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Active contour models are a very appealing method in image segmentation. In

the thesis, we will point out two significant problems of them and develop our solutions.

First, the external energy of an active contours is often formulated as Euclidean

arc length integrals. In this thesis, we show that such formulations are biased. By this

we mean that the minimum of the external energy does not occur at an image edge.

In addition we also show that for certain forms of external energy the active contour is

unstable – when initialized at the location where the first variation of the energy is zero,

the contour drifts away and becomes jagged. Both of these phenomena are due to the

use of Euclidean arc length.

We propose a non-Euclidean arc length which eliminates this problem. This

requires a reformulation of active contours where the the global external energy function

is replaced by a sequence of local external energy functions and the contour evolves as an

integral curve of the gradient of the local energies.

Second, all the active contour models require the user to set a smoothness pa-

rameter manually. This step has always been annoying to users. By exploiting image

properties near an object boundary, we develop a principle to set the parameter to an ap-

propriate value, and further, we develop an algorithm to set the parameter automatically



and an energy functional needed by the algorithm.

With the two pieces of work, we build a system that finds the object boundary

automatically given an initial position near the boundary. Finding a good initial position,

or say finding a rough position of the boundary, is a tough problem by itself, which we

do not get into in the thesis.

Experimental evidence is provided in support of the theoretical claims. Possible

extensions of the work is also presented.
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Chapter 1

Introduction

1.1 Introduction to the Problem

The goal of image segmentation is to identify the boundaries of objects in an image.

The boundary information is useful to a variety of image analysis and computer vision

applications including pattern recognition, robot vision and biomedical image processing.

To identify the boundary, one needs to distinguish an object from its surroundings.

This requires not only the image data but also models as how the object distinguishes

itself.

The existing work on image segmentation is divided into two classes: region-based

approaches and gradient-based approaches. Both classes have seen tremendous efforts,

and some researchers are developing methods to integrate the two classes.

Region-based approaches rely on the homogeneity of image features in an object,

and the major variants include thresholding, region growing, Markov Random Fields,

scale space filtering, and non-linear diffusion.

In many images where homogeneity is not present, one has to use gradient-based

1
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approaches. The class of approaches rely on the brightness contrast near the boundary,

and its major variants include edge detection and grouping, the Hough transform and

active contour models. Edge grouping tends to be very difficult since edge detectors

always produce spurious edges due to noise. The Hough transform is robust to noise, but

the storage and computational complexity are large. Currently, active contour models

are a very appealing approach, since it is computationally simple and always provides

continuous smooth curves as answers.

There are some significant problems in the most up-to-date active contour model.

Our work aims to establish a better active contour model without the problems and

provide a guideline to automatically choose a smoothness parameter for active contour

models.

1.2 Main Contributions

An active contour is an evolving curve that follows gradient dynamics until it is stationary

at a minimum of a weighted sum of external and internal energies. The two energy terms

are often expressed as integrals with respect to the Euclidean arc length of the curve.

It is well known that internal energy rounds off corners and produces contours

that are different from the true underlying edge. This is a desirable effect, since internal

energy is introduced for smoothing (or regularization).

What is poorly appreciated is that external energy can have a similar effect. A

badly designed external energy term can consistently make the final curve smaller or

bigger. This is not the effect of noise, but is the effect of using Euclidean arc length

integrals in the energy term. One way to eliminate bias is to use a non-Euclidean metric

for the arc length. We discuss this solution at length.
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How serious is the bias? It depends on the scale and strength of the edge. For

strong edges which have a fine scale, the bias is small. On the other hand, for weak edges

or coarse edges, the bias can be significant.

In medical image processing, the results of active contour algorithms are used

for statistical comparisons of normal and abnormal anatomy. For such applications, it

is desirable to understand and eliminate any bias irrespective of the edge strength and

scale. That is one motivation for this study.

We also investigate the effect of using Euclidean arc length integrals on the sta-

bility of classical active contours. We show that certain external energies that have been

proposed in the literature actually make the contour unstable. When this contour is ini-

tialized at the exact solution (in synthetic images, for example) it drifts away and breaks

up into a jagged curve.

Another significant problem with all the active-contour models is that the user

has to set a smoothness parameter, which determines how much to smooth the result

in a noisy image. Because the range of valid value of the parameter is large, and many

active-contour users have no intuition about the function of the parameter, they often

find the step annoying. Usually they do it with a trial-and-error procedure: they initially

set the parameter to a very small value, and increase it if the result is too jagged; the

process goes on until that looks right.

We aim to provide the user a guideline on how to choose the parameter. We

first study the structure of an image near an edge. The study finds that active-contour

models only use information on the curves while there is a structure of image in their

neighborhood. The structure gives a principle to choose the smoothness parameter. We

will present the principle in detail in the thesis.
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According to the principle, we build up an algorithm to choose the parameter and

a new energy functional required by the algorithm. We study the properties of the new

energy functional thoroughly.

In the experiments, we demonstrate all the non-desirable effects of active contours

we theoretically prove, and compare the new active contour algorithm with existing ones.

We also test the parameter estimation algorithm in the experiments.

The two pieces of work – a non-biased active-contour algorithm and a parameter-

estimation algorithm – constitute an automatic procedure to find the object boundary

given an initial position near the boundary.

1.3 Overview

The thesis builds a new active contour model which does not have the problems of the

current ones and provides an algorithm to automatically choose the smoothness param-

eter in active contours. The present chapter serves to introduce the problem of image

segmentation and our achievements.

Chapter 2 reviews the relevant literature on both region-based and gradient-based

segmentation methods.

Chapter 3 presents the problems with the current active contour models: the most

recent model is biased, one variant of it is unstable, and all the models require the user

to set a smoothness parameter manually.

Chapter 4 establishes a new active contour model, which we prove to be non-

biased. We believe it is stable, though we do not have a proof yet.

Chapter 5 is on the smoothness parameter. It studies the image property near an

edge. The study derives a principle to choose the smoothness parameter. After studying
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the structure of the set of answers of active contour models, the chapter develops an

algorithm step by step.

Both the new active-contour algorithm and the parameter-estimation algorithm

are tested on synthetic and real images in chapter 6. We design two performance measures,

then we compare both algorithms with existing methods.

The last chapter concludes the thesis and points to possible extensions of our

work.



Chapter 2

Related Work in Image

Segmentation

In the chapter, we briefly describe literature relevant to the work.

The goal of image segmentation is to find object boundaries in images. The

problem is critical in low-level vision; therefore, researchers have done intensive work in

the field and developed a number of approaches. Fu et. al. [28], Haralick et. al. [37] and

Pal et. al. [74] wrote excellent reviews of the field. Books on computer vision and image

processing, such as [5, 42, 34, 38, 61, 83], discuss its theory, application and relationship

to other fields in details.

Image segmentation methods roughly divide into two classes: region methods

and boundary methods. Methods in the first class exploit image properties of the region

inside a boundary, usually homogeneity; methods in the second class focus on image

features near the boundary, such as sharp change of image intensity. Recently, researchers

presented different ways of integrating the two classes of methods [6, 12, 11, 36, 76, 108].

Region and integrated methods are restricted to finding objects with a well-defined

6
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uniformity, which is not present in many images; therefore, boundary methods became

one interesting field by itself. Our research focuses on one sub-class of boundary methods,

while we briefly introduce both region and boundary methods in the chapter.

2.1 Region Methods

Region methods find object boundaries by exploiting image homogeneity of an object.

As Pal et. al. [74] pointed out, the principle of this class of methods is: if I is the set

of all pixels and P () is a uniformity predicate on groups of connected pixels, the region

methods partition the set I into a set of connected subsets or regions (I1, I2, . . . , In)

such that

1.
⋃n
i=1 Ii = I, with Ii ∩ Ij = φ ∀i 6= j ,

2. The uniformity predicate P (Ii) = true for all regions Ii.

3. P (Ii ∪ Ij) = false, when Ii is spatially adjacent to Ij .

Region methods divide into the following sub-classes:

• Threshhoding

Global thresholding scheme assumes that pixels whose image intensity is between

two thresholds belong to one region. Researchers have developed many methods to

choose the threshold [54, 68, 73, 85, 102].

In images with high noises or uneven brightness, the basic assumption does not

hold, and Yanowitz et. al. [103] devised the adaptive thresholding technique to

apply to such images.

• Region Growing Methods

Region growing methods segment an image by combining or splitting regions based
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on similarity [7, 39, 71, 77]. Among them, the split and merge techniques [47, 48]

are widely used, which plant seeds in the image and let regions grow out from the

seeds based on homogeneity properties.

• MRF Related Methods

With the influential work of Geman & Geman [32], researchers began to use spatial

interaction models like Markov Random Field (MRF) to analyze images [24, 25, 32].

Their efforts resulted in several region-based image segmentation methods [6, 23,

24, 25, 30, 32, 33, 51, 60, 67].

• Scale Space Filtering and Non-linear Diffusion Methods

Scale space filtering methods [3, 40, 49, 101, 104] describe an image in a multi-scale

way and embed the original image in a family of derived images I(x, y, σ) obtained

by convolving the original image I0(x, y) with a Gaussian kernel Gσ:

I(x, y, σ) = I0(x, y)⊗Gσ

As researchers pointed out, the family of images can be obtained by the following

the isotropic diffusion equation,

∂I

∂σ
= 4I ,

where 4 is the Laplacian operator.

As noted in [75], the location of the true boundary is directly available only at the

original image. To solve the problem, researchers developed anisotropic diffusion

[1, 75, 80], which controls the smoothing by a non-linear function and achieves

edge-preserved smoothing.
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2.2 Boundary Methods

Boundary methods find object boundaries by focusing on the features near them. One

commonly used feature is the sharp change of image intensity near an edge. Boundary

methods divide into the following sub-classes.

2.2.1 Edge Detection and Grouping

An edge detector is a local operator to find edges formed by sharp change of image

intensity. Researchers have presented a number of edge detectors [34, 38], two of which

are very influential – Marr et. al. [62] developed one based on the zero-crossings of the

Laplacian of the Gaussian of an image, which produces continuous closed boundaries

but is very noise sensitive; Canny [8] developed one based one the gradient of an image

convolved with a Gaussian kernel, which often results in broken edges.

Since edge detectors rely on image properties in a local neighborhood of pixels and

ignore higher order organization of the image, they make premature decisions and gener-

ally produce many broken edges and spurious edges. To solve this problem, researchers

have developed algorithms to group edge elements together [27, 70, 82, 100]. But, it is

still often difficult to identify and discount spurious edge segments.

2.2.2 Hough Transform

The Hough transform is a mapping from the image space to a parameter space. It is

originally used to detect straight lines and parameterizable curves such as circles [26],

and Ballard [4] extended it to general shapes.

The Hough transform adopts a voting method to find instances of a shape in an

image [42]. The algorithm identifies likely boundary points in the image, then each of the
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points votes for several combinations of parameters. The combinations getting a majority

of votes win, while each winning combination corresponds to one possible instance of the

shape,

We illustrate the idea by an example in Machine Vision [42]. The problem is to

fit a straight line to several image points in image space.

xo

(m0, c0)

mo

cy

Figure 2.1: Hough Transform

First, we construct the parameter space. Consider the equation of a straight

line: y = mx + c , where (x, y) is the coordinate of one point in the image space, and

(m, c) represents one combination of the parameters of a straight line. We call the space

of (m, c) the parameter space. As shown in figure 2.1, one straight line in the image

space corresponds to one point in the parameter space, and one point in the image space

corresponds to a straight line in the parameter space. Suppose that, in the image space,

we have several points on a straight line y = m0x + c0, as marked by “•” in figure

2.1. Each point is consistent with an infinite set of (m, c) pairs, all of which lie in a

straight line in (m, c) space. According to the voting method, each image point votes



11

for every combination of m and c on its corresponding parameter-space line. Since each

image point votes equally, the intersection of all the lines, which is (m0, c0), wins the

most votes. As desired, the winning combination – (m0, c0) – corresponds to the original

straight line that fits the image points. To apply the voting algorithm in practice, we

need to discretize the parameter space because of noise and round-off errors.

The Hough transform is noise-insensitive, but the storage and computational com-

plexity are large, especially when the curve is complicated.

2.2.3 Active Contours

We introduce the rough idea of active contours here. We will use the next whole chapter to

discuss the details and problems of the methods, since our work focuses on this sub-class.

In 1988, Kass et. al. [44, 96] introduced active contour models (snakes), which

became a widely-used technique to find boundaries and features in images. Considering

the image as a spatially varying potential field, the active-contour approach deforms an

elastic curve from an initial contour towards the object boundary, and finally fits the curve

to the valley of the potential field to provide a continuous boundary to the image features.

The curve evolves according to a speed function to minimize an energy functional, which

consists of two parts – an image-dependent term called external energy and a smoothing

term called internal energy. Both terms are formulated in the form of an integration of

some function along the curve with respect to a parameter in [0, 1].

Two major problems exist in the classical approach: (a) according to the speed

function, the curve may evolve along its tangential direction; consequently, the points on

the curve can keep moving while the shape of the curve does not change; (b) the approach

is non-intrinsic – the behavior of the curve depends on how it is parameterized.

Some researchers replace the [0, 1] curve parameter in the energy formulation of
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the classical approach by the arc-length parameter [9, 16, 45, 59, 69, 78, 89, 99, 108]. We

will call the new model Euclidean arc-length active contours or simply arc-length active

contours. Recently several authors have remarked that the arc-length active contour

formulation fits well within a Riemannian framework [9, 45, 59]. The minimizing contour

with respect to the energy functional can be interpreted as a geodesic with respect to the

Riemannian metric.

The new model avoids the two problems with classical active contours: the curve

evolves only along its normal direction and the evolution is independent of parameteri-

zation. but as we will point out in next chapter, it incurs new problems.

2.2.3.1 Level Sets

In the original in active contour model, a curve is represented by a list of points, and

the curve evolution is described by the change of coordinates of the points. Heuristic

procedures have to be used to handle change of topology [9, 94]. Recently, Caselles et.

al. [9] and Malladi et. al. [59] implemented curve evolution on a level set scheme, which

handles change of topology automatically. The idea is following.

Consider figure 2.2. For a closed curve c in the plane Φ = 0, one can construct

a function Φ(x, y) such that Φ(x, y) < 0 inside c, Φ(x, y) > 0 outside c, and Φ(x, y) = 0

on c. The curve c is call the level set of Φ. Two Φ functions (Φ1 and Φ2) and their levels

sets (c1 and c2) are drawn in figure 2.2. Suppose that, in the plane of Φ = 0, a curve

evolves from c1 to c2 according to some speed function. Instead of evolving the curve, we

can achieve the same result by evolving a corresponding function Φ: first, we set Φ = Φ1,

whose level set is c1; then, we gradually lower value of Φ to Φ2, and the level set of Φ

expands gradually from c1 to c2. We can recast desired properties of the evolution from

c1 to c2 as properties of the evolution from Φ1 to Φ2.
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x

φ1

φ2

c2

c1

y

φ

0

φ = 0

Figure 2.2: Level sets

The advantages of the level-set approach is that it can systematically handle the

change of topology and development of shocks. Malladi et. al. [59] gave implementation

details in their paper. Kichenassamy et. al. [45] presented the 3-D extension of this

framework.

Away from the change of topology and development of shocks, there is a one-to-

one correspondence between active-contour evolution and level-set evolution. Since our

work is to derive an accurate evolution equation and our work does not involve the change

of topology and development of shocks, we will not go into the details of level sets in the

thesis. Interested readers will find detailed discussion in [80].



Chapter 3

Details and Problems of Current

Active Contour Models

In the previous chapter, we briefly reviewed different image-segmentation methods; in

this one, we will fix notations, describe different active contour models in details, and

point out the problems.

3.1 Details of Current Active Contour Models

In this section, we review the energy functional and speed function of different active

contour models – classical active contours, arc-length active contours, and geodesic active

contours.

Notations

Let x, y be the image coordinates, so that the image is the function I(x, y). When seeking

edges in images, we often need to compute the magnitude of image gradient, which we

14
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will call gradient magnitude in the thesis,

u(x, y) = || 5 I|| . (3.1)

Given an original image I0, we can compute its gradient magnitude (u) by either setting

I = I0 or setting I = G ⊗ I0 in equation 3.1. G is a Gaussian function to smooth the

original image since the gradient operator enhances noise.

A curve c(q) is function from [0, 1] to the image plane. Thus, c(q) = (cx(q), cy(q))

where cx(q) and cy(q) are the coordinate functions of the curve. The arc length parame-

terization of a curve is c(s) = (cx(s), cy(s)), where s is the arc-length parameter. Curves

with identical coordinate functions after arc length parameterization are considered to be

the same curve.

The set of all closed plane curves with finite curvature is the space C. Since

plane curves can continuously deform into each other, C is a manifold. Further, because

plane curves which are infinitesimally close to each other can deform into each other by

displacement along the curve normals, the tangent space at c ∈ C is isomorphic to the set

of vector fields on c given by f(s)n(s), where n is the unit normal to the curve c and f

is a continuous real function.

We write an evolving curve as c(q, t), where t is time. A continuously evolving

curve is itself a curve in the manifold C. The parameter of this curve is t, the evolution

time.

3.1.1 Classical Active Contours and Their Problems

According to Kass et. al., the classical active contour “is a controlled continuity spline

under the influence of image forces and internal constraint forces. The internal spline
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forces serve to impose a piecewise smoothness constraint. The image forces push the

snake toward salient image features like lines, edges, and subjective contours” [44]. In

classic active contour algorithms, the energy E(c) associated with the curve is a sum of

external and internal energy terms:

E = Eexternal + Einternal (3.2)

The external energy term is constructed by creating an image potential P (x, y)

and integrating it along c with respect to the curve parameter q

Eexternal(c) =
∫ 1
0 P (c(q)) dq. (3.3)

For classical active contour algorithms that seek edges, the image potential is the negative

gradient magnitude. That is, P (x, y) = −u 1

The most general form of internal energy term is a weighted sum of energy terms

in the first and second order derivatives of c(q): Einternal(c) = {α|| dcdq ||2 + β|| d2c
dq2
||2}dq .

However, the β term provides a “bending force” [44], which is not desirable in many

images; also, adjusting both α and β is quite complicated in practice. Many authors

have pointed out that using only the energy term in the first order derivative is efficient

[9, 46, 59, 88]. Thus, the commonly used internal energy term is

Einternal(c) = α||dc(q)
dq

||2dq . (3.4)

1As we defined in equation 3.1, u = || 5 I||.
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Adding external and internal energy terms together, we get

E0(c) =

∫ 1

0
{P + α||dc

dq
||2}dq . (3.5)

Using gradient descent method to lower the energy, we derive the curve evolution

equation as the following:

∂c

∂t
= −λdE0

dc
= −λ(5P + α

d2c

dq2
) , (3.6)

where λ is a constant to adjust the step size in evolution.

According to equation 3.6, the curve evolves to minimize potential function P (to

maximize gradient magnitude) while smoothing itself. The stationary point of evolution

(the condition under which the curve stops evolving) is given by ∂c
∂t (q) = 0.

Two major problems exists in the classical approach:

• When we re-parameterize the curve on the same image, 5P will remain the same

while d2c
dq2

will change for some or all points on the curve; therefore, ∂c∂t depends on

the parameterization. As a consequence, when a curve gets to a stationary point,

it may evolve again after we re-parameterize it.

• 5P has both normal and tangential components to the curve. Suppose that there

is a smooth valley in P , and P is not a constant along the bottom of the valley;

then 5P at the bottom is always tangential to the bottom. After we initialize

the curve at the bottom of the valley and set α = 0. the points on the curve will

keep on drifting along the bottom (the tangential direction of the curve); thus, the

shape of curve does not change while the evolution goes on forever. To avoid the
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problem, we need to set α to a positive value even if the image is noiseless. The

internal energy plays a double role – it smoothes the curve and it stops the curve

from drifting along itself forever.

3.1.2 Euclidean Arc-length Active Contours

Many researchers have proposed a simple alternative approach which solves the two prob-

lems with classical active contours. We call the new approach Euclidean arc-length active

contours or simply as arc-length active contours, because the main idea is to replace the

arbitrary parameter q in the energy formulation by the arc-length parameter of the curve

[9, 16, 45, 59, 69, 78, 89, 99, 108]. The substitution leads to a new energy functional:

E(c) =

∫ l

0
{P (c(s)) + α||dc

ds
||2}ds ,

Since s is the arc-length parameter, || dcds || = 1; the internal energy term is just proportional

to the total arc-length of the curve:

E(c) =

∫ l

0
{P (c(s)) + α}ds , (3.7)

When this is used to seed edges, different researchers define the potential function

P in alternate ways. Cohen and Kimmel[16], Neuenschwander and Fua et al. [69],

Sapiro[89], and Williams and Shah[99], define P () to be the negative gradient magnitude

P (x, y) = −|| 5 I|| . (3.8)
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In a sense, this is the most intuitive image potential that can make the contour cling to

edges. On the other hand, Caselles, Kimmel and Sapiro[9], Malladi, Sethian and Vemuri

[59] and Kichenassamy et al.[45] propose

P =
1

1 + || 5 I||n (3.9)

where, n = 1or 2. Finally, Malladi, Sethian and Vemuri [59] also propose

P = exp (−|| 5 I||) . (3.10)

In all three definitions, P is in the form of P (x, y) = P (u(x, y)) 2 :we can consider

P as a function of x and y and write it as P (x, y); we can also consider P as a function

of u and write it as P (u). The three definitions in the later form are:

P (u) = −u (3.11)

P (u) =
1

1 + un
(3.12)

P (u) = exp(−u) (3.13)

They all have the following properties:

• The value of P (u), for u > 0, is either always greater than zero or always less than

zero. We will use this property in our analysis of stability.

• P ′ = dP
du < 0 :P is a monotonically decreasing function of u.

2As we defined in equation 3.1, u = || 5 I||.
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• 5P = (∂P∂x ,
∂P
∂y ) = P ′ 5 u :The direction of the gradient of P is opposite to the

direction of the gradient of u. When the curve evolves to lower P , it is evolving to

higher u, which is the gradient magnitude.

For computation convenience, we express the energy E(c) in terms of an arbitrary

parameterization of the curve. If c(q) is an arbitrary parameterization of the curve for

q ∈ [0, 1], then

E(c) = Eexternal + Einternal

=

∫ 1

0
{P (c(q)) + α}||dc(q)

dq
||dq. (3.14)

Again, the evolution of the arc-length active contour follows gradient dynamics:

the curve evolves in a direction that achieves the maximum rate of decrease in its energy:

∂c(q, t)

∂t
= ω(q)n(q) = −(5P · n− Pκ− ακ)n. (3.15)

In this equation, the term 5P · n is the inner product of the vector 5P with the normal

n, and κ is the curvature function of c.

The stationary point of evolution (the condition under which the curve stops

evolving) is given by ω(q) = 0. The function ω() is sometimes called the speed function

of the arc-length active contour.

Geodesic active contours

Recently several authors have remarked that the active contour formulation fits well

within a Riemannian framework [9, 45, 59]. This is based on the following observation:
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Let φ(x, y) be a positive function. Then, ds′ = φ(x, y)
√

(dx)2 + (dy)2 is a Riemannian

metric defined in the image plane. The Riemannian arc length of a curve c(q) is

Lφ(c) =

∫ 1

0
φ(c(q))

√

(

dcx(q)

dq

)2

+

(

dcy(q)

dq

)2

dq

=

∫ 1

0
φ(c(q)) ||dc(q)

dq
|| dq,

where, ||dc(q)dq ||dq is the normal Euclidean arc length ds of the curve. By setting

φ(x, y) = P (x, y) + α, (3.16)

we obtain

Lφ(c) = E(c). (3.17)

Thus, the minimizing contour with respect to E(c) can be interpreted as a geodesic with

respect to the Riemannian metric.

The appeal of this interpretation is that the theory of geodesics becomes available

for analyzing active contours. This framework is sometimes called geodesic active contours

[9].

Since geodesic active contour and arc-length active contour have the same form

of objective function 3.17. our analysis of arc-length active contour in the thesis covers

geodesic active contours as well. Therefore, we will not consider geodesic active contours

separately.



22

3.2 Problem 1 of Arc-Length Active Contours: Bias due to

Euclidean Arc-Length Integration

In the section, we will describe the bias problem with arc-length active contours.

3.2.1 Examples to Illustrate the Bias

We describe the bias intuitively with the example in figure 3.1, which contains a uniform

white disc on a gray background. Image intensity I along line AB is shown in the figure

too. It doesn’t matter whether P is defined as P (u) = −u, P (u) = 1
1+un or P = e−u; in

any case, its shape looks like a valley along the radius of the disc near the boundary of

the disc, as shown in the figure.

In this image, the true boundary is the circle surrounding the white disc, which

lies in the bottom of the valley of P . Suppose we initialize a curve at the correct position,

and run it according to the evolution equation for arc-length active contours (equation

3.15). Since this image is noiseless, we set α = 0. Depending on the formulation of P , the

curve will drift away from the correct position, either inside to a smaller circle or outside

to a larger circle. We explain this phenomenon in two aspects.

First, we can explain it in terms of speed function. Since the curve is at the

bottom of P , the value of P is minimal along the normal direction, so 5P · ~N = 0; while

P 6= 0 on the curve in all three definitions. The curve evolves according to equation 3.15,

so the absolute value of its speed function is

||∂c
∂t
|| = | − λ(0 + Pκ ~N + 0)| 6= 0 ,

therefore the curve drifts away. Whether it drifts inside or outside depends on the sign
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Figure 3.1: A white disc on gray background

of P at the bottom.

Second, we can explain it in terms of energy. Since this image is noiseless, we

ignore the internal energy term by setting α = 0, so that the behavior of active contours
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is determined by the external energy alone. Because this simple image is circularly

symmetric, we get E =
∫ L
0 P (c(s))ds = Pl from equation 3.7, where l is the total arc

length of the circle, P is the value of potential function on the curve. Without loss of

generality, let us consider the case P = e−u, which is always positive. Imagine the active

contour shrinks itself uniformly to the inside circle shown in the image; as a consequence,

P increases, which causes the external energy to go up; but the length of the curve gets

shorter, which causes the energy to go down. Depending on the actual value of P and

l, the external function can decrease. So, the active contour can find a position in the

neighborhood of the true boundary with lower external energy. The curve drifts inside

to that position. If P is defined as P = −u, which is negative near the bottom, the curve

will drift outside. From the analysis above, we can see the source of bias: when the curve

evolves along its normal direction, the length of the curve changes, and the change has

effects in the external energy.

The example in figure 3.1 has one disadvantage. It suggests that bias originates

from total change in the arc length of the contour. This is not the case. Bias is a

local property of Euclidean arc length formulations. An infinitesimal version of the above

example shows this clearly (figure 3.2). If an infinitesimal piece of a curve c has Euclidean

arc length ds, then its infinitesimal external energy is the product Pds. If we push this

infinitesimal piece in the normal direction by the amount dv, then P changes by the

amount P ′ ∂||5I||∂v du while ds changes by the amount3 −κdsdv. Therefore, up to first

order

Change in the contribution to external energy

3The change in the infinitesimal arc length is explained concisely by Morgan [65].
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= First term× change in second term + Second term× change in first term

= P ′
∂|| 5 I||
∂v

dvds− Pκdsdv.

Suppose the curve was initially located exactly over an edge in the image. Since

the gradient magnitude is locally maximized in the direction normal to the edge, ∂||5I||
∂v

is zero. Therefore, the first term in the above expression is zero; and the change is

− Pκdsdv. Hence, the rate of change of external energy with respect to v is − Pκds,

which is of the same order as the external energy of the infinitesimal piece. Therefore,

the external energy of the curve can decrease when it is moved in the normal direction

away from the edge.

ds

(1−κ dv)ds

dv

Infinitesimal curve
moved along its normal

Figure 3.2: The change in arc length of an

infinitesimal curve.

This argument shows that bias due to the external energy arises as a result of the

change in Euclidean arc length when a curve is moved normal to itself. The argument is

made more precise in the next sub-section.
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3.2.2 Bias and Consistency: the Rigorous Formulation

In this sub-section, we define when an external energy is consistent and when it is biased.

Then we prove that external energy functions with Euclidean arc length integrals are

biased.

Let c∗(q) be a plane curve with unit normals n(q). An image I(x, y) has an edge

on the curve c∗ if for all q

∂

∂n(q)
|| 5 I(x, y)|| = 0, (3.18)

and,

∂2

∂n2(q)
|| 5 I(x, y)|| < 0, (3.19)

The symbols ∂
∂n(q) and ∂2

∂n2(q)
denote the first and second order partial derivatives in the

direction of the normal vector n(q). Note that this definition does not assume that the

contrast of the edge (i.e. || 5 I||) is uniform along c∗.

Let Ic∗ be the set of images which have an edge on c∗. This is the set of images

that we will be concerned with.

The external energy of an active contour is consistent when it makes the contour

stationary at an edge. More formally:

Definition: The external energy E(c) of an active contour is consistent if the first vari-

ation of E(c) is zero at c = c∗ for any I ∈ Ic∗ . Otherwise, the active contour is biased.

Where the first variation is defined as the following: suppose that a functional E

is defined in an open subset Y of a normed linear space S, then δE(h) is called the first
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variation of E(y) at y = y0 if, for t ∈ R,

δE(h) =
d

dt
E|t=0(y0 + th)

exists for all h ∈ S [84].

We can establish the following result

Proposition 1: p(u) is a real function. If for any u, p is either always greater than zero

or always less than zero, then any external energy of the type

E(c) =

∫ 1

0
p(|| 5 I(c(q))||) ||dc(q)

dq
|| dq,

is biased.

Remark: The p(u)’s proposed in the literature are either greater than or less than zero.

Therefore, this theorem applies to all of them.

Proof of Proposition 1: The proof is an evaluation of the first variation of of E(c) at

c = c∗ for any I ∈ Ic∗ . Letting v = f(q)n(q) be an element of the tangent space of C at

c∗, the first variation ∂E(c∗)[] is given by ∂E(c∗)[v] =
∫ 1
0 g(q)f(q)dq, where,

g(q) = ||dc
∗(q)

dq
||{dP (|| 5 I(c(q))||)

d|| 5 I||
∂|| 5 I(c∗(q))||

∂n(q)

−P (|| 5 I(c(q))||) κ(q)}

= ||dc
∗(q)

dq
|| {−P (|| 5 I(c(q))||) κ(q)} ,

where, κ(q) is the curvature of c∗, and we have used the fact that ∂||5I(c∗(q))||
∂n(q) = 0 because
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I ∈ Ic∗ .

The first variation ∂E(C∗)[] is zero if and only if g(p) is the zero function. How-

ever, g(p) cannot be a zero function because: (1) || dc∗(q)dq || cannot be zero for a regular

parameterization, (2) P is either greater or less than 0 and hence P 6= 0, and (3) c∗ is a

closed curve and hence κ(q) cannot be zero for all q.

This completes the proof.

3.3 Problem 2 of Arc-Length Active Contours : Instability

with Certain Formulation

We now turn to the issue of stability of active contours whose external energy is an

Euclidean arc length integral. The issue of stability is the issue of deciding if a stationary

point of the energy functional is a true minimum.

3.3.1 Mathematical Reasoning

Determination of a true minimum in a variational problem is a complicated issue and to

resolve it one has to take into account various pathologies of infinite dimensional function

spaces. Such investigation is beyond the scope of this paper. Instead we focus on the

Legendre condition. This is a necessary (but not sufficient) condition for the existence of

a (weak-) local minimum. That is, when the Legendre condition is violated, we may be

sure that the solution of the Euler-Lagrange equation is not a minimum. However, when

the condition holds, we cannot conclude that the solution is a minimum.

The Legendre condition states that if the functions φ(q) and ψ(q) make the inte-



29

gral

E(φ, ψ) =

∫ 1

0
F (q, φ, ψ,

dφ

dq
,
dψ

dq
) dq

minimal, then the matrix

F =









F dφ

dq

dφ

dq

F dφ

dq

dψ

dq

F dψ

dq

dφ

dq

F dψ

dq

dψ

dq









evaluated at φ(q), ψ(q) is positive semi-definite for all q ([20], 214-216). The term F dφ

dq

dφ

dq

is the partial second derivative of F with respect to its argument dφ
dq , the term F dφ

dq

dψ

dq

is

the mixed partial derivative of F with respect to its arguments dφ
dq and dψ

dq , and so on.

To evaluate the Legendre condition, we write the Euclidean arc length integral

energy function of equation (3.14) as

E(c) =

∫ 1

0
F (q, cx1 , cx2 ,

dcx1

dq
,
dcx2

dq
) dq, (3.20)

where,

F = (P (|| 5 I(cx1 , cx2)||) + α)

√

(
dcx1

dq
)2 + (

dcx2

dq
)2.

The resulting F matrix is

F =
P (|| 5 I(cx1 , cx2)||) + α
(

(
dcx1
dq )2 + (

dcx2
dq )2

)3/2









(
dcx2
dq )2 −dcx1

dq
dcx2
dq

−dcx1
dq

dcx2
dq (

dcx1
dq )2









.
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The two eigenvalues of F are

λ1 = 0, and

λ2 =
P (|| 5 I(cx1 , cx2)||) + α

√

(
dcx1
dq )2 + (

dcx2
dq )2

.

Thus, F is positive semi-definite if and only if

P (|| 5 I(cx1 , cx2)||) + α ≥ 0

for all q.

Hence, we reach the following conclusion:

Proposition 2: An active contour with the energy function of equation (3.20) is unstable

at its stationary position c(q) if

P (|| 5 I(cx1 , cx2)||) + α < 0 (3.21)

for some q.

We can use this result to evaluate the effect of different P functions on the stability

of the active contour.

[1] P(u) = −u: This is the most interesting case. The condition (3.21) reduces to

−|| 5 I(cx1 , cx2)||+ α < 0

which can certainly hold for some q if α is not large enough. Therefore active contours

with this external energy functions are unstable if α is not numerically greater than the

largest value of || 5 I(cx1 , cx2)||. This is surprising in light of the common belief that
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P (u) = −u is the intuitively simplest function which can make an active contour cling to

an edge.

We can try to make the contour stable by increasing α, but the Legendre condition

does not give the value to which α must be increased.

[2] P(u) = 1

1+un or P(u) = exp(−u) : In either case, P (|| 5 I(cx1 , cx2)||) is greater than

zero and the condition of proposition 2 is not satisfied. As we emphasized above, this

does not prove that active contours with these P ’s are stable. It only means that the

Legendre condition is unable to resolve the issue of stability and a more refined analysis

is required.

To get further insight into the instability of the active contour for P (u) = −u

consider figure 3.3. The figure shows the function P (||5 I||) and a curve c which satisfies

the Euler-Lagrange equation. Let [a, b] be a closed curve segment of length λ and let x

be the mid point of [a, b]. Perturb the segment [axb] as shown in the figure by moving x

normal to the curve to x′ in the direction opposite to the osculating circle at x. Let the

length of the perturbed segment [ax′b] be λ′. Since the perturbation is in the opposite

direction to the osculating circle, λ′ > λ.

Consider what happens to the energy of the curve due to this perturbation. Set α

to zero for now. The external energy of the curve outside the perturbed segment remains

the same. If λ is small enough, the initial external energy of [axb] is approximately

−λ|| 5 I(x)||. After perturbation the Euclidean arc length of [ax′b] increases to λ′ while

the value of || 5 I|| decreases to || 5 I(x′)||. As we argued before, it is easy to create a

profile for 5I such that the ratio || 5 I(x′)||/|| 5 I(x)|| is greater than the ratio λ/λ′. In

that case, the external energy of the perturbed contour (= −λ′|| 5 I(x′)||) is lower than

the external energy of the initial contour.
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a
b

x
x’

P(||   I(c)||)

Curve c

Perturbation

P(||   I(c)||)

Unstable curve departs
from its original position 
and becomes jagged 

Perturbation around the Euler−Lagrange solution

The shape of an unstable solution

Figure 3.3: Instability and the Legendre condition.
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If the second derivative of the energy is negative as the contour is moved from

[axb] to [ax′b], then the contour is unstable at c. An unstable contour will drift away from

c by becoming more jagged as it acquires a number of “triangular” perturbations of the

sort shown in figure 3.3, each perturbation decreasing the external energy by increasing

arc length.

The Legendre condition is the evaluation of the second derivative for certain

“triangular” perturbations that are similar to the one in figure 3.3 (for details, see Courant

and Hilbert ([20],214-216)). Thus, equation (3.21) tells us precisely when the second

derivative of the energy with respect to the perturbation becomes negative, even if α is

not zero.

This argument makes it intuitively clear that the instability is due to the increase

in Euclidean arc length from λ to λ′ as the curve is deformed. Intuitively speaking,

replacing the Euclidean arc length with the non-Euclidean arc length of section should

eliminate this problem. Indeed, the local energy function we propose in next chapter

does not satisfy condition (3.21). However, we do not yet have a complete proof of the

stability of these active contours. It remains an open problem.

3.3.2 Instability Demonstrated on a Real Image

The instability of P (u) = −u can be observed in practice. The telltale sign of the

instability is that the active contour becomes jagged as it tries to decrease its external

energy by cramming ever greater arc length into the “ravine” formed by P (||5I||). Figure

3.4.(a) is one MRI image of a dog heart, and figure 3.4.(b) shows the potential image

(P ) of the MRI image.

An active contour was initialized to the true edge of the image. The initial position

is shown in figure 3.4(b). To check that the initial position was close to the true edge,
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Figure 3.4: normals
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we plotted the variation of P = −|| 5 I|| along 10 evenly placed normals to the contour.

as shown in figure 3.5. The middle point in each mini-figure represents one point on the

curve. We can see that the value of P at each point on the curve is lower than the value

of P at its neighbor points along the normal. Since P = −|| 5 I||, this means that the

contour sits on the edge.

From this initial position, the contour was evolved along the gradient of its energy

for α = 0.1, 5, 10 and 15. The external energy was the Euclidean arc length integral with

P = −|| 5 I||. The results are shown in figure 3.6. We observed that for α = 0.1 and 5

the contour was unstable. It kept evolving into a more jagged curve thereby increasing its

arc-length and decreasing its energy. As expected, the tendency to become unstable and

jagged decreases with increasing α, and at α = 20 the contour appears to have stabilized.

This example not only illustrates the instability in the active contour but also the

difficulty in finding the stabilizing α.

3.4 Parameter Estimation

While using active contour models, the user has to set some smoothness parameters; for

example, the user needs to set an appropriate α in equation 3.15 to evolve the curve

in a desired way. If the user sets it too small, the results will be more jagged than the

correct answers because of noise in the image; if the user sets it too large, the results will

be overly smoothed, and in some cases they will even collapse to a point. Because the

range of the valid value of the parameter is very large and the appropriate value varies

across different images, the user usually has difficulty finding the right parameter. One

common approach is trial-and-error: the user begins with a small parameter, then he or

she increases it gradually until the result curve looks good.



36

(a) (b) (c)

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

(d) (e) (f)

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

(g) (h) (i)

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

(j)

−4 −3 −2 −1 0 1 2 3 4
−40

−35

−30

−25

−20

−15

−10

−5

Figure 3.5: P value along ten normals of the curve.
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(a) α = 0.05 (b) α = 5.0

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80
10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

(c) α = 10.0 (d) α = 15.0
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Figure 3.6: P = −|| 5 I|| with different α’s
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3.4.1 Related Work

Researchers have tried to systematically find appropriate smoothness parameters in dif-

ferent ways. Samadani [86] presented a method to dynamically estimate and adjust the

parameters to avoid instability in the deformation process. Larsen et. al. [52, 53] estab-

lished bounds of optimal parameters by extracting information from the object model.

Davatzikos et. al. [21, 22] established a special kind of active contour – the ribbon

model, then they studied the uniqueness and fidelity of the results, and their study gave

bounds on the parameters.

All the proposed methods only gave bounds of the parameter, and they usually

apply to a specific class of images. In the thesis, we will present a more general approach

to set the smoothness parameter, which exploits the image structure in the neighborhood

of an object contour and establishes a principle to find the optimal smoothness parameter.



Chapter 4

A New Active Contour

In the previous chapter, we described that the external energy term of arc-length active

contour is biased and some forms of it are unstable; In this one, we will define a consistent

external energy functional. How to achieve it? Since the origin of the bias is due to the

use Euclidean arc lengths, one possibility is to use non-Euclidean arc lengths.

4.1 A New Energy Functional

Getting rid of the bias requires a reformulation of active contours. The new formulation

can be explained in two steps:

1. Given a curve c, we change the definition of arc length in its neighborhood such

that when any infinitesimal piece of c is moved normal to itself, its (new) arc length

is unchanged.

The new arc length metric depends on c and is valid only in a small neighborhood

of c (figure 4.1). It might appear that this definition is of limited use because it

only applies to curves close to c. But this is not really a problem. We observe that

39
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active contours evolve smoothly, so that at any instance, the next contour is always

in a small neighborhood of the current contour and the new definition of arc length

can be applied.

More precisely, every curve c ∈ C has a neighborhood in which the arc length

definition based on c is valid. Using this definition we can formulate a “local”

external energy function and decide the best direction in which to evolve c. This

gives a vector in the tangent space of c (figure 4.1). Repeating this for every c ∈ C

defines a vector field on C. The evolution of a specific contour c is simply the integral

curve of the vector field passing through c. The evolution stops when it reaches a

stationary point of the field.

Curve c induces a metric
in a local neighborhood

The manifold of all
curves

Curve c Local external 
energy

Vector in the
tangent space

Integral curve

Figure 4.1: Evolving a curve by a local external energy.



41

2. Internal energy can be added as before without any further modifications. We

simply set each “local” energy to be a weighted sum of the new external energy and

the old internal energy. As above, for any curve c, we compute the direction that

gives the fastest decrease in the local energy. This gives a vector field on C and the

integral curve of the vector passing through c gives the evolution of c.

This formulation of active contours is fundamentally different from earlier formu-

lations in that it does not contain a globally defined external energy, but instead has a

vector field induced from a locally defined energy. The active contour no longer seeks an

minimum of a function; but instead seeks a stationary point of a vector field.

s

v

Curve c

Mapping Φ

 Length of an infinitesimal
 line is measured by projecting it
 along the normals on curve c

Figure 4.2: Non-Euclidean arc length.
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We proceed with the details of the each of the above steps. Let c(s) be an arc

length parameterized curve with normal n(s) and total Euclidean arc length L (figure

4.2). If v is the distance along the normal, then for −D ≤ v ≤ D, and 0 ≤ s ≤ L the

points c(s)+v n(s) belong to a neighborhood of the curve, say Ωc. In fact, we can choose

D and Ωc small enough that the map Φ : [0, L]× [−D,D]→ Ωc given by

Φ(s, v) = c(s) + v n(s),

is a diffeomorphism. The map Φ takes a rectangular grid in [0, L]× [−D,D] and confor-

mally maps it onto Ωc such that the horizontal lines of the grid are mapped parallel to c

and the vertical lines are mapped perpendicular to c.

Evaluating the inverse map (s, v) = Φ−1(x1, x2) corresponds to projecting the

point x1, x2 on to the curve c along the normal of the curve. The distance along the

normal is the variable v and the arc length parameter of the projection is s.

The new arc length metric is defined as follows: Given any infinitesimal vector in

Ωc we project it on c and obtain the infinitesimal arc length parameter ds of its projection.

The length of the vector is the absolute value of ds.

If









a dx1

b dx2









is the infinitesimal vector in in Ωc at x1, x2 then its image in the s, v

space is







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

= JΦ−1
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where, JΦ−1() is the Jacobian of Φ−1. By the new definition, the length of









a dx1

b dx2









is

the absolute value of

[

1 0

]

JΦ−1

















adx1

bdx2

















.

If ĉ(s) = c(s) + τf(s)n(s) is a curve in Ωc, then Φ−1(ĉ) = c(s) so that

JΦ−1(ĉ′(s) ds) =









ds

0









,

and, the length of ĉ′(s) ds is

|
[

1 0

]

JΦ−1

(

ĉ′(s)ds
)

|

= ds.

Thus, when an infinitesimal piece of the curve c(s) is moved normal to itself (to c(s) +

τf(s)n(s)), its (new-) arc length does not change.

The new (local) external energy of ĉ can be written as

E =

∫ L

0
P (|| 5 I(c(s) + τf(s)n(s))||)ds. (4.1)
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4.2 The New Speed Function

The rate of change of E with respect to τ at τ = 0 is

dE

dτ τ=0
=

∫ L

0

dP (|| 5 I||)
d|| 5 I||

∂|| 5 I||
∂n(s)

f(s) ds,

where, as before, ∂||5I||
∂n(s) is the directional derivative of || 5 I|| along the direction n(s).

As expected, the rate of change of E is a linear function of the tangent vector f(s)n(s).

The maximum rate of increase in E is achieved when f(s) is proportional to

dP (|| 5 I||)
d|| 5 I||

∂|| 5 I||
∂n(s)

.

The maximum rate of decrease occurs when f(s) is the negative of this function. There-

fore, we can set the preferred direction of evolution from c to be the vector

v(s) = −dP (|| 5 I||)
d|| 5 I||

∂|| 5 I||
∂n(s)

n(s). (4.2)

This is the vector field mentioned in the step 1 above.

4.3 The New Active Contour is Consistent

An active contour evolving as an integral curve of this vector field stops at a point where

v is zero. Thus, the vector field is consistent if it is zero when the active contour is over

an edge:

Definition: An image dependent vector field in C which is used for an active contour is
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consistent if its value is zero at c = c∗ for I ∈ Ic∗ .

Proposition 3: The vector field in equation (4.2) is consistent.

Proof: If I ∈ Ic∗ , and c = c∗, then ∂||5I||
∂n(s) is zero. Thus the vector field at c = c∗ is zero,

showing that the vector field is consistent.

We proceed to step 2 discussed above. After adding internal energy, the local

energy becomes

E =

∫ L

0
P (|| 5 I(c(s) + τf(s)n(s))||)ds+ α L̂, (4.3)

where, L̂ is the Euclidean arc-length of c∗. As above, the preferred direction of evolution

from c is the vector in the tangent space of C at c which decreases the energy the most.

Repeating the calculation from above, this vector is:

v(s) = −dP (|| 5 I||)
d|| 5 I||

∂|| 5 I||
∂n(s)

n(s) + α κ(s),

which, in terms of an arbitrary regular parameterization of c is

v(q) = −dP (|| 5 I||)
d|| 5 I||

∂|| 5 I||
∂n(q)

n(q) + α κ(q).

Curve evolution under this vector field is given by

∂c(q, t)

∂t
= v(q). (4.4)

We will evaluate this form of the active contour in the experiment chapter.



Chapter 5

Choosing the Optimal α

In the chapter, we present a principle and algorithm to choose the appropriate α in the

curve evolution equation (equation 4.4).

5.1 Principle

In the section, we study the structure of an image near an edge and establish a principle

to choose the appropriate value for the smoothness parameter.

5.1.1 Image Properties in a Curve’s Neighborhood

An edge is usually associated with a discontinuity in image intensity. “If we take a cross

section of the image brightness along a line at right angles to an edge, we might hope

to see a step discontinuity. In practice, the transition will not be abrupt because of

blurring and limitations of the imaging device.” [38] Usually we will see a ramp, and we

demonstrate the fact by one MRI image of a dog heart in figure 5.1.

Figure 5.1.(a) contains the image of a dog heart, in which we can see a clear con-

tour surrounding the white region in the middle. We draw a line segment perpendicular

46
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to the contour, as shown in the figure. Then, we sample the image intensity at 45 points

on the line segment and plot the sample in figure 5.1.(b). The sample has the shape of a

ramp.

Further, the gradient magnitude u = ||5 I|| along the line segment roughly forms

a Gaussian function, as shown in figure 5.1.(c). We explain this property by analyzing

two edge models – step model and smoothed-step model.

In figure 5.2.(a), the wide curve in the center separates two regions of contrast

brightness. A straight line (v-axis) lays along the normal direction of the boundary. We

denote the image intensity along the v-axis as I(v), the gradient magnitude along the line

as u(v), and the step function as S(v):

S(v) =































0, forv < 0;

1/2, forv = 0;

1, forv > 0.

In the two simple models, we assume that image intensity I is constant along each

curve parallel to the wide one in figure 5.2.(a). Under this assumption, the gradient of I

perpendicular to v-axis is 0 on v-axis, so u(v) = || 5 I||(v) = | dIdv (v)|.

In the step model, I(v) = I1 + (I2 − I1)S(v), and therefore u(v) = dI
dv = (I2 −

I1)δ(v), where δ(v) is the unit impulse function. Figure 5.2.(b) illustrates I(v) and u(v).

The location of the peak of u is the location of the edge. That is v = 0.

In the smoothed-step model, we model the image intensity along the line as a step

function smoothed by a Gaussian function G:

I(v) = I1 + (I2 − I1)(S ⊗G)(v) , (5.1)
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Figure 5.2: Edge models

and thus,

u(v) =
dI

dv
= (I2 − I1)G(v) . (5.2)

Figure 5.2.(c) illustrates I(v) and u(v). In this model, the edge is of a certain scale.

We define the position of the edge to be v = 0. As we can see in the figure, u has two

properties near the edge according to the model.

• Property 1 u along the normal direction is maximal on the edge.

• Property 2 u along the normal direction forms a Gaussian function centered at

the edge. We can model the edge in different ways. Generally, u along the normal

direction is “Gaussian like”.

Because of the property 2, u along the edge forms a ridge, as shown in figure 5.3.
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s
v

u(s, v)

Figure 5.3: u forms a ridge

5.1.2 How the External Energies Work

When researchers design external energies for an active contour to seek edges, they all

use the first property of u. As we discussed in Chapter 2, while minimizing the external

energy, an active contour evolves to minimize a potential function P . In edge-seeking

tasks, researchers have proposed the following three formulations of P :

P = −u ,

P =
1

1 + un
,

and

P = exp(−u) .

In all of the three, P (u) is a monotonically decreasing function of u and the minimum

of P happens at the maximum of u, so the active contours evolve to maximize u. With
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this kind of evolution, an active contour will move closer to an edge because maxima of

u happen at the edges.

5.1.3 The Functions of Internal Energy Terms

External energy leads active contours to maximize gradient magnitude u. In noiseless

images, since u is locally maximal at edges, the external energy alone will lead the curve

to edges. However, there is always noise in image, so the maxima of image gradient no

longer necessarily happen at edges. Thus, if we evolve the active contour by external

energy alone, it will end up with a very jagged shape.

Furthermore, if we evolve an active contour by external energy alone, the speed

function becomes

∂c

∂t
= −(5P · n)n .

Nothing prevents the curve to develop singularities; in other words, the curve may not

stay smooth, and thus n may not be well defined.

To solve the first problem, researchers added an internal energy term to smooth

(regularize) the curve. To minimize the internal energy, an active contour lowers the

curvature at all parts of itself, and therefore smoothes itself. With the added term, the

energy functional of an active contour embeds two goals of the curve – it evolves to

maximize u and to smooth itself. Setting the parameter α to different values, the user

will smooth the curve at different levels, and he/she can choose an appropriate value to

achieve the best smoothing effect.

The internal term also solves the second problem: with the new term, the speed
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function is

∂c

∂t
= −(5P · n− ακ)n ,

when κ > | 5 P · n|/α, the point evolves to lower the curvature. Since | 5 P · n| has a

upper bound in an image, the curvature of an active contour can not increase forever,

and thus it will not develop singularities.

In theory, the user can never set α = 0 in equation 4.4, otherwise the curve may

not have well-defined normals. When he/she does not want the smoothing effect, he/she

can only set α to a very small value, so that the internal term prevents singularities but

not smooth the curve much. In the rest of the thesis, we will denote the very small value

by α0:

α0 ≡ a smallα (5.3)

and

c0 ≡ the equilibrium position of equation 4.4 withα = α0 . (5.4)

This is not a rigid definition for α0, while we can define α0 rigidly by some heuristic rules

in practice. For example, we can determine it adaptively: we can decrease α by a factor

of 10 every time, until the maximal internal force is less than the average external force.

In our experiments, when we set α to a value below 0.1, the results look no different to

the result with α = 0.1. So we can set α0 = 0.1.
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5.1.4 Optimal-α Principle

Setting α to the right value in active contour algorithms is critical, and we illustrate the

consequences of setting α to inappropriate values in figure 5.4.

I2

I1

(a)

(b)
I1

I2

Boundary

c0

(c)

Figure 5.4: Image property along normals.

The center wide curve in figure 5.4.(a) stands for the boundary of two regions with

contrast brightness, and the other two wide curves show where the edge vanishes – image

intensity is basically a constant I1 above the upper curve and is basically a constant I2
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below the lower curve. We draw normals of the boundary as grids in the figure. Figure

5.4.(b) shows several samples of u along the normals at different positions. From figure

5.4.(a) and 5.4.(b), we can see that u forms a ridge along the true boundary. Figure 5.3

illustrates this more clearly for a noiseless image.

While evolving an active contour according to equation 4.4, if we set α to α0,

the resulting curve c0 will be more jagged than the true boundary because of noise, and

we draw the possible result as the dotted curve in figure 5.4.(c). In practice, the user

will increase α; as a consequence, the curve gradually gets smoother and smoother, while

most points on the curve are getting closer and closer to the center of the ridge. We

draw one possible smooth result as the thin curve in figure 5.4.(c). If the user continues

to increase α, the curve will get even smoother, and some points on the curve will move

farther away to the center; eventually, the whole curve moves out of the ridge and collapse

into a single point. We draw one possible over-smoothed result as the dashed curve in

figure 5.4.(c). To find the right answer, the user will choose a number of α’s, find their

corresponding equilibrium positions, and find the one that achieves the best smoothing

effect compared with curve c0.

From the above analysis, we can see that the smoothing effect is closely related

to the distance between the curve and the center of the ridge, we will use the property

to choose α, and our principle follows.

Optimal-α Principle: we choose an α which results an answer that is the closest to the

center of the ridge.

Of course we do not know the center when we run the active contour algorithm, so

we need a functional to compare curves as how well they are centered on a ridge, without

knowing the center.
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5.1.5 Overview of the Rest of the Chapter

In the next section, we will study the structure of the equilibrium position set of active

contours. The structure determines that we need a special algorithm, which we will

present in the section after. The algorithm specifies the requirements of a comparison

functional, which we define in two steps. First in section 5.4, we will define a measure

function P̃ on how well one point on a curve fits to the center of an ridge, and we discuss

the properties of it. Then in section 5.5, we will define an comparison functional E2 to

compare curves as a whole. In the last section, with all the pieces we will have developed,

we will present the algorithm in detail.

5.2 The Structure of the Result Set

To choose an appropriate α, we need to know the structure of the set of all equilibrium

positions of equation 4.4; for instance, if the equilibrium positions form a continuous

function of α, we might be able to find the right α by gradient descent method. That

is the motivation for us to study the structure of the result set before constructing an

algorithm to choose α.

5.2.1 On Circles

Again we conduct our study on circularly symmetric images for computational conve-

nience. We will discuss the case of a generic curve after this.

Figure 5.5.(a) contains a group of concentric circles, whose normals point inward.

We assume that P is constant on each of the circles: P (x, y) = P (
√

x2 + y2, 0). Thus, if

we initialize the curve on one of the circles, every point on the curve should behave in the

same way – each point moves along the radius with the same speed. As a consequence,
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Figure 5.5: Circles

the curve will always remain a circle. In this setup, the internal force always points

inwards, while we design the external force to always point outwards. We found some

special images in which active contours behave in very interesting ways:

• In some images, there are more than one connected equilibrium positions

for one α; in other words, equilibrium positions are not a function of α

in some images.

Figure 5.5.(b) shows the sample of a special P ( P (r, 0) = − ln r ) along x axis.

We set the curve at any of the circles, whose radius is r, and we set α = 1; then,

5P · ~N = 1
r , κ = 1

r , and

∂~c

∂t
= −λ(5P · ~N − ακ) ~N = 0 ,

which means the curve is at an equilibrium position. Since this is true for any r,
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any of the infinite number of connected circles is an equilibrium position for α = 1.

In the framework of arc-length active contours, the curve evolves according to equa-

tion 3.15 instead of equation 4.4. We can find a similar example: if P (r, 0) = 1
r−1,

any of the circles will be an equilibrium position for arc-length active contours with

α = 1.

• In some images, the equilibrium position is a discontinuous function of

α.
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Figure 5.6: A special P

Figure 5.6.(a) shows the sample of a special P :

P (r, 0) =
2 + cos r + r

∫ r
0.1 dz

sin z
z

r
.

We use 0.1 instead of 0 as the lower bound of the integral in the above equation
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because it is easier to plot P numerically with this lower bound. From it we derive

5P · ~N = −dP (r,0)
dr = cos r+2

r2
; and κ(r) = 1

r . Plugging them into the following

equation

5P · ~N − ακ = 0

we get

α =
cos r + 2

r
. (5.5)

This is the α that makes the circle with radius r an equilibrium position. We plot

α against r in figure 5.6.(b). Each point on the curve represents a pair of α and r.

We mark several points on the curves in figure 5.6, which we will refer to later; we

denote values of their r’s as rA, rB, · · ·, and denote values of their α’s as αA, αB, · · ·.

When we can set the curve at the circle of radius rC with α = αC , the curve will

be at equilibrium. After that, if we increase α a little, increased internal force will

shrink the curve; furthermore, there is no equilibrium position for an α > αC in

the near neighborhood, so the curve will keep on shrinking until it gets to a circle

whose radius is smaller than rA.

Similarly, if we set α = αB, the curve will be at equilibrium at the circle of radius

rB. When we decrease α a little, the curve will evolve to a circle whose radius is

bigger than rD.

As a consequence, if we treat the new active contour algorithm as a black box

which takes one image, one α and one initial position as input and gives back a

final position, and we initialize the curve as a circle whose r /∈ (rB, rC), the radius

of the final curve can never be in (rB, rC). Later, we will show even if we initialize

the curve at a circle with r ∈ (rB, rC), it will get out of that region in practice.
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The similar example for the framework of arc-length active contours is:

P (r, 0) = 0.1r +
r sin r + r2

∫∞
r

cos z
z dz − cos r − 2

2r
.

With this P , if we solve

5P − Pκ− ακ = 0

we will get the same α(r) as in figure 5.6.(b). The same situation exists. We show

shape of this P in figure 5.7.

• There are unstable equilibrium positions.

We use the example in figure 5.6 to demonstrate this phenomenon. For any r ∈

(rB, rC), we can make the curve at equilibrium there with an α computed according

to equation 5.5; however, the equilibrium position is unstable: a small perturbation
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will make the curve move far away. For example, suppose the curve stops at r = 4.6

with α = α∗. We mark the (r, α) pair by “*”s in figure 5.6.

3 3.5 4 4.5 5 5.5 6 6.5 7
0.05

0.1

0.15

Figure 5.8: Forces

We compute the forces on the curve as if the curve is at the circle with different

radius r and the same α = α∗. Then in figure 5.8, we plot the absolute value of

external force as a solid curve and the absolute value of internal force as a dashed

curve. External force always drives the curve outward, while internal force always

drives the curve inward. The absolute value of internal force is always bigger than

the absolute value of external force in the region between rB and r∗. The absolute

value of external force is always bigger than the absolute value of internal force in

the region between r∗ and rC . As a result, if the curve shrinks a little from the

current position (r = r∗), internal force dominates, and the curve keeps on shrinking
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until it moves out of the region between rB and rC ; if the curve expands a little

from the current position (r = r∗), external force dominates, and the curve keeps on

expanding until it moves out of the region between rB and rC . In either case, the

curve evolves far away from r = r∗ with a small perturbation. The same analysis

applies to the whole region between rB and rC , and there is always perturbation due

to noise, so the final position of the curve can never be there. This is very surprising,

since P in region rBrC looks similar to P in region rArB and region rCrD in figure

5.6.(a). In arc-length active contour models, the same thing happens.

5.2.2 On Generic Curves

So far, we have used circles for computational convenience. Actually, the discontinuity of

equilibrium positions is very general, and we will show this on a generic object in figure

5.9.(a). On the upper-right corner of the object, there are actually two close-by edges,

which eventually converge. One of the edges is due to noise. This false-edge phenomenon

happens a lot at different scales in real images. The samples of P along three normals

are shown in figure 5.9(b), 5.9(c) and 5.9.(d) respectively, where the little arrows show

the directions of external forces. As we can see in the figure, the sample at point 2 is very

different from the other two since it is at the double edge.

Suppose that an active contour gets to an equilibrium position at the outer bound-

ary with a very small α. The corresponding position in figure 5.9.(c) is point x, and the

corresponding positions in figure 5.9.(b) and 5.9.(d) are the bottom of the valley. Let us

also assume that the valley at the double boundary is much more shallow than the rest

of parts of the curves, so that when we increase α, the part of the curve at the double

boundary moves much more than the part at the single boundary, in which case we can

concentrate on behaviors of the active contour at the double boundary part.
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Figure 5.9: A special P

When we gradually increase α, the equilibrium curve at position 2 will move

gradually from x towards y. y is in the between of the two boundaries. However, once

the curve passes y, it can not stop in the region between y and z, since in that region,

both internal force and external force point inwards the curve, and the net force can not

be 0. The equilibrium position jumps from y to a point left to z for a small change of α.

Again, the example supports our claim that the equilibrium position is not a

continuous function of α.

5.2.3 Conclusion: Discontinuity of Equilibrium Positions

In the section, we studied the structure of the set of equilibrium positions of active

contours. Of all the interesting behaviors we found, one is very important for us to bear

when we design the algorithm:

Discontinuity of Equilibrium Curves: When the active contour is at an equilibrium

position, and the user increases α a little, the next equilibrium position may be far away

from the current one.
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5.3 A Discrete Algorithm

Since the equilibrium position is not continuous with respect to α, we can not apply

gradient descent method to choose α. The reason is: even if we find a functional of

equilibrium positions that is continuous with respect to curves, it won’t be continuous with

respect to α, and a gradient descent methods requires the function/al to be continuous

with respect to the variable being estimated. Considering this fact and the fact that we

do not know the true center of the ridge of u, we propose the following discrete algorithm:

1. Given an image and an initial position, we set α = α0 (a very small value) and

evolve the active contour from the initial position to a certain equilibrium position

c0.

2. For each k = 1, 2, 3, · · ·, we set α = 1.5kα0, and evolve the curve from c0 to a new

equilibrium position ck, until α is too large: when we increase α, the final position

will be away from curve c0 and even collapse into one point. If for an α, the curve

evolves away from c0 with an average or maximal evolution distance bigger than a

certain value, we consider the αk as too large.

3. Choose the best curve from all the final positions in terms of how well they are

centered on the ridge compared to c0. We will explain how we achieve this in the

next two sections.

After we define the comparison functional to compare how well curves are centered

on a ridge, we will re-state the algorithm in details in section 5.6.

The obvious drawback of this algorithm is that it only tests a number of α’s and

therefore it may miss some good α’s and their corresponding results. It is not a big

problem in practice. Since we care more about the positions of the curve than the α’s,
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we can simply decrease the intervals of α’s if we find the distance between curves is too

large.

5.4 How to Measure the Improvement of One Point

5.4.1 Formulation

In this sub-section, we present a function P̃ to measure how well a point fits to the center

of a ridge.

v

v

v

v u(v)

G(v - x)

v

v
x1 x2

v

v
x1 x2

u * G

u(v)

(a) A curve (b) u(v) and G(v − x) (c) u(v) and u ∗G

Figure 5.10: To measure one point

Figure 5.10.(a) shows a curve and normals of it, figure 5.10.(b) shows one sample

of u(v) along a normal. We know that u(v) is a Gaussian function plus noise. Give two

position x1 and x2, we want to compare which one is closer to the center. We can try

the following method: for each x, we construct a Gaussian function G(v − x) which is

centered at x. All the Gaussian functions are identical after transformation. We use the

integral of the product ([18] Page 310) of u and G. of u and G(v− x) as the criterion on
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how similar G(v − x) is to u(v):

RuG(x) =

∫

u(v)G(v − x)dv .

G(v − x1) is more similar to u(v) than G(v − x2) is, when RuG(x1) > RuG(x2). Because

G(v − x) is symmetric at v = x, we get

RuG(x) =

∫

u(v)G(x− v)dv = u ∗G

So, G(v − x1) is more similar than G(v − x2) when (u ∗G)(x1) > (u ∗G)(x2).

NOTE: when the image is noiseless, this is always true no matter what size of G we

chose. With this measure, the principle becomes: choose the curve that maximizes u ∗G.

If we proceed with this measure, we will face a lot of difficulties in computation

and implementation, since the computation requires knowing the normal of the boundary.

To avoid the problem, we develop a measure function independent of normals. Instead

v

v

v

v

(a) Measure along normals (b) Circular measure

Figure 5.11: Two ways to measure one point
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of measuring u along the normals, as shown in figure 5.11.(a), we sample u in a circle –

as shown in figure 5.11.(b) – and define the measure function to be the convolution of

the sample with a two-dimensional Gaussian function G2, Mathematically we define a

measure function P̃ at position (x, y) as

P̃ (x, y) =

∫ ∞

−∞
dx̄

∫ ∞

−∞
dȳ u(x− x̄, y − ȳ)G2(x̄, ȳ) . (5.6)

We denote the STD of G2 by σ2. Since Gaussian function almost vanishes beyond the

point that is 3σ2 away from the center, in practice we use:

P̃ (x, y) =

∫

dx̄

∫

dȳ√
x̄2+ȳ2≤3σ2

u(x− x̄, y − ȳ)G2(x̄, ȳ)

Given a point c0(q) on curve c0 and a point ck(q) on curve ck, we say ck(q) is better than

c0(q) when P̃ (ck(q)) > P̃ (c0(q)).

Now, the question is: how good is the measure function?

5.4.2 On Lines and Curves

Straight Lines in Noiseless Images

When the boundary is a straight line and u along any line parallel to the boundary

is constant, 1, P̃ is identical to u∗G. We demonstrate this in the figure 5.12, which shows

the shape of u near a straight edge.

In the figure, the s-axis is along the edge, and the v-axis is perpendicular to the

edge. We use G to denote a one-dimensional Gaussian function whose STD is σ2 and G2

1The two assumptions are roughly satisfied for many parts of an object in real images.
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Figure 5.12: Straight edge model

to denote a two-dimensional Gaussian function whose STD is also σ2, then

G2(s, v) =
1

2πσ22
e
− s2+v2

σ2
2

=
1√
2πσ2

e
− s2

σ2
2

1√
2πσ2

e
− v2

σ2
2

= G(s)G(v)

We use u(s, v) to denote the gradient magnitude at point (s, v). Under our assumptions,

u(s1, v) = u(s2, v) for any s1, s2, and v. In this coordinate system,

P̃ (s, v) =

∫

ds̄

∫

dv̄ u(s− s̄, v − v̄)G2(s̄, v̄) (5.7)

We will prove

P̃ (s, v) = Ru(s,.)G(v) (5.8)

which means P̃ is consistent with the one dimensional measure when we are dealing with
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a constant straight edge.

P̃ (s, v) =

∫

ds̄

∫

dv̄ u(s− s̄, v − v̄)G2(s̄, v̄)

=

∫

ds̄

∫

dv̄ u(s− s̄, v − v̄)G(s̄)G(v̄)

=

∫

dv̄G(v̄)

∫

ds̄u(s− s̄, v − v̄)G(s̄)

=

∫

dv̄ G(v̄)

∫

ds̄ u(s, v − v̄)G(s̄)

=

∫

dv̄ G(v̄)u(s, v − v̄)

=

∫

dv̄ u(s, v̄)G(v − v̄)

=

∫

dv̄ u(s, v̄)G(v̄ − v)

= Ru(s,.)G(v) .

From the above analysis, we know that the measure function is precise on a

straight line with constant image intensity along any line parallel to the center: in this

case, when P̃ (ck(q)) > P̃ (c0(q)), ck(q) is closer to the center than c0(q) is.

Curves

The measure function P̃ is biased when the boundary is not straight, by which

we mean the positions of maxima of u are different from the positions of maxima of P̃ in

the same noiseless image.

This is obvious: P̃ is the convolution of potential function P and Gaussian func-

tion G2, and researchers have proved that the convolution of image with a Gaussian

function moves minima/maxima [1], so the maxima of P̃ must be different from the

maxima of u. We demonstrate the effects in next sub-section.
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5.4.3 Bias on a Circle

We will illustrate that P̃ is biased, but the bias is small in our case. The wide solid curve

in figure 5.13 stands for the maxima of u, and the dotted curve stands for the maxima

of P̃ . Since we can always fit a circle to one point on the curve, and make the circle has

the same curvature of the curve at the tangential point, we study the bias on a circular

object, which makes the formulation simpler.

Figure 5.13: Bias introduced by approximation

Figure 5.14 contains a white disc in gray background. To simplify computation

even further, we assume the image in the figure is circularly symmetric. In other words,

we assume that image intensity is the same at points with the same distance to the center

of the disc. We set the origin of the xy coordinate at the center of the disc. Figure 5.14

also contains samples of I, u, and P̃ along x axis. The maxima of u form a circle with

radius equal to R, and the circle is the true boundary of the disc. The maxima of P̃ form

another circle with radius equal to bR. Later, we will prove that b < 1, in other words,

the maxima of P̃ are inside of the maxima of u. As a result, the optimal position defined

by P̃ is different from the true boundary even in the noiseless image. The difference is
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Figure 5.14: A circle

the bias, and we will use 1− b , which is the ratio of the bias over radius R, to quantify

the scale of the bias.

Since u is circularly symmetric, value of u at a point depends on the distance

from this point to the origin only: at (r cos θ, r sin θ) in the image, the value of u is

u(r cos θ, r sin θ) = u(r, 0)
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In our model, u along normal direction is an Gaussian function, so

u(r, 0) =
M√
2πσ1

e
−

(r−R)2

2σ2
1

We compute P̃ as:

P̃ (x, y) =

∫ ∞

−∞
dx̄

∫ ∞

−∞
dv̄ u(x− x̄, y − ȳ)G2(x̄, ȳ)

=

∫ ∞

−∞
dx̂

∫ ∞

−∞
dŷ u(x̂, ŷ)G2(x− x̂, y − ŷ)

=

∫ ∞

0
dr

∫ 2π

0
dθ ru(r cos θ, r sin θ)G2(x− r cos θ, y − r sin θ)

=

∫ ∞

0
dr

∫ 2π

0
dθ ru(r, 0)G2(x− r cos θ, y − r sin θ)

=

∫ ∞

0
dr

∫ 2π

0
dθ ru(r, 0)

1

2πσ22
exp(−(x− r cos θ)2 + (y − r sin θ)2

2σ22
)

We make several variable substitutions:

a =
r

R
, b =

√

x2 + y2

R
, β = arctan

y

x
, and k2 =

σ2
R

. Then,

(x, y) = (bR cosβ, bR sinβ)

, Of the new variables, a and β are intermediate variables, which we will not use after

the computation; b means the ratio of the radius of the circle of P̃ over R (the radius of

the circle of u), 1− b means the ratio of bias over the radius R, k2 means the ratio of σ2
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over R, and 1−b
k2

means the ratio of the bias over σ2. We get:

P̃ (x, y) = P̃ (bR cosβ, bR sinβ)

=

∫ ∞

0
da R

∫ 2π

0
dθ a R u(aR, 0)

1

2πk22R
2

exp (−(b cosβ − a cos θ)2 + (b sinβ − a cos θ)2
2k22

)

=
1

k22

∫ ∞

0
da a u(aR, 0) exp (−a

2 + b2

2k22
)

∫ 2π

0
dθ

1

2π
exp(

ab cos(θ + β)

k22
)

=
1

k22

∫ ∞

0
da a u(aR, 0) exp (−a

2 + b2

2k22
)I0(

ab

k22
) ,

and

dP̃ (x, y)

db
=

1

k42

∫ ∞

0
da a u(aR, 0) exp (−a

2 + b2

2k22
)(aI1(

ab

k22
)− bI0(

ab

k22
)) . (5.9)

I0 and I1 are Bessel functions. When dP̃ (x,y)
db = 0, P̃ at (x, y) = (bR cos θ, bR sin θ) is

maximal along radius; furthermore, since P̃ is circularly symmetric, it is a maximal in

the image.

Given different models of u, we can substitute u(r, 0) with different functions and

set equation 5.9 to 0 to compute b. Then, we get 1− b, which quantifies the bias.

5.4.3.1 Sharp Edge

If the disc has a sharp edge – u(aR, 0) = δ(aR−R) = δ(a− 1), we get

P̃ (x, y) =
1

k22
exp (−1 + b2

2k22
)I0(

b

k22
) ,
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and

dP̃ (x, y)

db
=

1

k42
exp (−1 + b2

2k22
)(I1(

b

k22
)− bI0(

b

k22
)) = 0 .

Solving dP̃
db = 0 numerically in Mathematica, we get a number of b’s for corresponding

k2’s; then, we plot 1− b against k2 in figure 5.15.
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Figure 5.15: (1− b) vs. k2
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We will explain its meaning in the next subsection.

5.4.3.2 Smooth Edge

If u(aR, 0) is a Gaussian function whose STD is σ1 = k1R (k1 is the ratio of the STD of

the Gaussian along the normal over the radius R),

u(aR, 0) =
M√
2πσ1

exp (−(aR−R)2
σ21

) .

the bias depends on both k2 and k1. For k1 = 0.02, 0.2, 0.5 respectively, we numerically

solve equation 5.9 and we we plot bias against k2 in figure 5.16. Figure 5.16.(a) shows

the bias over R against k2; figure 5.16.(b) shows the bias over σ2 against k2. In figure

5.16, the dotted curves show the bias in the case of sharp edge; while the other three

curve show the bias in the cases of smooth edge with different k1’s. In both figures, the

bigger k1 is, the higher its corresponding curve is.

As we can see in these figures,

• The three curves with different k1’s are very close; in other words, the effect of the

actual shape of u on bias is small. The bias depends more on the shape of the curve.

• In most images, the curvature of an edge is small enough (less than 0.5) that the

circle fitting to the curve has R > 2. In this case, if we set σ2 = 1 all the time, we

get k2 ≤ 0.5. From figure 5.16.(b), we know that the ratio of bias over σ2 will be

less than 0.6 when k2 ≤ 0.5, which means the bias will be smaller than 0.6 pixel

except at high curvature parts. Since the bias is so small, we can ignore it. We will

show the effect of scale of σ2 in experiments.
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(a) (1− b) vs. k2
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Figure 5.16: Error of E2
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5.4.4 Conclusion

In the section, we establish a measure function to compare points regarding how close

they are to the center. The measure function is precise under two conditions:

• The edge is straight.

• Image intensity is constant along any line parallel to the edge.

We know when the first condition is not satisfied, the measure function incurs

a very small bias. The second condition is roughly satisfied in most images since the

change along the curve is usually much smaller than the change along the normal. So,

the measure function should be a reasonably good one. Instead of proving this in theory,

we use experiments to test the performance of the algorithm and the measure function

together in chapter 6.

5.5 How to Compare Curves as a Whole

In the last step of the algorithm in section 5.3, we need to choose a curve from a group of

curves that improves the most over curve c0. We illustrate the problem by figure 5.17,

in which c0 stands for the final position of the evolving curve when we set α = α0, and

ck(k = 1, 2, · · ·) stands for the final position of the curve when we initialize it at c0 and

set α = αk. The arrows in the figure show the displacement vectors of some points on

the curve, and they form a point-to-point correspondence between curve ck and c0. We

want to define an comparison functional E2 to determine which curve as a whole fits the

center the best.
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Figure 5.17: Comparison of curves

5.5.1 Generalize the Problem

We can generalize the problem as the following:

1. There a base curve c0 and a group of curves c1, c2, · · · , ck, · · ·. In addition, we know

a point-to-point correspondence between each curve ck in the group and curve c0.

For a point c0(q) on curve c0, we denote its corresponding point on curve ck by

ck(q) = Φk(c0(q)), where Φk is a correspondence function.

2. With a measure function P̃ , we can determine whether position ck(q) is better than

position c0(q) by comparing P̃ (ck(q)) and P̃ (c0(q)). Without loss of generality, we

assume points with higher P̃ as better.

With the above information, we want to define a comparison functional E2(ck) to

determine whether curve ck is better than curve c0 as a whole; furthermore, we want to

find the curve in the group that improves the most over curve c0.

5.5.2 Two Straightforward Solutions

First of all, we can use the ideas in arc-length active contours [9, 59] and arc-length-

parameterized active contours [16, 69, 78, 99, 108] to solve this problem. In both frame-

works, a curve has an energy functional, and curves with lower energy are better. The
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energy functional is the integral of a potential function along the curve with respect to

arc-length. The definition does not need the point-to-point correspondence. To apply the

idea to our problem, we define

E2(c) =

∫ l

0

1

1 + P̃ (c(s))
ds , (5.10)

and consider curves with lower E2 as better. We can not define

E2(c) =

∫ l

0
P̃ (c(s)) ds (wrong definition)

and take higher value as better, because this definition has no upper bound and we can

always add a loop to a curve to make its E2 higher.

Second, we can use the average of P̃ on the curve as the comparison functional:

E2(c) =

∫ l
0 P̃ (~c)ds

l
. (5.11)

and consider curves with higher E2 as better.

5.5.2.1 The Two Solutions are Biased

First we define what is a biased E2.

Definition of Biased E2: if we can find a curve ci and a curve cj such that for any

q ∈ [0, 1) P̃ (ci(q)) ≥ P̃ (cj(q)) (any point on ci is better than or equally good to its

counterpart on cj), but E2(ci) is worse than E2(cj), we say the functional E2 is biased.

Similarly to the external term in arc-length active contours, the functional in

equation 5.10 is arc-length biased. For two curves in an image where P̃ is constant,
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we set up an arbitrary point-to-point correspondence. Any pair of points have the same

value of P̃ , but shorter curve has lower (better) E2.

The functional in equation 5.11 is also biased. In images where P̃ in one part is

higher than P̃ in the other part, if the curve squeezes more and more of itself into the

higher P̃ region, the part of curve in that region will have bigger fraction of the whole

curve, and thus its E2 value decreases. We illustrate the effect in figure 5.18, where the

B

C D E

c1 c0

A

Figure 5.18: E2 as the average P̃ is biased.

eclipse CAEB is denoted by c0. Suppose segment AEB of c0 evolves to ADB as the

arrows represent the paths; while the other segment ACB does not move. We denote the

new position by c1. Suppose length(ADB) = 4, length(AEB) = 5, length(ACB) = 9;

and P̃ is constant on each of the three segments with P̃ (C) = 1, P̃ (D) = 10, and P̃ (E) = 9

According to equation 5.11, E2(c1) = 3.77 < E2(c0) = 3.86. In other words, while each

individual point on curve c0 either remains the same or evolves to a better position, the

whole functional gets worse. That is, this definition is biased.
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5.5.3 A New Approach

We propose a new method which uses the arc-length of curve c0 for all the curves to

construct E2 –

E2(ck) =

∫ 1

0
P̃ (Φk(c0(q))) ||c′0(q)|| dq . (5.12)

and considers curves with higher E2 as better.

Proposition: This definition is not biased.

Proof: if ∀q, P̃ (~ci(q)) ≤ P̃ (~cj(q)), then

E2(ci) =

∫ 1

0
P̃ (~ci(q))||~c′0||dq ≤

∫ 1

0
P̃ (~cj(q))||~c′0||dq = E2(cj)

In the approach, the functional of every curve depends on c0 and the correspondence

function. If we choose a different base curve or the curves have a different correspondence,

the relationship between curves may change. In other words, it does not define an absolute

notion of best, but only a concept of goodness relative to a base curve. We compare the

performance of this approach with the performance of the other two in experiments.

5.6 The Algorithm in Detail

Now, with all the pieces we have built, we write down the algorithm to choose an appro-

priate value for α and find its corresponding curve in details.

Given an image I and an initial curve cinit, the algorithm works as the following:

1. Construct the gradient magnitude u = 5I, the potential function P = −u, and the

measure function P̃ = u ∗G2.
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2. Choose a very small value α0 (in our experiments, 0.1 works well).

Set α = α0, and evolve an active contour from cinit to c0 according to equation 4.4.

3. αbest := α0

cbest := c0

k := 1

4. α := 1.5α. Evolve the active contour from c0 to a new equilibrium position ck

according to equation 4.4.

5. If the average (or maximal) displacement of the points is bigger than a certain

threshold, stop the program and return αbest and cbest; otherwise, continue.

6. If E2(ck) is better than E2(cbest), αbest := α, and cbest := ck.

7. k := k + 1.

8. Go to step 4.



Chapter 6

Experiments

In this chapter, we report our experiments on the new active-contour algorithm and the

parameter-estimation algorithm. We tested them on both synthetic and medical images.

On synthetic ones, we compared the results with the ground truth; on medical ones, it is

hard to evaluate the performance, so we include the medical images in the thesis to let

the reader judge the performance by him- or her-self.

6.1 On Synthetic Images

In this section, we report the experiments on synthetic images.

6.1.1 Experiment Setup

We tried to keep the simulations as realistic as possible. We created an image that

had features which are known to be troublesome for active-contour algorithms – corners,

variable contrast, etc. Further, because it is common to regularize the image before cal-

culating its gradient, we included a regularization step. Finally, some heuristics were used

to ensure that the active contour was initialized in the same way for different algorithms.

82
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The details of the experiment setup are as follows.

6.1.1.1 Image Synthesis

The synthetic image was created through the following steps:

1. We began with a hand-drawn curve which had varying roughness, significant inden-

tations, and sharp corners. The curve is shown in Figure 6.1.(a).

2. The region inside the curve was filled with a uniform gray level of 150. The upper

half of the background region was filled with a gray level of 200 and the lower half

was filled with the gray level of 100. This had the effect of changing the sign of

the edge contrast between the upper and lower halves. Further, it introduced two

T-junctions along the boundary.

3. The resulting image was multiplied pixel-wise by a “gain” function g(x, y) given by

g(x, y) = 0.33× (1− x

X
) + 1.0× x

X
, 0 ≤ x ≤ X,

where X = 250 is the maximum number of pixels in the horizontal direction. The

effect of this is to multiply every pixel with a factor which is 0.33 on the left edge

of the image and which linearly increases to 1.0 on the right edge of the image.

Pixels that lie on the same vertical line are multiplied by the same number. This

simulates variable contrast in the image.

4. The image was convolved with a 2-D Gaussian kernel. This makes the edge blurred

and simulates finite scale for edges. In the experiments, we set the STD of the

Gaussian kernel to 1.0. At the end of this stage, we generated a noiseless image, as

shown in figure 6.1.(b).
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(a) The synthetic boundary
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Figure 6.1: The image used in simulations.
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5. Finally, independent uniform noise in [−M,M ] was added to the noiseless image to

generate noisy images.

6.1.1.2 Image Regularization

Each noisy image was regularized by convolving it with a 2-D Gaussian of size 3 pixels

×3 pixels. As mentioned before, this step was added because it is common practice to

regularize an image before calculating its gradient.

6.1.1.3 Contour Initialization

All active contours were initialized as circles and initially moved under a constant expan-

sion force (a “balloon” force [14, 15]). As a contour entered regions of high gradient, the

expansion force was switched off and the normal evolution equation applied. This is just

a heuristic initialization strategy that was helpful in our experiments. It has no bearing

on the final location of the contour. Almost any other initialization strategy would work

as well.

6.1.1.4 Performance Measures

Two different performance measures were used:

1. Length measure: A classic sign of bias is that the active contour becomes stationary

in a shape that is consistently smaller or bigger than the true answer. To measure

this, we calculated the percentage difference of lengths of the active contour and

the true boundary contour:

length error = 100 ∗ |length(active contour)− length(boundary)|
length(boundary)

.
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2. Area measure: We denote the region inside the true boundary as R0 and the region

inside the active contour as R. The percentage area of difference is computed as:

area error = 100 ∗ area((R−R0) ∪ (R0 −R))
area(R0)

.

We take area of difference a better measure than difference of area for the following

reason: when two regions have the same area, or say their difference of area is 0,

they can still be different; but when the area of the difference of the two is 0, the

two regions are identical by definition. Figure 6.2 illustrate this property: in the

figure, curve c is drawn by a solid curve, and curve c0 is drawn by a dashed curve.

The regions surrounded by the two curves have the same size, but they are very

different.

c0

c

Figure 6.2: Two regions with the same area.

6.1.2 Experiments on Different Active Contours

The first set of experiments is to compare different active-contour algorithms and demon-

strate the effects of Euclidean and non-Euclidean arc lengths on bias. Experimental
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evidence of instability was discussed in section 3.3.

6.1.2.1 The Active-Contour Models

Three active-contour algorithms were compared in the experiments. For reference, they

are called AC1, AC2, and AC3.

AC1: The active contour AC1 has the non-Euclidean arc-length local energy proposed

in section 3.2.2. Its evolution equation is (4.4), with P (u) = −u.

AC2: The active contour AC2 has the traditional energy with Euclidean arc-length in-

tegral (equation 3.14). Its evolution equation is (3.15), with P (u) = −u.

AC3: The active contour AC3 also has the energy of equation (3.14). Its evolution

equation is (3.15), with P (u) = 1
1+u .

To be fair, for each contour the images were scaled by a constant that kept the

maximum force on each active contour the same.

6.1.2.2 Simulated Combinations

Six values of α were chosen for simulations: α = 0.1, 1.0, 2.0, 3.0, 4.0, 5.0; and, three noise

levels were selected: M = 0.0, 10.0, 30.0.

For M = 10 and M = 30, 25 noisy images were generated for each level, so we

have a total of 51 images (1 noiseless one, 25 noisy ones with M = 10, and 25 noisy ones

with M = 30).

The three algorithms with six values of α were tested on each of the 51 images.

The active contours were initialized at the same position for each image. When an

active contour became stationary, percentage difference of length and percentage area of

difference were calculated.
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6.1.2.3 Results

Figure 6.3 - 6.5 show the average length measure for each combination of α,M, and the

active contour algorithm. The following trends can be observed:
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Figure 6.3: Length measures for different active contours (M = 0)

1. For low values of α, AC2 makes large errors. This is consistent with our theoretical
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Figure 6.4: Length measures for different active contours (M = 10)

result that AC2 is unstable and that the instability is manifested by the contour

becoming more jagged.

2. For low values of α andM = 0, AC1 performs far better than AC2 and AC3, clearly

indicating low bias. This also consistent with the theoretical analysis.

Figure 6.6 shows the active contours for α = 0.1 and M = 0. The unstable AC2

results in jagged a curve; the biased AC3 rounds off corners.
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Figure 6.5: Length measures for different active contours (M = 30)

3. Further evidence for the theoretical analysis comes from considering the influence

of α on AC1 and AC3.

Increasing α appears to have little effect on the error in AC3. This suggests that

the bias due to the external energy of AC3 is large enough that the change in α

does not affect it significantly.

On the other hand, increasing α affects the performance of AC1 significantly. This
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(a) AC1
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Figure 6.6: The location of active contours for α = 0.1 and M = 0.
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indicates: the external term has no bias, and therefore the shortening effect intro-

duced by the internal term is significant.
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Figure 6.7 - 6.9 show the average area measure for AC1,AC2 and AC3 under the

conditions of simulation. Again the following trends support the analysis in previous

chapters:
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Figure 6.7: Area measures for different active contours (M = 0)

1. For the noiseless case (M = 0), the active contour AC1 outperforms the other

two when α = 0.1. This shows that the external energies of AC2 and AC3 have
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Figure 6.8: Area measures for different active contours (M = 10)

significantly more bias than that the external energy of AC1.

2. In contrast to length measure, the area measure for AC2 is of the same order of

magnitude as the area measures for AC1 and AC3. Thus the size of AC2 is about

the same as the size of AC1 and AC3; but its length is considerably larger. This is

quantitative support for the observation that the poor stability of AC2 causes it to

be more jagged in order to increase its arc length rather than its area.

3. For a given value of M , the lowest error (over different αs) is always observed for
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Figure 6.9: Area measures for different active contours (M = 30)

AC1. This is exactly the behavior we expect from an active-contour algorithm

whose external energy is unbiased.

Figures 6.10-6.11 show the location of the active contours for the lowest error at

M = 10 and M = 30.

The results of the set of experiments indicate that the choice of the external

energy in active contours is important if we want to use the results of active contours

in a quantitative analysis of the data. If we want to measure geometric features which



96

(a) AC1 (α = 1.0)
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Figure 6.10: The minimum-error active contours for M = 10.
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(a) AC1 (α = 2.0)
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Figure 6.11: The minimum-error active contours for M = 30.
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depend on arc length or area, then it is appropriate to select the active contour AC1.

6.1.3 Experiments on the Parameter-Estimation Algorithm

In the second set of synthetic-image experiments, we tested the parameter-estimation

algorithm compared its results to the results of the active contours with fixed αs. We

also tested the algorithm with different values of σ2 so that we can understand its effect

on the results.

6.1.3.1 Different Formulations of the Comparison Functional

All of three formulations of the comparison functional, which were discussed in chapter

5, were tested. For reference, they are called E2, E
arc
2 , and Eave

2 :

E2(ck) is defined as the integral of P̃ along ck with respect to the arc-length of c0 (equa-

tion 5.12). Higher means better.

Earc2 (ck) is defined as the integral of 1
1+P̃

along ck with respect to its own arc length

(equation 5.10). Lower means better.

Eave2 (ck) is defined as the integral of P̃ along ck with respect to its own arc length divided

by the length of ck (equation 5.11). higher means better.

6.1.3.2 Simulated Combinations

We tested on two levels of noise (M = 10 andM = 30) and three values of σ2 (σ2 =

0.5, 1.0, and 3.0). The experiment was carried by the following steps:

1. At each noise level, we used the 25 noisy images generated in the previous set of

experiments.
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mean measure (mean α∗)

σ2 E2 Earc2 Eave2

0.5 6.01(0.91) 6.68(1.24) 6.62(1.19)

1.0 6.02(0.91) 7.10(1.50) 6.79(1.27)

3.0 6.61(1.23) 1.08(3.28) 7.34(1.58)

Table 6.1: Length measure at M = 10.

mean measure (mean α∗)

σ2 E2 Earc2 Eave2

0.5 2.27(0.91) 2.33(1.24) 2.32(1.19)

1.0 2.27(0.91) 2.42(1.50) 2.38(1.27)

3.0 2.30(1.23) 4.11(3.28) 2.52(1.58)

Table 6.2: Area measure at M = 10.

2. We ran the algorithm with all combinations of σ2 and comparison functionals. For

each combination, the algorithm returns an optimal α (α∗) and an optimal curve

(c∗) on one image.

3. We computed the mean of α∗s and the mean of the length and area measures of c∗s

for each combination of σ2 and comparison functional.



100

mean measure (mean α∗)

σ2 E2 Earc2 Eave2

0.5 8.37(2.35) 11.9(3.28) 9.99(2.75)

1.0 8.57(2.41) 12.7(3.67) 9.96(2.73)

3.0 8.35(2.36) 16.3(5.88) 10.1(2.85)

Table 6.3: Length measure at M = 30.

mean measure (mean α∗)

σ2 E2 Earc2 Eave2

0.5 5.10(2.35) 6.99(3.28) 5.72(2.75)

1.0 5.09(2.41) 7.61(3.67) 5.71(2.73)

3.0 5.07(2.36) 9.86(5.88) 5.75(2.85)

Table 6.4: Area measure at M = 30.

6.1.3.3 Results

We present the results in table 6.1- 6.4. Each entry in the four tables shows two pieces of

information: the first number is the average performance measure of c∗s, and the number

in the parenthesis is the average α∗. We see the following trends from the tables:

1. E2 always achieves better results than the other two definitions, while the perfor-

mance of Eave
2 is very close to that of E2.

2. Comparing the performance measures of the algorithm with figure 6.4, 6.5, 6.8,
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and 6.9, we found that the algorithm with either E2 or Eave
2 gives very satisfying

answers in the following sense: the average α∗ is close to the best α obtained from

figure 6.8 and 6.9; the average performance is close to the best performance of AC1.

Figure 6.12 gives the typical optimal curves found by the algorithm atM = 10, and

figure 6.13 gives the typical optimal curves found by the algorithm at M = 30.

3. E2 and E
ave
2 are insensitive to the change of σ2. We explained the reason in chapter

5: the bias of P̃ is small and insensitive to the change σ2.

4. Earc
2 is sensitive to the change of σ2. The reason is: Earc

2 is arc-length biased,

and the bias will increase when P̃ gets flatter, as we stated in Chapter 3; when we

increase σ2, though the bias of P̃ will not increase much, P̃ becomes flatter, so the

arc-length bias increases a lot.

The results of this set of experiments indicate: the parameter-estimation algo-

rithm finds reasonably good values for α with E2 and E
ave
2 , and the results are insensitive

to the choice of σ2. Therefore, the algorithm can guide the user to find an appropriate

value for α. While Eave
2 is easier to implement than E2 is, E2 gives better results.

6.2 Medical Images

We tested the complete algorithm – the new active-contour algorithm and the parameter-

estimation algorithm – on medical images.

Figure 6.14 is the nuclear image of a dog heart. Figure 6.15 is the MRI image

of a dog heart. In the images, we first dropped a circle inside the region, as shown in

the figures, and ran the balloon algorithm from there to find a rough position of the
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(a) E2 (σ2 = 0.5) (b) Earc
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(a) E2 (σ2 = 3.0) (b) Earc
2 (σ2 = 3.0) (c) Eave
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Figure 6.12: Typical optimal curves at M = 10
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(a) E2 (σ2 = 0.5) (b) Earc
2 (σ2 = 0.5) (c) Eave

2 (σ2 = 0.5)
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(a) E2 (σ2 = 1.0) (b) Earc
2 (σ2 = 1.0) (c) Eave
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(a) E2 (σ2 = 3.0) (b) Earc
2 (σ2 = 3.0) (c) Eave

2 (σ2 = 3.0)
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Figure 6.13: Typical optimal curves at M = 30
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Figure 6.14: Nuclear image of heart (optimal α = 0.74)
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(a) Optimal curve on I
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Figure 6.15: MRI image of heart (optimal α = 0.12)
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boundary. Then we ran our automatic active-contour algorithm from the position, and

the final results are shown in the images. The results are quite good.

The boundary in the MRI image is quite clear, so we ran different active contour

models with different α’s on this one so that the reader can compare them with the

optimal curve found by our algorithm. Figure 6.16 compares the results from AC1,

AC2, and AC3 with manually set α. The definitions of different active contours are in

section 6.1.2.1. As we can see,

• The optimal curve in figure 6.15 is good compared with these curves found by

manually set αs.

• The valid range of α for these algorithms is as large as from 0.1 to 10, so the user

has the difficulty to choose one appropriate value; therefore, a guideline will surely

help.



107

AC1 with α = 0.1 AC1 with α = 5.0 AC1 with α = 10.0

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80
10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80
10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

AC2 with α = 0.1 AC2 with α = 5.0 AC2 with α = 10.0
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Figure 6.16: Comparisons on MRI image



Chapter 7

Summary

One important finding of this thesis is that energy functionals containing Euclidean arc-

length integrals can be problematic in active-contour models. We proved theoretically

that external energy functionals with such integrals are biased.

Further, certain external energy functionals with Euclidean arc-length integrals

make the active contour unstable. We were able to show theoretically that the simple

external energy functional −
∫

|| 5 I||ds is unstable. An experimental demonstration of

this was also provided.

One solution to these problems is to use a non-Euclidean arc length for the con-

tour. The arc length can be defined such that the length of an infinitesimal piece of

the contour does not change when it is pushed in the normal direction. This leads to a

different formulation of active contours where the contour evolves as an integral curve of

a vector field. The vector field is the gradient of a local energy functional. These active

contours are not biased. This was proven theoretically as well as supported experimen-

tally.

We believe that these active contours also overcome the stability problems of the
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Euclidean arc-length contours, but we do not yet have a proof of it. The stability of

variational formulations in active contours appears to be a complicated issue that has not

yet been resolved.

Another important finding in the thesis is that there is another property of the

gradient magnitude near an edge besides the one exploited by active contours. Namely,

the gradient magnitude along the normal of an edge roughly forms a Gaussian function,

and the edge is at the center of the Gaussian function.

The property enables us to develop a principle to choose α: we choose an α

whose corresponding result is best centered on a ridge of the gradient magnitude. After

studying the structure of the set of equilibrium positions of active contours, we designed

an algorithm to choose α discretely according to the principle.

The algorithm needs a comparison functional, which was established in two steps:

first, we built a measure function for individual points, and proved that it is biased but

the bias is small; then, we built a comparison functional to compare curves as a whole,

defined what is biased in this situation, and proved that the functional is not biased.

In the experiments, we compared the new active-contour model with previous

ones, and the new algorithm consistently outperforms the others. We also tested the

parameter-estimation algorithm in the experiments, and the algorithm found reasonably

good values for the smoothness parameter. The two pieces of work form a non-biased

parameter-free algorithm to find object boundaries based on an initial position close to

the boundary.
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Possible Extensions and Future Work

As we mentioned in chapter 2, there are 3D extensions of active-contour models. Cur-

rently, the external energy functionals in 3D contain Euclidean surface-area integrals.

Similarly to their 2D counterparts, they are biased since they favor either large or small

surfaces depending on the specific definition. They also need the user to choose some

smoothness parameter. Our work can be extended to 3D naturally by replacing the Eu-

clidean surface-area by a non-Euclidean one and studying the 3D-image structure near

object boundaries. The extension will result in a non-biased 3D segmentation algorithm

and an algorithm to automatically choose the smoothness parameter for it.

Our work is to find object boundaries formed by sharp change of image intensity.

Another important type of object boundary is formed by the change of texture. If one

can find operators on texture that are similar to u and P̃ as on intensity, our work can

be applied to texture segmentation directly.

Another possible extension of our work is to develop theory on varying α along

the active contour. In an image, the noise level and the roughness of the boundary vary

at different places, so it is natural to vary α along the object boundary instead of setting

it to one value everywhere.

Finally and probably most importantly, the active-contour algorithms need a good

initial position. There has been work on how to find the initial position for active contours

[69]. Theory and techniques regarding the problem will be the key to apply active contours

to more areas. By combining edge detection [8, 62], thresholding [54, 68, 73, 85, 102],

balloon [14, 15], front propagation [59], and non-linear diffusion [75], one might be able

to develop a robust algorithm to find the rough position of an object boundary which fits

certain models.
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