) =

(

exp (βε∗vi)
∑

α∈A exp (βε
∗
αi)

)

=

(

exp (βhvi)
∑

α∈A exp (βhαi)

)

=

(

exp (β lnP (mi = v|xi, yi))
∑

α∈A exp (β lnP (mi = α|xi, yi))

)

=

(

P (mi = v|xi, yi)β
∑

α∈A P (mi = α|xi, yi)β

)

=

(

[pv(xi, yi) Pi(v)]
β

∑

α∈A[pα(xi, yi) Pi(α)]β

)

which is the same expression as the max step developed in equation 5.3.
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7.7 Summary

This chapter develops the minimax registration framework while incorporating the cor-

relation among the neighboring pixel intensities. The correlation is modeled using a 1D

Markov random process with only a 1st order neighborhood system. Though the correla-

tion could be modeled as a 2D MRF and higher order neighborhood system, evaluating

the registration parameters under such a model would be computationally very expen-

sive. The probability distribution function of the segmentation of a portal image is then

approximated by a distribution function which can be written in a factored form, using

the principle of maximum entropy. The factored distribution function allows it to be

manipulated analytically. The min step is also modified accordingly to incorporate the

correlation among the pixel intensities. The next chapter evaluates and compares the

performance of the proposed registration framework with the mutual information based

registration algorithm using the algorithm developed in this chapter.



Chapter 8

Performance Analysis of the

Algorithm Incorporating Pixel

Correlation

8.1 Introduction

Chapter 7 developed the minimax entropy registration framework which models the cor-

relation among the neighboring pixels in the image using a 1D Markov random field

(MRF). In the min step, a maximum entropy probability distribution of the segmen-

tation of the portal images is obtained. The probability of an edge is estimated as a

by–product of this step. The min step, utilizing the segmentation information estimated

in the max step, estimates the transformation parameters. This chapter evaluates the

robustness and accuracy of this registration framework utilizing both simulated and real

portal images.

The simulated portal images are obtained using the procedure as described in the

166
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chapter 6. For real patient data, the 2D portal images, both in the anterior–posterior

(AP) and left–lateral (LL) views are obtained using the treatment energy X–rays. The

X–ray films are then digitized using a laser digitizer. The dynamic range of the pixel

intensities in the digitized images is 0 to 255.

8.2 2D Simulator to 2D Portal Image Registration

This section evaluates the performance of the minimax (MIME) entropy registration

framework and compares it to the performance of the mutual information (MI)–based

registration framework. Simulated portal and simulator images, with known rigid trans-

formation parameters, are used in the evaluation of the performance of the two strategies.

The simulated portal image is obtained by first rotating the simulator image by 10o and

translating it by 15 pixels along both the X–axis and the Y–axis. Then varying amounts

of i.i.d. Gaussian noise and blur are added.

To compare the performance of the MIME algorithm to the MI–based algorithm,

we first analyze the performance of the two methods given the true segmentation of the

portal image is known (as the portal images are simulated images, the true segmentation

is known). Then we compare their performance when the portal image segmentations are

not known. Finally, we present the performance of the algorithms with increasing noise

and blur in the portal images.

8.2.1 Using True Segmentation of the Portal Images

Figure 8.1 (a) and (b) show the simulator image and the portal images, respectively. An

i.id. Gaussian noise of standard deviation (σ) 30.0 was added to the portal image. The

true segmentation of the portal image used is shown in the figure 8.1 (c). Figure 8.1
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tx ty θXY

(pix) (pix) (deg)

True 15.0 15.0 10.0

MI 4.86 -0.744 3.37

MIME 15.02 14.35 10.14

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.1: (a) Simulated simulator image. (b) Simulated portal image. An i.i.d. Gaus-

sian noise of standard deviation (σ) 30.0 added to the image. (c) True segmentation of

(b). (d) True vertical edges. (e), (f), (g) and (h) are the actual joint probability distribu-

tions of bone–bone, nobone–nobone, bone–nobone and nobone–bone respectively. Note

that joint probability distribution bone–bone means probability that ith pixel is a bone

and (i − 1)th pixels is also a bone. Joint probability distribution bone–nobone means

probability that ith pixel is a bone and (i−)1th pixel is no–bone. Similarly for the other

joint probability distributions.
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tx ty θXY

(pix) (pix) (deg)

True 15.0 15.0 10.0

MI 0.277 -6.04 -1.40

MIME 15.21 14.21 10.23

(a) (b)

Figure 8.2: (a) Simulated simulator image. (b) Simulated portal image with added i.i.d.

Gaussian noise of standard deviation (σ) 35.0. The table above shows the true registra-

tion parameters in the first row, parameters as estimated by the MI–based registration

algorithm in the second row and the third row shows the parameters estimated by the

proposed MIME algorithm (incorporating the 1D MRF).

(d) shows the estimated edges of the portal image. Note that although the algorithm

was formulated to detect only the vertical edges, most of the edges have been correctly

detected and localized. Figures (8.1) (e), (f), (g) and (h) show the joint probability

distributions of bone–bone, nobone–nobone, bone–nobone and nobone–bone, respectively.

That is, the figure (8.1) (h) shows the joint probability that the ith pixel is no–bone and

the (i − 1)th pixel is a bone. The table in figure 8.1 shows that the MI–based method

gets trapped in a local minimum far from the true parameters whereas the MIME–based

algorithm (incorporating the 1D MRF model as developed in chapter 7) estimated the
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tx ty θXY

(pix) (pix) (deg)

True 15.0 15.0 10.0

MI 16.36 16.97 9.93

MIME 15.13 14.54 10.02

(a) (b)

Figure 8.3: (a) Simulated simulator image. (b) Blurred simulated portal image. A

blurring kernel of width 15 employed to blur the image. Again, the table above shows

the true and the estimated registration parameters. The MIME algorithm incorporates

the 1D MRF.

registration parameters with sub–pixel accuracy. Figure 8.2 (b) shows the portal image

where i.i.d. Gaussian noise with σ = 35.0 is added to the portal image. The results

in figure 8.2 also confirm that the MI–based algorithm gets stuck into a local minimum

whereas the MIME approach correctly estimates the parameters with sub–pixel accuracy.

Figure 8.3 (b) shows a portal image which has been blurred using a kernel of width 15

pixels. Figure 8.3 (a) is the simulator image. The table at the top of figure 8.3 shows

that even for the blurred portal image, the MIME approach successfully estimates the

registration parameters with sub–pixel accuracy. The MI–based algorithm is off by as

much as 2 pixels in estimating translation along Y–axis.

Figures 8.4 and 8.5 show the surface plots of the energy functions of the MI and



171

−20 −10 0 10 20 −20
0

20−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

Y−Trans (Pixels)

MiniMax Vs. X−Trans Y−Trans

X−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
MiniMax Vs. X−Trans Y−Trans

X−Trans (Pixels)

Y
−

T
ra

ns
 (

P
ix

el
s)

−20

−10

0

10

20 −20
−10

0
10

20

−0.065

−0.06

−0.055

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

Y−Trans (Pixels)

Mutual Info Vs. X−trans Y−Trans

X−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
Mutual Info Vs. X−trans Y−Trans

X−Trans (Pixels)

Y
−

T
ra

ns
 (

P
ix

el
s)

(a) (b) (e) (f)

−20 −15 −10 −5 0 5 10 15 20
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4
MiniMax Vs. X−Trans

X−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4
MiniMax Vs. Y−Trans

Y−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
−0.065

−0.06

−0.055

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025
Mutual Info Vs. X−trans Y−Trans

X−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
−0.065

−0.06

−0.055

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025
Mutual Info Vs. X−trans Y−Trans

Y−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

(c) (d) (g) (h)

Figure 8.4: Energy plots for noisy (σ = 20.0 pixels) simulated portal images (figures 8.1

(a), (b) ). (a), (b), (c) and (d) show the surface plots of the MIME energy function. (c),

(d), (e) and (f) show the surface plots of the MI energy function. The global optimum

position is (0,0). The MIME algorithm used the true segmentation of the portal image.

MIME algorithm for varying amounts of translations along the X–axis and Y–axis. The

MIME algorithm utilized the true segmentations of the portal image shown in figures 8.1

(c), (d), (e), (f), (g), (h). The top view of the energy function plot for the MIME

algorithm in figure 8.4 (b) shows that the global optimum point is located at the true

optimum whereas, for the MI algorithm, figure 8.4 (f) shows that the global optimum is

shifted from the true optimum. One reaches the same conclusion from the surface plots,

shown in figures 8.5 (b) and (f), for the blurred portal images.

The results of this section show that, given the true segmentation of the portal
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Figure 8.5: Energy plots for blurred (11 pixels) simulated portal images (figures 8.3 (a)

and (b)). (a), (b), (c) and (d) show the surface plots of the MIME energy function. (c),

(d), (e) and (f) show the surface plots of the MI energy function. The global optimum

position is (0,0). The MIME algorithm used the true segmentation of the portal image.

image, the MIME–based method is robust to both noise and blur and can estimate the

parameters with sub–pixel accuracy. Thus, incorporation of the segmentation informa-

tion into the registration framework can lead to robust and accurate estimation of the

transformation parameters. However, the true segmentation of the portal image is almost

never available. Thus, the MIME registration framework simultaneously and iteratively

estimate the segmentation and registration of the portal image to the 2D simulator or

3DCT images.
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tx ty θXY

(pix) (pix) (deg)

True 15.0 15.0 10.0

MI 15.31 15.28 9.94

MIME 15.28 15.02 9.91

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.6: (a) Simulated simulator image. (b) Simulated portal image with i.i.d. Gaus-

sian noise of σ 20.0 added. (c) Estimated segmentation of portal image in (b). (d)

Estimated edges. (e), (f), (g) and (h) show the estimated joint probability distribution

of bone–bone, nobone–nobone, bone–nobone and nobone–bone, respectively.
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tx ty θXY

(pix) (pix) (deg)

True 15.0 15.0 10.0

MI 16.53 16.308 10.26

MIME 15.47 15.72 10.03

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.7: (a) Simulated simulator image. (b) Simulated portal image blurred using a

blurring kernel of width 11 pixels. (c) Estimated segmentation of portal image in (b). (d)

Estimated edges. (e), (f), (g) and (h) show the estimated joint probability distribution

of bone–bone, nobone–nobone, bone–nobone and nobone–bone, respectively.
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8.2.2 Using Estimated Segmentation of the Portal Images

In the previous subsection, having established that incorporation of the segmentation

information into the registration leads to a robust and accurate registration framework,

this subsection compares the performance of the MIME and MI–based algorithms where

the segmentation of the portal image is being estimated automatically and iteratively

within the MIME registration framework.

As a first example, figures 8.6 (a), (b) show the simulator and the portal images,

respectively, registered using both the MI and MIME methods. The portal image is

obtained by transforming the simulator image by known transformation parameters and

then adding an i.i.d. Gaussian noise of standard deviation 20.0. The table at the top

of the figure 8.6 shows the true and the estimated parameters as estimated by the two

algorithms. This table shows that in the presence of noise the performance of the MIME

and MI algorithms is comparable for this dataset, with both algorithms estimating the

registration parameters with sub–pixel accuracy. Figure 8.6 (c) shows the segmentation

of the portal image as estimated by the MIME algorithm and the estimated edges are

shown in figure 8.6 (d).

The surface plots for the energy functions of the MI and MIME methods for this

data set is shown in the figure 8.8. The top views of the energy functions, in figure 8.8

(f), show that the the global optimum for the MI energy function is shifted from the true

optimum point, which is location (0,0).

As a second example, consider the simulator and the portal images shown in

figures 8.7 (a) and (b) respectively. The portal image is obtained by transforming the

simulator image and then blurring it by 11 pixels. The table at the top of the figure shows

the true parameters and the parameters estimated by the MI and MIME algorithms. Note



176

−20 −10 0 10 20 −20

0

20−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

Y−Trans (Pixels)

MiniMax Vs. X−Trans Y−Trans

X−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
MiniMax Vs. X−Trans Y−Trans

X−Trans (Pixels)

Y
−

T
ra

ns
 (

P
ix

el
s)

−20

−10

0

10

20 −20

−10

0

10

20

0.04

0.06

0.08

0.1

0.12

0.14

Y−Trans (Pixels)

Mutual Info Vs. X−trans Y−Trans

X−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20
Mutual Info Vs. X−trans Y−Trans

X−Trans (Pixels)

Y
−

T
ra

ns
 (

P
ix

el
s)

(a) (b) (e) (f)

−20 −15 −10 −5 0 5 10 15 20
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9
MiniMax Vs. X−Trans

X−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9
MiniMax Vs. Y−Trans

Y−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15
Mutual Info Vs. X−trans Y−Trans

X−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

−20 −15 −10 −5 0 5 10 15 20
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15
Mutual Info Vs. X−trans Y−Trans

Y−Trans (Pixels)

F
un

ct
io

n 
V

al
ue

(c) (d) (g) (h)

Figure 8.8: Energy function for noisy (σ = 20 pixels) simulated portal images (figure 8.6

(a) and (b) ). (a), (b), (c), (d) show the surface energy plots for the MIME based al-

gorithm. (e), (f), (g), (h) is the surface plots of the energy function of the MI–based

registration algorithm. The MIME algorithm, in addition used the various joint proba-

bility distributions shown in figure 8.6. The optimum registration is at position (0,0).

that the estimated translation along the X–axis by the MI algorithm is off by more than

1.5 pixels. However, the MIME algorithm for this dataset estimates the parameters with

sub–pixel accuracy. The segmentation of the portal image, as estimated by the MIME

algorithm, is shown in figure 8.7 (c) and figure 8.7 (d) shows the estimated edges.

The surface plots of the energy functions of the MI and MIME–based algorithms

are shown in figure 8.9. It is clear from the surface plots, figures 8.9 (b) and (f), that

while the global optimum for the MIME energy function is located at the true optimum,
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Figure 8.9: Energy function for blurred simulated portal images (figure 8.7 (a) and (b)).

(a), (b), (c), (d) show the surface energy plots for the MIME based algorithm. (e), (f),

(g), (h) is the surface plots of the energy function of the MI–based registration algorithm.

The MIME algorithm, in addition used the various joint probability distributions shown

in figure 8.7. The optimum registration is at position (0,0).

the optimum point of the MI energy function is again shifted by a few pixels from the

true optimum point. The MIME algorithm, in addition, uses the segmentation of the

portal image shown in figure 8.9 (c).

The results of this subsection show that the MIME algorithm is more accurate in

estimating the pixels, in the presence of blur, as compared to the MI–based registration

algorithm. However, in the presence of noise, the performance of the two algorithms is

comparable, with both algorithms leading to sub–pixel accuracy in the estimated regis-
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Figure 8.10: Performance of the MIME (purple) and MI (green) based registration algo-

rithms under increasing noise and blur in the portal images. (a), (b) and (c) show the

graphs of the performance of the two algorithms under increasing noise. (d), (e), (f) show

the performance under increasing blur.

tration parameters.

8.2.3 Performance Under Increasing Noise and Blur

In this subsection we will compare the performance of the MIME and the MI based

algorithms under increasing noise and blur in the portal images. Figure 8.10 (a), (b), and

(c) show the error in estimated registration parameters as a function of increasing noise.

From these figures, it is clear that the performance of the two algorithms is comparable

with both algorithms estimating the parameters with sub–pixel accuracy. However, the
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two algorithms can correctly estimate the transformation parameters for noise of standard

deviations up to 25.0 only.

Figure 8.10 (d), (e), and (f) shows the performance of the two algorithms under

increasing blur in the portal images. These figures show that the MIME algorithm leads

to more accurate estimates of the transformation parameters in the presence of blur as

compared to the MI–based algorithm. This result is also expected as the MIME algorithm

explicitly models the correlation between the pixels and blurring the images will only

increase the correlation.

8.3 2D Portal to 3DCT Registration

This section compares the performance of the MI and MIME–based algorithms using

dual simulated portal images. To obtain the simulated dual portal images, the diagnostic

energy 3DCT voxel values are first mapped to the values at treatment energy. Digitally

reconstructed radiographs (DRRs) are then rendered, after transforming the 3DCT data

set by known transformation parameters, in the anterior–posterior (AP) and left–lateral

(LL) directions. Varying amounts of noise and blur are then added to the DRRs to obtain

the simulated portal images. Since the true transformation parameters are known, this

dataset can be used to compare the performance of the two registration algorithms.

8.3.1 3D Analysis Using Dual Simulated Portal Images

The simulated AP and LL portal images, shown in figures 8.11 (a) and (b), are obtained

by rendering the 3DCT dataset in the AP and LL directions (first transformed by tx = 15

voxels, ty = 15 voxels, θXZ = 10
o) and then adding i.i.d. Gaussian noise of σ = 20.0 pixels.

Note that the rotation angle θXZ is an out–of–plane angle for both the portal images.
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 15.0 15.0 0 0 10.0 0

MI 15.36 15.49 0.66 0.58 8.01 -0.13

MIME 15.18 15.03 0.32 -0.133 10.88 0.41

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 8.11: (a), (b) simulated AP and LL portal images, respectively. The simulated

portal images are obtained by adding i.i.d. Gaussian noise of standard deviation (σ) 20.0

pixels. The dynamic range of pixel intensities of the portal images is 255. (c), (d) show

the estimated segmentations. White is the estimated bone, black si the estimated no–

bone and the gray are the pixels misclassified by the algorithm. (e), (f) are the estimated

edges. (g), (h) are the estimated bone–bone probability distributions. (i), (j) are the

estimated nobone–nobone distributions. The table at the top of the figure shows the true

and the parameters estimated by the MI and MIME algorithms.
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Figures 8.11 (c) and (d) show the estimated segmentations of the portal images. The

estimated edges are shown in figures 8.11 (e) and (f). The table at the top of the figure

shows that the MIME algorithm (incorporating 1D MRF) leads to more accurate estimate

of the transformation parameters for this dataset as compared to the MI algorithm.

The portal images in figures 8.12 (a) and (b) are obtained by blurring the DRRs,

rendered in the AP and LL directions, by applying a blurring kernel of width 11 pixels.

The 3DCT data set was transformed by tx = 15 voxels, ty = 15 voxels, θXZ = 10
o to

obtain the DRRs. The table at the top of the figure shows that for this dataset, the

MIME algorithm is able to estimate the out–of–plane angle, θXZ , within 1
o and the X,

Y translations with sub–pixel accuracy.

To obtain the portal images in figures 8.13 (a), (b) and figures 8.14 (a), (b), the

3DCT dataset was first transformed by tx = 15 voxels, ty = 15 voxels, θXY = 10
o. Then

the DRRs, in the AP and LL directions, were rendered. For simulated portal images in

figures 8.13 (a), (b), i.i.d. Gaussian noise of σ = 20.0 was added to the DRRs and to

obtain the simulated portal images in figures 8.14 (a), (b), the DRRs were blurred by 11

pixels.

The table at the top of the figure 8.13 shows the parameters estimated by the MI

and MIME algorithms for this dataset. Note again that the MIME algorithm estimates

the transformation parameters with sub–pixel accuracy for this dataset. For the blurred

simulated portal images also, see table at the top of figure 8.14, the MIME algorithm

estimates the X, Y translation parameters with sub–pixel accuracy and the rotation

angle θXY within 0.5
o of the true rotation.

These examples show that the MIME algorithm is robust to both noise and blur,

for this dataset, and is more accurate in estimating the transformation parameters as
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 15.0 15.0 0 0 10.0 0

MI 14.95 15.45 0.739 0.528 7.187 0.018

MIME 15.27 14.93 0.118 0.55 9.18 0.408

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 8.12: (a), (b) simulated AP and LL portal images, respectively. The simulated

portal images are blurred by 11 pixels. (c), (d) show the estimated segmentations. (e), (f)

are the estimated edges. (g), (h) are the estimated bone–bone probability distributions.

(i), (j) are the estimated nobone–nobone distributions. The table at the top of the figure

shows the true and the parameters estimated by the MI and MIME algorithms.
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 15.0 15.0 0 0 0 10.0

MI 15.28 15.436 0.68 0.59 -0.05 6.23

MIME 15.20 14.95 0.026 -0.76 -0.03 10.39

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 8.13: (a), (b) simulated AP and LL portal images, respectively. The simulated

portal images are obtained by adding i.i.d. Gaussian noise of standard deviation

(σ) 20.0. The dynamic range of pixel intensities of the portal images is 255. (c), (d)

show the estimated segmentations. (e), (f) are the estimated edges. (g), (h) are the

estimated bone–bone probability distributions. (i), (j) are the estimated nobone–nobone

distributions. The table at the top of the figure shows the true and the parameters

estimated by the MI and MIME algorithms.
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 15.0 15.0 0 0 0 10.0

MI 15.40 15.80 0.72 1.67 -0.075 9.107

MIME 15.27 15.07 0.078 0.65 1.09 10.43

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 8.14: (a), (b) simulated AP and LL portal images, respectively. The simulated

portal images are blurred by 11 pixels. (c), (d) show the estimated segmentations.

(e), (f) are the estimated edges. (g), (h) are the estimated bone–bone probability distri-

butions. (i), (j) are the estimated nobone–nobone distributions. The table at the top of

the figure shows the true and the parameters estimated by the MI and MIME algorithms.
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Figure 8.15: Energy function plots using noisy (σ = 20.0) simulated portal images (fig-

ures 8.11 (a), (b)). The true registration parameters are tx = 15 voxels, ty = 15 voxels

and θXZ = 10
o. (a), (b), (c) and (d) show the surface plots of the MIME energy func-

tions. (e), (f), (g) and (h) are the surface plots of the MI energy functions. The MIME

algorithm, in addition, uses the various distributions shown in figures 8.11.

compared to the MI–based registration algorithm. To further compare the MI and MIME–

based registration algorithms, we plotted the energy functions of the two algorithms for

these simulated portal image datasets.

Figures 8.15, 8.16, 8.17 and 8.18 show the surface plots of the energy function of

the MIME and MI–based registration algorithms. In these plots, (0,0) is the optimum

registration position. Simulated portal images shown in figures 8.11 8.12, 8.13 and 8.14

are used to plot the energy functions shown in the figures 8.15, 8.16, 8.17 and 8.18,
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Figure 8.16: Energy function plots using blurred (11 pixels) simulated portal images

(figures 8.12 (a), (b)). The true registration parameters are tx = 15 voxels, ty = 15

voxels and θXZ = 10
o. (a), (b), (c) and (d) show the surface plots of the MIME energy

functions. (e), (f), (g) and (h) are the surface plots of the MI energy functions. The

MIME algorithm, in addition, uses the various distributions shown in figures 8.12.

respectively. The MIME registration framework in–addition utilizes the various estimated

distribution shown in the figures. From these energy function surface plots it is clear that

the energy function of the MI–based registration algorithm has many local optima for

noisy simulated portal images and that while using the blurred simulated portal images,

the MI–based energy function is flat near the global optimum. On the other hand, the

energy functions for the MIME algorithm has a global optimum at (or at most one voxel

away) from the global optimum for both the blurred and noisy simulated portal images.
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Figure 8.17: Energy function plots using noisy (σ = 20.0) simulated portal images (fig-

ures 8.13 (a), (b)). The true registration parameters are tx = 15 voxels, ty = 15 voxels

and θXY = 10
o. (a), (b), (c) and (d) show the surface plots of the MIME energy func-

tions. (e), (f), (g) and (h) are the surface plots of the MI energy functions. The MIME

algorithm, in addition, uses the various distributions shown in figures 8.13.

The surface plots of the energy functions also show that the MIME algorithm is

both robust to noise and leads to accurate estimates of the transformation parameters as

compared to the MI–based registration algorithm. To further compare the performance

of the MI and MIME algorithms, we plotted the error in the estimated parameters for

both MI and MIME algorithms, for increasing levels of noise and blur in the simulated

portal images.
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Figure 8.18: Energy function plots using blurred (11 pixels) simulated portal images

(figures 8.14 (a), (b)). The true registration parameters are tx = 15 voxels, ty = 15

voxels and θXY = 10
o. (a), (b), (c) and (d) show the surface plots of the MIME energy

functions. (e), (f), (g) and (h) are the surface plots of the MI energy functions. The

MIME algorithm, in addition, uses the various distributions shown in figures 8.14.

8.3.2 Performance Under Varying Noise and Blur

In this section, we compare the performance of the MIME and MI–based algorithms for

increasing noise and blur in the simulated portal images.

Figures 8.19 (a), (b), (c) show the graphs of the error in the estimated parameters

with increasing noise in the portal images. Figures 8.19 (d), (e), (f) show the graphs of

error with increasing blur. These graphs show that the MIME algorithm is robust to

both noise and blur in the portal image and leads to more accurate estimation of the
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Figure 8.19: (a), (b), (c) Graphs of error in estimated transformation parameters with

increasing noise. (d), (e), (f) show the graphs of errors in estimated parameters with

increasing blur in the simulated portal images. The graph for MI is shown in green and

the graph for MIME is shown in purple. The true registration parameters are tx = 15

voxels, ty = 15 voxels, tz = 0 voxels, θXY = 0.0
o, θXZ = 10

o and θY Z = 0
o.

transformation parameters. Note also that the rotation angle, θXZ , being estimated is an

out–of–plane angle for both the AP and LL portal images. However, using dual portal

images, the MIME algorithm is able to estimate this angle within 1o for noise up to a

standard deviation of 25.0. Figure 8.19 (d) shows that for blur 11 in the portal image,

the error in the estimated X–translation reduces suddenly for the MI–based algorithm.

This can only be explained by the presence of a local optimum close to the true optimum

for this dataset.
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Figure 8.20: (a), (b), (c) Graphs of error in estimated transformation parameters with

increasing noise. (d), (e), (f) show the graphs of errors in estimated parameters with

increasing blur in the simulated portal images. The graph for MI is plotted in green and

the graph for MIME is plotted in purple. The true registration parameters are tx = 15

voxels, ty = 15 voxels, tz = 0 voxels, θXY = 10.0
o, θXZ = 0

o and θY Z = 0
o.

Figure 8.20 plots the error in the estimated transformation parameters where the

true parameters to be estimated are tx = 15 voxels, ty = 15 voxels, tz = 0 voxels, θXY =

10.0o, θXZ = 0
o and θY Z = 0

o. Note that the angle θXY is an in–plane rotation angle for

the AP portal image. These graphs also show that, for this dataset, the MIME algorithm

estimates the transformation parameters robustly and accurately under both increasing

noise and blur. However, figure 8.20 (f) shows that at a blur of 15 pixels, the error in

the estimated θXY is very small. This again can only be explained by presence of a local
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optimum close to the true optimum for this dataset.

8.4 Performance on Real Patient Data Set

This section presents the performance of the MIME registration framework on real patient

data. The AP and LL portal images were obtained by moving the patient into the

treatment room and actually imaging the 2D portal images, using the treatment energy

X–rays, onto the X–ray films. The X–ray films were then digitized using the 12–bit

CCD digitizer. However, only 8–bit per pixel data were available for estimating the

registration parameters. For the purposes of registration, the digitized portal images were

then contrast enhanced using adaptive histogram equalization technique. The treatment

planning 3DCT dataset of the patient was obtained earlier. After the dual portal images

were contrast enhanced, registration of the dual AP and LL portal images to 3DCT

dataset was carried out completely automatically, with no human interaction.

Figures 8.21 (a), (b) show the contrast enhanced AP and LL portal images, re-

spectively. The DRRs obtained from the 3DCT dataset in the AP and LL directions, in

its initial pose, are shown in figures 8.21 (c) and (d). The DRRs rendered from the 3DCT

dataset, in its final pose estimated by the MIME algorithm, in the AP and LL directions

are shown in the figures 8.21 (e), (f). The segmentations of the portal images, iteratively

and simultaneously estimated in the MIME framework are shown in the figures 8.21 (g),

(h). Since the true transformation parameters are not known, to assess the accuracy of

the estimated pose by the proposed framework, contours are hand drawn on the portal

images along the prominent anatomical features. These contours are shown in red in

figures 8.21 (a), (b). The contours are then mapped onto the DRRs obtained from the

3DCT image in its initial and final pose undeformed, as shown in the figures 8.21 (c), (d),
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(a) (b) (c) (d)

(g) (h) (e) (f)

Figure 8.21: Recovery of setup variation using actual patient data and the MIME reg-

istration framework proposed in the previous chapter. (a,b) Portal images, (c,d) DRRs

of 3DCT in original pose, (e,f) DRRs in corrected pose, (g,h) implicit segmentation of

portals. See more detailed explanation in the text.

(e) and (f). Note the goodness of match of the contours to the anatomical features in the

DRRs in figures 8.21 (e), (f) and thus verifying the accuracy of the estimated parameters.

However, as can been seen from figure 8.21 (f), the final pose is still off from the correct

registration by at–least 2 pixels.

The difference between the initial and the final parameters estimated by the MIME

algorithm are θXY = 0.0738
o, θY Z = 0.72259

o, θXZ = 0.0177
o, tx = 2.416 voxels, ty =

12.3701 voxels and tz = 11.7002 voxels.

As a comparison of the MIME algorithm to the MI–based registration algorithm
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(a) (b) (c) (d)

(e) (f)

Figure 8.22: Recovery of setup variation using actual patient data and the MI–based

registration algorithm. (a,b) Portal images, (c,d) DRRs of 3DCT in original pose, (e,f)

DRRs in corrected pose using MI–based algorithm.

on real patient data, figure 8.22 shows the performance of the MI–based algorithm on

the same patient data. Note that the Y–translation and the Z–translation parameters as

estimated by the MI–based algorithms are further from the true parameters compared to

the parameters estimated by the MIME–based algorithm. Also, the MI–based algorithm

seems to have introduced erroneous estimates of rotation angles. The difference between

the initial and the final parameters estimated by the MI–based algorithm are θXY =

0.351614o, θY Z = 2.4984
o, θXZ = 0.7289

o, tx = 2.888 voxels, ty = 9.7512 voxels and

tz = 9.43122 voxels.
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8.4.1 Performance Using Phantom Data

This section evaluates the performance of the minimax entropy registration framework

and compares it with the performance of the mutual information based registration frame-

work using two sets of anteriori–posteriori (AP) and left–lateral (LL) phantom portal

images. After the first set of dual portal images is acquired, the phantom is moved by a

known amount of rotation and translations before the second set of dual portal images

is acquired. Figures 8.23 (a), (b) show the histogram equalized first set of AP and LL

portal images acquired. The second set of AP and LL portal images are shown in the

figures 8.24 (a) and (b).

The top row in table 8.1 shows the parameters by which the phantom was trans-

formed before taking the second set of portal images. The size of each pixel is 2.73

mm. The portal images shown in figures 8.23 (a) and (b) are obtained from the PMMA

phantom using 6MV energy X–rays. The X–ray films were then digitized using a 12–bit

laser scanner. The resulting digitized portal images were then histogram equalized. Fig-

ures 8.23 (a), (b) show the adaptive histogram equalized AP and LL portal images. To

obtain the second set of AP and LL portal images shown in figures 8.24 (a) and (b), the

phantom was rotated by 1o about the Z–axis and then translated by 1 cm along both

the X and Y axes. Then the AP and LL portal images were acquired using the 6MV

X–rays. Figures 8.24 (a) and (b) show the adaptive histogram equalized portal images

obtained. Since the size of each pixel is 2.73 mm, a 1 cm shift is equal to a shift by 3.66

pixels along the axes. The rotation about the X–axis, θY Z , is roughly 10
o. Thus, for both

algorithms, θY Z , was initialized close to 10
o. It was initialized to 7o for both the MIME

and MI algorithm.

Figures 8.23 (c) and (d) show the DRRs obtained from the 3DCT in the final
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

MIME 0.55 -9.09 8.89 -11.89 1.81 2.75

MI 1.02 -5.2 10.86 -8.78 0.94 4.65

(a) (b)

(c) (d) (e) (f)

Figure 8.23: (a), (b) show AP and LL portal images obtained from phantom using 6MV

X-rays. (c), (d) show the AP and the LL DRRs, respectively, obtained from the CT at

the final estimated position using the MIME algorithm. The MIME algorithm models the

images a 1D Markov random process. (e), (f) are the AP and the LL DRRs, respectively,

obtained from the CT at the final estimated position using the MI–based registration

algorithm. The table above shows the parameters estimated by the two algorithms.
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position as estimated by the MIME algorithm and the figures 8.23 (e) and (f) show

the DRRs obtained from the 3DCT in the final position as estimated by the MI–based

algorithm. The table at the top of the figure shows the parameters estimated by the two

algorithm. To visualize the accuracy of the estimated parameters, contours were hand

drawn along features in the portal images and were then mapped over to the DRRs. From

these figures, it can be seen that the MIME algorithm is roughly off by 3 to 4 voxels in

estimating the ty whereas the MI estimates are even poorer.

Similarly, figures 8.24 (c) and (d) show the DRRs obtained from the 3DCT in the

final position as estimated by the MIME algorithm and the figures 8.24 (e) and (f) show

the DRRs obtained from the 3DCT in the final position as estimated by the MI–based

algorithm. Again, the contours are hand–drawn and then mapped over to the DRRs

to visualize the accuracy of the estimated parameters. It can be noted that for this

dataset also, except for ty, the MIME–based algorithm has estimated the transformation

parameters accurately.

The top row of the table 8.1 shows the parameters by which the phantom was

rotated to obtain the second set of portal images. The second row of the table list the

estimated difference in the position of the phantom as estimated by the MIME algorithm

and the third row is the estimate obtained using the MI–based registration algorithm.

Thus, for this problem, this table shows that the proposed MIME algorithm does a much

better job in estimating the phantom position.

Sources of Errors Some of the sources of errors which might lead to inaccurate esti-

mation of the transformation parameters are:

• After digitizing the portal images and before doing registration, the center of the

field should be the center of the portal images. Thus, the digitized portal images
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

MIME -3.98 -5.10 8.67 -11.65 1.89 4.38

MI -3.46 -5.37 10.82 -7.41 1.10 4.64

(a) (b)

(c) (d) (e) (f)

Figure 8.24: (a), (b) show AP and LL portal images obtained from phantom using 6MV

X-rays. To obtain the portal images, the phantom was first rotated and translated by a

known (from the position in which the portal images shown in figures 8.23 were obtained)

amount on the treatment table and then the portals were obtained. The phantom was

first rotated by 1o about the Z–axis, then translated by 1 cm along both X and Y axes.

(c), (d) show the AP and the LL DRRs, respectively, obtained from the CT at the final

estimated position using the MIME algorithm. The MIME algorithm models the images a

1D Markov random process. (e), (f) are the AP and the LL DRRs, respectively, obtained

from the CT at the final estimated position using the MI–based registration algorithm.

The table above shows the parameters estimated by the two algorithms.
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tx ty tz θY Z θXZ θXY

(vox) (vox) (vox) (deg) (deg) (deg)

True 3.66 3.66 0 0 0 1

MIME 4.53 3.99 0.22 0.24 0.08 1.63

MI 4.48 0.17 0.04 1.37 0.16 0.01

Table 8.1: The top row of the table shows the parameters by which the phantom was

transformed before taking the second set of portal images. The second row shows esti-

mates of these parameters as estimated by using the proposed MIME algorithm. The

third row shows the parameters estimated using the MI based registration algorithm.

are cropped to make the center of the field to be the center of the cropped portal

images. Such a cropping can introduce an error of up–to a pixel along either axes in

centering the field. This is important while utilizing dual portal images for patient

setup verification as now the two portal images might not be consistent (i.e. there

might not be a unique position of the 3DCT image such that it is registered to both

the portal images).

• The field lines, including the cross hairs, should be parallel to the boundaries of

the cropped portal images. Thus, it might be necessary to rotate the portal images

to make the field lines parallel which might lead to an error of up–to 1o in–plane

rotation for each portal image.

These two sources of errors are important and need to be carefully taken care of before

moving the algorithm to a clinical setting.
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Estimation of Y–translation From this example, it can be seen that while the

MIME–based algorithm was quite accurate in estimating tx, the error in the estimation of

ty was of the order of 2 to 3 voxels. Similar results were observed while registering image

data set obtained from a real patient. Note that in our minimax entropy registration

framework, we have modeled 2D images as being 1D random processes by concatenating

the rows. In this model only the vertical edges were being modeled and all the horizontal

edges will be lost. Since using this model we are getting good estimates on tx, it will be

interesting to see whether modeling the images as 2D Markov random fields improve the

estimation on both tx and ty and in particular the estimation of ty.

8.5 Summary

Performance analysis using simulated portal images datasets verifies the accuracy and the

robustness of the minimax entropy registration algorithm in the presence of both noise

and blur in the portal images. In general, the minimax entropy registration framework

leads to more accurate estimates of the parameters compared to the mutual information–

based registration algorithm, especially in the presence of blur in the simulated portal

images. The minimax entropy algorithm even estimated the the out–of–plane angle, θXZ ,

within 1o of the true value for a large range of noise and blur. Performance analysis on the

real patient portal images shows that while the proposed algorithm, in general, estimated

the alignment correctly, it is off by about 2 to 3 voxels along the Y–axis. The use of better

portal images, possibly scanned using 12–bit laser scanner, is expected lead to accurate

registration of the portal images to the 3DCT image data.



Chapter 9

Future Work

9.1 Introduction

Comparisons of the minimax entropy registration framework to other competing meth-

ods, especially the ridge–based registration method [44], in chapter 6 showed that the

feature–based registration methods can lead to accurate estimation of the parameters,

if the features have been accurately estimated. A number of feature–based registration

algorithms have been proposed in the literature, with the algorithm proposed by Lavallee

et al. [66] being of special interest for this chapter. The downfall of the feature–based

methods is that in the presence of noise and blur in the images, accurate feature detection

and localization requires human intervention.

The minimax entropy–based registration method (MIME) developed in chapter

7 incorporates the information that the neighboring pixel intensities in the images are

correlated, except at the boundaries of regions. A simple 1D MRF, an Ising chain, model

was used to capture neighborhood correlations. Line processes [43] were incorporated to

model boundaries, or the pixel intensity discontinuities, between regions. Assuming that

200
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the pixel intensity distribution can be modeled using a MRF leads to regularization of the

estimated segmentation of the portal images, which in turn leads to better localization

and detection of edges.

As the edge information has already been estimated during the max step of the

minimax entropy algorithm, we propose to incorporate this information into the param-

eter estimation step, the min step, also. Incorporation of accurately–localized edges is

expected to further improve the accuracy of the proposed minimax entropy algorithm.

This chapter develops the underlying mathematics, but leaves out the verification of the

accuracy of the strategy as future work.

9.2 Formulation Incorporating Edge Information

As mentioned in the introduction, the edge information has already been estimated in

the max step as formulated in chapter 7. This section only develops the min step while

incorporating the estimated edge information. Let Ge be the N ×N ×N random vari-

able denoting edges obtained from G. The transformation parameters are estimated by

minimizing the joint conditional entropy as follows:

Min step:

T̂ = argmin
T
H(E ,M,X|G,Ge, T )

= argmin
T
[H(M,X|G,Ge, T, E) +H(E|G,Ge, T )]

≤ argmin
T
[H(M,X|G,T ) +H(E|Ge, T )]

= argmin
T
[H(M,X|Y (T )) +H(E|Ge, T )]

= argmin
T
[H(M,X, Y )−H(Y ) +H(E|Ge, T )]
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= argmin
T
[H(M,X, Y )−H(Y ) +H(E , Ge, T )]

= argmin
T
[H(X,Y |M) +H(M)−H(Y ) +H(E , Ge, T )]

= argmin
T
[H(X,Y |M)−H(Y ) +H(E , Ge, T )]

We have dropped the termsH(M), H(Ge, T ) as they are constant. The inequality

follows from the fact that conditioning reduces entropy. The first term is similar to the

conditional entropy which we minimize in [4]. However, a subtle point to note is that this

formulation incorporates correlation between the neighboring pixels. The second term

minimizes the conditional entropy of the edges in the portal image and the edges from

the 3D CT space.

To formulate the problem in the entropy framework, we shall assume that Ge is

the signed distance transformation of the edges in three space. To obtain Ge, first, the

3D surface extracted from G is distance transformed. Then all distances in the distance

transformed image are set to negative values. Further, a positive sign is spread from an

initial exterior point. This recursive spreading of the positive sign from points to their

neighbors is terminated at points close to the 3D surface. Note that after the recursive

spreading has stopped, distances outside the surface are positive–valued and distances

within the surface are negative valued.

The distance of an edge, in 2D portal image, to the surface of pelvic bone, in

a 3D CT image, is defined as follows. A ray is back–projected from the edge feature

to the radiation source. Then the minimum distance along the ray to the 3D pelvic

surface is defined as the distance of the edge from the pelvic surface. Using a signed

distance transform of the 3D pelvic bone surface uniformly handles the case where the

back–projected ray cuts through the bone surface. Once a signed distance transformed
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3D image Ge is obtained, a 2D distance projection image, S(T) = S
′, at the current

estimate of transformation parameters, is obtained in the following manner. The ith

pixel value, in S(T) = S′, is the minimum distance in the signed distance transformed

3D CT along the projection ray from the ith pixel to the radiation source. When the 3D

CT is aligned to the 2D portal images, the projection rays from the edges in 2D portal

images will be tangential to the 3D surface and hence the minimum distance along these

projection rays will be zero. In order to estimate the registration parameters, the entropy

of the minimum distances along the projection rays from the edges in portal images is

minimized. Therefore, the joint entropy term H(E , Ge, T ), which is defined as H(E , S ′),

is minimized to estimate the transformation parameters. M. van Herk et al. [114] showed

that, for portal images, image artifacts, organ motion and poor segmentation may lead

to detection of false edges in portal images which might decrease the accuracy of the

registration algorithm. This observation requires a match method which is robust to these

outliers. Collignon et al. [27] also proposed to minimize the entropy of distances between

corresponding points, while registering two point sets. We feel that the minimization

of the entropy of distances will lead to robustness of the algorithm in the presence of

outliers.

The joint entropy term H(E , S ′) can be further simplified to be (see appendix D.5.3 for

details):

H(E , S′) = N · < e > H1(s
′)
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where,

< e >≡ 1

N

N
∑

i=1

< ei >=
1

N

N
∑

i=1

P (ei = 1)

and appendix D.6.3 evaluates the Parzen window estimates and derivatives of the entropy

term H1(s
′).

Thus, the min step can be summarized as:

Min Step:

T̂ ≤ argmin
T
[H(X,Y |M)−H(Y ) +H(E , Ge, T )]

= argmin
T

[

H(X,Y |M)−H(Y ) +H(E , S ′)
]

with the various entropy terms being evaluated as:

H(X,Y |M) ≈ (N − 1)




∑

{α,β}
< zαzβ > Hαβ(x2, y2, x1, y1)−

∑

α∈A
< zα > Hα(x, y)





H(Y ) ≈ N ·H(y)

H(E , S′) = N · < e > H1(s
′)

9.2.1 Incorporation of Whole Boundary Information

The min step formulation above incorporated edge information into the minimax entropy

framework. However, using individual detected edges may not be robust, especially in the

presence of noise. Thus, it is felt that possible grouping of edges into whole object bound-

aries, extracted from portal images, may further constrain the registration. Therefore,

incorporation of whole boundary information into the registration framework remains a
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direction for our future research efforts.

9.2.2 Using higher order MRFs

The minimax entropy framework, developed in chapter 7, modeled images as 1D Markov

random fields (MRFs), thus incorporating only the correlation among the nearest neigh-

bor pixels in the same row. Such a 1D MRF model can capture only the vertical edges in

the portal images. 2D MRF models with 1st or higher order neighborhoods can be em-

ployed to capture horizontal edges. Thus, in future, we would like to study the effects of

higher order Markov random field models of portal images on the estimated segmentation

and registration parameters.

9.3 Organ Motion and Using Ultrasound Data

The minimax entropy registration framework was developed mainly for patient setup

verification in prostate cancer treatment. Patient setup verification was achieved largely

by using the bony anatomy visible in the portal images and the 3D CT data set. However,

for the problem of prostate cancer treatment using radiotherapy, the real goal is to identify

and localize soft tissue position. The prostate may move, on a day–to–day basis, to a

large extent with respect to the bony anatomy, depending upon the bladder and rectum

filling [1, 31]. Thus, there are inherent errors in using the bony anatomy to localize

the prostate and so the gains in patient positioning accuracy can be superseded by the

uncertainty introduced in linking the bony anatomy to the prostate. Thus, there is a

need to incorporate organ motion compensation into the prostate cancer radiotherapy.

As future work, we would like to integrate intra–treatment ultrasound for measuring

prostate motion. If the prostate can be segmented from several ultrasound views taken
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during a particular treatment fraction and then registered to the internal anatomy at

both day 1 of the treatment and the current treatment, estimated prostate motion can

be used to more accurately adjust the treatment to the actual position of the prostate.

9.4 Summary

This chapter develops the minimax registration framework which incorporates the edge

information estimated in the max step. Incorporation of the edge information leads to

a three–way integrated registration framework. The min step, using the estimated edge

information integrates the sparse–field based and the dense–field based registration meth-

ods. Accurate detection and localization of the features used in registration necessitates

human intervention in most feature based registration methods. Whereas the dense–field

registration methods are robust to noise and blur in the images. Thus, in the initial

iterations of the minimax entropy algorithm, the registration is guided by the dense

information, the pixel intensities. During these iterations the edges are detected and

localized automatically in the max step. These accurately–detected and localized edge

information can then guide the registration in the later iterations, leading to an accurate

estimate of the registration parameters. An important point to keep in mind is that in

the minimax entropy registration framework registration is guided by the bony anatomy

as only the bony structures are visible in the portal images. However, for the external

beam radiotherapy (EBRT) of the prostate cancer it is necessary to localize the prostate

which might move relative to the bony anatomy.



Chapter 10

Summary

This thesis presented an integrated information theoretic framework where the segmen-

tation and the registration of the dual portal images to the 3D CT dataset are carried

out simultaneously and iteratively. The goal of this registration framework is an iterative

strategy where a rough estimate of segmentation of a low resolution image is used to bet-

ter estimate the registration parameters and an estimate of the registration parameters

is used to better segment the low resolution image by making use of information from

the high resolution image.

The proposed registration framework, called the minimax entropy framework,

has two steps, the max step and the min step. The max step and the min step evaluate

appropriate entropies to estimate the probability distribution on the segmentation labels

and the registration parameters which bring the 3D CT dataset into alignment with the

dual portal images. The registration framework does not assume anything about the

underlying dataset being registered and estimates various probability density functions

from the given dataset itself. Thus, the proposed registration framework can be easily

extended for the registration of any low resolution image to a high resolution image.
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Experimental results show that the incorporation of segmentation information

into the registration framework leads to a registration algorithm which is robust to both

noise and blur in the portal images. The robustness of the algorithm to noise and blur

is evaluated using simulated portal images. The segmentation of the portal image as

estimated by the proposed algorithm was compared to the segmentation obtained using

other strategies. These comparisons showed that the proposed registration framework

leads to better segmentation of the portal images. The reason why the MIME algorithm

is expected to better segment portal image is because of the fact that the algorithm is

using information from the high resolution 3D CT image.

Incorporation of the correlation information into the registration framework led

to better estimate of the segmentation and accurate registration. However, this increased

the computational complexity of the algorithm.

Experiments with a ridge–based method [44] showed that the feature based regis-

tration algorithms can lead to very accurate estimation of the registration parameters if

the features have been accurately detected and localized. Thus, for the future work, reg-

istration framework has been formulated to make use of the edge information, estimated

in the max step, in the min step to increase the accuracy of the estimated registration

parameters.

Incorporation of the edge information into the min step will lead to a three–way

integrated registration framework. On one hand, the framework has successfully inte-

grated the dual problem of segmentation and registration of low resolution, low contrast

image to a high resolution, high contrast image. On the other hand, incorporation of the

edge information will lead to integration of dense–field and sparse–field based registration

methods. Sparse–field based methods are plagued by the inaccuracies in detection and
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localization of the features to be used for registering images. However, if the features

are accurately detected and localized, these methods can lead to accurate estimation of

the registration parameters. Dense–field methods are robust to noise and blur and so the

proposed framework uses the gray–scale pixel intensities to estimate the registration pa-

rameters in the initial iterations of the algorithm. Better estimates of the segmentation of

the portal images leads to better estimates of the edges. The estimated edge information

can then be used in the latter iterations to further improve the image registration.

In short, this thesis presents a registration framework which is robust to both

noise and blur in the portal images and leads to an accurate estimation of the registration

parameters. However, the incorporation of edges and whole boundary information into

the registration framework may further improve the accuracy of the estimated parameters.

For patient setup verification during EBRT, one should also take into consideration the

movement of the prostate with respect to the bony anatomy.



Appendix A

Relation between Correlation

Coefficient and Mutual

Information

Recently in the literature [117, 104, 27] mutual information has been used to register

multi–modality images. For the same modality images correlation might still be the right

metric to use. This section shows, under some assumptions, that the mutual information

is more sensitive to mis–registration compared to the correlation coefficient.

Let the pixel intensities of the reference image be denoted by a random variable

x which is assumed to be Gaussian distributed with mean µx and standard deviation σx.

Thus, its density function can be written as:

px(x) =
1

σx
√
2π
exp

[

−1
2

(

x− µx
σx

)2
]

Similarly, let the pixel intensities of the transformed image be denoted by a random
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variable y which is also assumed to be Gaussian distributed with mean µT and standard

deviation σT . Note that the mean and variance of y are a function of transformation

parameters T .

py(y) =
1

σT
√
2π
exp

[

−1
2

(

y − µT
σT

)2
]

Assume further that the joint density function, px,y(x, y), is also a jointly Gaussian density

function specified as:

px,y(x, y) =
1

2π|Ψ|1/2 exp









−1
2
(x− µx y − µT )Ψ−1









x− µx

y − µT

















where Ψ is the covariance matrix given as

Ψ =









σ2x rT σxσT

rT σxσT σ2T









We shall assume that as the images are registered, the form of their joint densities and

the marginal remain Gaussian, while possibly the mean, variance and the correlation

coefficients change. The reference image stays unchanged, and hence px(x) is independent

of T, transformation parameters.

The mutual information between the random variables x and y is defined to be:

I(x, y) = H(x) +H(y)−H(x, y)
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Differentiating the equation with respect to the transformation parameters T , we have

∂

∂T
I(x, y) =

∂

∂T
H(y)− ∂

∂T
H(x, y) (A.1)

Let us evaluate the two terms on the right side of the equation separately.

A.0.1 Evaluation of ∂
∂T
H(y):

Since y is assumed to be Gaussian distributed, the entropy of the distribution py(y) can

easily be shown to be:

H(y) = ln
(

σT
√
2πe

)

Differentiating both side by T , we have

∂

∂T
H(y) =

(

1

σT

)

∂

∂T
σT (A.2)

A.0.2 Evaluation of ∂
∂T
H(x, y):

The inverse of the covariance matrix, Ψ, is given as:

Ψ−1 =
1

σ2xσ
2
T (1− r2T )









σ2T −rTσxσT

−rTσxσT σ2x









Thus, the joint entropy can be evaluated as:

H(x, y) = −
∫ ∫

p(x, y) ln p(x, y) dx dy
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Since p(x, y) is jointly Gaussian, it can easily be shown,

H(x, y) = ln

(

2πσxσT

√

1− r2T
)

+

∫ ∫

p(x, y)
1

2















[x− µx y − µT ]Ψ−1









x− µx

y − µT























dx dy

which can be further simplified to:

H(x, y)− ln
(

2πσxσT

√

1− r2T
)

=

∫∫

p(x, y)

2σ2xσ
2
T (1− r2T )

[

σ2T (x− µx)2 − 2rTσxσT (x− µx)(y − µT ) + σ2x(y − µy)2
]

dx dy

The last equation can be further simplified as follows:

2σ2xσ
2
T (1− r2T )

[

H(x, y)− ln
(

2πσxσT

√

1− r2T
)]

= 2σ2Tσ
2
x − 2rTσTσx

∫∫

p(x, y)(x− µx)(y − µT ) dx dy

= 2σ2Tσ
2
x − 2r2Tσ2Tσ2x

Therefore, we can write

H(x, y) = ln

(

2πσxσT

√

1− r2T
)

+ 1

= ln

(

2πeσxσT

√

1− r2T
)
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Differentiating the last equation with respect to T , we have,

∂

∂T
H(x, y) =

1

σT

∂

∂T
σT −

rT
1− r2T

∂

∂T
rT (A.3)

Thus, from equations (A.1), (A.2) and (A.3), we can now write:

∂rT
∂I(x, y)

=

(

rT
(1− r2T )

)

∂rT
∂T

(A.4)

From equation (A.4), it is clear that a small change in transformation parameters, close

to the true registration, will lead to a large change in the mutual information between the

random variables. Thus, it is expected that the mutual information–based registration

method will be more sensitive to the mis–registration between same modality images. It

is also easy to show, from equation (A.4), that the mutual information is more sensitive

to mis–registration when rT ≥ −1+
√
5

2 , the golden ratio,

(

rT
(1−r2

T
)

)

≥ 1.

Figure A.1 plots the graph of

(

rT
(1−r2

T
)

)

as a function of rT . Note that when

the images are reasonably correlated, that is when rT ≥ −1+
√
5

2 , a small change in the

correlation coefficient will lead to a large change in the mutual information.

A.1 Extensions to Mixture of Gaussian Density Functions

This result can be easily extended to a more general case where the joint density between

the pixel intensities of the two images to be registered can be modeled as a weighted sum

of Gaussians, that is, if the joint density function can be written in the form:

p(x, y) =
∑

a∈A
αa

1

2π|Ψa|1/2
exp

[

−1
2
wa(x)Ψ

−1
a w′a(x)

]
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Figure A.1: The graph plots

(

rT
(1−r2

T
)

)

≥ 1 as a function of correlation coefficient rT .

where, wa(x) = (x− µx y − µT ) and Ψa is the covariance matrix given as

Ψa =









σ2ax raT σaxσaT

raT σaxσaT σ2aT









Then it can be easily shown that:

∂

∂T
I(x, y) =

∂

∂T
H(y)− ∂

∂T
H(x, y)

=
∑

a∈A
αa

(

raT
(1− r2aT )

)

∂raT
∂T

(A.5)



Appendix B

Derivation of the EM steps

This section develops the E–step and the M–step of the EM algorithm for our problem.

Specifically, we will show the development of the equation (4.10):

<zai>
k=

(

<zai>
k−1 pa(xi, yi)

∑

b∈A <zbi>k−1 pb(xi, yi)

)

where, yi = y(i, T (k−1)).

Usually within the EM framework spatially stationary priors on the probability of

the tissue labels are used which remain constant throughout the iterations (these priors are

also called occupancy probabilities of a pixel belonging to a different tissue classes). If these

priors are not known, then they can also be estimated in the EM algorithm. However,

in our experience on the segmentation of the portal image, such spatially stationary

priors (even when the true values were supplied to the algorithm), invariably lead to poor

estimates on the segmentation. Therefore, we do not assume spatially stationary priors

but let the priors change with iterations. The estimated probability density function from

the previous iteration is used as the prior information in the current iteration. This is
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justified due to the fact that in each iteration we are estimating the probability density

function in the max step and also this leads to much better segmentation of the portal

image. Spatially varying priors on the tissue class for segmentation has also been proposed

and used by Kapur et al. [61].

B.0.1 Development of the E–step

The conditional density function of the ith pixel intensity is given as:

p(xi|yi) =
∑

b∈A
P (mi = b) p(xi|yi,mi = b)

=
∑

b∈A
Pi(b) pb(xi|yi)

=
∏

a∈A





∑

b∈A
Pi(b) pb(xi|yi)





zai

The joint density function of the pixel label and the intensity at the ith pixel, given the

pixel intensity at the ith pixel in the DRR can be written as:

p(mi = c, xi|yi) = P (mi = c) p(xi|yi,mi = c)

= Pi(c) pc(xi|yi)

=
∏

a∈A
[Pi(c) pc(xi|yi)]zai
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Thus, we have

P (mi|xi, yi) =
p(mi, xi|yi)
p(xi|yi)

=
p(mi, xi|yi)

∑

b∈A p(mi = b, xi|yi)

=
Pi(c) pc(xi|yi)

∑

b∈A Pi(b) pb(xi|yi)

=
∏

a∈A

[

Pi(c) pc(xi|yi)
∑

b∈A Pi(b) pb(xi|yi)

]zai

Therefore, assuming that each pixel is independent, the posterior distribution can be

written in the form:

P (M |X,Y ) =
∏

i

p(mi|xi, yi)

=
∏

i

∏

a∈A

[

Pi(c) pc(xi|yi)
∑

b∈A Pi(b) pb(xi|yi)

]zai

≡
∏

ai

[

Pi(c) pc(xi|yi)
∑

b∈A Pi(b) pb(xi|yi)

]zai

Thus, the conditional and the log conditional density function p(X|Y ) can be written as:

p(X|Y ) =
p(M,X|Y )
p(M |X,Y )

ln p(X|Y ) = ln p(M,X|Y )− ln p(M |X,Y ) (B.1)
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Taking expectation on the both sides of the equation (B.1) with respect to P (M |X,Y ),

the E–Step of the EM algorithm can be written as:

ln p(X|Y ) = EM [ln p(M,X|Y )|X,Y ]− EM [lnP (M |X,Y )|X,Y ]

≥ EM [ln p(M,X|Y )|X,Y ]− EM [lnP (M |X,Y )|X,Y ] (B.2)

where, EM [·] is defined to be the expected value with respect to the probability distribu-

tion P (M |X,Y ) and written as:

EM [ln p(M,X|Y )|X,Y ] ≡
∑

M

P (M |X,Y ) ln p(M,X|Y )

and the inequality in equation (B.2) follows from the Kullback–Leibler (KL) inequality.

B.0.2 Development of the M–step

In the M–step, the first term on the right side of the equation (B.2) is maximized to

estimate the transformation parameters which is simplified as follows:

argmax
T
ln p(X|Y ) = argmax

T
EM [ln p(M,X|Y )|X,Y ]

= argmax
T

EM

[

∑

ai

zai ln (Pi(c) pc(xi|yi))
]

= argmax
T

∑

M

[

P (M |X,Y )
∑

ai

zai ln (Pi(c) pc(xi|yi))
]

= argmax
T

∑

M

[

∏

di

[

Pi(c) pc(xi|yi)
∑

b∈A Pi(b) pb(xi|yi)

]zdi
∑

ai

zai ln (Pi(c) pc(xi|yi))
]

= argmax
T

∑

M

[

∑

ai

zai
∏

di

[

Pi(c) pc(xi|yi)
∑

b∈A pi(b) pb(xi|yi)

]zdi

ln (Pi(c) pc(xi|yi))
]
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= argmax
T

∑

ai

[(

Pi(a) pa(xi|yi)
∑

b∈A Pi(b) pb(xi|yi)

)

ln (Pi(a) pa(xi|yi))
]

= argmax
T

∑

ai

[<zai> ln(Pi(a)pa(xi|yi))]

= argmax
T

∑

ai

[<zai> (lnPi(a) + ln pa(xi|yi))]

= argmax
T

∑

ai

[<zai> ln pa(xi|yi)]

where,

<zai> =

(

Pi(a) pa(xi|yi)
∑

b∈A Pi(b) pb(xi|yi)

)

=

(

Pi(a) pa(xi, yi)
∑

b∈A Pi(b) pb(xi, yi)

)

where we have assumed that pixel intensities in the DRR, yi, are independent of the

portal image segmentation labels. This will be the case especially when the two images

are not registered.

Priors on the segmentation labels are assumed to be spatially varying, with current

estimates on the density of the segmentation labels being used as the priors in the next

iteration. Thus, we have,

<zai>
k =

(

<zai>
(k−1) pa(xi, yi)

∑

b∈A <zbi>(k−1) pb(xi, yi)

)



Appendix C

Developing the Minimax Entropy

Registration Framework

This appendix develops the various results used in the development of the minimax en-

tropy algorithm as described in the chapter 5.

C.1 Why Evaluate Expected Values

Suppose the problem is to estimate the transformation parameters T which will bring

the two images, X and Y into alignment. If the joint density function between the pixel

intensities of the two images, say pt(X,Y ), is known, the transformation parameters

which optimize the log likelihood of the two images can then be estimated as:

T̂ = argmax
T
ln pt(X|Y, T )

= argmax
T
ln pt(X|Y ′)

= argmax
T
ln
pt(X,Y

′)
pt(Y ′)
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= argmax
T

[

ln pt(X,Y
′)− ln pt(Y ′)

]

(C.1)

Suppose now that the joint density function, pt(X,Y ), is not known, which is usually

the case when registering multi–modal images. Now if we estimate the joint density

function, say p(X,Y ′), from the given data at the current estimate of the transformation

parameters, say T k, and use this estimated density in equation (C.1), then the optimal

parameters, T̂ , estimated will be T k itself (as the joint density was estimated at this

transformation parameters and thus this estimate of the parameters will explain the

density best).

However, now assume that the intensities in the two images are such that, when

properly registered, the intensities in one image explain the intensities in the other image,

that is, there is a relation between the two images, which need not be linear. Thus, the

optimal estimated joint density function, p(X,Y ′), should be one which best explains

all the pixel intensities in the two images. Since pt(X,Y ) denotes the true joint density

function, the expected value of the log–likelihood with respect to the true density function

is given as:

Et[l(T )] =

∫ ∫

pt(X,Y
′) ln p(X|Y ′) dX dY ′ (C.2)

=

∫ ∫

pt(X,Y
′) ln p(X,Y ′) dX dY ′ −

∫ ∫

pt(X,Y
′) ln p(Y ′) dX dY ′

=

∫ ∫

pt(X,Y
′) ln p(X,Y ′) dX dY ′ −

∫

pt(Y
′) ln p(Y ′) dY ′

≤
∫ ∫

pt(X,Y
′) ln pt(X,Y

′) dX dY ′ −
∫

pt(Y
′) ln pt(Y

′) dY ′

= Ht(Y
′)−Ht(X,Y

′)

= Ht(X) +Ht(Y
′)−Ht(X,Y

′)
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= It(X,Y
′)

Thus, the mutual information between the two random variables, when the true trans-

formation parameters are known, forms the upper bound of the expected value of the log

likelihood of the data. Note that if we instead take the expectation of the log–likelihood

with respect to p(X,Y ′), we get,

E[l(T )] =

∫ ∫

p(X,Y ′) ln p(X|Y ′) dX dY ′

=

∫ ∫

p(X,Y ′) ln p(X,Y ′) dX dY ′ −
∫ ∫

p(X,Y ′) ln p(Y ′) dX dY ′

=

∫ ∫

p(X,Y ′) ln p(X,Y ′) dX dY ′ −
∫

p(Y ′) ln p(Y ′) dY ′

= −H(X,Y ′) +H(Y ′)

= H(X) +H(Y ′)−H(X,Y ′)

= I(X,Y ′)

Thus, maximization of the expected value of the log–likelihood is equivalent to the max-

imization of the mutual information.
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C.2 Relation Between the EM and the Min Step

In this section, starting from equation (4.8) we formally develop the equation (5.4), ex-

plicitly stating the assumptions and our motivation for the final formulation of the min

step.

Equation (4.8) can be rewritten as:

Q(T, T (k−1)) =
∑

i

(

∑

a∈A
<zai>

k ln pa(xi, yi)− ln p(yi)
)

=
∑

i

Qi(T, T
(k−1))

Taking expected value ofQi(T, T
(k−1)) with respect the the joint density function p(xi, yi),

we have,

E[Qi(T, T
(k−1))] =

∫∫

p(xi, yi)Qi(T, T
(k−1)) dxi dyi

=

∫∫

p(xi, yi)

[

∑

a∈A
<zai>

k ln pa(xi, yi)− ln p(yi)
]

dxi dyi

=
∑

a∈A
<zai>

k
∫∫

p(xi, yi) ln pa(xi, yi) dxi dyi −
∫∫

p(xi, yi) ln p(yi) dxi dyi

=
∑

a∈A
<zai>

k
∫∫

p(xi, yi) ln pa(xi, yi) dxi dyi −
∫

p(yi) ln p(yi) dyi

=
∑

a∈A
<zai>

k
∫∫

p(xi, yi) ln pa(xi, yi) dxi dyi +H(yi) (C.3)

• Case I: <zai>= 0.5, ∀a or <zai>= {0, 1}. For this case, it is easy to see that

∫∫

p(xi, yi) ln pa(xi, yi) dxi dyi =

∫∫





∑

b∈A
<zbi> pb(xi, yi)



 ln pa(xi, yi) dxi dyi

=

∫∫

pa(xi, yi) ln pa(xi, yi) dxi dyi (C.4)
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Thus, from equations (C.3) and (C.4 ), we have,

E[Qi(T, T
(k−1))] =

∑

a∈A
<zai>

k
∫ ∫

p(xi, yi) ln pa(xi, yi) dxi dyi +H(yi)

=
∑

a∈A
<zai>

k
∫ ∫

pa(xi, yi) ln pa(xi, yi) dxi dyi +H(yi)

= −
∑

a∈A
<zai>

k Ha(xi, yi) +H(yi)

= −
[

∑

a∈A
<zai>

k Ha(xi, yi)−H(yi)
]

Thus, we have,

E[Q(T, T (k−1))] =
∑

i

E[Qi(T, T
(k−1))]

= −
∑

i

[

∑

a∈A
<zai> Ha(xi, yi)−H(yi)

]

= −
∑

a∈A

∑

i

<zai> Ha(xi, yi) +
∑

i

H(yi)

= −
∑

a∈A
Ha(x, y)

∑

i

<zai> +
∑

i

H(yi)

= −N
[

∑

a∈A
Ha(x, y)

∑

i

<zai>

N
−H(y)

]

= −N
[

∑

a∈A
<za> Ha(x, y)−H(y)

]

• Case II: For other values of <zai>.

∫∫

p(xi, yi) ln pa(xi, yi) dxi dyi

=

∫∫





∑

b∈A
<zbi> pb(xi, yi)



 ln pa(xi, yi) dxi dyi

= <z1i>

∫∫

p1(xi, yi) ln pa(xi, yi) dxi dyi+ <z2i>

∫∫

p2(xi, yi) ln pa(xi, yi) dxi dyi

=

∫∫

p1(xi, yi) ln pa(xi, yi)
<z1i> dxi dyi +

∫∫

p2(xi, yi) ln pa(xi, yi)
<z2i> dxi dyi (C.5)
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Thus, from equations (C.3) and (C.5), we have,

E[Qi(T, T
(k−1))] = <z1i>

∫∫

p1(xi, yi) ln
(

p1(xi, yi)
<z1i>p2(xi, yi)

<z2i>
)

dxi dyi

+ <z2i>

∫∫

p2(xi, yi) ln
(

p1(xi, yi)
<z1i>p2(xi, yi)

<z2i>
)

dxi dyi

+H(yi) (C.6)

Using Kullback–Leibler (KL) divergence, the equation (C.6) can be simplified to:

E[Qi(T, T
(k−1))] ≤ <z1i>

∫∫

p1(xi, yi) ln p1(xi, yi) dxi dyi

+ <z2i>

∫∫

p2(xi, yi) ln p2(xi, yi) dxi dyi +H(yi) (C.7)

It is easy to see that the equality, in equation (C.7), holds for the values of <zai>

discussed in case I. Equation (C.7) can also be written as:

E[Qi(T, T
(k−1))] ≤ − <z1i> H1(xi, yi)− <z2i> H2(xi, yi) +H(yi) (C.8)

= −
∑

a∈A
<zai> Ha(xi, yi) +H(yi) (C.9)

Thus, proceeding as for previous case, we have,

E[Q(T, T (k−1))] =
∑

i

E[Qi(T, T
(k−1))]

≤ −N
[

∑

a∈A
<za> Ha(x, y)−H(y)

]

Thus, instead of estimating the transformation parameters according to

T̂ = argmax
T

Q(T, T (k−1))

we propose to chose optimal transformation parameters as follows:

T̂ = argmax
T
−N

[

∑

a∈A
<za> Ha(x, y)−H(y)

]
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= argmin
T
N

[

∑

a∈A
<za> Ha(x, y)−H(y)

]

= argmin
T

[

∑

a∈A
<za> Ha(x, y)−H(y)

]

(C.10)

We chose to optimize (C.10) for the following reasons.

1. Equation (C.10) has a nice interpretation of minimizing joint conditional en-

tropy, H(M,X|Y ), for estimating transformation parameters. That is, starting

with the joint conditional entropy H(M,X|Y ), one can easily derive the equa-

tion (C.10). However, a subtle point to note is that in equation (C.10), the

expected values, <zai> are evaluated with respect to conditional probabili-

ties. However, note that when writing H(M,X|Y ), as in equation (5.4), the

expected values are with respect to the true segmentation density functions.

2. Starting from the joint conditional entropy interpretation, additional informa-

tion, for example edge information, can be systematically introduced in the

problem, as will be done in our future work.
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C.3 Deriving the Min Step from Joint Conditional Entropy

This section shows that the min step, as developed in equation (C.10), can also be derived

by starting from the joint conditional entropy H(M,X|Y ).

T k = argmin
T
H(M,X|Y )

= argmin
T
(H(M,X, Y )−H(Y ))

= argmin
T
(H(M) +H(X,Y |M)−H(Y )) (C.11)

= argmin
T
(H(X,Y |M)−H(Y )) (C.12)

= argmin
T

(

∑

i

(H(xi, yi|mi)−H(yi))
)

(C.13)

= argmin
T

(

∑

i

(

∑

a∈A
Pi(a)H(xi, yi|mi = a)−H(yi)

))

= argmin
T

(

∑

i

(

∑

a∈A
Pi(a)Ha(xi, yi)−H(yi)

))

= argmin
T

(

∑

i

(

∑

a∈A
Pi(a)Ha(x, y)−H(y)

))

(C.14)

= argmin
T

(

N

(

∑

a∈A
Ha(x, y)

∑

i

{Pi(a)
N
} −H(y)

))

= argmin
T

(

∑

a∈A
Ha(x, y)

∑

i

{<zai>
k

N
} −H(y)

)

= argmin
T

(

∑

a∈A
<za>

k Ha(x, y)−H(y)
)

where P (M) is the joint density function on the segmentation of the portal image and

<za>≡ <zai>
k

N . Note that we assume all pixels to be statistically independent. Equa-

tion (C.11) follows from the consistency requirement of the entropy measure [58]. Equa-

tion (C.12) follows from the fact that in min step P (M) is independent of T . Equa-
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tion (C.13) follows from the assumption that the pixels are statistically independent.
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C.4 Gradient Evaluation

This section evaluates derivatives of the various terms in the derivative of the energy

function for stochastic gradient descent approach for estimating the transformation pa-

rameters. We define a column vector w = (x, y) to simplify the notations in this section.

From equation (5.6), we have,

Ha(x, y) = Ha(w)

≈ − 1
∑

wj∈J Pj(a)

∑

wj∈J
Pj(a) ln

1
∑

wi∈I Pi(a)

∑

wi∈I
Pi(a) GΨa(wj − wi)

where the covariance matrices of the Gaussian kernels in the Parzen window density

estimates are assumed to be diagonal, that is, Ψa ≡ DIAG(ψaxx, ψayy) (However, note

that this assumption does not mean that the joint density function can be written in a

factored form). The Gaussian kernels are defined as:

GΨ(x) ≡ (2π)−
n
2 |Ψ|−1

2 exp(
−1
2
xTΨ−1x)

Hence, derivative of GΨa(wj − wi) w.r.t the transformation parameters is given as:

GΨa(wj − wi) ≡ (2π)−1|Ψa|
−1
2 exp(

−1
2
(wj − wi)TΨ−1a (wj − wi))

d

dT
GΨa(wj − wi) = GΨa(wj − wi)(

−1
2
)
d

dT

[

(wj − wi)TΨ−1a (wj − wi)
]

= GΨa(wj − wi)(
−1
2
)2(yj − yi)ψ−1ayy

d

dT
(yj − yi)

= −GΨa(wj − wi)(yj − yi)ψ−1ayy
d

dT
(yj − yi)
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Now the derivative of the joint entropy with respect to the transformation parameters

can written as

d

dT
Ha(x, y) =

d

dT
Ha(w)

= −
(

1
∑

wj∈J Pj(a)

)

∑

wj∈J
Pj(a)

∑

wi∈I Pi(a)
d
dTGΨa(wj − wi)

∑

wk∈I Pk(a)GΨa(wj − wk)

=

(

1
∑

wj∈J Pj(a)

)

∑

wj∈J
Pj(a)

∑

wi∈I Pi(a)GΨa(wj − wi)(yj − yi)ψ−1ayy
d
dT (yj − yi)

∑

wk∈I Pk(a)GΨa(wj − wk)

=

(

1
∑

wj∈J Pj(a)

)

∑

wj∈J
Pj(a)

∑

wi∈I

(

Pi(a)GΨa(wj − wi)
∑

wk∈I Pk(a)GΨa(wj − wk)

)

(yj − yi)ψ−1ayy
d

dT
(yj − yi)

=

(

1
∑

wj∈J Pj(a)

)

∑

wj∈J
Pj(a)

∑

wi∈I
WΨa(wj , wi)(yj − yi)ψ−1ayy

d

dT
(yj − yi) (C.15)

where, we have defined,

WΨa(wj , wi) ≡
(

Pi(a)GΨa(wj − wi)
∑

wk∈I Pk(a)GΨa(wj − wk)

)

The marginal density is also estimated as a statistical mean as follows:

H(y) ≈ − 1

NJ

∑

yj∈J
ln
1

NI

∑

yi∈I
GΨ(yj − yi)

Thus, the derivatives of the entropy, H(y), of the marginal density w.r.t. T are evaluated

as:

d

dT
H(y) = − 1

NJ

∑

yj∈J

∑

yi∈I
d
dTGΨ(yj − yi)

∑

yk∈IGΨ(yj − yk)
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=
1

NJ

∑

yj∈J

∑

yi∈I GΨ(yj − yi)(yj − yi)ψ−1y
d
dT (yj − yi)

∑

yk∈IGΨ(yj − yk)

=
1

NJ

∑

yj∈J

∑

yi∈I

(

GΨ(yj − yi)
∑

yk∈IGΨ(yj − yk)

)

(yj − yi)ψ−1y
d

dT
(yj − yi)

=
1

NJ

∑

yj∈J

∑

yi∈I
WΨ(yj , yi)(yj − yi)ψ−1y

d

dT
(yj − yi) (C.16)

where we have defined:

WΨ(yj , yi) ≡
(

GΨ(yj − yi)
∑

yk∈IGΨ(yj − yk)

)

where yi is the pixel intensity at the ith pixel in the 2D DRR, Y , obtained by summing

the voxel intensities in the 3D CT data set, G, along a projection ray, proji, that is,

yi =
∑

(r,s,t)∈proji
G(r, s, t)

where proji denotes the set of voxel coordinates in 3D CT data which lie along the

projection ray from the radiation source to the ith pixel. It should be noted that xi, yi

denote ith pixel intensities of the 2D portal and DRR respectively, whereas, r, s, t denote

3D CT voxel coordinates.

Thus, the derivative of yi with respect a transformation parameter, say tx, is

evaluated as follows:

dyi
dtx

=
d

dtx

∑

(r,s,t)∈proji
G(r, s, t)

=
∑

(r,s,t)∈proji

d

dtx
G(r, s, t)
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=
∑

(r,s,t)∈proji

[

∂

∂r
G(r, s, t)

dr

dtx
+

∂

∂s
G(r, s, t)

ds

dtx
+
∂

∂t
G(r, s, t)

dt

dtx

]

(C.17)
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C.5 Coordinate Descent Interpretation of Minimax

In this section we provide a coordinate descent interpretation of the proposed minimax

entropy strategy. This interpretation, based on the work of Neal et al. [79] highlights the

iterative nature of the algorithm. Also, this interpretation helps develop the intuition as

to why the proposed minimax entropy registration framework should converge to a local

optimum.

Neal et al. [79] showed that the EM algorithm is equivalent to co–ordinate descent

approach while optimizing the function F (P̃ , θ) defined to be:

F (P̃ , θ) = EP̃ [ln p(y, z|θ)] +H(P̃ )

where θ is the set of parameters to be estimated, y denotes the missing data and z denotes

the observed data. Note that H(P̃ ) represents the entropy of the distribution P̃ (y), which

is estimated under the constraint
∫

P̃ (y) dy = 1. Optimizing the function F (P̃ , θ) using

the co–ordinate descent strategy leads to the following two steps:

Step 1: Descend along the P̃ coordinates

P̃ k = argmax
P̃

F (P̃ , θk−1)

Step 2: Keep P̃ fixed at the values from the previous iteration and estimate θ.

θk = argmax
θ
F (P̃ k, θ)

It can be easily seen that the two steps as formulated above represent the E–step and the
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M–step respectively of the EM algorithm. In more details, the two steps can be written

as

E–Step: Descend along the P̃ coordinates

P̃ k = argmax
P̃

(

EP̃ [ln p(y, z|θ)] +H(P̃ )
)

under the constraint
∫

P̃ (y) dy = 1. Thus, this step is estimating the maximum entropy

distribution of the missing data.

M–Step: Keep P̃ fixed at the values from the previous iteration and estimate θ.

θk = argmax
θ

(

E
P̃k
[ln p(y, z|θ)]

)

as the entropy H(P̃ k) is independent of the parameters θ.

Note that relation to our minimax entropy strategy is already getting clear, which

shows our strategy to be co–ordinate descent approach in estimation of the transformation

parameters.

For estimating transformation parameters, T, the corresponding energy function to be

optimized can be written as:

F (P̃ , T ) = EP̃ [ln p(M,X|Y )] +H(P̃ )

where T represents the transformation parameters being estimated. Note that Y depends

on the current estimate of the transformation parameters. However, instead of optimizing

F (P̃ , T ), as defined above, we proposed to optimize the expected value of F (P̃ , T ) (as

the probability density function are being estimated from the data itself at the current
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estimates of the transformation parameters).

Let us define an energy function FH(P̃ , T ) as:

FH(P̃ , T ) = −H(M,X|Y ) +H(M)

and the probability distribution and the transformation parameters are estimated by

optimizing it in a coordinate descent method as follows. Define two steps to estimate the

transformation parameters

Step 1:

P̃ k = argmax
P̃

FH(P̃ , T
k−1)

under the constraint
∫

P̃ k(M) dM = 1.

Step 2:

T k = argmax
T

FH(P̃
k, T )

To see the relation between the above two steps and the minimax entropy registration

framework, we write FH(P̃ , T ) in mode details as:

FH(P̃ , T ) = −H(M,X|Y ) +H(M)

=

∫ ∫ ∫

dM dX dY p(X,Y |M) P̃ (M) ln p(M,X|Y )−
∫

dM P̃ (M) ln P̃ (M)

with the constraint to be satisfied
∫

P̃ k(M) dM = 1. Using Lagrange multiplier technique
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to solve for the desired density function, we expand the energy function as:

F ′H(P̃ , T ) = −H(M,X|Y ) +H(M)− λ
(∫

dM P̃ (M) ln P̃ (M)− 1
)

=

∫ ∫ ∫

dM dX dY p(X,Y |M) P̃ (M) ln p(M,X|Y )−
∫

dM P̃ (M) ln P̃ (M)

−λ
(∫

dM P̃ (M) ln P̃ (M)− 1
)

=

∫ ∫

dX dY

∫

dM p(X,Y |M)
[

P̃ (M) ln p(M,X|Y )− P̃ (M) ln P̃ (M)

−λ
(

P̃ (M) ln P̃ (M)− 1
)]

Thus, differentiating the integrand in the inner most integral with respect to P̃ , we get,

d

dP̃
p(X,Y |M)

[

P̃ (M) ln p(M,X|Y )− P̃ (M) ln P̃ (M)− λ
(

P̃ (M) ln P̃ (M)− 1
)]

= 0

p(X,Y |M) d

dP̃

[

P̃ (M) ln p(M,X|Y )− P̃ (M) ln P̃ (M)− λ
(

P̃ (M) ln P̃ (M)− 1
)]

= 0

which implies, assuming that p(X,Y |M) 6= 0,

ln p(M,X|Y )− ln P̃ (M)− 1− λ = 0

i.e.,

ln P̃ (M) = ln p(M,X|Y )− 1− λ

= ln
p(M,X|Y )
e · eλ

P̃ (M) =
p(M,X|Y )
e · eλ
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where λ is determined by the integratibility constraint on the estimated probability dis-

tribution, i.e.,

∫

dM P̃ (M) = 1

∫

dM
p(M,X|Y )
e · eλ = 1

1

e · eλ
∫

dM p(M,X|Y ) = 1

1

e · eλ p(X|Y ) = 1

e · eλ = p(X|Y )

Thus, the density function P̃ (M) is estimated to be:

P̃ (M) =
p(M,X|Y )
e · eλ

=
p(M |X,Y ) p(X|Y )

p(X|Y )

= p(M |X,Y )

Thus, in the first step of the minimax, the probability density function, P̃ (M) is being

estimated, using the maximum entropy equation. Once the probability on the segmenta-

tion of the portal image has been estimated, it is plugged into the second step to estimate

the transformation parameters.

Thus, the two steps in the minimax entropy can now be written as:

Max Step:

P̃ k = argmax
P̃

[∫∫∫

dM dX dY p(X,Y |M) P̃ (M) ln p(M,X|Y )−
∫

dM P̃ (M) ln P̃ (M)

]
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under the constraint
∫

dM P̃ (M) ln P̃ (M) = 1 and once the segmentation distribution

has been estimated, the min step is

Min Step:

T k = argmin
T
−
∫ ∫ ∫

dM dX dY p(X,Y |M) P̃ k(M) ln p(M,X|Y )
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C.6 Convergence Analysis of Stochastic Approximation Al-

gorithms

In this appendix we follow the analysis from [53]. Consider a stochastic approximation

algorithm where the parameters w are being updated as:

w(n+ 1) = w(n) + λ(n) h(w(n),x(n)) (C.18)

where n is the number of iterations, w(·) is a sequence of vectors that are the

object of interest and x(n) is an input vector received at time n using which the vector

w(n) is updated. Note that in general the vectors w(n) and x(n) can be of different

dimensions. The sequence λ(n) is a sequence of positive numbers. The update function

h(·, ·) is a deterministic function with some regularity conditions.

To study the convergence of the stochastic update rule, a deterministic nonlinear

differential equation is associated with the stochastic nonlinear difference equation (C.18).

The stability properties of the differential equation are then tied to the convergence

properties of the stochastic update rule. This procedure was developed by [72] and [64].

In this procedure, it is assumed that the stochastic update rule given by the equation

(C.18) satisfies the following conditions:

1. The λ(n) is a decreasing sequence of positive real numbers which satisfy the condi-

tions:

(a)
∞
∑

n=1

λ(n) =∞

(b)
∞
∑

n=1

λp(n) <∞ for p > 1
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(c) λ(n)→ 0 n→∞

2. The sequence of the parameter vectors w(n) is bounded with probability 1.

3. The update function h(w(n),x(n)) is continuously differentiable with respect to w

and x, and its derivatives are bounded.

4. The limit

h(w) = lim
n→∞E[h(w,x)] (C.19)

exists for each w; the statistical expectation operator E is over x.

5. There is locally asymptotically stable (in the sense of Liapunov) solution to the

ordinary differential equation

d

dt
w(t) = h(w(t)) (C.20)

where t denotes a continuous variable.

6. Let, q0 denote the solution to equation (C.20) with the basin of attraction B(q′).

Then the parameter vector w(n) enters the compact subset A of the basin of at-

traction B(q′) infinitely often, with probability 1.

The condition 1(a) ensures that the algorithm moves the estimate to the desired

limit, regardless of the initial conditions. Condition 1(b) gives a condition how fast λ(n)

must tend to zero. However, in most of the applications, it is not feasible to require the

condition 1(c). This difficulty by assigning some small positive value to λ, the size of

which usually depends on the application of interest. For our application, the value of

λ was set to 0.02 which worked very well for most of the image data set. However, it
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will be most interesting to see the effect of decreasing λ with iterations on the estimated

parameters.



Appendix D

Incorporating Correlation in

Registration Framework

Chapter 7 assumes that the neighboring pixel intensities in an image are correlated. Such

a correlation among the pixels is modeled using a 1D MRF. In this appendix we derive

the various results used in developing the minimax entropy framework in chapter 7 while

modeling and incorporating the correlation information in both the min step and the max

step.

D.1 Maximum Entropy Estimation

This appendix develops the intermediate steps involved in the estimation of the optimal

parameters ε∗αi. The development in the appendix starts from equation (7.11) in chapter

7, given below for completeness,

∂

∂εvi
[FI(β)+ < E(Z)− EI(Z) >] = 0 (7.11)

243
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Starting with equation (7.11), we derive the optimal estimates ε∗αi to be:

ε∗αi =
[〈

zαi−1 + zαi+1
2

+ hαi −
1

β
ln(lili−1)

〉]

(7.12)

We first evaluate the three derivatives on the left side of equation (7.11) as follows:

D.1.1 Evaluation of the term ∂
∂εvi

FI(β)

FI(β) =
−1
β
lnZI(β)

=
−1
β
ln

(

∑

Z

exp [−βEI(Z)]
)

=
−1
β
ln





∑

Z

exp



β
∑

j

∑

α∈A
εαjzαj









Therefore,

∂

∂εvi
FI(β) =

−1
β

∑

Z exp [−βEI(Z)] β zvi
∑

Z′ exp [−βEI(Z)]

= − 1

ZI(β)

∑

Z

zvi exp [−βEI(Z)]

= −
∑

Z

zvi P
Gb(EI(Z))

= − < zvi >

D.1.2 Evaluation of the term ∂
∂εvi

< EI(Z) >

< EI(Z) > =
∑

Z

EI(Z) P
Gb(EI(Z))
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=
∑

Z



−
∑

j

∑

α∈A
εαjzαj



 PGb(EI(Z))

= −
∑

j

∑

α∈A
εαj

(

∑

Z

zαj P
Gb(EI(Z))

)

= −
∑

j

∑

α∈A
εαj < zαj >

Thus, taking the partial derivative of the above expression with respect to εvi, we get,

∂

∂εvi
< EI(Z) > = − < zvi > −

∑

j

∑

α∈A
εαj

∂

∂εvi
< zαj >

The second term on the right hand side can be simplified further.

∑

j

∑

α∈A
εαj

∂

∂εvi
< zαj > =

∑

j

∑

α∈A
εαj

∂

∂εvi

(

∑

Z

zαj P
Gb(EI(Z))

)

=
∑

j

∑

α∈A
εαj

∑

Z

zαj
∂

∂εvi
PGb(EI(Z))

Let us now consider the term ∂
∂εvi

PGb(EI(Z)).

∂

∂εvi
PGb(EI(Z)) =

∂

∂εvi

(

1

ZI(β)
exp(−β EI(Z))

)

=
∂

∂εvi





1

ZI(β)
exp(β

∑

j

∑

α∈A
εαj zαj)





=

(

1

ZI(β)

)2

[ZI(β) βzvi exp(−βEI(Z))

− exp(−βEI(Z))
∑

Z′

βz′vi exp(−βEI(Z′))
]

= β

[

zvi P
Gb(EI(Z))− PGb(EI(Z))

∑

Z′

z′vi P
Gb(EI(Z

′))

]
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= β
[

zvi P
Gb(EI(Z))− < zvi > PGb(EI(Z))

]

= β [zvi− < zvi >] P
Gb(EI(Z))

Thus,

∑

j

∑

α∈A
εαj

∂

∂εvi
< zαj > =

∑

j

∑

α∈A
εαj

∑

Z

zαj β [zvi− < zvi >] P
Gb(EI(Z))

= β
∑

j

∑

α∈A
εαj

∑

Z

[zαjzvi − zαj < zvi >] P
Gb(EI(Z))

= β
∑

j

∑

α∈A
εαj [< zαjzvi > − < zαj >< zvi >]

Note that if j 6= i, then < zαjzvi > = < zαj >< zvi > (Note that this is true as the

expected value is being taken with respect to the probability density function PGb(EI(Z)),

which can be written in the factored form). Thus, we can reduce the above to

∑

j

∑

α∈A
εαj

∂

∂εvi
< zαj > = β

∑

α∈A
εαj [< zαizvi > − < zαi >< zvi >]

=
∑

α∈A
εαj

∂

∂εvi
< zαi >

Thus, we have,

∂

∂εvi
< EI(Z) > = − < zvi > −

∑

j

∑

α∈A
εαj

∂

∂εvi
< zαj >

= − < zvi > −
∑

α∈A
εαj

∂

∂εvi
< zαi >
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Thus, we can summarize the results as:

∂

∂εvi
FI(β) = − < zvi >

∂

∂εvi
< E(Z) > =

∂

∂εvi
< E(Z) >

∂

∂εvi
< EI(Z) > = − < zvi > +

∑

j

∑

α∈A
εαj

∂

∂εvi
< zαj >

= − < zvi > +
∑

α∈A
εαi

∂

∂εvi
< zαi > (D.1)

Thus, from equations (7.11) and (D.1)

∂

∂εvi
< E(Z) > +

∑

α∈A
εαi

∂

∂εvi
< zαi >= 0

Let us define a variable li as follows:

li ≡
(

1

1 + exp[−β(12
∑

α∈A zαi zαi+1 − λ)]

)

which can be shown to be the conditional probability that ei = 0 (See appendix D.4 for

the proof).

Taking logarithm, we get,

ln li = − ln
[

1 + exp[−β(1
2

∑

α∈A
zαi zαi+1 − λ)]

]
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Thus, we can write E(Z) as

E(Z) = −
∑

j

[

∑

α∈A
hαjzαj +

1

2

∑

α∈A
zαjzαj+1 −

1

β
ln lj

]

Thus, the expected value of E(Z) is evaluated as:

< E(Z) > = −
∑

j

[

∑

α∈A
hαj < zαj > +

1

2

∑

α∈A
< zαjzαj+1 > −

1

β
< ln lj >

]

Thus, differentiating with respect to εvi, we get,

∂

∂εvi
< E(Z) >

= −
∑

j

[

∑

α∈A
hαj

∂

∂εvi
< zαj > +

1

2

∑

α∈A

∂

∂εvi
< zαjzαj+1 > −

1

β

∂

∂εvi
< ln lj >

]

= −




∑

α∈A
hαi

∂

∂εvi
< zαi > +

1

2

∑

j

∑

α∈A

∂

∂εvi
< zαjzαj+1 > −

1

β

∑

j

∂

∂εvi
< ln lj >





Thus, for estimating variables εvi, we need to solve the following set of equations

∑

α∈A
(hαi−εαi)

∂

∂εvi
< zαi > +

1

2

∑

j

∑

α∈A

∂

∂εvi
< zαjzαj+1 > −

1

β

∑

j

∂

∂εvi
< ln lj >= 0(D.2)

Let us now evaluate the partial derivatives in equation (D.2).

D.1.3 Evaluating the term
∑

j

∑

α∈A
∂
∂εvi

< zαjzαj+1 >

∑

j

∑

α∈A

∂

∂εvi
< zαjzαj+1 > =

∑

j

∑

α∈A

[

∂

∂εvi

∑

Z

zαjzαj+1 PGb(EI(Z))

]
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=
∑

j

∑

α∈A

[

∑

Z

zαjzαj+1
∂

∂εvi
PGb(EI(Z))

]

= β
∑

j

∑

α∈A

[

∑

Z

zαjzαj+1 (ziv− < zvi >) P
Gb(EI(Z))

]

= β
∑

j

∑

α∈A
[< zαjzαj+1zvi > − < zαjzαj+1 > < zvi >]

If j 6= i or j 6= i− 1, then we have < zαjzαj+1zvi >=< zαjzαj+1 > < zvi >. Thus, we can

reduce the above expression to

∑

j

∑

α∈A

∂

∂εvi
< zαjzαj+1 >

= β
i
∑

j=(i−1)

∑

α∈A
[< zαjzαj+1zvi > − < zαjzαj+1 > < zvi >]

= β
∑

α∈A
[< zαi−1zαizvi > − < zαi−1zαi > < zvi >] +

β
∑

α∈A
[< zαizαi+1zvi > − < zαizαi+1 > < zvi >]

= β
∑

α∈A
[< zαi−1 > < zαizvi > − < zαi−1 > < zαi > < zvi >] +

β
∑

α∈A
[< zαi+1 > < zαizvi > − < zαi+1 > < zαi > < zvi >]

= β
∑

α∈A
< zαi−1 > [< zαizvi > − < zαi > < zvi >] +

β
∑

α∈A
< zαi+1 > [< zαizvi > − < zαi > < zvi >]

= β
∑

α∈A
[< zαi−1 > + < zαi+1 >] [< zαizvi > − < zαi > < zvi >]

= β
∑

α∈A
[< zαi−1 > + < zαi+1 >]

∂

∂εvi
< zvi >
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D.1.4 Evaluating the term 1
β

∑

j
∂
∂εvi

< ln lj >

First consider the term ∂
∂εvi

< ln li >.

∂

∂εvi
< ln li > =

∂

∂εvi

∑

Z

ln li · PGb(EI(Z))

=
∑

Z

ln li ·
∂

∂εvi
PGb(EI(Z))

= ln li
∑

Z

∂

∂εvi
PGb(EI(Z))

The last equation follows as li is independent of zvi as the values from the previous

iterations are used. Thus,

∂

∂εvi
< ln li > = ln li

∑

Z

(

∑

α∈A
zαi

)

∂

∂εvi
PGb(EI(Z))

= ln li
∑

Z

[

∑

α∈A
zαi

∂

∂εvi
PGb(EI(Z))

]

= ln li
∑

α∈A

[

∑

Z

zαi
∂

∂εvi
PGb(EI(Z))

]

= ln li
∑

α∈A

∂

∂εvi

[

∑

Z

zαi P
Gb(EI(Z))

]

= ln li
∑

α∈A

∂

∂εvi
< zαi >

=
∑

α∈A
ln li

∂

∂εvi
< zαi >
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Therefore,

∂

∂εvi
< ln li−1 > =

∑

α∈A
ln li−1

∂

∂εvi
< zαi >

So,

1

β

∑

j

∂

∂εvi
< ln lj > =

1

β

[

∂

∂εvi
< ln li−1 > +

∂

∂εvi
< ln li >

]

=
1

β

∑

α∈A
[ln li−1 + ln li]

∂

∂εvi
< zαi >

=
1

β

∑

α∈A
ln(li−1 li)

∂

∂εvi
< zαi >

Summarizing the results of the partial derivatives, we have,

∑

j

∑

α∈A

∂

∂εvi
< zαjzαj+1 > =

∑

α∈A
(< zαi−1 > + < zαi+1 >)

∂

∂εvi
< zαi >

=
∑

α∈A
< zαi−1 + zαi+1 >

∂

∂εvi
< ziα >

1

β

∑

j

∂

∂εvi
< ln lj > =

1

β

[

∂

∂εvi
< ln li−1 > +

∂

∂εvi
< ln li >

]

= − 1
β

∑

α∈A

[

ln(lili−1)
∂

∂εvi
< zαi >

]

(D.3)

Thus, from equations (D.2) and (D.3), for an estimate on the variables εvi, we need to

solve the following set of equations

∑

α∈A

[

εαi −
〈

zαi−1 + zαi+1
2

+ hαi

〉

+
1

β
ln(lili−1)

]

∂

∂εvi
< zαi >= 0
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or

∑

α∈A

[

εαi −
(〈

zαi−1 + zαi+1
2

+ hαi

〉

− 1
β
ln(lili−1)

)]

∂

∂εvi
< zαi >= 0

Define ε̃αi to be:

ε̃αi ≡
[

zαi−1 + zαi+1
2

+ hαi −
1

β
ln(lili−1)

]

Thus, the above equation reduces to

∑

α∈A
[εαi− < ε̃αi >]

∂

∂εvi
< zαi >= 0

Since

∂

∂εvi
< zαi > = β[< zvizαi > − < zvi >< zαi >]

we have

∑

α∈A(εαi− < ε̃αi >)
∂
∂εvi

< zαi > = 0

⇒ β
∑

α∈A(εαi− < ε̃αi >)(< zvizαi > − < zvi >< zαi >) = 0

⇒ ∑

α∈A [< zvizαi > (εαi− < ε̃αi >)− < zvi >< zαi > (εαi− < ε̃αi >)] = 0

⇒ ∑

α∈A < zvizαi > (εαi− < ε̃αi >)− < zvi >
∑

α∈A < zαi > (εαi− < ε̃αi >) = 0

⇒ < zvi > (εvi− < ε̃vi >)− < zvi >
∑

α∈A < zαi > (εαi− < ε̃αi >) = 0

⇒ < zvi > [(εvi− < ε̃vi >)−
∑

α∈A < zαi > (εαi− < ε̃αi >)] = 0
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These set of equations are satisfied only for the case when

ε∗vi = < !̃εvi> +ci; ∀v ∈ A

where ci are arbitrary constants. In particular, if ci = 0; ∀i, we have

ε∗vi = <ε̃vi>
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D.2 Evaluating Correlation Between Pixels

Correlation between random variables zvi and zαj is defined as the expected value <

zvizαj >E(Z), with respect to the probability density function P
Gb(E(Z)). The expected

value is evaluated as follows:

< zvizαj >E(Z) =
∑

Z

zvizαjP
Gb(E(Z))

=

∑

Z zvizαj exp(−βE(Z))
∑

Z′ exp(−βE(Z′))

=
1

∑

Z′ exp(−βE(Z′))
∑

Z

exp(−βE(Z))
∑

{Zi,Zj} zvizαj exp(−βE(Z))
∑

{Zi,Zj} exp(−βE(Z))

(D.4)

where {Zi, Zj} denotes all possible combinations of the values of the ith and the jth row

of the matrix Z, that is, {(0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0)}, if i 6= j.

Depending upon the values of i and j, we have the following four cases.

1. Case I: i = j, that is, i and j are the same pixel. Then the possible combinations of

{Zi, Zi} are {(0, 1, 0, 1), (1, 0, 1, 0)}. Thus, it is easy to see the following two cases:

• α 6= v: < zvizαj >E(Z) = 0

• α = v: < zvizαj >E(Z) = < zvi >E(Z)

2. Case II: i 6= j + 1 or j 6= i+ 1. For this case write energy E(Z) as:

E(Z) = −
∑

j

[

1

2

∑

α∈A
zαjzαj+1 +

∑

α∈A
hαjzαj −

1

β
ln lj

]

= −
[

Et(Z) +
1

2

∑

α∈A
zαizαi+1 +

1

2

∑

α∈A
zαizαi−1 +

∑

α∈A
hαizαi −

1

β
ln li −

1

β
ln li−1+
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1

2

∑

α∈A
zαjzαj+1 +

1

2

∑

α∈A
zαjzαj−1 +

∑

α∈A
hαjzαj −

1

β
ln lj −

1

β
ln lj−1

]

= −
[

Et(Z) +
∑

α∈A
zαi

(

zαi+1 + zαi−1
2

+ hαi −
1

β
ln(lili−1)

)

+

∑

α∈A
zαj

(

zαj+1 + zαj−1
2

+ hαj −
1

β
ln(ljlj−1)

)

]

= −
[

Et(Z) +
∑

α∈A
zαiε̃αi +

∑

α∈A
zαj ε̃αj

]

where the term Et(Z) clubs all the terms without either zαi or zαj .

Thus, the third term in the equation (D.4) can be written as:

∑

{Zi,Zj} zvizαj exp [−βE(Z)]
∑

{Zi,Zj} exp [−βE(Z)]

=

∑

{Zi,Zj} zvizαj exp [β (
∑

α∈A zαiε̃αi +
∑

α∈A zαj ε̃αj)]
∑

{Zi,Zj} exp [β (
∑

α∈A zαiε̃αi +
∑

α∈A zαj ε̃αj)]

=
exp [β (ε̃vi + ε̃αj)]

∑

{Zi,Zj} exp [β (
∑

α∈A zαiε̃αi +
∑

α∈A zαj ε̃αj)]

Therefore, we have,

< zvizαj >E(Z) =

〈

exp [β (ε̃vi + ε̃αj)]
∑

{Zi,Zj} exp [β (
∑

α∈A zαiε̃αi +
∑

α∈A zαj ε̃αj)]

〉

E(Z)

≈ exp [β (< ε̃vi > + < ε̃αj >)]
∑

{Zi,Zj} exp [β (
∑

α∈A zαi < ε̃αi > +
∑

α∈A zαj < ε̃αj >)]

=
exp [β (< ε̃vi > + < ε̃αj >)]

(
∑

α∈A exp [β < ε̃αi >]) (
∑

α∈A exp [β < ε̃αj >])

=

(

exp (βε∗vi)
∑

α∈A exp (βε
∗
iα)

)





exp
(

βε∗αj
)

∑

α∈A exp
(

βε∗αj
)





= < zvi >E(Z) · < zαj >E(Z)

3. Case III: i = j+1. This is the most interesting case as we are evaluating correlation
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between the neighboring pixels. Again, write the energy function E(Z) as:

E(Z) = −
∑

j

[

1

2

∑

α∈A
zαjzαj+1 +

∑

α∈A
hαjzαj −

1

β
ln lj

]

= −
[

Et(Z) +
1

2

∑

α∈A
zαjzαj+1 +

1

2

∑

α∈A
zαjzαj−1 +

1

2

∑

α∈A
zαizαi+1

+
∑

α∈A
hαjzαj +

∑

α∈A
hαizαi −

1

β
ln lj −

1

β
ln li −

1

β
ln lj−1

]

= −
[

Et(Z) +
1

2

∑

α∈A
zαjzαi +

∑

α∈A

(

zαj−1
2

+ hαj

)

zαj +
∑

α∈A

(

zαi+1
2

+ hαi

)

zαi

− 1
β
ln(ljlilj−1)

]

= −
[

E′t(Z) + Eij(Z)
]

where the term E ′t(Z) clubs all the terms without either zαi or zαj .

Thus, the third term in the equation (D.4) for this case can be written as:

∑

{Zi,Zj} zvizαj exp [−βE(Z)]
∑

{Zi,Zj} exp [−βE(Z)]
=

∑

{Zi,Zj} zvizαj exp [βEij(Z)]
∑

{Zi,Zj} exp [βEij(Z)]

=
Numerator

Deno1 +Deno2 +Deno3 +Deno4
(D.5)

The numerator can be written as

Numerator

= exp

[

β

{

1

2
δ(v − α) +

(

zαj−1
2

+ hαj

)

+

(

zvi+1
2

+ hvi

)

+
1

β
ln

[

1 + exp

(

−β
(

zvi+1
2
− λ

))]

+
1

β
ln

[

1 + exp

(

−β
(

δ(v − α)
2

− λ
))]

+
1

β
ln

[

1 + exp

(

−β
(

zαj−1
2
− λ

))]}]

Deno1, for the combination {Zi, Zj} = {(0, 1, 0, 1)}, can be written as

Deno1 = exp

[

β

{

1

2
+

(

z2 j−1
2

+ h2j

)

+

(

z2 i+1
2

+ h2i

)
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+
1

β
ln

[

1 + exp

(

−β
(

z2 i+1
2
− λ

))]

+
1

β
ln

[

1 + exp

(

−β
(

1

2
− λ

))]

+
1

β
ln

[

1 + exp

(

−β
(

z2 j−1
2
− λ

))]}]

Deno2, for the combination {Zi, Zj} = {(0, 1, 1, 0)}, can be written as

Deno2 = exp

[

β

{(

z1 j−1
2

+ h1j

)

+

(

z2 i+1
2

+ h2i

)

+
1

β
ln

[

1 + exp

(

−β
(

z2 i+1
2
− λ

))]

+
1

β
ln [1 + exp (βλ)]

+
1

β
ln

[

1 + exp

(

−β
(

z1 j−1
2
− λ

))]}]

Deno3, for the combination {Zi, Zj} = {(1, 0, 0, 1)}, can be written as

Deno3 = exp

[

β

{(

z2 j−1
2

+ h2j

)

+

(

z1 i+1
2

+ h1i

)

+
1

β
ln

[

1 + exp

(

−β
(

z1 i+1
2
− λ

))]

+
1

β
ln [1 + exp (βλ)]

+
1

β
ln

[

1 + exp

(

−β
(

z2 j−1
2
− λ

))]}]

Deno4, for the combination {Zi, Zj} = {(1, 0, 1, 0)}, can be written as

Deno4 = exp

[

β

{

1

2
+

(

z1 j−1
2

+ h1j

)

+

(

z1 i+1
2

+ h1i

)

+
1

β
ln

[

1 + exp

(

−β
(

z1 i+1
2
− λ

))]

+
1

β
ln

[

1 + exp

(

−β
(

1

2
− λ

))]

+
1

β
ln

[

1 + exp

(

−β
(

z1 j−1
2
− λ

))]}]

Let us define the following:

α1 ≡ ln

[

1 + exp

(

−β
(

z1 i+1
2
− λ

))]

α2 ≡ ln

[

1 + exp

(

−β
(

z2 i+1
2
− λ

))]

α3 ≡ ln

[

1 + exp

(

−β
(

z1 j−1
2
− λ

))]
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α4 ≡ ln

[

1 + exp

(

−β
(

z2 j−1
2
− λ

))]

α5 ≡ ln

[

1 + exp

(

−β
(

1

2
− λ

))]

α6 ≡ ln [1 + exp (βλ)]

Thus, we can write the four terms in the denominator of the equation (D.5) as:

Deno1 ≡ exp

[

β

(

0.5 +
z2 j−1 + z2 i+1

2
+ (h2j + h2i)

)

+ α2 + α4 + α5

]

Deno2 ≡ exp

[

β

(

z1 j−1 + z2 i+1
2

+ (h1j + h2i)

)

+ α2 + α3 + α6

]

Deno3 ≡ exp

[

β

(

z2 j−1 + z1 i+1
2

+ (h2j + h1i)

)

+ α1 + α4 + α6

]

Deno4 ≡ exp

[

β

(

0.5 +
z1 j−1 + z1 i+1

2
+ (h1j + h1i)

)

+ α1 + α3 + α5

]

Thus, we can write the correlation values as,

< z1iz1j > =

〈

Deno4
Deno1 +Deno2 +Deno3 +Deno4

〉

< z2iz2j > =

〈

Deno1
Deno1 +Deno2 +Deno3 +Deno4

〉

4. Case IV: j = i+ 1. Same as the previous case.
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D.3 Approximated Expected Value

In this section we show that the expected value of the random variable, zvi, evaluated

with respect to a density function which can be written in a factored form is equivalent to

approximated expected value, < zvi >E(Z) using mean field approximations and ignoring

second and higher order derivatives. In chapter 7, the expected value is approximated to

be:

< zvi >E(Z) ≈
exp (β < ε̃vi >)

∑

α∈A exp (β < ε̃αi >)

The approximation follows from the assumption that δε̃vi = ε̃vi− < ε̃vi > is small. Note

that expected value can be written as

<zai> = 〈f(< ε̃vi > +δε̃vi)〉

=

〈

f(< ε̃vi >) +
∑

v

df

dε̃vi
δε̃vi +

1

2

∑

v

∑

α

d2f

dε̃vi dε̃αi
δε̃vi δε̃αi + o(δε̃

3
vi)

〉

= f(< ε̃vi >) +
∑

v

df

dε̃vi
< δε̃vi > +

1

2

∑

v

∑

α

d2f

dε̃vi dε̃αi
< δε̃vi δε̃αi > +o(δ < ε̃3vi >)

= f(< ε̃vi >) +
1

2

∑

v

∑

α

d2f

dε̃vi dε̃αi
< δε̃vi δε̃αi > +o(δ < ε̃3vi >)

Ignoring the 2nd and higher order terms and defining the function f(ε̃vi) to be:

f(ε̃vi) =
exp (βε̃vi)

∑

α∈A exp (βε̃αi)

we get the approximated value of the expected value of zvi.
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D.4 Conditional Probability of the ith edge

The variable li is defined in the chapter 7 to be:

li ≡




1

1 + exp
[

−β
(

1
2

∑

α∈A zαi zαi+1 − λ
)]





In this section, we show that li is the conditional probability that there is no edge at the ith

location, that is ei = 0, given the segmentation label information, that is, P (ei = 0|Z).

Note that the expression for PGb(E(Z, E)) is known. From this probability density it

is easy to see that ei and ej are independent, for i 6= j. Thus, the density function

P (E) could be written in the factored form. The marginal density function P (E) can be

obtained from the joint density function as follows:

P (E) ≡
∑

Z

PGb(E(Z, E))

Note that since the segmentation labels are correlated, sum over all possible set of labels,

{Z}, is an unsurmountable problem. Instead we will evaluate the conditional probability

which is analytically tractable.

We have

PGb(E(Z, E)) =
1

Z(β)
exp [−βE(Z, E)]

=
1

Z(β)
exp [−β(E1(Z) + E2(Z, E))]



261

Integrating out the edges, PGb(E(Z)) is written as:

PGb(E(Z)) =
∑

E

PGb(E(Z, E))

=
1

Z(β)
exp [−β(E1(Z) + E3(Z) + E4(Z))]

Thus, the conditional density function, P (E|Z), is given as

P (E|Z) ≡
(

PGb(E(Z, E))
PGb(E(Z))

)

=
exp [−β (E1(Z) + E2(Z, E))]

exp [−β (E1(Z) + E3(Z) + E4(Z))]

=
exp [−β E2(Z, E)]

exp [−β (E3(Z) + E4(Z))]

=

∏

i exp
[

β
(

1
2(
∑

v∈A zvi zvi+1)(1− ei) + λei
)]

∏

i exp
[

β
(

1
2

∑

v∈A zvi zvi+1 +
1
β ln

{

1 + exp(−β(12
∑

v∈A zvi zvi+1 − λ))
})]

=
∏

i





exp
[

βei
(

λ− 1
2(
∑

v∈A zvi zvi+1)
)]

exp
[

β
(

1
β ln

{

1 + exp(−β(12
∑

v∈A zvi zvi+1 − λ))
})]





=
∏

i





exp
[

−βei
(

1
2

∑

v∈A zvi zvi+1 − λ
)]

1 + exp
[

−β
(

1
2

∑

v∈A zvi zvi+1 − λ
)]





=
∏

i

P (ei|Z)

where,

P (ei|Z) ≡




exp
[

−βei
(

1
2

∑

v∈A zvi zvi+1 − λ
)]

1 + exp
[

−β
(

1
2

∑

v∈A zvi zvi+1 − λ
)]




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Thus, we have,

P (ei = 0|Z) =





1

1 + exp
[

−β
(

1
2

∑

v∈A zvi zvi+1 − λ
)]





P (ei = 1|Z) =





exp
[

−β
(

1
2

∑

v∈A zvi zvi+1 − λ
)]

1 + exp
[

−β
(

1
2

∑

v∈A zvi zvi+1 − λ
)]





=





exp [β λ]

exp
[

β 12
∑

v∈A zvi zvi+1
]

+ exp [βλ]





=





1

1 + exp
[

β
(

1
2

∑

v∈A zvi zvi+1 − λ
)]





Therefore, expected value of random variable ei, denoted by < ei >, can be evaluated as

< ei > =
∑

E

∑

Z

ei P (E(Z, E))

=
∑

ei∈{0,1}

∑

Z

ei P (Z, ei)

=
∑

ei∈{0,1}
ei
∑

Z

P (ei|Z) P (E(Z))

=
∑

Z

P (ei = 1|Z) P (E(Z))

=
∑

Z





1

1 + exp
[

β
(

1
2

∑

v∈A zvi zvi+1 − λ
)]



 P (E(Z))

=

〈

1

1 + exp
[

β
(

1
2

∑

v∈A zvi zvi+1 − λ
)]

〉

≈ 1

1 + exp
[

β
(

1
2

∑

v∈A < zvi > < zvi+1 > −λ
)]

Images showing the edge distributions in chapter 8 plot the < ei > value for each pixel

in a portal image.
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A simple analysis helps us to put bounds on the possible values of λ.

• Suppose that there is an edge in the location i. Then, we have, ∑v∈A zvi zvi+1 = 0.

Thus, we get,

P (ei = 1|Z) =
exp (βλ)

1 + exp (βλ)

=
1

1 + exp (−βλ)

Thus, we see that for λ > 0, P (ei = 1|Z)→ 1 as β →∞.

• Now suppose that there is no edge at the ith location, that is, ∑v∈A zvi zvi+1 = 1.

Thus, we get,

P (ei = 0|Z) =
1

1 + exp [−β(0.5− λ)]

Thus, we see that for λ < 0.5, P (ei = 0|Z)→ 1 as β →∞.

Thus, for the consistency, we have, 0.0 < λ < 0.5. In our experiments, we chose λ = 0.25.
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D.5 Evaluation of various entropy terms

D.5.1 Evaluation of the term H(X,Y |M)

First we will write down the various probability terms used to estimate the various joint

and conditional entropies.

p(X,Y,M) = p(X,Y |M)P (M)

p(X,Y |M) = p(x1, x2, . . . , xn, y1, y2, . . . , yn|m1,m2, . . . ,mn)

= p(xn, yn|xn−1, yn−1,mn,mn−1) · · · p(x2, y2|x1, y1,m2,m1) · p(x1, y1|m1)

=
N
∏

i=2

p(xi, yi|xi−1, yi−1,mi,mi−1) · p(x1, y1|m1)

ln p(X,Y |m) =
N
∑

i=2

ln p(xi, yi|xi−1, yi−1,mi,mi−1) + ln p(x1, y1|m1)

Thus, the joint conditional entropy, H(X,Y |M), can be written as:

−H(X,Y |M)

=
∑

M

∫∫

dX dY p(M,X, Y ) ln p(X,Y |M)

=
∑

M

∫∫

dX dY p(M,X, Y )

[

N
∑

i=2

ln p(xi, yi|xi−1, yi−1,mi,mi−1) + ln p(x1, y1|m1)
]

=
∑

M

[

N
∑

i=2

∫∫

dX dY p(M,X, Y ) ln p(xi, yi|xi−1, yi−1,mi,mi−1)+

∫∫

dX dY p(M,X, Y ) ln p(x1, y1|m1)
]

=
∑

M

P (M)

[

N
∑

i=2

∫∫

dX dY p(X,Y |M) ln p(xi, yi|xi−1, yi−1,mi,mi−1)

+

∫∫

dX dY p(X,Y |M) ln p(x1, y1|m1)
]
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=
∑

M

P (M)

[

N
∑

i=2

∫∫∫∫

dxi dxi−1 dyi dyi−1

p(xi, yi, xi−1, yi−1|mi,mi−1) ln p(xi, yi|xi−1, yi−1,mi,mi−1)

+

∫∫

dx1 dy1p(x1, y1|m1) ln p(x1, y1|m1)
]

=
N
∑

i=2

∑

{α,β}
P (mi = α,mi−1 = β)

∫∫∫∫

dxi dxi−1 dyi dyi−1

p(xi, yi, xi−1, yi−1|mi,mi−1) ln p(xi, yi|xi−1, yi−1,mi,mi−1)

+
∑

α∈A
P (m1 = α)

∫∫

dx1 dy1p(x1, y1|m1) ln p(x1, y1|m1)

= −
N
∑

i=2

∑

{α,β}
P (mi = α,mi−1 = β)Hαβ(xi, yi|xi−1, yi−1)−

∑

α∈A
P (m1 = α)Hα(x1, y1)

Thus, we have

H(X,Y |M) =
N
∑

i=2

∑

{α,β}
P (mi = α,mi−1 = β)Hαβ(xi, yi|xi−1, yi−1)

+
∑

α∈A
P (m1 = α)Hα(x1, y1)

=
N
∑

i=2

∑

{α,β}
P (mi = α,mi−1 = β)Hαβ(xi, yi, xi−1, yi−1)

−
N
∑

i=2

∑

α∈A
P (mi = α)Hα(xi, yi) +

∑

α∈A
P (m1 = α)Hα(x1, y1)
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Assuming stationary random field on the distribution of the pixel intensities, for each

class of pixel labels, we can reduce the above expression to

H(X,Y |M) =
∑

{α,β}
Hαβ(x2, y2, x1, y1)

N
∑

i=2

P (mi = α,mi−1 = β)

−
∑

α∈A
Hα(x, y)

N
∑

i=2

P (mi = α) +
∑

α∈A
P (m1 = α)Hα(x, y)

=
∑

{α,β}
Hαβ(x2, y2, x1, y1)

N
∑

i=2

P (mi = α,mi−1 = β)

−
∑

α∈A
Hα(x, y)

[

N
∑

i=2

P (mi = α)− P (m1 = α)

]

=
∑

{α,β}
Hαβ(x2, y2, x1, y1)

N
∑

i=2

< zαizβi−1 >

−
∑

α∈A
Hα(x, y)

[

N
∑

i=2

<zαi> − < zα1 >

]

Thus,

H(X,Y |M) = (N − 1)




∑

{α,β}
Hαβ(x2, y2, x1, y1)

∑N
i=2 < zαizβi−1 >

N − 1

−
∑

α∈A
Hα(x, y)

∑N
i=2 <zαi> − < zα1 >

N − 1

]

≈ (N − 1)




∑

{α,β}
Hαβ(x2, y2, x1, y1) < zαzβ > −

∑

α∈A
Hα(x, y) < zα >




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D.5.2 Evaluation of the term H(Y )

Now let us consider the second term, H(Y ), the entropy of the 2D DRR.

p(Y ) =
N
∏

i=2

p(yi|yi−1) · p(y1)

Thus, the entropy of the DRR is given as:

−H(Y ) =

∫

dY p(Y ) ln p(Y )

=

∫

dY p(Y )

[

N
∑

i=2

ln p(yi|yi−1) + ln p(y1)
]

=
N
∑

i=2

∫

dyi dyi−1 p(yi, yi−1) ln p(yi|yi−1) +
∫

dy1 p(y1) ln p(y1)

Thus, we have

H(Y ) =
N
∑

i=2

H(yi|yi−1) +H(y1)

To reduce computational complexity, and also since the entropy of the DRR will not

change significantly, we shall simplify the above expression to:

H(Y ) =
N
∑

i=2

H(yi|yi−1) +H(y1)

≤
N
∑

i=1

H(yi)

= N ·H(y)
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D.5.3 Evaluation of the term H(E , Ge, T )

As noted above, we back-project rays from the estimated edges in the portal image to

the radiation source through the treatment planning 3D CT image dataset. When the

2D portal image is aligned to the 3D CT data set these rays should be tangential to the

surface of the pelvic bone. Thus, we minimize the distances from the projection lines

to the pelvic bone surface in a approach similar to that proposed by Lavallee et al. [66].

Distance from projection ray to the bone surface is defined as the minimum distance along

the ray to the pelvic surface. When the images are not registered, the back projection rays

might cut through the pelvic bone surface. Thus, to handle this situation, we follow the

signed distance approach proposed by Lavallee et al. [66]. Computationally, to estimate

a minimum distance from the projection ray to the pelvic bone surface, we follow a

different approach than the quad–tree approach in [66], both to improve the speed–up

and the accuracy of the algorithm. The term Ge represents a signed distance transform

of the 3D CT dataset. To help in formulation, let S(T ) ≡ S ′ represent a 2D image whose

the ith pixel value corresponds to the minimum distance along the projection ray from

the ith pixel to the pelvic bone surface. Thus, the entropy H(E , Ge, T ) is evaluated as

the joint entropy H(E , S ′), i.e.,

H(E , Ge, T ) ≡ H(E , S′)

To evaluate the entropy H(E , S ′), consider the joint density function p(E , S ′). In this

formulation we will assume that each pixel is independent of the other.

p(E , S′) =
N
∏

i=1

p(ei, s
′
i)
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=
N
∏

i=1

P (ei)p(s
′
i|ei)

Taking logarithm, we have,

ln p(E , S′) =
N
∑

i=1

[ln p(s′i|ei) + lnP (ei)]

Thus, the joint entropy H(E , S ′) is evaluated as:

−H(E , S′) =
∑

E

∫

dS′ p(E , S′) ln p(E , S′)

=
∑

E

∫

dS′ p(E , S′)
N
∑

i=1

[ln p(s′i|ei) + lnP (ei)]

=
∑

E

∫

dS′ p(e, S′)
N
∑

i=1

ln p(s′i|ei) +
∑

E

∫

dS′ p(e, S′)
N
∑

i=1

lnP (ei)

=
N
∑

i=1

∑

E

∫

dS′ p(E , S′) ln p(s′i|ei) +
N
∑

i=1

∑

E

∫

dS′ p(E , S′) lnP (ei)

=
N
∑

i=1

∑

E

∫

dS′ p(E , S′) ln p(s′i|ei) +
N
∑

i=1

∑

ei∈{0,1}
P (ei) lnP (ei) (D.6)

The first term on the right hand side of equation (D.6) can be derived as follows:

N
∑

i=1

∑

E

∫

dS′ p(E , S′) lnP (ei) =
N
∑

i=1

∑

E
lnP (ei)

∫

dS′ p(E , S′)

=
N
∑

i=1

∑

E
P (E) lnP (ei)

=
N
∑

i=1

∑

E





∏

j

P (ej)



 lnP (ei)
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=
N
∑

i=1





∑

E





∏

j 6=i
P (ej)



 P (ei) lnP (ei)





=
N
∑

i=1

∑

ei∈{0,1}
P (ei) lnP (ei)

As the second term on the right hand side of the equation (D.6) remains constant while

estimating the transformation parameters, it can be dropped. Thus, the simplified joint

entropy H(E , S ′) can be written as:

−H(E , S′) =
N
∑

i=1

∑

E

∫

dS′ p(E , S′) ln p(s′i|ei)

=
N
∑

i=1

∑

ei∈{0,1}

∫

ds′i p(ei, s
′
i) ln p(s

′
i|ei)

=
N
∑

i=1

∑

ei∈{0,1}
P (ei)

∫

ds′i p(s
′
i|ei) ln p(s′i|ei)

=
N
∑

i=1

P (ei = 1)

∫

ds′i p(s
′
i|ei = 1) ln p(s′i|ei = 1)

+
N
∑

i=1

P (ei = 0)

∫

ds′i p(s
′
i|ei = 0) ln p(s′i|ei = 0)

Therefore,

H(E , S′) =
N
∑

i=1

P (ei = 1)Hi1(s
′) +

N
∑

i=1

P (ei = 0)Hi0(s
′)

Since most of the pixels in E will be not edge, the second term will remain constant.

Thus, ignoring this term, we get,

H(E , S′) =
N
∑

i=1

P (ei = 1)Hi1(s
′)
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= H1(s
′)

N
∑

i=1

P (ei = 1)

= N ·H1(s′)
∑N
i=1 P (ei = 1)

N

= N ·H1(s′)
∑N
i=1 < ei >

N

= N · < e > H1(s
′)

Note that H1(s
′) denotes the entropy of the distances from the edges to the 3D pelvic

surface and have defined

< e >≡
∑N
i=1 < ei >

N

Note that the values < ei > are being estimated in the min step. Since we will be

minimizing the entropy of the distances, we feel that this will lead to more robust strategy

as compared to minimization of mean squared distances, especially in the presence of the

outliers.
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D.6 Parzen Window Stochastic Estimates of the Entropies

In this section, we formulate the Parzen window based estimates of the various probability

density functions which are used in stochastic estimates of the entropy terms. Gaussian

kernels are used in the Parzen window method. The Gaussian kernels are further assumed

to be radially symmetric, that is we assume that the covariance matrices are diagonal.

One of the main advantage of the Parzen window estimate with Gaussian kernels is that

the derivatives of the densities with respect to the transformation parameters can be

analytically evaluated.

D.6.1 Evaluating Hα(x, y)

In this section we evaluate the entropy Hα(x, y) and its derivatives w.r.t. the transfor-

mation parameters. Derivatives w.r.t. to the covariance matrix is also evaluated.

The joint entropy is defined to be:

Hα(x, y) = −
∫ ∫

dx dy pα(x, y) ln pα(x, y)

and the Parzen window estimate of the density function and the stochastic approximation

of the joint entropy can be written as:

pα(x, y) ≡ pα(w)

≈ 1
∑

wi∈I Pi(α)

∑

wi∈I
Pi(α)GΨα(w − wi)

Hα(x, y) ≈
(

−1
∑

wj∈J Pj(α)

)

∑

wj∈J
[Pj(α) ln (pα(wj))]
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=

(

−1
∑

wj∈J Pj(α)

)

∑

wj∈J



Pj(α) ln





1
∑

wi∈I Pi(α)

∑

wi∈I
Pi(α)GΨα(wj − wi)









where we have defined w ≡ (x, y)T to simplify the notation.

D.6.1.1 Evaluation of the derivative

Let, Ψα = Diag(ψαxx, ψαyy), be a diagonal covariance matrix. Then we can write the

Gaussian kernel as

GΨα(w) = (2π)−1 |Ψα|−1/2 exp
(−1
2
wT Ψ−1α w

)

Thus, the derivative of the joint entropy Hα(x, y) with respect to the transformation

parameters can now be written as:

d

dT
Hα(x, y)

=

(

−1
∑

wj∈J Pj(α)

)

∑

wj∈J

[

Pj(α)

∑

wi∈I Pi(α)
d
dTGΨα(wj − wi)

∑

wi∈I Pi(α)GΨα(wj − wi)

]

=

(

1
∑

wj∈J Pj(α)

)

∑

wj∈J

[

Pj(α)

∑

wi∈I Pi(α)GΨα(wj − wi)(yj − yi) ψ−1αyy
d
dT (yj − yi)

∑

wi∈I Pi(α)GΨα(wj − wi)

]

=

(

1
∑

wj∈J Pj(α)

)

∑

wj∈J



Pj(α)
∑

wi∈I

Pi(α)GΨα(wj − wi)
∑

wi∈I Pi(α)GΨα(wj − wi)
(yj − yi) ψ−1αyy

d

dT
(yj − yi)





=

(

1
∑

wj∈J Pj(α)

)

∑

wj∈J



Pj(α)
∑

wi∈I
WΨα(wj − wi) (yj − yi) ψ−1αyy

d

dT
(yj − yi)




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where we have defined:

WΨα(wj − wi) ≡
Pi(α)GΨα(wj − wi)

∑

wi∈I Pi(α)GΨα(wj − wi)

D.6.1.2 Evaluation of the covariance matrix parameters

Define σαxx ≡
√
ψαxx and σαyy ≡

√

ψαy .

GΨα(w) = (2π)−1 |Ψα|−1/2 exp
(−1
2
wT Ψ−1α w

)

= Gψαxx(x) Gψαyy(y)

d

dσαyy
GΨα(w) = Gψαxx(x) Gψαyy(y)

1

σαyy

[

y2

σ2αyy
− 1

]

= GΨα(w)
1

σαyy

[

y2

σ2αyy
− 1

]

d

dσαxx
GΨα(w) = GΨα(w)

1

σαxx

[

x2

σ2αxx
− 1

]

Thus, the derivative of Hα(x, y) w.r.t. σαxx is evaluated as:

dHα(x, y)

dσαxx

=

(

−1
∑

wj∈J Pj(α)

)

∑

wj∈J

[

Pj(α)

∑

wi∈I Pi(α)
d

dσαxx
GΨα(wj − wi)

∑

wi∈I Pi(α)GΨα(wj − wi)

]

=

(

1
∑

wj∈J Pj(α)

)

∑

wj∈J



Pj(α)
∑

wi∈I

Pi(α)GΨα(wj − wi)
∑

wi∈I Pi(α)GΨα(wj − wi)
1

σαxx

(

(xj − xi)2
σ2αxx

− 1
)





=

(

1
∑

wj∈J Pj(α)

)

∑

wj∈J



Pj(α)
∑

wi∈I
WΨα(wj − wi)

1

σαxx

(

(xj − xi)2
σ2αxx

− 1
)




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Similarly,

dHα(x, y)

dσαyy

=

(

−1
∑

wj∈J Pj(α)

)

∑

wj∈J



Pj(α)

∑

wi∈I Pi(α)
d

dσαyy
GΨα(wj − wi)

∑

wi∈I Pi(α)GΨα(wj − wi)





=

(

1
∑

wj∈J Pj(α)

)

∑

wj∈J



Pj(α)
∑

wi∈I

Pi(α)GΨα(wj − wi)
∑

wi∈I Pi(α)GΨα(wj − wi)
1

σαyy

(

(yj − yi)2
σ2αyy

− 1
)





=

(

1
∑

wj∈J Pj(α)

)

∑

wj∈J



Pj(α)
∑

wi∈I
WΨα(wj − wi)

1

σαyy

(

(yj − yi)2
σ2αyy

− 1
)





The derivatives are used in a stochastic gradient descent based strategy to estimate the

optimal σαyy and σαxx.

D.6.2 Evaluating H(y)

This section evaluates the entropy of a random variable which is distributed according to

the pixel intensities in the DRR obtained by rendering the 3D CT image data at known

transformation parameters. The Parzen window estimate of the density function and the

stochastic estimate of the entropy are evaluated as follows:

H(y) = −
∫

dy p(y) ln p(y)

p(y) ≈ 1

NI

∑

yi∈I
GΨ(y − yi)

H(y) ≈ −1
NJ

∑

yj∈J
ln p(yj)

=
−1
NJ

∑

yj∈J
ln





1

NI

∑

yi∈I
GΨ(yj − yi)




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D.6.2.1 Evaluation of the derivatives

The Gaussian kernel in estimating the marginal entropy, H(y), is given as:

GΨ(y) = (2π)−1/2 |ψy|−1/2 exp
(−1
2
y ψ−1y y

)

Thus, the derivative of the joint entropy H(y) with respect to the transformation param-

eters can now be written as:

d

dT
H(y) =

(−1
NJ

)

∑

yj∈J

[
∑

yi∈I
d
dTGΨ(yj − yi)

∑

yi∈IGΨ(yj − yi)

]

=

(

1

NJ

)

∑

yj∈J

[
∑

yi∈IGΨ(yj − yi)(yj − yi)ψ−1y
d
dT (yj − yi)

∑

yi∈IGΨ(yj − yi)

]

=

(

1

NJ

)

∑

yj∈J





∑

yi∈I

(

GΨ(yj − yi)
∑

yi∈IGΨ(yj − yi)

)

(yj − yi)ψ−1y
d

dT
(yj − yi)





=

(

1

NJ

)

∑

yj∈J





∑

yi∈I
WΨ(yj , yi) (yj − yi)ψ−1y

d

dT
(yj − yi)





where,

WΨ(yj , yi) ≡
(

GΨ(yj − yi)
∑

yk∈IGΨ(yj − yk)

)
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D.6.2.2 Evaluation of the variance ψy

Here we evaluate the derivative of the entropy H(y) w.r.t. ψy, where the derivatives are

used in the optimization strategy to estimate ψy. Let, σy ≡
√

ψy .

H(y) =
−1
NJ

∑

yj∈J
ln





1

NI

∑

yi∈I
GΨ(yj − yi)





GΨ(y) = (2π)−1/2 |ψy|−1/2 exp
(−1
2
y ψ−1y y

)

d

dσy
GΨ(y) = (2π)−1/2

d

dσy

[

σ−1y exp

(−1
2
y σ−2y y

)]

= (2π)−1/2
[

−σ−2y exp

(−1
2
y σ−2y y

)

+ σ−1y exp

(−1
2
y σ−2y y

)

y2

σ3y

]

= GΨ(y)

[

y2

σ3y
− 1

σy

]

=
1

σy
GΨ(y)

[

y2

σ2y
− 1

]

Thus, we have,

d

dσy
H(y) =

−1
NJ

∑

yj∈J

∑

yi∈I
d
dσy

GΨ(yj − yi)
∑

yi∈IGΨ(yj − yi)

=
−1
NJ

∑

yj∈J

∑

yi∈I

[

1

σy

GΨ(yj − yi)
∑

yi∈IGΨ(yj − yi)

(

(yj − yi)2
σ2y

− 1
)]

=
−1
NJ

∑

yj∈J

∑

yi∈I

[

1

σy
WΨ(yj , yi)

(

(yj − yi)2
σ2y

− 1
)]

D.6.3 Evaluating H1(s
′)

H1(s
′) denotes the entropy of the signed distances for the edges detected in the portal

images. Note that these signed distances are evaluated in the following manner. First,
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the 3D CT image data is signed distance transformed. Then, the projection rays from

the detected edges are back–projected, through the signed distance transformed 3D CT

image, to the radiation source. The minimum signed distance along a projection ray is

the signed distance for that edge.

The stochastic estimates of the entropy is evaluated as:

H1(s
′) = −

∫

ds′ p1(s
′) ln p1(s

′)

p1(s
′) ≈ 1

∑

s′
i
∈I P (ei = 1)

∑

s′
i
∈I
P (ei = 1) GΨ1

(s′ − s′i)

=
1

∑

s′
i
∈I < ei >

∑

s′
i
∈I
< ei > GΨ1

(s′ − s′i)

H1(s
′) ≈





−1
∑

s′
j
∈J < ej >





∑

s′
j
∈J
< ej > ln p1(s

′
j)

=





−1
∑

s′
j
∈J < ej >





∑

s′
j
∈J



< ej > ln





1
∑

s′
i
∈I < ei >

∑

s′
i
∈I
< ei > GΨ1

(s′j − s′i)








D.6.3.1 Evaluating the derivatives

Similar to the previous subsection, the Gaussian kernel in estimating the marginal entropy,

H1(s
′), is given as:

GΨ1
(s) = (2π)−1/2 |ψ1|−1/2 exp

(−1
2
s ψ−11 s

)

Thus, the derivative of the joint entropy H1(s
′) with respect to the transformation pa-

rameters can now be written as:

d

dT
H1(s

′)
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=





−1
∑

s′
j
∈J < ej >





∑

s′
j
∈J



< ej >

∑

s′
i
∈I < ei >

d
dTGΨ1

(s′j − s′i)
∑

s′
i
∈I < ei > GΨ1

(s′j − s′i)





=





1
∑

s′
j
∈J < ej >





∑

s′
j
∈J



< ej >

∑

s′
i
∈I < ei > GΨ1

(s′j − s′i)(s′j − s′i)ψ−11 d
dT (s

′
j − s′i)

∑

s′
i
∈I < ei > GΨ1

(s′j − s′i)





=





1
∑

s′
j
∈J < ej >





∑

s′
j
∈J



< ej >
∑

s′
i
∈I

(

< ei > GΨ1
(s′j − s′i)

∑

s′
i
∈I < ei > GΨ1

(s′j − s′i)

)

(s′j − s′i)ψ−11
d

dT
(s′j − s′i)





=





1
∑

s′
j
∈J < ej >





∑

s′
j
∈J



< ej >
∑

s′
i
∈I
WΨ1

(s′j , s
′
i) (s

′
j − s′i)ψ−11

d

dT
(s′j − s′i)





where we have defined

WΨ1
(s′j , s

′
i) ≡

(

< ei > GΨ1
(s′j − s′i)

∑

s′
k
∈I < ek > GΨ1

(s′j − s′k)

)

Evaluation of the terms d
dT (s

′
j − s′i) is a major concern which needs to be resolved before

implementation. Note that d
dT s

′
i represents a vector of values,

d

dT
s′i =









































d
dα

d
dβ

d
dγ

d
dtx

d
dty

d
dtz









































s′i

where, α, β, γ, tx, ty, tz denote the six parameters of the rigid transformation. Also note

that s′i represents the value of a 3D voxel in the signed distance transformed 3D CT image

data set. Thus,
ds′i
dtx
, for example, represents how does s′i changes with small change in
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the transformation parameter tx. Thus, we write,

ds′i
dtx

=
ds′i
dx

dx

dtx
+
ds′i
dy

dy

dtx
+
ds′i
dz

dz

dtx

Remember now that s′i is the value in three–space of the voxel with the minimum value,

in the distance transformed 3D dataset, along the projection ray from the ith pixel in the

2D image. Note that in the above formulation we have assumed that, for small changes

in transformation parameters, the same point in the three–space will have the minimum

distance along the projection ray. This assumption is not true in general, even in the

limiting case of very small changes in the transformation parameters.

D.6.3.2 Evaluation of the variance

Define, σ1 =
√
ψ1. Thus, we have,

GΨ1
(s) = (2π)−1/2 |Ψ1|−1/2 exp

(−1
2
s ψ−11 s

)

= (2π)−1/2 σ−11 exp

(−1
2
s σ−21 s

)

d

dσ1
GΨ1

(s) = GΨ1
(s)

1

σ1

[

s2

σ21
− 1

]

Thus, we have

d

dσ1
H1(s

′)

=





−1
∑

s′
j
∈J < ej >





∑

s′
j
∈J



< ej >

∑

s′
i
∈I < ei >

d
dσ1

GΨ1
(s′j − s′i)

∑

s′
i
∈I < ei > GΨ1

(s′j − s′i)




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=





1
∑

s′
j
∈J < ej >





∑

s′
j
∈J









< ej >

∑

s′
i
∈I < ei > GΨ1

(s′j − s′i) 1σ1

(

(s′j−s′i)2
σ2
1

− 1
)

∑

s′
i
∈I < ei > GΨ1

(s′j − s′i)









=





1
∑

s′
j
∈J < ej >





∑

s′
j
∈J



< ej >
∑

s′
i
∈I

(

< ei > GΨ1
(s′j − s′i)

∑

s′
i
∈I < ei > GΨ1

(s′j − s′i)

)

1

σ1

(

(s′j − s′i)2
σ21

− 1
)





=





1
∑

s′
j
∈J < ej >





∑

s′
j
∈J



< ej >
∑

s′
i
∈I
WΨ1

(s′j , s
′
i)
1

σ1

(

(s′j − s′i)2
σ21

− 1
)





=

(−1
σ1

)

+





1
∑

s′
j
∈J < ej >





∑

s′
j
∈J



< ej >
∑

s′
i
∈I
WΨ1

(s′j , s
′
i)
(s′j − s′i)2

σ31





D.6.4 Evaluating Hαβ(x2, y2, x1, y1)

Let, w2 ≡ (x2, y2)T and w1 ≡ (x1, y1)T to reduce the notational complexity. Thus, we

have

Hαβ(x2, y2, x1, y1) ≡ Hαβ(w2, w1)

= −
∫ ∫

dw2 dw1 pαβ(w2, w1) ln pαβ(w2, w1)

The joint density function pαβ(w2, w1) is approximated as:

pαβ(w2, w1) ≈
1

∑

{w2i,w1i}∈I Pi(α, β)

∑

{w2i,w1i}∈I
Pi(α, β) GΨαβ (w2 − w2i, w1 − w1i)

Hαβ(w2, w1) ≈
(

−1
∑

{w2j ,w1j}∈J Pj(α, β)

)

∑

{w2j ,w1j}∈J
Pj(α, β) ln pαβ(w2j , w1j)

=

(

−1
∑

{w2j ,w1j}∈J Pj(α, β)

)

∑

{w2j ,w1j}∈J

[

Pj(α, β) ln

(

1
∑

{w2i,w1i}∈I Pi(α, β)

∑

{w2i,w1i}∈I
Pi(α, β) GΨαβ (w2j − w2i, w1j − w1i)








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D.6.4.1 Evaluation of the derivatives

Let, Ψαβ = Diag(ψαβx2, ψαβy2, ψαβx1, ψαβy1) be a diagonal covariance matrix. The Gaus-

sian kernel used for the Parzen window estimates of the joint density is given as:

GΨαβ (w2, w1) = (2π)−2|Ψαβ|−1/2 exp









−1
2
(w2 w1)Ψαβ









w2

w1

















d

dT
GΨαβ (w2, w1) = GΨαβ (w2, w1)

(−1
2

)

d

dT









(w2 w1)Ψαβ









w2

w1

















= −GΨαβ (w2, w1)
[

y2 ψ−1αβy2
d

dT
y2 + y1 ψ−1αβy1

d

dT
y1

]

Therefore, the derivative can now be written as:

d

dT
GΨαβ (w2j − w2i, w1j − w1i)

= −GΨαβ (w2j − w2i, w1j − w1i)
[

(y2j − y2i) ψ−1αβy2
d

dT
(y2j − y2i)+

(y1j − y1i) ψ−1αβy1
d

dT
(y1j − y1i)

]

Thus, the derivatives of the joint density function with respect to the transformation

parameters is now given as

d

dT
Hαβ(w2, w1)

=

(

−1
∑

{w2j ,w1j}∈J Pj(α, β)

)

∑

{w2j ,w1j}∈J
Pj(α, β)

[
∑

{w2i,w1i}∈I Pi(α, β)
d
dTGΨαβ (w2j − w2i, w1j − w1i)

∑

{w2i,w1i}∈I Pi(α, β) GΨαβ (w2j − w2i, w1j − w1i)

]
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=

(

1
∑

{w2j ,w1j}∈J Pj(α, β)

)

∑

{w2j ,w1j}∈J



Pj(α, β)
∑

{w2i,w1i}∈I
(

Pi(α, β) GΨαβ (w2j − w2i, w1j − w1i)
∑

{w2i,w1i}∈I Pi(α, β) GΨαβ (w2j − w2i, w1j − w1i)

)

(

(y2j − y2i) ψ−1αβy2
d

dT
(y2j − y2i) + (y1j − y1i) ψ−1αβy1

d

dT
(y1j − y1i)

)]

=

(

1
∑

{w2j ,w1j}∈J Pj(α, β)

)

∑

{w2j ,w1j}∈J



Pj(α, β)
∑

{w2i,w1i}∈I
WΨαβ (w2j − w2i, w1j − w1i)

(

(y2j − y2i) ψ−1αβy2
d

dT
(y2j − y2i) + (y1j − y1i) ψ−1αβy1

d

dT
(y1j − y1i)

)]

where,

WΨαβ (w2j − w2i, w1j − w1i) ≡
(

Pi(α, β) GΨαβ (w2j − w2i, w1j − w1i)
∑

{w2i,w1i}∈I Pi(α, β) GΨαβ (w2j − w2i, w1j − w1i)

)

D.6.4.2 Evaluation of the covariance matrix parameters

Let, σαβx2 =
√

ψαβx2 , σαβy2 =
√

ψαβy2 , σαβx1 =
√

ψαβx1 , σαβy1 =
√

ψαβy1 .

Then the Gaussian kernel can be written in the following factored form:

GΨαβ (w2, w1) = Gσαβx2
(x2) Gσαβy2(y2) Gσαβx1

(x1) Gσαβy1(y1)

dGΨαβ (w2, w1)

σαβx2
= GΨαβ (w2, w1)

1

σαβx2

[

x22
σ2αβx2

− 1
]

Thus, the derivative of Hαβ(w2, w1) with respect to the standard deviation σαβx2 is now

given as:

dHαβ(w2, w1)

dσαβx2
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=

(

−1
∑

{w2j ,w1j}∈J Pj(α, β)

)

∑

{w2j ,w1j}∈J
Pj(α, β)





∑

{w2i,w1i}∈I Pi(α, β)
d

dσαβx2
GΨαβ (w2j − w2i, w1j − w1i)

∑

{w2i,w1i}∈I Pi(α, β) GΨαβ (w2j − w2i, w1j − w1i)





=

(

1
∑

{w2j ,w1j}∈J Pj(α, β)

)

∑

{w2j ,w1j}∈J







Pj(α, β)
∑

{w2i,w1i}∈I
(

Pi(α, β) GΨαβ (w2j − w2i, w1j − w1i)
∑

{w2i,w1i}∈I Pi(α, β) GΨαβ (w2j − w2i, w1j − w1i)

)

1

σαβx2

[

(x2j − x2i)2
σ2αβx2

− 1
]}

=

(

1
∑

{w2j ,w1j}∈J Pj(α, β)

)

∑

{w2j ,w1j}∈J







Pj(α, β)
∑

{w2i,w1i}∈I
WΨαβ (w2j − w2i, w1j − w1i)

1

σαβx2

[

(x2j − x2i)2
σ2αβx2

− 1
]}

The derivatives with respect to other standard deviations can be similarly computed.
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