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The core of the thesis is the idea of deformable-model-based information
recovery from medical images, with the aim to reduce the impact of soft tis-
sue deformation, noise, and image artifacts. Soft tissue deformation is the
common denominator of many medical imaging problems. For this reason
the main part of the thesis addresses the problem of soft tissue deformation
recovery. Two volumetric deformable models based on soft tissue biome-
chanics are presented and used for deformation compensation. Experiments
reported by other researchers as well as ones done by our group suggest that
the complexity of soft tissue deformation renders deformable-model-based
recovery very difficult. These findings lead to the concept of deformable
model guidance. Rather than letting the model predict the soft tissue defor-
mation based only on pre-deformation data, the approach we take is to guide
the model by information available during the deformation. The models are
guided by limited surface information with the goal to recover the defor-
mation in the full volume. Another deformable-model-based information
recovery is presented for the case of extraction of 2D structures embedded
in 3D medical image volumes. The deformable model is based on the phys-
ical properties of the 2D structures, which significantly reduces the search
space and enhances the quality of recovered information.

These methods are applied to image guided neurosurgery, where the

top priority is the accuracy of surgical navigation systems. In particular,



we describe intraoperative brain deformation compensation, with a stereo
system used for model guidance. In addition, we show how deformable-
model-based information recovery can be used to help localize implanted
electrodes from postoperative 3D image volumes. Both applications are
a part of a larger project aimed at unifying anatomical, functional, and

electro-physiological data into one coordinate system.



Deformable Models in Image-Guided Neurosurgery

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Oskar Skrinjar

Dissertation Director: James Scott Duncan

May 2002



© Copyright 2002 by Oskar Skrinjar

ALL RIGHTS RESERVED



Acknowledgments

A number of people helped the work presented in this thesis. Here I
would like to note with appreciation the thoughtful assistance and contri-

butions of these people and unnamed others.

First, I would like to acknowledge the support, guidance, and help from
my advisor James Duncan, who was a great research advisor, committee
member, course instructor and director of the Image Processing and Anal-
ysis Group at Yale University. I would also like to thank Roman Kuc for
serving on my committee, broadening my views, and for being an excel-
lent course instructor; moreover, I am thankful for a great time I had while
working as a teaching assistant for his courses. 1 am grateful to Hemant
Tagare for numerous discussions and advice, as well as for excellent teach-
ing of a differential geometry course and seminars on topology. Thanks also
go to David Kriegman, whose courses I truly enjoyed, for serving on my
committee and for useful discussions during my first two years at Yale. Pe-
ter Belhumeur was also a great help, not only as a committee member, but
as a very good research adviser and course instructor, too. I am thankful
to Larry Staib for serving on committee, as well as for useful discussions
and help. I would like to thank Keith Paulsen from Dartmouth College for
serving as my external reader. My research would be much more difficult,
if not impossible, without the support and help from Dr. Dennis Spencer
and Kevin McCarthy from Department of Neurosurgery, Yale University,
who provided our lab with medical images and medical expertise through
numerous discussions. I am also thankful to Anand Rangarajan for very

useful discussions and advice. I would like to acknowledge the help from



Turan Onat, whose teaching and research discussions I enjoyed a great deal,
and Gary Porvik, for useful research advice, both from Department of Me-
chanical Engineering, Yale University. A very useful collaborator was Todd
Constable, who provided both images and image acquisition expertise. I am
thankful to Xenios Papademetris not only for providing computer support,
but also, as a senior graduate student and later a post-doc, for sharing with
me his knowledge of programming and computer graphics. I would like to
thank Ravi Bansal for numerous discussions and for contributing to the so-
cial life of our group. I am also thankful to James Rambo for discussions
on computer graphics. Colin Studholme was an excellent collaborator, and
I am thankful to him for all the help and for letting me use his code. T am
also thankful to Steven Haker, Athos Georghiades, Ohad Ben-Shahar, and
Jonas August for useful discussions. Many thanks to Arya Nabavi and Ron
Kikinis from Surgical Planning Lab, Harvard Medical School, for collabora-
tion and for providing our lab with intraoperative MR images. I would also
like to thank all the current members and the alumni of the Image Process-
ing and Analysis Group, for making this a pleasant place to work, James
Beaty, Sudha Chelikani, Haili Chui, Jan Dik, Melissa Koudelka, Ning Lin,
Gang Liu, Francois Meyer, Reshma Munbodh, Pengcheng Shi, Rik Stokking,
Shawn Walker, Yongmei Wang, Lawrence Win, Jing Yang, Xiaolan Zeng,
and George Zubal. Thanks also go to Carolyn Meloling for all her help.
Finally, I would like to thank my wife Marija for being supportive, under-

standing, and loving from the very first day.

ii



Contents

Acknowledgements
Table of Contents
List of Figures
List of Tables

1 Introduction
1.1 Structure of the Thesis . . . . . ... ... ... ... . ....
1.2 TImtroduction to the Problem . . . . . . .. ... ... .. ...
1.3 Related Work . . . . . .. ... oo
1.4 Contributions of this Work . . . .. ... ... .......

I Theoretical Foundations

2 Biomechanical Deformable Models
2.1 Imtroduction. . . . . . .. .. ... Lo
2.2 A Damped Spring-Mass Model . . . .. ... ... ......
2.2.1 Soft Tissue Modeling . . . . . . .. ... ... .....

iii

iii

viil

ix



v

II

2.2.2 Model Equations . . . . ... ... ... ........ 14

2.3 Comparison of Spring-Mass and Continuum Mechanics Models 15

2.4 A Continuum Mechanics Model . . . . ... ... ... ... 17
2.4.1 Soft Tissue Modeling . . . . . . ... ... .. ..... 17
2.4.2 Model Equations . . . . . .. .. ... 18

Deformable Model Guidance 21

3.1 Imtroduction. . . . . . ... ... . 21

3.2 Spring-Mass Model Guidance . . ... ... ... ....... 23

3.3 Continuum Mechanics Model Guidance . . ... .. ... .. 24
3.3.1 FEM Analysis . .. ... ... ... ... ....... 24
3.3.2 Stereo Guidance . . ... ... ... ... ... ... 26
3.3.3 Optimization . .. . ... ... ..., 32
3.3.4 Simulation Studies . . . . . ... ... 35
3.3.5 Surface Tracking Studies . . . . . .. ... ... .... 42

Isometrically Deforming Surface Model 49

4.1 Introduction. . . . .. ... ... .. ... .. 49

4.2 Continuous Solution . . . . ... ... oL 50

4.3 Discrete Solution . . . . .. ..o oL oo 54

44 Results. . . . . . . oL 59

4.5 Discussion . . . . . .. oL o o 61

Application to Surgical Navigation Systems 65

Intraoperative Brain Deformation Compensation 67

5.1 Imtroduction. .. . .. ... ... ... oL, 67

5.2 System Overview . . . . . . . . . ... ... . . ..., 71



5.3

5.4

5.2.1 Segmentation, Visualization, and Registration . . . . . 71
5.2.2 Mesh Generation . . . . . ... ... ..., 72

5.2.3 Intraoperatively-Guided Biomechanical Brain Model . 73

5.24 Imnterpolation . .. ... ... ... ... 74
Biomechanical Brain Model . . . . . ... .. ... ... ... 76
5.3.1 A Damped Spring-Mass Brain Model . . . . . . .. .. 76
5.3.2 A Continuum Mechanics Based Brain Model . . . .. 85
Discussion . . . . . . . . . . Lo 88

Localization of Implanted Subdural Electrode Grids, Strips

and Depth Electrodes 93
6.1 Introduction. . . . . ... ... ... o 93
6.2 Automatic Electrode Localization . . . . . . .. ... .. ... 96
6.2.1 Nonlinear Filtering . . . . . . ... ... ... ..... 100
6.2.2 Predictive Filtering . . . . .. ... ... ... ..... 103
6.2.3 Regularization and Surface Interpolation. . . . . . . . 106
6.2.4 Summary . . . .. ... e e 108
6.3 Interactive Electrode Manipulation . . . . ... ... ... .. 109
6.4 Electrode Visualization. . . . . .. ... .. ... .. ..... 112
6.4.1 Visualization of Electrode Grids . . .. ... .. ... 113
6.4.2 Visualization of Electrode Strips . . . . .. ... ... 115
6.4.3 Visualization of Depth Electrodes. . . . . . . ... .. 115
6.4.4 Examples of Localized Electrodes . . . . . .. .. ... 122
6.5 Discussion . . . . . . ... 122
An Overview of Mathematical Concepts 125

Al Algebra . . . .. .. 125



vi

A2 Vector Amalysis . . . . . .. . ...
A.3 Functional Analysis. . . . . . ... ... ... ... ......
A.4 Differential Geometry . . . ... ... ... ...

B Remarks on Cubic Spline Interpolation

Bibliography

Index

139

141

152



List of Figures

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

An Example of 2D Deformation Recovery . . ... ... ... 36
Another Example of 2D Deformation Recovery . . . .. . .. 37
Simulation of an Initially Bulging and then Sinking Brain . . 39
Simulation of Specular Reflections on the Brain Surface . .. 40

Surface Reconstruction Error vs. Image Noise Standard De-
viation . . . ... Lo L 41

Surface Reconstruction Error vs. Angle Between the Cameras 42

Stereo System Calibration Object . . . . . . . ... ... ... 43
Stereo System Accuracy Estimation . . .. ... ... .... 44
Stereo Frames of a Deforming Surface . .. .. ... .. ... 47
Surface Model Spring Net Structure . . .. ... ... .... 58
An Example of a Spring Net Sharp Corner. . . . . ... ... 59
A Nonlinear Spring in the Surface Model . . . ... .. ... 60
A Sequence of States of a Deformed Surface Model . . . . . . 62
A Typical Brain Model Mesh . . . . . ... ... ....... 74

Intraoperatively Recorded Points on the Exposed Brain Surface 77
An Example of a Guided Brain Model Output . . .. .. .. 83
Model-Updated Preoperative MR Brain Images . . . . . . .. 92

vii



viii

6.1 Electrode Grid Implantation. . . . . . . .. ... ... .. .. 97
6.2 Postoperative MR Images of a Patient with Implanted Sub-
dural Electrodes . . . . . . ... ... o o Lo 98
6.3 Electrode Grid Parameters . . .. .. ... ... ....... 102
6.4 Electrode Grid Extraction Steps . . . . .. .. ... ... .. 105
6.5 Examples of Electrode Grid Extraction. . . . . ... ... .. 108
6.6 Interactive Electrode Strip Manipulation . . . . . . . ... .. 111
6.7 Regular Electrode Grid Visualization . . . . . .. .. ... .. 116
6.8 Non-Regular Electrode Grid Visualization . . . . . . ... .. 117
6.9 Electrode Strip Visualization . . ... ... ... ....... 118
6.10 Depth Electrode Visualization . . . . . ... ... .. ... .. 120
6.11 Depth Electrode Visualization Artifacts . . ... .. ... .. 121

6.12 Examples of Localized Electrode Grids . . . . . . . . ... .. 123



List of Tables

3.1 Stereo System Accuracy . . . . .. ... ... 45
3.2 Surface Tracking Errors . . . . ... ... ... .. ...... 48
4.1 Intrinsic Surface Distance Preservation Error . . . . .. ... 61
5.1 Average Brain Surface Movement and Model Error . . . . . . 82

5.2 Average Brain Surface Movement and Guided Model Error . 84

5.3 Model-Predicted Landmark Position Error . . . . . . . .. .. 91
6.1 Automatic Electrode Localization Algorithm Parameters . . . 101
6.2 Automatically Determined Electrode Location Errors. . . . . 109

ix



Chapter 1

Introduction

1.1 Structure of the Thesis

The goal of this thesis is the development of methods for deformable-model-
based information recovery from medical images, with the aim to reduce
the impact of soft tissue deformation, noise, and image artifacts. These
methods are applied to the problem of intraoperative brain deformation
recovery and to the problem of localization of implanted subdural electrodes
from postoperative magnetic resonance (MR) images.

The thesis is divided into two parts. Part I (Chapters 2, 3, 4) presents the
theoretical background for the developed methods, while Part IT (Chapters
5, 6) discusses image guided neurosurgery applications.

The work related to this thesis is discussed in Section 1.3. In addition,
relevant literature is referenced whenever a method or application is intro-
duced.

Chapter 2 introduces two biomechanical models for soft tissue deforma-

tion analysis: a damped spring-mass model and a model based on contin-
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uum mechanics. The two models are compared and their advantages and
disadvantages discussed. The concept of deformable model guidance is pre-
sented in Chapter 3, which is motivated by the complexity of soft tissue
deformation. While the goal of the work presented in Chapters 2 and 3 is
soft tissue deformation recovery from medical images using biomechanics as
prior knowledge, Chapter 4 deals with the problem of 2D structure shape
recovery from medical images in presence of artifacts and noise. The core of
the shape recovery method is a deformable model which is based on physical
properties of the 2D structures.

The methods developed in Chapters 2 and 3 are applied to the problem of
intraoperative brain deformation in Chapter 5. The shape recovery method
of Chapter 4 is used in Chapter 6 for the problem of localization of implanted
subdural electrodes from postoperative MR images.

Appendix A gives an overview of mathematical concepts used throughout

the thesis, while Appendix B provides remarks on cubic spline interpolation.

1.2 Introduction to the Problem

Soft tissue deformation, image noise and artifacts are frequently encoun-
tered problems in medical image analysis. In order to reduce their impact,
we propose to use deformable models as a means of incorporating prior
knowledge in image analysis. In the case of soft tissue deformation, the use
of biomechanics-based deformable models constrains possible displacement
fields enhancing the quality of the recovered deformation. Similarly, shape
recovery of structures embedded in medical images can benefit from the use
of deformable models based on the physical properties of the structures.

Such a strategy reduces the search space and provides a physically correct



solution.

In this work we develop deformable-model-based information recovery
methods for two image guided surgery applications, with an aim to make the
methods general and applicable to related problems. The first application
is the intraoperative brain deformation compensation, which is a complex
soft tissue deformation recovery problem. The second application is the
localization of implanted subdural electrodes from postoperative MR images,
a shape recovery problem affected by image artifacts and noise.

Surgical navigation systems provide the surgeon with a display of preop-
erative and intraoperative data in the same coordinate system. However the
systems currently in use in neurosurgery are subject to inaccuracy caused
by intraoperative brain deformation (brain shift), since they typically as-
sume that the intracranial structures are rigid. Experiments show brain
shift of up to one centimeter, making it the dominant error in the system.
A consequence is that the displayed preoperatively acquired brain images
differ from the intraoperative brain, causing surgical navigation to be less
reliable. In order to reduce this error and make surgical navigation sys-
tems more reliable we propose a biomechanical-model-based approach for
brain shift compensation. The model is guided by limited intraoperative
exposed brain surface data, with the aim to recover the deformation in the
full volume. In order to validate the method we have done experiments in
the operating room (OR) at Yale New Haven Hospital and at our Image
Processing and Analysis Group, as well as performed numerous simulation
studies. In addition, we have used intraoperative MRI data provided by our
collaborators from Harvard Medical School.

Subdural electrodes are often used in epilepsy surgery in order to map

brain function and locate seizures. The patient carries implanted electrodes



for several days, and over this time the electrodes are monitored for seizures
and stimulated to determine brain function and the results are recorded. To
effectively use these results, one needs to relate electrode locations to brain
structures of interest. Postoperative MR images are often used to find the
locations of electrode grids, but this task is affected by image artifacts and
noise. We have developed a deformable-model-based method for recovery of
the location and shape of the implanted electrodes from postoperative MR
images. The model is based on physical properties of the implanted electrode
grids. Electrode grids, which are 2D structures, are never subject to forces
strong enough to stretch or compress them. For this reason, the model is
based on the idea of preserving intrinsic surface distances. This approach
helps find the location and shape of the electrode grids by reducing the effect
of image artifacts and noise. Final 3D displays of extracted electrode grids
embedded in medical images allow neurosurgeons and neurologists to easily

visualize electrodes and relate their locations to brain structures of interest.

1.3 Related Work

Problems in image guided surgery have been addressed by many authors.
Researchers at MIT and Harvard Medical School worked on automatic reg-
istration strategies in image guided surgery ([28], [29]), and their colleagues
from Neurological Institute at McGill University addressed the use of mul-
timodality imaging as an aid to the planning and guidance of neurosur-
gical procedures ([57]). Problems in surgical navigation were discussed in
works by Chabrerie ([11]) and Dorward ([17]). Gering ([24]) and Stokking
([62]) worked on the integrated visualization in image guided surgery, while

Studholme ([66], [67], [65]) addressed the problem of image fusion using



an information theoretic framework. Hata ([33]), Hill ([34]), Kansy ([38]),
Maurer ([48]), and Nabavi ([53]) are among the researchers who used an
intraoperative magnetic resonance imaging (MRI) scanner to enhance the
performance of existing surgical navigation systems.

A survey of constitutive relations for human brain tissue was presented
by Pamidi ([56]), who discussed, among other things, Kelvin solid model,
which is a basis of our damped spring mass brain model. Spring mass models
have often been used due to their simplicity and speed. E.g. they were
used by Lee ([42]) for modeling facial deformations for animation purposes.
Another work on constitutive modeling of brain tissue was done by Miller
([52)).

Soft tissue deformation is a complex phenomenon and in most case it is
very difficult, if not impossible, to predict the deformation without guiding
the model by information available during the deformation. This was ob-
served by Hill ([34]) in his study of intraoperative brain deformation images
obtained using interventional MR imaging. This assumption is the basis of
our approach of modeling intraoperative brain deformation.

While some researcher, e.g. Gering ([24]), Gobbi ([26]), and Kansy ([38]),
used acquired intraoperative data directly for surgical navigation, a few
groups tried to utilize intraoperative information to correspondingly update
typically richer preoperative data. Audette ([5]) used a range system to re-
construct the exposed brain surface, with an aim to compute intrasurgical
brain deformation. In our work, we use a similar approach (instead of a range
system we use a stereo camera system) but enhance the method by using a
biomechanical model. In order to reconstruct and track the deforming brain
surface, we use a method that builds up on the method suggested by Akgul
([2]). While they suggested the use of a deformable dual mesh approach,



we put this method in touch with a biomechanical model, in order to solve
both surface reconstruction and tracking and in-volume tissue deformation.
Edwards ([18]) also used the idea of guiding the model. He suggested a three
component model in order to model rigid, fluid and deformable solid parts
of the head. The work presents a 2D model, and while it is extendable to
3D, the tissue deformation modeling is not based on physics. A group of
researcher used continuum mechanics in order to model tissue deformation.
In a very nice series of papers, Miga (e.g. [49], [50], [51]) used continuum
mechanics and consolidation physics to represent deformation characteris-
tics of the brain. He did in vivo experiments using porcine data to validate
the model generated deformation prediction. In addition, he analyzed the
impact of anatomical constraints on brain deformation and incorporated
them in the model, which is an approach we have taken, too. We also used
continuum mechanics to model brain tissue deformation, but we advanced
the approach by introducing model guidance, which helps recover compli-
cated deformations that cannot be predicted by non-guided biomechanical
models.

Several groups measured and reported the magnitude of the brain defor-
mation. Hill ([35]) estimated the median brain surface shift after the dura
had been opened to range from .3 mm to 7.4 mm. Bucholz ([10]) reported
the average brain shift for cases in which hematoma or tumors were removed
to be 9.5 mm and 7.9 mm, respectively. Similar values for the brain shift
were reported by Maurer ([47]), Reinges ([59]), and Roberts ([61]).

We also note related work on: modeling of brain deformation due to
tumor growth by Kyriacou ([41]), biomechanical model based non-rigid reg-
istration of brain images suggested by Ferrant ([21], [22]) and Hagemann

([31]), finite element modeling of the head under impact conditions by



Claessens ([13]), and optical flow for measurement of brain deformation by
Hata ([33]).

In the development of our stereo surface reconstruction algorithm we
have used a few image similarity measures. A comparison of several image
similarity measures was done by Holden ([36]), while Studholme ([67]) pre-
sented normalized mutual information as an overlap invariant entropy image
similarity measure.

For the problem of localization of implanted subdural electrodes, Chabrerie
([11]) suggested a manual approach, while we introduced an automated
method. There is much work on interactive surface manipulation, e.g. by
Markosian ([45]) and Zorin ([84]), but we haven’t encountered work on ma-
nipulation of surfaces subject to local isometry. This is another contribution

we made to facilitate localization of implanted subdural electrodes.

1.4 Contributions of this Work

There are three major contributions of this work:

e The development of a biomechanics-based deformable model suitable
for intraoperative brain deformation compensation. The assumptions
the model is derived from are based on our experience from exper-
iments done in the OR at Yale New Haven Hospital as well as on

results reported in the literature.

e The development of a stereo-camera-based deformable model guidance
strategy. The complexity of soft tissue deformation renders deforma-
tion recovery very difficult. For this reason we introduce the concept

of model guidance to help the model recover the deformation. The



stereo-camera-based model guidance strategy provides an automated
and fast surface data acquisition and model updating. Such an ap-
proach is very well suited for surgical applications since it is not inva-

sive and is relatively inexpensive.

The development of an intrinsic-surface-distance-preserving deformable
model. The model is applied to the problem of recovery of location
and shape of implanted subdural electrode grids from postoperative
MR images, but can be used in other problems where 2D structures

are subject to local isometry.
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Theoretical Foundations






Chapter 2

Biomechanical Deformable

Models

2.1 Introduction

Soft tissue deformation is the common denominator of many medical imag-
ing problems. While there are several different scenarios where soft tissue
deformation plays the central role, here we look at objects that non-rigidly
deform over time (e.g. the brain deforms during the surgery). The goal is
to recover the deformation, i.e. the displacement vector field as a function
of both space and time, u(r,t) = [ugz(r,t) uy(r,t) u,(r,t)]7.

In many cases the tissue biomechanics as well as factors affecting the de-
formation are only partly known and usually very complex. For this reason,
particularly in the applications where precision is the first priority, typically
it is not possible to develop a model that would predict the deformation
with acceptable accuracy. Rather, the model has to be guided by infor-

mation available during the deformation (e.g. during brain surgeries one
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can use intraoperative information to guide biomechanical brain models) in

order for the method to be reliable.

In this chapter, we present two biomechanical models for soft tissue de-
formation recovery, while in Chapter 3 we explore ways to guide the models
with limited data available during the deformation. In our initial efforts to
recover soft tissue deformation we used a damped spring mass model (see
Section 2.2 for details) for its simplicity, speed, and ability to model slow
and small soft tissue deformation. We apply this approach to the prob-
lem of intraoperative brain deformation recovery (see Chapter 5). As we
further explored the problem of deformation compensation, we moved to a
continuum mechanics model (presented in Section 2.4) which is also able to
recover small soft tissue deformation, and although computationally more

expensive, it overcomes drawbacks associated with the former model.

2.2 A Damped Spring-Mass Model

The goal of this work is to develop a biomechanical model that models soft
tissue deformation, incorporates effects of gravity, and can be guided by
limited data available during the deformation. Since one of the aims is to
perform deformation recovery in real-time, i.e. faster or equal to the real
deformation, we decided to use a damped spring-mass model because of its
simplicity, speed, and ability to model small soft tissue deformation. We
apply this model to the problem of brain shift, which is a small deformation

(usually less than 5%) relative to the brain size.
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2.2.1 Soft Tissue Modeling

Here we concentrate on relatively small and slow soft tissue deformation.
According to our findings and findings of other groups ([10], [35]) brain shift
is a relatively small deformation and a slow process (it takes between 30 and
60 minutes for the brain to achieve a steady state). This fact facilitates our
approach to soft tissue modeling. We employ a linear stress-strain relation,
which is a good approximation for a small tissue deformation. The model
consists of a set of discrete interconnected nodes each representing a small
part of the tissue. Nodes have masses depending on the size of the volume
they represent and on the local tissue density. Each connection is modeled
as a parallel connection of a linear spring and dashpot, known as the Kelvin
solid model ([56]). As for the nodes, the connection parameters can depend
on their position in the tissue. The Kelvin solid model is a model for a vis-
coelastic material subject to slow and small deformations. It is also a rather
simple approach, which is a desirable property since the model deformation
should be computed in real time, i.e. faster or at least at the speed of the

tissue deformation. The constitutive relation for the Kelvin solid model is

0 = qo€ + qi€, (2.1)

where o is stress and e strain, while gy and ¢; are local parameters. The
dotted variables represent the time derivatives, e.g. € = %e.

Equation (2.1) can be rewritten in the following way. If two nodes are
at positions r; and 72, have velocities v1 and vz, and are connected in the

above fashion, then the force acting on the first node is

finner(r1,72,v1,02) = [ks(||r2 — r1]| — r12) — ka(v2 — v1) - n21] N2,

(2.2)
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where kg is the stiffness coefficient, k4 is the damping coefficient and 15 is
the rest length of the spring connecting the two nodes. In a general case
they can vary from connection to connection depending on the local material
properties. Vector nai is the unit vector from r1 to r2. Note that the same

force acts on the other node but in the opposite direction.

2.2.2 Model Equations

Newton’s Second Law for each node j in the model gives

mla? =mlg + Z finnerija (2.3)

=1

where m/ is the node’s mass, a’ is its acceleration, .finne’ri j is the interaction
between nodes j and sg defined by (2.2), and g is the gr;wity acceleration,
while {s{, sg, cen sij} is the set of n neighboring nodes of the node j. Equa-
tion (2.3) represents a system of second order nonlinear ordinary differential
equations.

One can define state variables to be xy;_1 = rJ and Ty = vl for j =
1,...,N, where N is the number of the brain model nodes, r/ is the position
vector of the j-th node, and v7 is its velocity. Obviously, Taj 1 = T;.
The expression for &,; can be obtained directly from (2.3), since &y; =
%mgj = a’. The expression depends only on state variables but not on
their time derivatives. It follows that (2.3) can be rewritten in a compact
state-space form, X = F(X), where X is the vector of the state variables
and X = %X . It is assumed that the model starts deforming from a rest
position, i.e. v7(t = 0) = 0 for all j. The initial node positions, r/(t = 0),
are set by the mesh generator (Section 5.2.2).

The system in the state-space form is suitable for a numerical integration
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([58]). In this case, the fourth order Runge-Kutta method with adaptive step

size was employed.

2.3 Comparison of Spring-Mass and Continuum

Mechanics Models

The main advantages of spring-mass models are their simplicity and compu-
tational speed. E.g. they are used in [42] for modeling facial deformations for
animation purposes, since they are much faster to compute then continuum
mechanics models.

However, one of the drawbacks of spring-mass models is that their param-
eters (e.g. spring constant, i.e. stiffness coefficient) depend on the model
mesh. This means that if one wants to change the mesh density, e.g. to
use a finer (denser) mesh, he would need to change model parameters to
achieve the same model behavior. The problem is that it is not clear how
to change the model parameters (except for the case of 1D models, when it
is straightforward). A consequence is that typically one can not find spring-
mass model parameters in the literature, and even if they are reported, they
can be used only with model meshes which have the same (or very similar)
density as the mesh density of the model that was used with the reported
parameters. For the same reason one cannot use non-uniform model (mul-
tiresolution) meshes with spring-mass models, since it is not clear how to set
model parameters for regions with different mesh densities. On the other
hand, parameters used with the continuum mechanics models (e.g. Young’s
modulus and Poisson’s ratio) are independent of the model mesh, and there-
fore their values can be found in the literature and one can change the model

mesh density or use non-uniform meshes.
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In Chapter 3 we will discuss strategies for model guidance with limited
data available during the deformation. It turns out that model guidance
by surface data can be done in a physically and mathematically correct
way in the case of continuum mechanics models (through the displacement
boundary conditions of the model partial differential equations), while one
needs to use ad-hoc strategies for model guidance in the case of spring-mass

models.

In addition, one often wants to control the incompressibility of the de-
formable model. This is of a particular importance in soft tissue deforma-
tion, since soft tissues are mainly water, making them almost incompressible.
Model incompressibility can directly be controlled by Poisson’s ratio in the
case of continuum mechanics models. In the case of spring-mass models it is
not clear how to do it (e.g. how to achieve incompressibility that corresponds

to a specific value of Poisson’s ratio).

Finally, while continuum mechanics model are physically correct, this is
not the case with spring-mass models, at least in the case of linear elasticity.
In the limiting case, when the spring length is let to approach zero, it turns
out that the obtained differential equation is of the first order, while the
equation obtained starting from the continuum mechanics (Navier equation,

see Section 2.4) is a second order differential equation.

Even though continuum mechanics models have several advantages over
spring-mass models, the latter are often used due to their simplicity and

particularly due to their computational speed.



17

2.4 A Continuum Mechanics Model

In spite of the simplicity and speed of spring-mass models, we have decided
to move to computationally more expensive continuum mechanics models

for the reasons explained in Section 2.3.

2.4.1 Soft Tissue Modeling

Our experience with the damped spring-mass model applied to slow deforma-
tion cases suggests that one can neglect dynamic components (components
involving velocity and acceleration) in the model (brain shift is a relatively
slow process). This simplifies the model, and eliminates the need for dy-
namic model parameters (e.g. damping coefficient). Whenever new data for
guidance become available one can solve the model equations constraining
(guiding) the equations by the data.

We base our approach on the following three assumptions:

e Relatively simple model. Due to the complexity of the soft tissue
deformation, not only it is difficult to model some of the deformation
causing factors, but also it is not clear how to set model parameters
(any increase in the model complexity inevitably involves more pa-
rameters). Therefore we base our approach on a simple model that
incorporates the main tissue characteristics (elasticity and almost in-
compressibility). The complexity of the deformation is made up by

model guidance.

e Static model. Since our goal is to model relatively slow soft tis-
sue deformation with negligible dynamic components, we use a static

model.
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e Model guidance. The model has to be guided by data available

during the deformation.

Model guidance will be discussed in Chapter 3, while here we present

the very model.

2.4.2 Model Equations

For small deformations (brain shift is a small deformation relative to the
brain size) it is a good approximation to use a linear stress strain relation and
infinitesimal strain. Although soft tissues typically are not isotropic, since
the directions of anisotropy are usually not available!', we assume isotropic
materials. If parts of the deformable objects are known to be fixed?, one can
fix the corresponding parts of the model. Furthermore, since we consider
relatively slow deformation cases with negligible dynamic components, we

use a static model.

The linear stress - strain relation for isotropic materials is given by

o = Ce, (2.4)

where o = [0 0y 0, Ty Tyz T,z]! is the stress vector, € = [, €y €2 Yoy Vyz Yoz b

is the strain vector, and C = WG is the material stiffness matrix,

!'Diffusion tensor imaging might become a standard way to obtain directional informa-

tion about soft tissues.
’E.g. due to the toughness of falx and tentorium, the movement of the two brain

structures is negligible in most cases.
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with
1—v v v 0 0 0
v 1—-v v 0 0 0
v v 1-v 0 0 0
G =
0 0 0o = o0 0
0 0 0 0 =2 0
0 0 0 0 0 2|

The material stiffness matrix depends on two parameters, Young’s modulus
(E) and Poisson’s ratio () ([72]). The displacement vector u = (uz uy u,)

is related to the strain vector through the following equation

9
3 0 0
a9
0 3y 0
0o 0 2
€= % |y (2.5)
8 98 9
dy Or
a9 9
a 9
L5z 0 3 |

Since a static model is assumed, the equations relating stress components

and body force are equilibrium equations,

i) o, ) — —
R A R T

35;;, + % + 8;?’ +Fy =0, Tpp = Toz, (2.6)

el or a
B ay T 9. T =0, Ty=1y,

where F = (Fy, Fy, F,) is a body force (gravity in this case).
We are interested in obtaining the displacement field throughout the
volume of the soft tissue, and therefore the goal is to obtain equations in

displacements only. By using the systems of equations (2.4), (2.5), and (2.6),
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and by eliminating stress and strain components, one can obtain

2 1 90 Ou 0 F, _
Vous + e (B + 3y + B2) T =0,
2 1 9 (Oug 4, Ou du, F,
Viuy + =y (B + 3 +5) =0, (2.7)
2 1 0 (Oug o) Ouy F, _
Viu, + = 5: (G + 5y + 55) + 5 =0,
where y = 2(1E—+V) These three equations are elliptic PDEs in displacements

only and are known as Navier equations ([72]).
We need to solve Eq. 2.7 with given displacement boundary conditions.

Since they are linear PDEs, and since differentiation is a linear operator, one

!

y» U) for the equations with zero

can separately find the solution v’ = (ul,, u

boundary conditions, and the solution u” = (uy,uy,u;) for the equations
with zero body force, and the total solution will be u = uw’ + u”’. How-
ever, gravity acts all the time, both before and during the deformation, and
therefore u’ will be the same in both cases. Since we are interested in the
displacement field between the deformed and undeformed state, we do not
need to compute u’. Thus, we need to solve only for u”, i.e. solve Eq. 2.7
with the given boundary conditions and zero body force. One should notice
that gravity affects u”” through boundary conditions (since the soft tissue
deforms partly because of gravity, and a part of the soft tissue surface will
be used as boundary conditions). Another interesting observation is that
Young’s modulus does not affect the displacement field (u”), since the body
force is zero in this case, and therefore the last terms in Eq. 2.7 containing

E (hidden in ) disappear. Thus, the only model parameter to be set is

Poisson’s ratio.



Chapter 3

Deformable Model Guidance

3.1 Introduction

Deformable models are used in many applications, e.g. in image process-
ing, computer vision, computer graphics, biomedical engineering, mechanics
of materials, to mention a few. The common characteristic of all the de-
formable models is that they have a finite set of parameters that describe
their structure and behavior. Very often some of the model parameters are
not known, or not exactly known. For example, mechanical properties of a
non-homogeneous object vary in space, sometimes they vary in time, and
can also vary across a class of the objects. For some types of applications
the initial geometry of the model is not known (e.g. snakes). In the case
of soft tissue deformation, usually the tissue biomechanics as well as factors

affecting the deformation are only partly known and relatively complex.

For these reasons, particularly in applications where precision is the first
priority, typically it is not possible to develop a forward model that is able

to recover deformation (i.e. compute the displacement field) with acceptable

21
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accuracy. Rather, the model has to be guided by data available during the

deformation in order to increase precision and reliability.

There are different types of data available for model guidance: points,
e.g. recorded by a point localizer ([76]), surface data: obtained by a range
system ([5]) or by a stereo camera system ([82]), and volumetric data ob-
tained by volumetric image acquisition systems (MRI, CT, and ultrasound).
One can also take only single 2D images using volumetric image scanners,
obtaining 2D (planar) data ([38]). The main disadvantage of using a point
localizer is that the acquisition is time consuming (and disturbing in the
case of surgery), while volumetric data acquisition, which main advantage is
that it shows in-volume deformation, is often costly (e.g., intraoperative MR
scanners can be afforded by few hospitals). For surface acquisition, range
systems are usually more expensive than stereo systems, but they do not
suffer from the correspondence problem, that is one of the main problems
in stereo surface reconstruction. The only volumetric data acquisition sys-
tem available to us was a 3D ultrasound probe. We have tried to use it a
few times, but the images (of brain tissues) were not of sufficient quality to
allow deformation analysis. For this reason we have initially used a point
localizer, and have later moved to a stereo system due to faster and more

automated acquisition.

Although any type of data can be used for guidance of any deformable
model, as we developed and improved biomechanical models we were also
able to advance model guidance strategies. This will be shown in the fol-
lowing sections of the chapter, where we present a few strategies for biome-

chanical model guidance and discuss their advantages and disadvantages.
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3.2 Spring-Mass Model Guidance

In Section 5.3.1 we will show how to estimate spring-mass model parameters
using limited data. Here we will assume that model parameters are known,
and we will describe a way to readjust (guide) the model whenever a set
of surface points on the deforming object (that we try to model) become
available. The model tries to predict the object deformation at the moment
of new data, new data are then used to readjust the model, and so on. The
denser the data are both in space and time, the smaller the error between

the model and the object.

In order to guide the model when (at time ¢) a new set of surface points
(zi(t), i =1,...,N) is recorded, we do the following. For each point z;(t),
we compute the displacement vector from the closest point p; on the model
surface to the point z;(t), and then artificially apply the displacement vec-
tor to the surface node closest to the point p;. This is done for all the
surface points at once. The imposed displacement constraints will propa-
gate to other nodes through spring connections as the numerical integration
proceeds. By doing this, one brings the model surface closer to the surface

points. An example of a guided spring-mass model is given in Section 5.3.1.

The problem with this model guidance strategy is that it is completely
ad-hoc, and it is not clear what the best way is to guide spring-mass models
by surface point data. This is the second major reason (the first one was the
fact that model parameters are mesh dependent) for moving to continuum
mechanics-based models. In this case, the surface measurements can be
used as displacement boundary conditions for the model partial differential
equations. This is both mathematically and physically a correct way of

guiding the model by surface data. Another reason for abandoning spring-
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mass models is that they are not physically correct. They are just uniaxial
models organized in a 3D (or 2D) matrix structure (“wire model”), with an
empty space in between. For this reason spring-mass models do not directly
model shear and incompressibility properties of tissues. These problems are

avoided by using continuum mechanics.

3.3 Continuum Mechanics Model Guidance

As mentioned above, the idea behind the guidance of continuum mechanics
models by surface data is to use the surface data as displacement boundary
conditions for the model partial differential equations. A validation of such
an approach for the case of a brain model using intraoperative MR imaging
is presented in Section 5.3.2. Here we discuss surface data acquisition and
integration with the deformable model in an automated fashion. For this
purpose, we employ a stereo camera system to acquire surface data and
suggest a way to use the data for model guidance. This work was reported

in [79].

3.3.1 FEM Analysis

In order to solve system (2.7) we use a finite element method (FEM) based
on the principle of virtual work. It has been shown ([83]) that the principle
of virtual work is equivalent to solving system (2.6), which system (2.7)
is derived from. According to the principle, in equilibrium, for arbitrary
displacement u*, and the corresponding strain €*, the following equation

holds,

/E*TO'dV:/ uw*T Fdv, (3.1)
R R
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where R is the region over which the displacement field should be deter-
mined. In a finite element framework, the region is partitioned into a set of
finite elements. Within each element the displacement field is approximated

using the following form,

Ne
u(r) = Zni(r)ui, (3.2)
1

where N, is the number of nodes for the finite element, u; is the displacement
of node i, and n;(r) is the corresponding shape (interpolation) function. In
order to guarantee that w(r;) = u; for all j and arbitrary nodal displace-
ments, the shape functions have to satisfy n;(r;) = d;;, for all combinations
of 4 and j, where §;; is Kronecker’s delta. The goal of the FEM analysis is,
assuming shape functions, to determine the nodal displacements u;, which
in turn, according to (3.2), completely define the displacement field.
Assuming that w* has the same form as w (see [44] for details), using
(3.1) and taking into account that u;* are arbitrary, one can obtain a system

of linear equations in nodal displacements u,;,
Aw = b, (3.3)

where A and b are a matrix and vector, respectively, whose elements are
known (they are computed in the derivation of system (3.3)), and the ele-
ments of vector w are the z, y, and z components of the nodal displacements,
ie. w = [Uly Uty U1, *+* UNg UNy un,]?, and u; = [uiy Uiy ui;]T. The
total number of nodes is N. Typically, A is a large sparse matrix. For given
boundary conditions, i.e. the values of some of the nodal displacements, one
can solve (3.3) for the rest of the nodal displacements, and then using (3.2)

determine the displacement field.
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The method is independent of the (bio)mechanical model used, as long
as it reduces to the system of linear equations of the form (3.3). In other
words, instead of starting from (2.4), (2.5), and (2.6), one can use some
other model, convert the problem to a system of linear equations through

an FEM analysis, and then proceed to the next step of the method.

3.3.2 Stereo Guidance

We have decided to use a pair of stereo cameras as a means to guide the
deformable model. This strategy is a step forward compared to the surface
point based model guidance, since the data acquisition is automated and it
allows one to obtain more surface data in less time.

The basic idea is to reconstruct the object’s exposed surface (in the brain
surgery case, a part of the brain surface is exposed through the craniotomy)
using stereo, and then use the reconstructed surface as a boundary condition
for the model PDEs. While the stereo reconstruction and model deformation
can be done completely independently of each other, we take advantage of
treating them jointly in order to overcome or reduce the problems of stereo
reconstruction: correspondence, surface specularities (during the surgery
the brain surface is wet, which causes specularities), and camera differences.
Since we use a static biomechanical model, each time stereo camera images
are taken, the model is updated, i.e. the displacement field is computed.

The following definition introduces the notion of the set of admissible

displacement fields.

Definition 3.1 The set of admissible displacement fields U is the set of dis-

placement fields defined by equation (3.2), with w satisfying equation (3.3).
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The set U is the set of all FEM (approximate) solutions to (2.7) for any
boundary conditions. One should note that if there are fixed parts of the
object (in the case of brain surgery, the falx and tentorium are fixed) then the
corresponding nodes have zero displacements, and the equations in system
(3.3) corresponding to those nodes should be omitted (see [44] for details).
The system reduces to a system of linear equations of the same form as
(3.3). If vector b in (3.3) is a zero vector!, then U is a finite dimensional
linear vector space? defined by the null-space of A. When vector b is not a
zero vector, then I/ is not a linear vector space, but the method can still be

used.

The approach we have employed is, rather then starting from a pair
of stereo images and solving for corresponding points, to search U for the
displacement field that is the most compliant with the stereo images. The
advantage is that the stereo correspondence problem is avoided (by testing
different u € U, one assumes correspondence), and the result is a displace-
ment field that satisfies the biomechanical model equations. In addition,
when searching for the “best” displacement field, if one starts from the dis-
placement field from the previous frame and penalizes non-smooth exposed
surfaces, then the generated displacement field is less affected by surface
specularities, than it would be if the deformation and surface reconstruction
were treated separately (since specularities make the stereo correspondence
problem very difficult). However, the problem is that the search space is
high dimensional. Its dimension is 3N (where N is the number of non-

fixed nodes in the model), since each of N nodal displacements has three

! As explained in Section 2.4.2, we need to solve (2.7) with a zero body force, which

causes b to be zero.
Tts vectors are displacement fields.
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components. There are typically thousands of nodes in the model.
One can reduce the search space by expressing the displacements of nodes
not on the exposed surface in terms of the displacements of the nodes on

the exposed surface. This can be achieved by writing (3.3) as

AR AES ,wR bR
= , (3.4)
Al A2 ,wES bES
where w® contains the displacement components (z, y, and z) of the rest of

ES

the nodes (nodes not on the exposed surface), w™" contains the displace-

ment component of the nodes on the exposed surface, AR, AFS Al and

bES are the cor-

A2 are the corresponding blocks of matrix A, and b® and
responding parts of vector b. It is assumed that the nodes are ordered such

that w = [wRT wEST]T. From (3.4) one can obtain that
wl = AR (bR - AESwES) . (3.5)

The other equations in system (3.4) should be disregarded, since they corre-
spond to the exposed surface nodes, which displacements will eventually be
specified, and therefore their corresponding virtual displacements are zero
(which implies that these equations should be disregarded, see [44]). Matrix
AR will be regular (AR has to be regular in order for (3.5) to make sense)
if there are enough nodes with specified boundary conditions (fixed nodes
and exposed surface nodes). One should take advantage of the fact that
AP is usually a large sparse matrix, since this can significantly reduce the
computational time.

System (3.5) allows one to compute the displacements of the rest of the
nodes given the displacements of the exposed surface nodes. This leads to

the notion of the reduced set of admissible displacement fields.
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Definition 3.2 The reduced set of admissible displacement fields U™ is the
subset of U with arbitrary wP®, and w? given by (3.5).

Instead of searching U for the displacement field that is the most compliant
with the stereo images, we search {", which is a much smaller search space.
If b is a zero vector, then U" is a subspace of U.

We use a perspective camera model, and a calibration object for camera,
calibration (see [71]). The function that projects a point 7 in the space to
the image plane of camera i (i = 1,2) is denoted as P(r), i.e. P;: R® — R?,
where R is the set of real numbers. Once the camera calibration is done,
functions P; are known. The image of camera 7 is a function I; that maps
points from the camera image plane to gray levels, i.e. I; : R? — R. Finally,
the function from points in the space to image gray levels of camera i, is
the composition of functions P; and I;, i.e. the image gray level of camera
i corresponding to a point r is I;(P;(r)).

Let SO denote the exposed surface before deformation®.

Definition 3.3 The ezposed surface corresponding to u € U™ is S =

{r |r=p+u(p),p€ SO}.

Definition 3.4 The backprojection of the image of camera i to surface S

is function BlS : S — R, defined by BZ-S('r) = I;(P;(r)),Vr € S.

U U
The goal is to find u € Y" for which B§ and Bés correspond “the best”.

In order to compare (backprojected) images and define “the best” image

3In the case of brain surgery, immediately after the dura is opened, i.e. just before the
brain starts deforming, the surgeon can outline the exposed brain surface using a localizer
(which is a part of standard surgical navigation systems). Since the brain surface (before
deformation) can be obtained by segmenting a preoperative MR scan, it follows that the

exposed surface will be known before the brain starts deforming.
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correspondence, we have tested four image similarity measures: mean square
difference (MSD), mutual information (MI), normalized mutual information
(NMI), and normalized cross correlation (NCC). For their definitions and
more details see [36] and [67]. The problem with MSD is that it assumes
an identity transformation between gray levels of the two images. This
assumption is not valid in the case of non-Lambertian surfaces and in the
presence of camera differences (e.g. different gains). NCC assumes an affine
transformation between grey levels, while NMI and MI assume a general
(algebraic) transformation. The main drawback of this approach is that the
full backprojection images from the two cameras are compared. This leads
to very strong local minima where the surface is typically positioned close
to the true surface with smaller misplaced surface parts. In order to avoid
this problem, we compare the backprojections from the two cameras locally,
at neighborhoods? of corresponding points, rather than globally, as a whole.
It cannot be done by using NMI (or MI) since it requires entire images, or
their relatively large parts, to be compared. This is necessary for reliable
estimation of probability density functions used in NMI (and MI). For this
reason we use NCC as a local image similarity measure. Since it is used
locally, we assume a local affine transformation between the gray levels of
the two backprojections, which is an approximation of a general algebraic

transformation at the global level.

Let 0S(7) be a neighborhood on surface S of point » € S. The normal-

“The neighborhood size is one of the parameters of the method. Since we discretize
the model surface (with line segments in 2D and triangles in 3D), we use the two line
segments sharing the node as its neighborhood in the case of 2D models, and the triangles

sharing the node as its neighborhood in the case of 3D models.
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ized cross correlation between Bis and BQS' over 08(r) is
(B8 -B1) (BY -Bs)dS
\/f (BS - B_1)2dS\/f (B5 - ) as
= [ B;s ds

where B; (i = 1,2) is the mean backprojection intensity, i.e. B; =

ES(r) =

?

ds
All the integrals are over 9S(r). It can be shown that ‘Es(r)‘ < {, and
that ‘ES(’I‘)‘ = 1iff BS = kBS + n over 9S(r).

Since for the proper deformation recovery it is important to have point
to point correspondence on the exposed surface over time, we define EZS (r)
(i = 1,2) to be the normalized cross correlation between BZS over 0S(r)
and BZS 0 over BSO(p), where r and p are corresponding points. The ob-
jective function to be maximized is ES = Is Egtal(r)dS, where Et‘gml(r) =
ES('r) +E‘15(r) +Eés('r) is the “local energy”. Term E'S(r) tries to find the
best match between Bis and Big , while Eig (r) and Eés (r) try to enforce
tracking, i.e. the best match between BZS and Bls , or in other words,
they try to find the best match between the backprojections in the current
frame and their corresponding backprojections in the first (pre-deformation)
frame.

One can improve results obtained by maximizing ES by enforcing sur-
face smoothness (this particularly makes sense in the case of brain sur-
face, since it is very smooth). A good smoothness measure is strain energy
([r€fodV), since a more curved surface implies higher strain energy and
vice versa. The problem is that it is computationally too expensive. For
each optimization iteration one would need to solve the whole FEM system
in order to evaluate strain energy, which would render the approach too
slow. Another approach, which is widely used, is to minimize an objective

function of the form AE;S —ES , Where E;S typically contains second or-
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der derivatives of the surface. The problem is that there is no reliable way
of setting A, the parameter that controls the surface smoothness (higher A
means smoother surface), other than tuning. To avoid this problem we pose
the optimization problem in the following way,

u
4 = arg max BS rfg’}'& k(1) < kmazs (3.6)

where 4 is the optimal displacement field, i.e. the solution,
k(r) = max ([k1(r)], [k2(r)]),

ki(r) and ko(r) are the principal curvatures (see [16]) of S% at r, and
kmaz 18 the maximal allowed curvature. In other words, we try to find a
displacement field that maximizes ES “ subject to the constraint that the
corresponding exposed surface does not have curvature greater than k4.
Parameter k;,q, controls the surface smoothness (smaller k., implies a
smoother surface) and can be estimated® (e.g. by measurements) since it
has a physical meaning, as opposed to parameter .

This is a nonlinear optimization problem and we use a dual surface iter-

ative scheme to solve it.

3.3.3 Optimization

Whenever a new frame (a new pair of stereo images) is acquired, we solve
(3.6) for new displacement field. The initial idea was to start from the
exposed surface from the previous frame, try to perturb it and find the one
that will optimize (3.6). Experiments show that this approach in some cases

suffers from the problem of local minima. In order to avoid this problem, we

5For brain surface we use kmaz = ——, Fmin = 20 mm.
n

Tmi
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have developed a dual surface optimization scheme, similar to the scheme
presented in [2].

The idea is based on the fact that from a frame to the next frame the
exposed surface will not move more than certain amount. If the maxi-
mal frame-to-frame displacement, d,;,4z, is known, then one can define §¢ =
{r|r=p+dnwn(p).p € S}, and 8} = {r | r = p — dnwn(p),p € 57},
where St is the “top” exposed surface, S’I{ is the “bottom” exposed surface,
S? is the exposed surface from the previous frame, and n(p) is the normal
of S? at point p. The exposed surface for the new frame will be between
S! and 8%. The scheme deforms the “top” and “bottom” exposed surface
in a search for the optimum of (3.6), while pushing the two surfaces toward

each other. Starting from ¢ = 1, the scheme steps are:

1. 89 = {r | r :p+6VES?(p),p € S’f} ,g = t,b. This is gradient as-

cent with step size .

2. 89 «+ K(89),9 = t,b. Operator K enforces the maximal curvature
of S§9 to be less than kj,q;. Since surfaces are triangulated, if the
discrete approximation of the maximal curvature at a node is greater
than k4, that node is moved in the direction of the surface normal

to the closest point where the maximal curvature is equal to kpqz-

3. Move corresponding points of S* and S° toward each other (the one
with smaller “local energy” will move more). This step guarantees that
the scheme will converge (for details see “Convergence Enforcement”

at the end of this section). 87, « 89,9 =t¢,b.

4. if d(S%,,,8%,1) > e then: i < i+ 1, go to step 1. d(S% ;,S%,,) is the

maximal distance between corresponding points on the two surfaces



34
(we use e = .1 mm).

5. Use the average (over corresponding points) of S%.; and S? 11 to de-
termine w®S. Use (3.5) to compute w?, and (3.2) to determine the

displacement field.

This dual surface scheme does not guarantee that all local minima will be
avoided, but experiments show that it always outperforms the single surface

scheme.

Convergence Enforcement

Let d; denote the maximal distance between corresponding nodes of the
“top” and “bottom” surface meshes for the i-th iteration, i.e. d; = d(S¢, 8?).
The optimization scheme will converge if d; will approach zero, i.e. if
lim; oo d; = 0. Note that it is not enough that Vi d;11 < d;, since, al-
though it will guarantee convergence, the scheme might not converge to
zero. It is also important that convergence is achieved with a reasonable
speed. In practice, we assume that the scheme converges after i iterations
if d; < ¢, for a pre-specified value of e.

In order to achieve convergence in a controlled way, we do the follow-
ing. In step 3. of the optimization scheme, we move corresponding nodes
from the two meshes toward each other such that d;y; = kd;, where k is a
dimensionless parameter such that 0 < k < 1. It is straightforward to show
that d; = k'dy, where dj is the maximal distance between corresponding
nodes of the two meshes before the optimization. Since 0 < k£ < 1, then
lim; o0 k* = 0, and consequently lim; o, d; = 0, i.e. the scheme converges.
Moreover, it is an exponential convergence. If one wants to achieve a con-

vergence in 7 iterations, that it is easy to show that one should take a value
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) 1/n
for k that satisfies k < (%) .

The convergence enforcement does not guarantee that the curvature cri-
terion will be preserved. However, the curvature criterion is enforced in each
iteration of the optimization scheme (step 2) for both the top and bottom
surface, and since the two surfaces converge toward each other, then the

final surface will satisfy the curvature criterion.

3.3.4 Simulation Studies

In Chapter 5 we apply this approach to the problem of brain shift using real
data, while here we test it by simulation studies.

For simulation studies, we artificially deformed a virtual exposed brain
surface (this is the “true surface”), texture-mapped an image to the sur-
face, positioned a pair of virtual cameras (camera calibration assumed), and
projected the exposed surface to the cameras over time. Only the camera
images were used as the input for the deformation recovery algorithm, while
the “true surface” was used for validation. Model meshes were generated
using an in-house meshing algorithm.

The purpose of 2D simulations is to visually demonstrate the method.
Figures 3.1 and 3.2 are typical examples.

For 3D simulations we used realistic parameter values: exposed brain
surface diameter = 7 ¢m (slightly smaller than craniotomy sizes typical for
epilepsy surgery), cameras 1 m away from the brain (so as to not disturb
the surgery), angle between cameras = 40°, camera resolution = 256 x 256
pixels, camera sensor size = 6 mm. Fig. 3.3 illustrates a deformation
simulation and recovery of an initially bulging and then sinking brain. The

mean error for surface reconstruction for this case over all surface nodes over
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Figure 3.1: An Example of 2D Deformation Recovery. The left column
is a time sequence of the true surface displayed with the undeformed model
mesh, while the right column shows the true surface and the updated model
mesh using the computed displacement field. A pair of virtual cameras is

used for model guidance. The bottom row of model nodes was fixed (“falx”).
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all frames was .17 mm (std = .09 mm, max = .88 mm), while the maximal
displacement was 28 mm. We did over 50 deformation simulation studies
artificially applying various deformation patterns to the exposed surface with
magnitudes of up to 30 mm, which is more than the magnitude of actual
brain deformations. The mean reconstruction error was always under .2 mm
and max error under 1 mm. It takes about 2 min to compute one frame on
a 933 M Hz Pentium III (surface has about 300 nodes).

In order to make simulations more realistic, we added simulated specu-
larities to the exposed brain surface images. Specularities might move over
time, as it happens in brain surgery due to people walking around in the
OR and lights being turned on and off or moved. We varied the position,
shape, and size of specularities over frames and from study to study, but
kept them similar in size and shape to actual specularities that appear on
exposed brain surfaces. Some of the frames from one of the simulations are
shown in Fig. 3.4. For this case, the mean reconstruction error was .20 mm
(std = .15 mm, max = 1.33 mm). We did 10 more deformation simulations
with added specularities similar to those shown in Fig. 3.4. The mean re-
construction error for all the cases was .2 mm or better, while the maximal
error for the worst case was 1.62 mm.

We have added noise to simulated images to examine the dependence of
surface reconstruction error on image noise standard deviation. The added
noise was zero mean Gaussian noise with standard variation varied from zero
to a value when the images cannot be visually distinguished from the noise.
Fig. 3.5 shows how the image noise affects the surface reconstruction error
in a typical case. Repeated simulations indicate that the method is robust
to relatively small amounts of noise.

In addition, we have varied the angle between the two virtual cameras
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Figure 3.3: Simulation of an Initially Bulging and then Sinking
Brain. (d) an exposed brain surface with a texturemap, (a) pre-deformation
exposed brain surface mesh, (b) the exposed surface mesh at the peak of
bulging (12 mm max displacement relative to the initial surface), (c) the
exposed surface mesh at the peak of sinking (28 mm max displacement rela-
tive to the peak of bulging), and (e) a part of the zoomed-in true (solid) and
recovered (dashed) exposed surface mesh at the peak of sinking (triangle

side lengths ~ 4 mm).
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Figure 3.4: Simulation of Specular Reflections on the Brain Surface.
(a) frames of a deforming virtual brain surface, (b) and (c) are the corre-
sponding frames from the two cameras with randomly added specularities

that move over time.
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Figure 3.5: Surface Reconstruction Error vs. Image Noise Standard
Deviation. The graph shows that the mean surface reconstruction error
increases with the image noise standard deviation. The noise is additive
zero mean Gaussian noise and image intensities range from 0 to 255. For
relatively small values of image noise standard deviation (less than 10) the
surface reconstruction error is almost constant, which indicates that a small

amount of noise does not significantly affect the performance of the method.
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Figure 3.6: Surface Reconstruction Error vs. Angle Between the
Cameras. The graph shows how the mean surface reconstruction error
depends on the angle between the virtual cameras. The minimum error
corresponds to an angle of 60 degrees. For higher angles the error increases
because the images from the two cameras differ too much, while for smaller

angles the error increases because the depth reconstruction error increases.

and examined how it affects the surface reconstruction error. A typical case
is shown in Fig. 3.6. It indicates that there is an optimal angle between the

cameras that minimizes the surface reconstruction error.

3.3.5 Surface Tracking Studies

In this section we present the result of applying the described algorithm
to track deforming surfaces. In such cases (when there is no associated

mechanical model) the same algorithm can be used, except that the step 5
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Figure 3.7: Stereo System Calibration Object. These two images are
the views from the two cameras of the stereo system calibration object.
The known geometry of the object is used to calibrate the system, i.e. to

determine the camera model parameters.

of the optimization scheme (presented in Section 3.3.3) is omitted. For these
experiments we used a pair of NTSC cameras, with a 640 by 480 resolution
and a 48 dB signal to noise ratio (SNR). The baseline of the stereo system
was 60 cm, while the distance from the scene (a deforming surface) to the
cameras was about 110 cm.

We used the perspective camera model and the camera calibration pro-
cedure explained in [71]. Views from the two cameras of the object used for
calibration are shown in Fig. 3.7.

After the calibration was done, we estimated the accuracy of the system.
In order to draw any conclusions from the surface tracking algorithm results,
one needs to know the accuracy of the stereo system (e.g., if the error of
tracking a deforming surface is 2 mm, this does not mean anything if the
accuracy of the stereo system is not known). For this task, we imaged a
ruler from the two cameras (Fig. 3.8), and manually found corresponding

points on the ruler marks in the two images. Then, we computed the as-
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Figure 3.8: Stereo System Accuracy Estimation. A ruler was images
from the two cameras. By manually associating corresponding points of ruler
marks in the two camera images, we were able to estimate the accuracy of

the stereo system.

sociated 3D point (using the camera model, which parameters were know
after the calibration had been done) for each pair of corresponding points
on the ruler marks in the two images. Finally, we computed the distance
between the 3D point corresponding to the mark of say 11 cm, and the 3D
point corresponding to the mark of say 17 cm. Since we know that the
distance should be 60 mm (17 cm - 11 cm) we were able to compute the
error between the stereo system generated distance between the two points
and the true distance. We repeated the procedure for all pairs of marks and
computed the mean and maximal error as well as the standard deviation.
The same measurements were done for five different positions of the ruler.
The results, summarized in Table 3.1, indicate that the stereo system accu-
racy in reconstructing distance between points in the space is well within a
millimeter.

Once the calibration was done and the stereo system accuracy was es-

timated, we imaged a few deforming surfaces and tracked them using the



45

ruler position || mean [mm] | std [mm] | max [mm] | sample size
1 0.22 0.15 .62 78
2 0.20 0.16 .54 91
3 0.23 0.16 .66 91
4 0.19 0.15 .61 153
5 0.23 0.16 .69 105

Table 3.1: Stereo System Accuracy. The table contains the errors (mean,
std, max) of stereo system reconstructed distances between pairs of ruler
marks measured against the corresponding true distances. The sample size
(the number of pairs of ruler marks) for the five cases is not the same be-
cause depending on the ruler position different number of ruler marks were
visible in both cameras images (which is necessary to determine the distance

between them).
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proposed algorithm. In order to obtain the “true” surface deformation, we
selected a set of points in one of the camera images in the first frame. The
points were used as nodes of the surface triangulation. Then we manually
set the corresponding points in the image of the other camera and the cor-
responding points in both camera images in all other frames. These point
pairs were used to reconstruct the point locations in the space using the
camera model, i.e. to obtain the “true” surface over time. Three frames
of a deforming surface together with manually set corresponding points are
shown in Fig. 3.9.

We applied the algorithm to three deforming surfaces and compared the
algorithm computed surfaces to the “true” surfaces at manually set nodes.
Then we computed the mean, standard deviation, and maximal error over
all nodes over all frames for the three cases. The results are presented in
Table 3.2. The mean error was about 1 mm while the maximal error was
under 2 mm. Since the stereo system accuracy is a few times better than
the accuracy of surface tracking, one can consider the figures in Table 3.2 to
be reliable. One way to reduce the surface tracking errors is to use cameras
with higher resolution and SNR.

These experiments, although done with surfaces that do not exhibit
specular behavior, are an encouraging step toward building a stereo-camera-
guided system for brain deformation compensation. Since the brain typically
deforms for several millimeters, the stereo surface tracking should have an

accuracy of at least a millimeter for the system to be useful.
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Figure 3.9: Stereo Frames of a Deforming Surface. Three stereo frames
(each frame has two camera images) are shown together with manually set
corresponding points organized in a triangulated structure. The change from
a frame to a frame is barely visible since the surface was more than a meter

away from the cameras and it deformed for only several millimeters.
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Table 3.2: Surface Tracking Errors. The table contains the errors on
node positions (mean, std, max) of three tracked surfaces measured against
the “true” nodes which space positions were determined by manually se-
lecting corresponding points in camera images and then using the camera

model. The last column shows the maximal displacement of surface nodes.

surface | mean [mm]| | std [mm] | max [mm] | displacement [mm|]
1 1.11 0.46 1.87 4.6
2 1.04 0.41 1.77 3.6
3 1.02 0.49 1.71 6




Chapter 4

Isometrically Deforming

Surface Model

4.1 Introduction

The goal of this section is to design a surface model that can be utilized in
a recovery of 2D structures embedded in 3D images. In particular, we are
interested in modeling deformable surfaces with a specific property - under
a deformation the intrinsic surface distance between any two surface points
does not change, i.e. the surface allows only locally isometric deformation
(Definition A.50).

We start by discussing continuous solutions to the problem and then we
present a discrete solution based on a damped spring surface model (net).
The model is damped in order to prevent oscillations and it is iteratively
solved until it reaches a steady state, i.e. until all the springs reach their rest
lengths. By doing this one preserves distances along the surface (intrinsic

surface distances). Nonlinear springs are added to approximately enforce
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C} continuity of the surface. The method can be extended to surface defor-
mations under which intrinsic distances change.

We apply the method to interactive manipulation of subdural electrode
grids in post operative MRI datasets used in neurosurgery, since electrode
grids are not in-plane extended or compressed while manipulated during the
implantation (Section 6.3). The model is general and can be used in other
applications as well, i.e. whenever there is a need to deform a surface in a
locally isometric way.

First, we analyze properties of continuous solutions to the problem, give
some theoretical results, then present a motivation for using a discrete solu-
tion based on a damped spring surface model, and finally explain the method
and show results. This work was reported in [78].

There is much work on interactive surface manipulation (e.g. see [45] and
[84]), but we haven’t encountered work on manipulation of surfaces subject

to local isometry.

4.2 Continuous Solution

Our initial idea was to find a surface parameterization that would have cer-
tain number of adjustable parameters, and for any choice of the parameters,
it would preserve intrinsic surface distances. Thus, by changing the param-
eters, the surface would move and deform in a proper way (with preserved
intrinsic distances at every point all the time). E.g. if the user selects a
point on the surface and interactively moves it, the rest of the surface would
move accordingly. The underlying model would assure that the intrinsic
distances are preserved. Here we present two theorems on which we base

our approach.



51

Theorem 4.1 ' A flat surface is isometricly deformed if and only if it can

be parameterized with patches r(u,v) that satisfy

or
' al =1 (4.1)
or
‘ a0l = 1, (4.2)
and
or Or
% . % —_ 0- (4-3)

Proof. The distance along a curve on the surface is [, |

dr
dt

dt, where
C is the projection of the curve to the parametric space and t is the pa-

. dr __ Ordu Or dv
rameter of C. Since & + Sede

dt — Odu dt
Jey/|

2 2
() +2(5 %) () +|
= If the equations (4.1), (4.2) and (4.3) are satisfied then the distance

it follows that the distance is

? (%)th.

ar
ou

or
ov

2 2
becomes [, (‘fj—;‘) + (‘fi—zt’) dt. Since it does not depend on r, i.e. no matter

now the surface is deformed, the distance over the surface is preserved for

any curve C, it follows that the surface is isometricly deformed.

<= Let the surface be isometricly deformed, i.e. the distance over the
deformed surface is the same as the corresponding one over the flat surface
for any curve C. Since this must hold for any curve, then for u(t) = a +t,

v(t) = b and t; < t < t9, with a and b being constants, the distance be-

or
u

comes ttf dt. But for the flat surface the distance is to — ¢ (or it is

!This theorem, although independently derived, is not a new theoretical contribution,

but rather a version of Lemma 4.5 (Section 6.4 from [55]) applied to flat surfaces.
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proportional to t9 — £1, and the curve can always be reparametrized so that
the distance is t2 — ¢1), and since the distance hasn’t changed, it follows

that fflz g—; dt =ty — t1. By taking the derivative with respect to ts of the

left and right side of the last equation one obtains (4.1). Similarly, by using
u(t) = a, v(t) = b+t and t; < t < ty one can obtain (4.2), and by using
u(t) = a+t, v(t) = b+t and t; <t < ty one can obtain (4.3). The equations
(4.1), (4.2) and (4.3) have to be satisfied for all values of u and v since the

previous analysis holds for all a, b, t; and . ©

The equations in Theorem 4.1 are first order, nonlinear partial differen-

tial equations. They can be stated as

or or Or Or
il = A — || = B d _— — = C 4.4
Hap ’ Haq e (14)
where A > 0, B > 0, and ||C|| < AB. With the following change of
parameters
U A Bcos¢ P
v 0 Bsing q ’

where cos ¢ = %, (4.4) can be simplified to the equations in Theorem
4.1, i.e. the equations (4.4) are not more general than the equations in
Theorem 4.1.

The problem is to find solutions r(u,v) to the equations of Theorem 4.1
that would have certain number of parameters. By changing the parameters
one would move and deform the surface, but the equations would be satisfied
for any values of the parameters. One would like to have enough independent
parameters, i.e. degrees of freedom, or in other words, enough flexibility to

deform the surface. A few questions arise: Does a solution exist at all
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?, Is there a general solution 7, Can one find a closed form solution, in a
convenient (maybe polynomial) form ?

A solution does exist for the equations and it is a plane, i.e.
r(u,v) =ro+u-A+v-B,

where rg is a constant vector, A and B are linearly independent vectors
with ||A|| = 4, |B|| = B and A-B = C. This is a solution of Equations 4.4,
and it can be reparametrized to satisfy equations of Theorem 4.1. Another
known solution is a cylinder. A solution that is a plane can only be deformed
by a rigid body transformation, while a cylinder, in addition to rigid body
transformation, can have its radius changed. However, planes and cylinders
are not useful solutions for this application since they cannot represent a

general locally isometric deformation of the plane.

Theorem 4.2 A rigid body transformation of a solution to the equations of

Theorem 4.1 is again their solution.

This theorem is an obvious result, but we give a proof here for complete-
ness.

Proof. For this proof it is assumed that all the vectors are column vec-
tors. Let r be a solution to the equations of Theorem 4.1 and let T be its
rigid body transformation, i.e. ¥ = R -r + t, where R is a rotation matrix

and t is a translation vector. Since % =R- % and % =R- % it follows

o aT o _ JooT gpr . g.ox _ JouT or _ |or] —
ou - U R R ou ou ou ~ || ou _1’

that |

because RT - R = I (¥ stands for transposition). Similarly, one can obtain
. +T o5 T T
:|31r :1.F1nally,% %:% -RT-R-%—& Lor

that | v = %u u
Thus, T is a solution of the equations of Theorem 4.1. ¢

or
v
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Theorem 4.1 provides a framework for designing a surface model (either
a continuous or a discrete one), while Theorem 4.2 allows one to rigidly
move the whole model assuring that it is still a valid solution, i.e. that it
satisfies equations of Theorem 4.1.

We haven’t found any solution to the equations of Theorem 4.1 other
than planes and cylinders, and we do not know if there is a general solution.
For this reason we have employed an approximate, discrete solution to the

problem using a damped spring model (net).

4.3 Discrete Solution

The motivation for using a spring net is the idea to relax the net so that the
springs reach their rest lengths. If the spring net densely covers the surface,
and the spring rest lengths are set so that initially all the springs are at rest,
then the net will, whenever fully relaxed, have proper distances, i.e. dis-
tances along the springs will be preserved. If the net is dense, the distances
over the whole surface will be preserved with a small deviance. In order for
this approach to be valid, the connectivity of the net has to such that the
distances are preserved in all directions (this is approximately achieved by
introducing diagonal springs, see Fig. 4.1). One needs to introduce damping
to the spring model, since otherwise the net would oscillate forever under
any change. This approach will not provide a continuous solution, but rather
a discrete one that can be interpolated.

Thus, we model the surface with a set of nodes interconnected by springs.

For each node on the surface one can write the Second Newton’s Law,

d’r dr r—r;
mﬁ%—d-%Jrk-Xi:(llr—rill—li)-Hri

-yl

0,
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where m is the node’s mass, r position, d is the damping coefficient,
k is the spring constant (stiffness coefficient), the sum is the sum over all
neighboring nodes of the node, r; is the position of the i-th neighbor, and [;
is the rest length of the spring between the node and its i-th neighbor. The
first term is the inertial force term, the second one is the damping force, and
the third is the sum of the spring forces acting on the node.

One can, assuming that node masses are very small, drop the inertial
force term, and use quasi-static analysis. The governing equation then re-

duces to

r —r;

dr
— K. — 1 ) — = ,
dt + ;(HI’ r || Z) ||I‘—I‘i|| 0

where K = %. In order to be numerically solved, this equation has to be
discretized, where time becomes the iteration index. The equation can be
written as

rj—r

Ar=C-3 (e - - ) (4.5)

v — x|’

where C' = K - At. This reduction from a second order to a first order
equation speeds up the computation while still achieving the goal. One
can write equation (4.5) for each node in the net, obtaining a system of
equations.

The method works as follows. When a node is moved (interactively by
the user), compute Ar for each node, update their positions (r — r + Ar),
recompute new Ar for each node, update all positions, an so on, until the net
is relaxed, i.e. until the system converges. Note that this is Euler’s numerical
integration scheme ([58]). The criterion we use to stop the iterative process

is
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where ||l;|| is the (current) length of the i-th spring, and [; is its rest
length. We use ¢ = .01, which means that no spring is extended or com-
pressed more than 1 % of its rest length, or in the other words, the distances
along the springs are preserved with maximal error of 1 %. We use this
model for subdural electrode grid model manipulation (Chapter 6). The
largest grid has ten electrodes in one direction, and since the inter-electrode
distance is 1 cm, the total grid length is 9 cm. This means that the length
of the grid model will not differ from 9 cm by more than .9 mm (1 % of 9
cm), i.e. the worst case error will be less than the resolution (1 mm) of the
MR images that are used.

The next step is to set a value for the constant C in the equation (4.5).
One can exactly analyze a single damped spring. In the quasi-static ap-

proach, the governing differential equation is

dz
E‘FC'(.’E-JJQ):O,

where zg is the rest spring length. The general solution is
z(t) = Ae “t 4 x.

The constant A depends on the initial condition, i.e. on the initial po-
sition of the spring. Now it is easy to see that the greater C, the sooner
the spring will reach its rest length. It also follows from (4.5) that for a
small C, the convergence is slow. However, a too large C' makes the system
unstable, i.e. the iterative process does not converge. A nice property is

that the convergence does not depend on the physical size of the surface,
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i.e. if the process converges for a value of C, then the rescaled surface (each
node position r; is rescaled to «-r;) will also converge for the same value of
C'. This can be easily seen from (4.5) since the scale « cancels. Experiments
with different values of C and different number of nodes in the net show
that in all cases the system becomes unstable for values of C' greater than
.3. Since the above analysis suggests that C' should be as great as possible,
we use C' = .25.

We use a net of nodes organized in a rectangular matrix, inter-connected
with springs. A little thought reveals that it is necessary to have diagonal
springs in addition to side ones. This is demonstrated in Fig. 4.1. Now,
under any deformation, when the net is relaxed, the squares will very closely
remain squares, i.e. the intrinsic distances will be preserved very closely.
This organization of the springs is motivated by Theorem 4.1. The springs
along the sides of the squares tend to enforce (4.1) and (4.2), while the
diagonal springs are introduced to preserve angles, i.e. to enforce (4.3).
However, it is clear that both side and diagonal springs at the same time
tend to preserve distances and angles.

Another problem is that even with diagonal springs, when the net is
relaxed, sharp corners might occur. This is illustrated in Fig. 4.2. In order
to overcome this problem we introduce a nonlinear spring. It is a regular
spring that can be turned on and off. Normally it is not active, and it is
activated if the angle between two neighboring links becomes too small. In
this case it pushes back the nodes keeping the angle large enough. The
geometry of the problem is explained in Fig. 4.3. Using the law of cosines

one obtains

d = a\/2(1 — cost).
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(a) (b) (c)

Figure 4.1: Surface Model Spring Net Structure. The black dots are
nodes while the lines between the nodes are springs. If the net is organized
as in (a), then it could reach (b) and be fully relaxed, i.e. all the springs
have their rest lengths (the net (b) is still in one plane). This is clearly not
allowed, since the diagonal distances between the nodes are not preserved.

To prevent this from happening, we add diagonal springs, as in (c).

The curvature is the change of the angle of the normal per unit distance,

ie. in this case the curvature is k = L. Since cos(s) = — cos(t) it follows

that

d = 2acos l;_a' (4.6)

By specifying the maximal curvature, using (4.6) one can compute at
what distance d the spring will turn on. The spring will prevent nodes from
coming closer than what is allowed, approximately enforcing C; continu-
ity. The nonlinear springs make the net smooth with the given maximal
curvature.

Thus, the user can now manipulate the surface, and the underlying model
will deform the surface properly, assuring that the intrinsic distances are
preserved with the given error (1% in our case). The user can rigidly move

the surface to a new position if needed, and Theorem 4.2 guarantees that the
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Figure 4.2: An Example of a Spring Net Sharp Corner. This fig-
ure shows a relaxed net (all springs, including the diagonal ones, shown as
dashed lines, have reached their rest lengths) that has a sharp corner. The
middle squares can be arbitrary close, making the corner arbitrary sharp.
To prevent this we introduce nonlinear springs that approximately enforce

C: continuity.

surface at the new position will also have the intrinsic distances preserved

(which is intuitively clear).

4.4 Results

Figure 4.4 shows a few stages of the deformation of an electrode grid driven
by the user interaction. The tool for interactive electrode grid manipulation
(Section 6.3) we have developed based on the presented model allows the
user to fix some of the electrodes, and when a non-fixed electrode is moved
by the user only the free (non-fixed) electrodes will move. The user can
move non-fixed electrodes without restrictions as long as the intrinsic surface
distances are preserved. E.g., if a non-fixed electrode is neighboring to a

fixed electrode, and if the user tries to move the non-fixed electrode too far
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Figure 4.3: A Nonlinear Spring in the Surface Model. Three nodes (1,
2 and 3), that initially make a straight line, are connected with two springs,
each of length a. If the angle s between the two springs becomes too small,
a spring between nodes 1 and 3 of length d is activated and pushes the nodes
back. The angle ¢ is the angle change in the normal and can be related to

the curvature.
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surface\path | 1 2 3 4 5 6 7

1 .035 | .075 | .007 | .061 | .509 | .022 | .051
2 .045 | .057 | .023 | .016 | .038 | .054 | .039
3 110 | .060 | .075 | .658 | .049 | .039 | .086

Table 4.1: Intrinsic Surface Distance Preservation Error. Errors [per-
cent] of seven computer generated random surface paths of random length
for each of the three extensively deformed surfaces relative to the corre-

sponding paths in the undeformed (flat) surfaces.

from the fixed electrode, the model will not allow that.

Table 4.1 shows the relative errors of various random paths over several
extensively deformed surfaces (the errors are relative to the correspond-
ing paths in the flat, undeformed surfaces). One can see that most of the
errors are less than 0.1%, and this is because the iterative procedure is
stopped when the most extended or compressed spring is less than 1% dif-
ferent (longer or shorter) from its rest length, but most of the springs are
far less than 1% different from their rest lengths. These data indicate that
the model indeed preserves the intrinsic surface distances under deformation

with a specified relative error.

4.5 Discussion

This work shows that the presented deformable model in the form of a
damped spring net can be used to model a surface with an interesting ge-
ometric property - preserved intrinsic surface distances. The method is an

easy and intuitive way for the user to manipulate surfaces (e.g. electrode
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Figure 4.4: A Sequence of States of a Deformed Surface Model. The
left and right figures show a sequence of an electrode grid deformed states
and the corresponding model, respectively. The model is composed of nodes
interconnected with springs (the lines in the right figures) and it guarantees
that the intrinsic surface distances are preserved. In the left images one can

see the selected electrode that is manipulated by the user.
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grid surfaces). It is simple enough so that it runs with an interactive speed,
while still achieving the specified goal.

A flat surface has a zero Gaussian curvature at all points. Since the Gaus-
sian curvature is preserved under isometry (Theorema Egregium of Gauss,
see [16] or [55]), it stays zero all the time at all surface points. One can use
a damped spring net to manipulate a surface that initially does not have
zero or constant Gaussian curvature. The net, no matter how manipulated,
will preserve the initial Gaussian curvature at each point of the surface with
desired accuracy. This is the case because the damped spring net allows for
only locally isometric surface deformation. In addition, the damped spring
net can be used for surfaces of shapes other than rectangular (e.g. some-
times the surgeon cuts out a part of the electrode grid, making it irregular,

Section 6.3).
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Application to Surgical

Navigation Systems
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Chapter 5

Intraoperative Brain

Deformation Compensation

5.1 Introduction

Surgical navigation systems are systems used before the surgery for surgical
planning and during the surgery for surgical navigation. Their goal is to
help the surgeon prepare for and perform the surgery. These systems are
capable of displaying various imaging modalities in one coordinate system,
and merging pre- and intraoperative data. They use magnetic resonance
images (MRI) for displaying anatomy, computerized tomography (CT) im-
ages for bony structures, magnetic resonance angiography (MRA) images
for blood vessels, functional magnetic resonance images (fMRI) for func-
tion, and positron emission tomography (PET) and single-photon emission
computerized tomography (SPECT) images for metabolic activity of the
tissues that are imaged.

The use of surgical navigation systems has become a standard way to

67
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assist the surgeon in navigating within the intraoperative environment, plan-
ning, and guiding the surgery. One of the most important features of these
systems is the ability to relate the position of surgical instruments to fea-
tures in preoperative images. Ideally, they should provide a 3D display of
the anatomical structures of interest and include visualization of surgical in-
struments within the same coordinate system. In order to be reliably used,
surgical navigation systems should be as accurate as possible, preferably to
within the voxel size of the images used ([29]). Most of the current systems
use preoperatively-acquired 3D data and register it to the patient coordinate
system ([28], [29], [57]). However, they assume that the organs being oper-
ated on are rigid, and are consequently subject to error due to soft tissue
deformation.

Here we concentrate on the problem of compensation for intraoperative
brain deformation (commonly referred to as brain shift), although a similar
approach can be applied to related problems involving soft tissue deforma-
tion. Preoperative data are registered to the patient coordinate system at
the beginning of the surgery. While this can be done with a precision to
within 1 mm at the beginning of the surgery ([29]), since the brain deforms,
the accuracy of the system deteriorates as the surgery proceeds. The median
brain shift after the dura had been opened of points on the brain surface was
estimated to range from 0.3 mm to 7.4 mm ([35]). Since the deeper brain
structures deform less than the outer ones, the largest error is at the corti-
cal surface. It is clear that a surgical navigation system based on the rigid
brain assumption cannot achieve a precision better than a few millimeters
in the outer brain structures. The brain deforms even more after interven-
tions (e.g. post-resection). Furthermore, the average brain shift for cases in

which hematoma or tumors were removed was reported to be 9.5 mm and
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7.9 mm, respectively ([10]). In such cases the error is even larger. In this
work with do not address tissue resection and removal problems.

Brain shift contributes to the inaccuracy of surgical navigation systems
more than any other source of error. Since the accuracy of surgical navi-
gation systems is the top priority in making them useful, this problem has
been addressed by several groups. The initial work was on estimating and
reporting brain shift ([10], [17], [33], [35], [47], [59], [61]), while later efforts
were aimed at compensating for the brain shift using a deformable model
([18], [49], [50], [51], [76], [80], [81]) and intraoperative brain imaging ([26],
[33], [34], [48], [53]). We also note related work on: modeling of brain de-
formation due to tumor growth ([41]), biomechanical model based non-rigid
registration of brain images ([21], [22], [31]), finite element modeling of the
head under impact conditions ([13]), and brain tissue constitutive modeling
([52]). For a more detailed discussion on the work relevant to the brain shift
problem see Section 1.3.

Brain shift is a complex phenomenon, and here we list factors that, not
necessarily in the order of importance, affect brain deformation: gravity,
mechanical tissue properties, administered drugs, loss of cerebro-spinal fluid
(CSF), interaction of CSF and brain tissues, anatomical constraints, tissue
resection and removal, intracranial pressure, geometrical complexity, and
patient variability. The bulk of the brain deformation is typically in the
gravity direction. Brain is not a homogeneous structure, i.e. different brain
tissues have different mechanical properties, which affects the way the tis-
sues deform. Some of the drugs administered during the surgery affect the
brain volume and consequently influence the deformation. When the dura is
cut, a part of the CSF leaks out causing ventricles to partly collapse, which

is reflected in further brain tissue deformation. Certain parts of the brain
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and surrounding structures are rigid or very stiff (skull, brain stem, tento-
rium, falx) imposing constraints on the soft tissue deformation. When the
dura is cut, the intracranial pressure the brain was exposed to is relieved,
which typically causes the brain to initially bulge out before sinking in the
direction of gravity. Some of these factors are patient dependent, e.g. the
way the patient responds to administered drugs, the amount of lost CSF or
the mechanical properties of pathological tissues. Given the above list, it
becomes obvious that it is very difficult to reliably model brain deformation
without use of intraoperative information. This assumption is the basis of
our approach. Similar observations were reported in [34]. The use of in-
traoperative information for model guidance was suggested by a few groups
([5], [18], [47], [76], [81]). Although there are surgical navigation systems
that use intraoperative data, e.g. input from intraoperative scanners ([24],
[38]), they do not update available preoperative images (high resolution pre-
operative MRI, CT, MRA, fMRI, PET, SPECT and others) when the brain
deforms, and therefore the precision with which they display preoperative

data is still limited by the error due to brain shift.

Here we present an approach for dealing with the problem of brain shift
that relies on a combination of intraoperative input and a biomechanical
deformable brain model. We start by giving an overview of the general steps
needed for the approach. Then we introduce a damped spring-mass brain
model guided by sparse points delineated on the exposed brain surface, and
point out drawbacks of this method. In order to overcome the drawbacks,
we move to a continuum mechanics based brain model guided by exposed
brain surface data. Finally, we present a partial validation of the continuum

mechanics based brain model using intraoperative MR image sequences.
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5.2 System Overview

Our approach to brain shift compensation is to run an intraoperatively
guided 3D brain model during the surgery and use the model output to
display preoperative data (deformed according to the current model state).
Before the surgery one can acquire anatomical (MRI, CT) and functional
(functional MR, SPECT, PET, ...) images, segment them, generate sur-
faces of the segmented structures of interest, and then deform all of them
intraoperatively based on the current model state. If the model deformation
prediction is close to the actual brain deformation, then the displayed im-
ages and structures of interest (that are deformed according to the current
model state) are closer to the current actual brain state than they would be if
one didn’t use the brain shift compensation, making the surgical navigation
system more precise and reliable.

Therefore we propose a biomechanical-model-based brain shift compen-
sation system composed of the following tasks: preoperative image acqui-
sition, segmentation, mesh generation, registration of the model to the in-
traoperative environment, model setup and guidance, and visualization of

model-updated preoperative data.

5.2.1 Segmentation, Visualization, and Registration

The first step after the preoperative image acquisition is the brain tissue
segmentation, i.e. labeling of each voxel of the 3D image of the head as brain
tissue or non-brain tissue. For this task, we have adopted the automatic
brain segmentation algorithm described in [62].

For object surface rendering, we have used the algorithm presented in

[25]. Some of the surfaces produced by this algorithm can be seen in Figs.
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5.1, 5.2, and 5.3.

In order to display and use brain surface data for model guidance, a
rigid body transformation between the patient and the preoperative image
coordinate systems has to be established. For this purpose, we used a set
of fiducial markers placed on the skin of the patient. In the operating room
(OR), the marker coordinates were recorded using a mechanical localizer
[54]. In addition, the markers were manually localized in the preoperative
MRI dataset (markers have to be imageable in MR and/or CT scanners).
Then, the optimal (in the least squares sense) rigid body transformation
between the two sets of marker locations was computed using the method
described in [4]. Once the rigid body transformation is determined, any
point recorded by the localizer can be mapped to the preoperative image

coordinate system.

5.2.2 Mesh Generation

The next step is to generate the model mesh from the segmented brain
tissue. Here we use hexahedral (“brick”) elements', having 8 nodes at the
vertex positions. The segmented object (the brain tissue in this case) is the
input to our mesh generator, which generates an unstructured mesh ([43]).
The algorithm first generates a regular 3D matrix of bricks over the full 3D
image. The brick side length is the only parameter of the algorithm. Each

brick that has at least a half of its volume inside the segmented object is kept,

!The term “brick element” (or just “brick”) is used in FEM analysis, and we use it
for the continuum mechanics based brain model, since we solve it using a FEM. However,
we use the same term (“brick element”) for the spring-mass model, since the nodes are
organized in “bricks”, and the “brick” mesh structure is used for the trilinear interpolation.

‘We hope that there will be no confusion because the two models are described separately.
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and others are discarded. The kept bricks will compose the final mesh, while
their nodes will be finely readjusted. The nodes are divided into two groups.
Each node that has all of its neighboring nodes left is called an interior node,
and all other nodes are called surface nodes. Each surface node is moved
to the closest point on the surface of the segmented object. Note that
surface nodes before moving were not far from the surface of the segmented
object. Finally, the interior nodes are smoothed using a Laplacian-type
smoother? ([43]), in order to enhance the regularity of the mesh, which is
needed by FEM solvers. A typical output of the mesh generator is shown
in Fig. 5.1. The meshes we use do not capture all of the fine details of
the segmentation output, but they still achieve a reasonable performance in
terms of accuracy and speed. We have determined the mesh size (brick side
length) by testing various sizes and comparing the accuracy and speed of the
method. A much finer mesh, that would capture all brain geometric details
(e.g. sulcal structures), would have too many nodes and would slow down

the computation, while not achieving a significant improvement in accuracy.

5.2.3 Intraoperatively-Guided Biomechanical Brain Model

In our initial efforts to recover intraoperative brain deformation, we used
a damped spring mass model (Section 5.3.1) for its simplicity, speed, and
ability to model slow and small soft tissue deformation. As we further

explored the problem of brain shift compensation, we moved to a continuum

*BEach interior node is moved to the mean position of its neighboring nodes, while
surface nodes are kept fixed. This is iteratively repeated until interior nodes achieve a
steady state, i.e. until the displacement of the interior node that moved the most in the

current iteration is less than a given value.
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Figure 5.1: A Typical Brain Model Mesh. The left figure shows the
mesh, while the right one shows the mesh and the outer brain surface. The

mesh has over 2000 nodes and 1500 elements (bricks).

mechanics-based model (Section 5.3.2) which is also able to recover small
soft tissue deformation, and although computationally more expensive, it
overcomes drawbacks associated with the former model. Both models are
guided by exposed brain surface data. While for the spring-mass model we
used a few brain surface points to guide the model, as we moved to the
continuum mechanics-based model we used a surface reconstruction of the

exposed brain surface for model guidance.

5.2.4 Interpolation

The result of solving the model equations (Chapter 2) is a set of node dis-
placements over time. One usually wants to display updated (deformed)
preoperative images and surfaces of objects of interest. For this purpose,

we employ trilinear interpolation to determine the displacement field in be-
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tween model nodes. This interpolation scheme provides Cj continuity of the
displacement field.

It turns out that this task requires both the forward and inverse trilinear
interpolation. The forward trilinear interpolation equations can be written

in the following matrix form

[zyz]" = Al aByaBayByapy], (5.1)

where z,y and z are coordinates in the global coordinate system, while «, 8
and v are the corresponding local coordinates in the coordinate system of
the “brick” element. The 24 elements of the 3 x 8 matrix A depend directly
on the (known) displacements at the eight nodes of the “brick” element?,
and can therefore be considered known. Their computation is straightfor-
ward (the local coordinates take values 0 or 1 at the eight “brick” nodes).
While one just needs to evaluate (5.1) to do the forward trilinear interpo-
lation, i.e. to obtain the global coordinates for given local coordinates, it
is more difficult to do the inverse trilinear interpolation, i.e. to determine
the local coordinates for given global coordinates. The inverse problem can
be solved explicitly, but the solution expressions are cumbersome (there are
three solutions since it is a cubic equation in local coordinates). After test-
ing the explicit solution we have found it not practical, and have decided
to numerically solve the inverse interpolation. We use an iterative bisection
method for this purpose. We do the bisection search in the three local co-
ordinate directions (see [58]). The method converges rapidly achieving the
given precision (.1 mm) in several iterations.

An example of a deformed surface is given in Figure 5.3 (b,c), while

3The displacements at the nodes of the “brick” element are determined by solving the

model equations.
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model updated images are shown in Figure 5.4 (c, f).

5.3 Biomechanical Brain Model

5.3.1 A Damped Spring-Mass Brain Model

In our research we are mainly concerned with (but not limited to) issues
surrounding epilepsy surgery. To quantitatively investigate such a case, we
have recorded a set of six points (anatomical landmarks) on the exposed
brain surface approximately every eight minutes during the surgery starting
when the dura was opened. The mean shift in the direction perpendicular
to the brain surface was about 3 mm. The initial and final set of points
both displayed over the same pre-deformation brain surface generated from
a preoperative MR scan are shown in Fig. 5.2. By initial moment, we mean
the moment when the dura was cut, and the final moment is when the brain
settled down and achieved a steady state. This result clearly shows the need
for a high quality intraoperative 3D acquisition system and/or a method for
brain shift compensation. Tradeoffs among different approaches to these
problems are discussed later in the chapter.

Here we use the spring-mass model presented in Section 2.2.

Contact Algorithm for Brain-Skull Interaction

The brain-skull interaction as modeled in our initial efforts in [80], is a
highly nonlinear function, and significantly slows down the adaptive step-
size numerical integration. The consequence was that the steady-state for
this previous 3D model (with about 1000 nodes and 5000 connections) was

reached in approximately four hours, which is much slower than the real
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Figure 5.2: Intraoperatively Recorded Points on the Exposed Brain
Surface Intraoperatively recorded points on the exposed brain surface at
the beginning of the surgery are shown at left, while their positions about 45
minutes later relative to the same pre-deformation brain surface are shown at
right. The points moved in the direction of gravity (which is perpendicular
to the sagittal plane) for a few millimeters and they are hidden under the pre-
deformation brain surface (only one of the points is still visible in the figure
at right). Since the brain deformed (in the direction of the gravity vector),

the surface points moved relative to the pre-deformation brain surface.

brain deformation, and therefore the model cannot be used for display up-

dating during the surgery.

To increase the computational speed, we have moved to a contact algo-
rithm based approach. Prior to the simulation, the skull and brain tissue
have to be segmented. Ideally, a preoperative MRI scan would be used for
brain tissue segmentation and a preoperative CT scan for skull segmentation

(the MR and CT scans would be registered, e.g. by the algorithm suggested
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in [66]). However, since we didn’t have preoperative CT scans available, we
did an approximate skull segmentation from preoperative MR images, using
a combination of automated and manual processing steps. The brain-skull
interaction is not directly a part of the model equations, but rather it is in-
corporated via numerical integration, through a contact algorithm. As the
model evolves over time, when a node enters the skull area, it is returned to
its previous position (to its position from the previous step in the numerical
integration). This prevents nodes from entering the skull, but permits them
to come arbitrarily close to it (more precisely, close up to the precision set
in the numerical integration) and move along the skull surface if pulled by
forces that are not perpendicular to the skull surface. Effectively, nodes can
move freely unless they reach the skull, in which case they can move only
in the direction tangential to the skull surface. This behavior is identical to
the one achieved by the brain-skull interaction suggested in [80], but it is
much faster to simulate. As a result, the 3D model needs about 10 minutes
to reach a steady state, which is faster than the actual brain deformation
(which is, according to our surgical colleagues and our own measurements,

approximately 45 minutes).

Parameter estimation

One of the problems in soft tissue deformation recovery is a reliable model
parameter estimation. The approach we have employed here is to use intra-
operative measurements to estimate model parameters. Although our model
allows for local parameter control, we still assume a homogeneous model for
two reasons. First, it is very difficult to estimate the brain tissue parameters

locally and second, there are contradictory reports in the literature regard-
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ing white and gray stiffness properties. For our approach, even in the case
of a homogeneous model, there are two parameters to be estimated: the
stiffness coefficient ks and the damping coefficient k4 in (2.2).

Let S(t) be the brain surface generated by the model at time ¢, and let
z;i(t), i=1,..., N be the recorded brain surface points (in our case N = 6)
at time ¢. Further, let d(z, S) denote the signed distance between the point
z and the closed surface S, where |d(z, S)| is the distance between z and S,
and d(z,S) is negative if the point is inside the surface, and positive if it is
outside. We treat the brain surface as a closed surface. The average signed

distance of the recorded points to the brain surface at time ¢ is

1 N
d(t) = + D_d(@i(t), S(1)), (5.2)

and the total average signed distance (over time) is

1 M
4= 37 L) (53)

where M is the number of times brain surface points were recorded, and
t;, +=1,..., M, are the corresponding times.

We used an off-line parameter estimation, where the whole sequence
(over time) of the recorded brain surface points was utilized. Model sim-
ulations indicated that the steady state did not depend on the damping
coefficient, but only on the stiffness coefficient. This conclusion coincides
with the exact mathematical analysis of simple one-object systems (e.g. a
mass connected to a spring that is fixed at the other end, with a friction be-
tween the mass and the support). The damping coefficient determines how
fast the steady state will be reached, while the stiffness coefficient determines

the final shape of the brain.
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For this reason, we use the steady state to estimate the stiffness coeffi-
cient. The time of the steady state is tj;, and it denotes the time when the
last set of points was recorded (after the brain settled down, i.e. achieved
a steady state). Since reports by other researchers as well as experiments
done by our group suggest that the brain shifts mainly in the direction of
gravity, we use the following approach to estimate the model parameters.
We pick a relatively small value k; for the stiffness coefficient, such that
d(tar) (defined by Eq. 5.2) is positive!. Similarly, we pick a relatively large
value ko for the stiffness coefficient, such that the corresponding d(¢ps) is
negative. The next step is to use kpew = (k1 +k2)/2 as a stiffness coefficient,
run the model again, and get a new value for d(tas). If d(tpr) > 0, we set
k1 = Epew. Otherwise, we set ko = kpew- Then we repeat the steps, i.e.
continue with the bisection search, until d(¢as) is close enough to zero. The
last kpeq 1S used as the “optimal” stiffness coefficient. For all the steps, we
use an arbitrary value for the damping coefficient since it does not affect the

steady state.

Once the stiffness coefficient is estimated, the damping coefficient is de-
termined in a similar fashion (using the bisection search), but this time by
using d (defined by Eq. 5.3) rather than d(¢as), i.e. by reducing the average
signed distance over time.

The idea was to estimate the model parameters on a number of patients

and then use their average values for future patients for brain deformation

compensation. We intraoperatively recorded exposed brain surface points

“For a small stiffness coefficient the model is “soft”, and it will settle down significantly,
i.e. more than the actual brain, causing all the recorded points at time ¢, to be outside
the brain model surface. For this reason each point will have a positive signed distance to

the brain model surface.
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for four patients, but due to technical difficulties we were able to use the
data only of two of them. From the two patients we determined the average
model parameter values. These parameter values were used for all other
experiments with the damped spring mass model discussed in this chapter.

While one could record brain surface points for more patients and get a
possibly better estimate for the model parameters, there are a few problems
related to this approach. The main problem is that the model parameters
are mesh dependent, i.e. if a denser (or sparser) mesh is required, one would
need to readjust the model parameters to achieve the same model behavior.
However, it is not clear how to mathematically readjust the model param-
eters for a denser mesh, except for a 1D model. For the same reason one
cannot use a nonuniform mesh (mesh with different node densities in differ-
ent regions). Since the model parameters are mesh dependent they cannot
be found in the literature. Furthermore, if we want to use the average values
for the model parameters estimated from a number of patients, we would
need to use model meshes of the same density for all the patients. Mesh
dependence of the model parameters is one of the reasons why we have de-
cided to move to continuum mechanics based modeling, rather than further
investigating damped spring-mass models. Model parameters in continuum
mechanics based models are mesh independent, which avoids all the afore-
mentioned problems.

Table 5.1 shows the average distance between the rigid (initial) gray /CSF
brain surface and recorded brain surface points over time (i.e. during the
operation) in the row “surface movement”. In addition, the row “model
error” contains the average error between the model predicted position of
the gray /CSF brain surface and the positions of the recorded brain surface

points over time. This table contains data for a single patient undergoing an
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time[min:sec] || 0:00 | 7:40 | 14:40 | 19:40 | 24:40 | 34:52 | 49:00 || max

(a) 034 | 1.38 | 2.21 | 2.30 | 2.74 | 3.24 | 3.29 || 3.29
(b) 0.34 | 045 | 0.30 | 0.13 | 0.20 | 0.32 | 0.04 || 0.45

Table 5.1: Average Brain Surface Movement and Model Error. Row
(a) contains true brain surface movement [mm], while row (b) contains the

model error [mm].

epilepsy surgery. The surgeon touched six points (recorded their positions
with the mechanical localizer) every eight minutes (on average). One can
see that the distance between the initial gray/CSF brain surface and the
recorded brain surface points increases over time and ultimately reaches
3.29 mm. The model with optimal parameter settings (determined off-line
from two patients) has maximal error of 0.45 mm over time. While the
error between the model prediction and the actual surface points is relatively
small, one should keep in mind that the model parameters were estimated
on just two patients, and that the results shown in Table 5.1 present almost
the best fit of the model to the measured points on the brain surface of one

of the two patients.

Intraoperative Model Guidance

In Section 3.2 we have presented a way to guide the spring-mass model. An
example of a guided brain deformation model output is shown in Fig. 5.3.
To validate the approach one would need to obtain for multiple subjects
dense time sequences of 3D brain images using intraoperative sensing, and
then compare the model predictions to the actual deformations in the full

brain volume. This can be done by using intraoperative MRI data, or maybe
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Figure 5.3: An Example of a Guided Brain Model Output. (a) shows
the recorded points at the beginning of the surgery with the initial (pre-
deformation) brain surface. Note that the points are on the brain surface.
(b) represents the final (steady state) brain surface points with initial brain
surface (yellow surface) and final brain surface (gray surface). One can see
that the brain surface points moved inside the initial brain surface. This is
due to the effect of gravity that pulled the brain downwards. (c) represents
the final brain surface points and final brain surface after model-guided
updating. The points are again on the brain surface. The final brain model
surface was computed using the final model state, while the final points are

the measurements on the brain surface when the brain settled down.

data from an intraoperative CT or ultrasound scanner.

However, since the only available intraoperative data for these exper-
iments are exposed brain surface points recorded over time, we randomly
selected two of the points to guide the model and compared the model pre-

dictions against other four points. The results are given in Table 5.2.

Although the error for the guided model is reduced with respect to the

case with no brain compensation, this test was done only on one patient, and
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time[min:sec] || 0:00 | 7:40 | 14:40 | 19:40 | 24:40 | 34:52 | 49:00 || max

(a) 034 | 1.38 | 2.21 | 2.30 | 2.74 | 3.24 | 3.29 || 3.29
(b) 0.34 {0.12 | 038 | 044 | 0.35 | 0.49 | 0.14 || 0.49

Table 5.2: Average Brain Surface Movement and Guided Model
Error. Row (a) contains true brain surface movement [mm|, while row (b)

contains the guided model error [mm].

with very sparse (both in time and space) intraoperative data. An extensive
validation using intraoperative volumetric imaging is necessary to determine
the reliability of this approach.

The model presented in this section is able to run in real time. By real
time we mean the following. The brain deforms with certain speed (it takes
about 45 minutes to assume a steady state). On the other hand it takes a
certain time to simulate the brain deformation on a computer, i.e. to deform
the model. However, at say 5 minutes after opening the dura (5 minutes
of the actual, surgical time) the corresponding model state (the state that
corresponds to the 5th minute of the actual time) has already been computed
and stored in the memory, and can be used for displaying (deformed) images
and surfaces. Thus, the simulation of the brain deformation is computed
faster than the actual brain deformation, i.e. in real time. If this is not the
case, i.e, if the simulation of brain takes more time than the actual brain
deformation, then the model could not be used during the surgery (in real
time) for displaying deformed images and surfaces. The model meshes used
here had over 2000 nodes, 11500 connections, and 1500 elements (bricks),
and it took less than 10 minutes on an Octane SGI workstation (R10000 250

MHz processor) to reach a steady state. This is a significant improvement
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over our previous model ([80]).

5.3.2 A Continuum Mechanics Based Brain Model

In spite of the advantages of spring-mass models, we have decided to move
to continuum mechanics based models for reasons explained in Section 2.3.

The model mathematics is presented in Section 2.4.

For this model, we use a pair of stereo cameras overlooking the ex-
posed brain surface to acquire intraoperative information about the deform-
ing brain. The idea is to reconstruct and track the exposed brain surface
as it deforms during the surgery. If this can be done reliably, one can use
the reconstructed brain surface as displacement boundary conditions for the
model PDEs. Each time the surgeon moves her or his hands and surgical
tools out of the way of the cameras, snapshots from the two cameras are
taken, exposed brain surface is reconstructed, the surface is used to guide the
model, and once the model is deformed, it can be used to update (properly
warp) all preoperative images available. The advantage of this intraoper-
ative data acquisition over the manual point delineation (Section 5.3.1) is
that it is automated, less disturbing for the surgeon, and it provides more

data.

As pointed out in Section 2.4.2, the only model parameter to be set is
Poisson’s ratio. We have tested a range of values for v, and the one that
yielded the smallest error (a partial validation is presented in Section 5.3.2)
was v = .4, which is a value used by other groups as well ([21]). We assume
that the model is homogeneous since there is no reliable way known to us

for setting the model parameter for different brain structures.
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Partial Validation

In this section we will investigate how well a continuum mechanics-based
brain model can predict in-volume deformation using only partial (exposed

brain) surface data for model guidance.

In order to test the method, we used intraoperative MR image sequences.
We manually segmented the pre-deformation brain regions of interest (cere-
bral hemisphere at the side of the craniotomy, falx, and tentorium). Then
we rigidly registered the preoperative (undeformed) and intraoperative (de-
formed) brain images using a normalized mutual information based registra-
tion algorithm ([65]). The purpose of this step was to align the undeformed
and deformed brain images, i.e. to remove the rotation and translation
from the transformation between the two images. We employed a finite el-
ement method to determine the deformation governed by Eq. 2.7. A mesh
composed of hexahedral (“brick”) elements (with 5 mm approximate side
lengths) was generated using the segmented data and the in-house mesh
generator explained in Section 5.2.2. The generated meshes (of the cerebral
hemisphere at the side of the craniotomy excluding ventricles) had about
6,500 nodes and about 5,000 “brick” elements. Here we used the anatomical
constraints that the falx and tentorium are practically fixed, and we fixed
the corresponding model nodes. For this reason it is enough to consider
only the half of the brain at the side of the craniotomy, since the other part
does not deform. We are aware that, although this assumption holds in most
cases, there are exceptions where the falx moved during the surgery. In order

to simulate exposed brain surface tracking® we manually segmented the de-

®In a complete system brain surface tracking would be done by using a pair of stereo

cameras, as explained in Section 3.3.2.
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formed brain from the intraoperative scan and generated its surface. Then
we computed the displacement at each point r; of the undeformed brain
surface S1 (only at the part of the brain surface that was visible through
the craniotomy, i.e. at the exposed brain surface), as Ar = re — 71, where
r2 is the point on the deformed brain surface So closest to the point rq, i.e.
obtained as arg,., g, min||rz —ry||. Finally, the computed displacements at
the exposed brain surface were used as boundary conditions for the model
PDEs.

In this section we present a partial validation of the method using intra-
operative MRI for two cases: a sinking brain and a bulging brain. In both
cases, we used intraoperative MR images after the dura was opened and
brain deformed, but before any major resection occurred. The intraopera-
tive MRI datasets had 60 slices of a 256 by 256 size, with .9375 mm in-plane
resolution and 2.5 mm slice thickness. Their quality, i.e. the signal to noise
ratio (SNR), was lower than the quality (SNR) of typical preoperative MR
images. For both cases we generated the model and displacement boundary
conditions as explained above. We used ABAQUS to compute the model
deformation. For a model of about 6,500 nodes and about 5,000 “brick”
elements, it took about 80 seconds to solve the equations on an SGI Octane
R12K machine. This time is almost practically applicable, since it would
mean that after a couple of minutes after obtaining exposed brain surface
data, one would get updated MR images and other preoperative data. In
order to validate the computed deformation, we manually selected a set of
anatomical landmarks in the preoperative scan of the (undeformed) brain
at various locations throughout the volume of the cerebral hemisphere at
the side of the craniotomy. For landmarks, we used points at anatomical

structures that can relatively easily be identified in both preoperative and
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intraoperative images. Then we manually found the corresponding land-
marks in the intraoperative scan of the (deformed) brain. Finally, using the
displacement field computed by the model, we determined the positions of
the “model predicted landmarks” in the deformed brain corresponding to
the landmarks in the undeformed brain, and compared them to the corre-
sponding manually set landmarks in the deformed brain.

Table 5.3 shows the true displacements of 14 landmarks, the computed
corresponding displacements, and the errors between the computed and true
landmarks in the deformed brain for the sinking brain and for the bulging
brain, respectively. One can see that the maximal true landmark displace-
ment was 3.8 mm (3.6 mm) while the maximal error was 1.4 mm (1.3 mm)
for the case of the sinking (bulging) brain. Fig. 5.4 shows an MR image
slice of a preoperative brain, the corresponding intraoperative image slice
of the deformed brain, and the corresponding model-updated image slice of

the deformed brain.

5.4 Discussion

We presented a brain shift compensation method based on a biomechanical
model guided by limited intraoperative data. We started by a simple and
relatively fast damped spring-mass brain model. The problems associated
with the model parameters and guidance are overcome by an approach that
relies on a continuum mechanics-based brain model.

Clearly, this system uses only intraoperative surface information and
it cannot perform well after tissue resections. In addition to using this
system before resections, one can use it in the case of subdural electrode

implantation (often performed as a first stage of epilepsy surgery) where no



89

tissue is removed, but the brain still deforms due to gravity, loss of CSF and
other mentioned factors.

The approach using continuum mechanics-based brain shift compensa-
tion indicates that exposed brain surface information might be enough to
recover pre-resection brain deformation with an error comparable to the scan
resolution. The used intraoperative MR scans had 2.5 mm slice thickness,
with in-plane .9375 mm by .9375 mm pixels, while the maximal error of the
predicted brain deformation in the presented cases was 1.4 mm.

In addition, this work compares the spring mass and the continuum
mechanics-based models for brain shift compensation. The main advantages
of the spring mass model are its simplicity and computational efficiency.
However, it suffers from mesh dependence on model parameters and from the
lack of a good model guidance strategy. Both of the problems are overcome
by the continuum mechanics-based model, which disadvantage is that it is
computationally more expensive. Furthermore, the continuum mechanics-
based model allows for incompressibility control through Poisson’s ratio®,
while it is not clear how to achieve it in the case of the spring-mass model.

As noted above, an alternative to using biomechanical model-based brain
shift compensation is to use an intraoperative MRI and/or CT system. The
primary advantage of these approaches is that they provide the actual state
of the brain at the time of imaging, i.e. during the surgery, while a disad-
vantage is that they are very expensive, and therefore not affordable to all
hospitals. They also restrict surgical access to the patient, prevent standard
metal surgical tools from being used, their spatial resolution is typically not

as high as that of preoperative MRI, and one must interrupt the surgery

5Poisson’s ratio controls model incompressibility. This parameter is dimensionless, it

can relatively reliably be estimated, and its values are available in the literature.
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for a few minutes for each image acquisition. Even with the advantages of
intraoperative MR scanners, one can see only the current (intraoperative)
anatomical state of the brain, but the functional and segmented data is still
available only in the preoperative state. Therefore the use of a deformable
model would be helpful even if an intraoperative scanner is available since
the model can be guided by the rich intraoperative data from the scanner,
and it can correspondingly deform any preoperative data. The main ad-
vantages of the use of a deformable model over the use of intraoperative
scanners is its much lower cost and its ability to deform any data type,
while the main disadvantage is its lower precision and reliability since it is
practically impossible to accurately model all the complex phenomena that

influence the brain deformation during the surgery.
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Table 5.3: Model-Predicted Landmark Position Error. Case I (sink-

ing brain) and Case II (bulging brain): true landmark displacements (t),

computed landmark displacements (¢), and error between true and com-

puted landmark locations (e = ¢ — t), for 14 landmarks. All values are in

millimeters.
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(d) () (f)

Figure 5.4: Model-Updated Preoperative MR Brain Images. (a) A
preoperative coronal slice of a sinking brain, (b) the corresponding intraop-
erative slice of the deformed brain, (c) the corresponding model-computed
slice of the deformed brain. Axial slices (d), (e), and (f) correspond to the
bulging brain case (undeformed, deformed, and model-computed, respec-
tively). Note that in both cases the exposed brain surfaced in the computed

slice moved similarly as the corresponding surface in the intraoperative slice.



Chapter 6

Localization of Implanted

Subdural Electrode Grids,
Strips and Depth Electrodes

6.1 Introduction

Subdural electrodes are often used in epilepsy surgery in order to map brain
function and locate seizures. The patient carries implanted electrodes for
several days, and over this time the electrodes are monitored for seizures
and stimulated to determine brain function and the results are recorded.
To effectively use these results, one needs to relate electrode locations to
brain structures of interest. This is conventionally done by using postoper-
ative MR or CT scans (scans taken after electrodes have been implanted),
and looking for electrodes in the scans. Since it takes a significant effort to
picture in mind the spatial relations between electrodes and structures of in-

terest directly from postoperative images, we have developed a combination

93
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of automatic and manual tools for localization and visualization of implanted
subdural electrode grids, strips and depth electrodes. The tool automati-
cally locates electrode positions, and allows the user to interactively correct,
if needed, the result of the automatic localization. Both the automatic and
interactive tools are based on the idea of preserving intrinsic surface dis-
tances, used as a geometric constraint in the algorithms. In addition, the
user can color electrodes based on the function they correspond to. The
final 3D display allows neurosurgeons and neurologists to easily visualize
electrodes and consequently concentrate solely on medical analysis.

Electrodes are typically not implanted as single, separate electrodes, but
rather as electrode groups kept together by a supporting rubber material.
There are three types of electrode groups: electrode grids, electrode strips,
and depth electrodes. An electrode grid is at least a 2 by 2 matrix of elec-
trodes, i.e. there are at least two rows and at least two columns. Electrode
grids are sometimes cut by the surgeon if they cannot fit in the place other-
wise. The surgeon can make a few holes in the grid as well as remove some
of the border electrodes. An electrode strip is a 1 by N array of electrodes,
i.e. it is a single row, and it must have at least two electrodes. A depth
electrode is also a single row of at least two electrodes.

Figure 6.1 shows an electrode grid in the process of implantation. Once
electrodes are implanted, the skull is closed with wire contacts to all the
electrodes available outside the skull, and the patients carries the implanted
electrodes for several days. Electrodes are used to map brain function by
stimulations and determine seizure locations by monitoring electrode acti-
vations. In order to effectively use stimulation and activation results, one
needs to relate electrode locations to some of the head and brain structures.

This is usually done by taking a scan (MR or CT) of the patient after the



95

electrodes have been implanted (so called postoperative scan). Figure 6.2
shows typical postoperative MR images of a patient with implanted sub-
dural electrodes. However, clinicians find this approach limiting for the
following reason. If one looks at individual 2D image slices, since usually
there are just a few electrodes in a slice, it is not clear where they are in
the grid (e.g. a grid can have 64 electrodes, arranged in an 8 by 8 matrix),
and it is difficult to relate them to brain structures. Similar problem is
encountered if postoperative images are volume rendered. For this reason
we developed a tool for extraction and visualization of electrode grids (and
electrode strips and depth electrodes). The tool extracts the grid as a whole,
rather than as a set of non-related electrodes, by fitting a smooth, curved
surface through the estimated centers of the electrodes. A by-product is
the ability to reliably estimate the orientation of the electrodes'. Knowing
the centers and orientations of the electrodes, and the surface of the grid
supporting material, the whole grid can be realistically displayed in 3D, to-
gether with brain structures of interest. The grid supporting material is
usually a transparent rubber. Although the supporting material is rubber,
grids are never subject to forces strong enough to stretch them. In addition,
the electrodes in the grid corresponding to particular functional areas can
be colored, further helping visualize the correspondence between functional
areas and brain structures. By using our tool, it is now much easier to reli-
ably locate functional areas with respect to other structures, and plan and
guide the surgery.

To the best of our knowledge there are no such methods available in the

literature. While our method is automatic, there are two other approaches

!Electrodes used at Yale New Haven Hospital are disk-shaped and are 3.8 mm in

diameter and about .5 mm in height.
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commonly employed: manual localization of electrodes ([11]), which is time
consuming, or use of a postoperative CT scan for electrode localization. The
advantage of using postoperative MR images is that anatomical structures
are better visible compared to CT images, which is very important for mak-
ing further conclusions. The problem is that metal electrodes corrupt the
magnetic field in MR scanners causing image artifacts (voids), which makes
electrode localization from MR images more difficult. Although there are no
such artifacts due to electrodes in postoperative CT images, and therefore
their localization is easier, postoperative MR images are more commonly
used due to better imaging of anatomy. Our method was reported in [74]

and [75].

6.2 Automatic Electrode Localization

Electrodes used at Yale New Haven Hospital produce sphere-shaped artifacts
of about 10 mm in diameter in MR scans (there is a sphere artifact at the
position of each electrode). Artifacts appear to be dark (void), hide nearby
tissue, and in addition, they are often mixed with other head structures
that are normally dark (e.g. bone, cerebro-spinal fluid - CSF). Moreover,
the wires connected to electrodes produce artifacts, especially where they
are joined together (at the place they leave the skull). Fig. 6.2 shows typical
artifacts in postoperative MR scans.

Because of artifacts and image noise it is very difficult to reliably es-
timate electrode positions if electrodes are treated independently of each
other. It is even more complicated to estimate electrode orientations (the
orientation of electrode disks) since sphere-shaped artifacts carry almost no

orientation information, making the orientation estimation very sensitive to
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Figure 6.1: Electrode Grid Implantation. An 8 by 8 subdural grid of
electrodes is placed on the brain surface at the craniotomy. The white wires
coming out the gap between the brain and the skull belong to electrode

strips that have already been implanted.
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Figure 6.2: Postoperative MR Images of a Patient with Implanted
Subdural Electrodes. Figure (a) shows three orthogonal sections through
a postoperative MR scan. One can see artifacts caused by electrodes of an
8 by 8 grid between the top of the brain and the skull. It is not easy to
determine where those electrodes are in the grid and how they are related
to brain structures of interest. Figure (b) shows an axial slice of another
patient. Artifacts are usually sphere-shaped (small arrows), but sometimes
(big arrow) are so dominant that it is very difficult even for the human eye

to locate electrodes.
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noise. The idea is to treat an electrode grid (e.g. an 8 by 8 grid) as a whole.
There are two main reasons for doing this. First, this includes prior knowl-
edge (the geometry of the grid is known prior to implantation) and second,
errors in estimating electrode positions tend to cancel out. Our method is
based on a combination of nonlinear and predictive filtering subject to dif-
ferential geometry constraints. The algorithm fits a smooth, curved surface
through the estimated electrode positions, and even if an estimated elec-
trode position is significantly off, geometric constraints push it very close
to its true position. As a by-product, once the surface is fitted, one can
determine the surface normals at electrode positions and use them to prop-
erly orient electrode disks. Electrode orientations are not as important as
electrode positions (the aim is to locate functional areas), but they help
visualize electrode grids more realistically.

The constraint that electrode grids are deformable but not stretchable
is used. Electrode grids when implanted are deformed to fit into a place,
but are not subjected to force strong enough to stretch or compress them.
If z is a parametrization of an electrode grid surface (Definitions A.46 and

A.47), then this constraint reduces to the fact that the integral

J:

is invariant under grid deformations for a fixed curve C, where t is a param-

dx
—\ dt 6.1
a H (6.1)

eter along the curve. This has to hold for any curve on the grid surface.
Due to artifacts, noise, and many degrees of freedom of an electrode grid,
it is very difficult in one step to reliably fit a smooth grid model of a known
geometry that satisfies the previous constraint. Rather, the geometry and
smoothness constraints are enforced through a few steps, each step intro-

ducing some portion of the constraints. The main steps of the method are:
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nonlinear filtering, predictive filtering, surface regularization, and surface

interpolation.

6.2.1 Nonlinear Filtering

The purpose of this step is to find a set of possible electrode centers. Typi-
cally, patients are implanted a few grids and strips of electrodes often total-
ing to more than a hundred electrodes. Since each electrode causes a dark
artifact (void), the first idea was to cross correlate a 3D kernel similar to
the sphere-shaped artifact over the postoperative MR 3D image?. Maxima
of the normalized cross-correlation would be possible electrode centers. The
problem with this is how to set the kernel. While the center of the kernel
has to be a dark sphere, the rest of it has to be “white”, or some kind of
transition to “white”. This pattern depends on the structures surrounding
particular electrode, and it is not the same for all electrodes. For this reason,
we have moved from linear filtering to nonlinear one, i.e. we do not perform
ordinary cross-correlation, but maintain the same basic strategy to look for
a sphere-shaped dark region surrounded by lighter tissue. Prior to nonlin-
ear filtering the dataset is smoothed by a 3 by 3 by 3 kernel to reduce the
effect of noise. The form of the 3D kernel we use for the nonlinear filtering
is shown in Fig. 6.3(b). Each voxel in the dataset is checked by doing the

following steps:

e The kernel is centered at the current voxel.

e If any voxel in the KERNEL CENTER exceeds the THRESHOLD

value, the current voxel is discarded and the next one is checked.

2A 3D image is a set of 2D (MR) image slices stacked together.
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Type Parameter Value Description
DISK DIAMETER | 3.8 mm Electrode diameter
Grid DISK HEIGHT 0.5 mm Electrode height
Related | OUTER MARGIN | 5.0 mm | Supporting material margin
DISTANCE 10.0 mm Inter-electrode distance
KERNEL CENTER | 7.0 mm Inner “dark” area
KERNEL SPHERE | 10.5 mm The whole “artifact”
Artifact MIN DISTANCE 7.0 mm | Minimal electrode distance
Related | MAX DISTANCE | 14.0 mm | Maximal electrode distance
MIN DIAGONAL | 10.0 mm Minimal square diagonal
MAX DIAGONAL | 17.0 mm | Maximal square diagonal
THRESHOLD 40 “Dark” is under threshold
Table 6.1: Automatic Electrode Localization Algorithm Parame-
ters.

e The number of voxel values under the THRESHOLD in the KERNEL
CENTER and over the THRESHOLD out of the KERNEL CENTER

but still in the KERNEL SPHERE is counted. The count is called

SUM.

The parameters used in the algorithm are summarized and briefly ex-

plained in Table 6.1. All parameters are capitalized. There are two groups

of parameters. Grid-related parameters depend solely on the geometry of

the used electrode grids, and are further described in Fig. 6.3(a). Artifact-

related parameters depend on the effect metal electrodes cause in the imag-

ing system (MR scanner).
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(a) (b)

Figure 6.3: Electrode Grid Parameters. Figure (a) shows the grid re-
lated parameters, that define its geometry. The black circles represent the
electrodes arranged in a grid, while a single electrode is show at the right.
M is OUTER MARGIN, D is DISK DIAMETER, H is DISK HEIGHT and
I is DISTANCE. Figure (b) shows a section through the 3D kernel. The
innermost (the darkest) region is kernel center (its diameter is KERNEL
CENTER) and the gray ring together with the kernel center is kernel sphere
(its diameter is KERNEL SPHERE).
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Thus, each voxel is either disregarded or its position and SUM are
recorded. The bigger the sum, the more likely the voxel is an electrode
center. However, there are typically many (thousands) of voxels that were
recorded during the nonlinear filtering. At this point the first geometric
constraint is introduced. Since electrodes on the grid we use are 10 mm
apart (DISTANCE parameter), then any two estimated electrode centers
should not be closer than a certain distance (MIN DISTANCE parameter).
By imposing this constraint many of the estimated centers are rejected (the
estimated centers that are kept are those with higher SUM).

The output of this step is a set of positions that are likely to be close
to positions of possible electrode centers. The estimated positions are guar-
anteed to be at least MIN DISTANCE apart. Typically, a majority of the
electrode centers are found, some are missed, and there are some other struc-
tures that are wrongly chosen as electrode centers. An example of estimated

electrode centers is shown in Fig. 6.4(a).

6.2.2 Predictive Filtering

The purpose of this step is, using the estimated electrode centers, to label
some of them, discard the rest and predict the positions of missing ones. The
grid patterns are searched from the largest (typically 8 by 8) to the smallest
ones. Each time a pattern is found, the electrodes belonging to that grid are
removed from the list of estimated electrode positions, and then next largest
grid pattern is looked for. However, since there are typically a few hundred
estimated electrode centers, it would be computationally too expensive to
check say an 8 by 8 grid pattern against all possible combinations of esti-

mated electrode centers, including cases with missing electrodes. For this
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reason we first determine what we call “low level topology”. We look for
all pairs of estimated centers that might be neighboring electrodes on a grid
- these pairs are referred to as “links”. Any two estimated centers are at
least MIN DISTANCE apart (that was enforced in previous step), and two
estimated centers make a “link” if they are at most MAX DISTANCE apart.
Next, we look for all sets of four estimated centers that might compose a
“square” on the grid, i.e. that make a 2 by 2 “subgrid”. A “square” must
have sides composed of already determined “links”, and its diagonals must
be at least MIN DIAGONAL and at most MAX DIAGONAL. An example
of estimated centers and “low level topology” is shown in Fig. 6.4(b).
Now, having the “low level topology” available, it is much easier to search
for grid patterns. For each “square” the pattern is searched for by sliding it
over that “square”. In other words, a pattern is positioned over the current
“square”, such that the “square” is in position (1,1) in the pattern, this case
is checked, then the pattern is moved such that the “square” is in position
(1,2) in the pattern, this case is checked, and so on until the “square” visited
all positions in the pattern, both for “vertical” and “horizontal” orientation
of the pattern (if the pattern has the same number of rows and columns,
then “vertical” and “horizontal” orientations are the same, i.e. only one ori-
entation is checked). For a particular case, say when the current “square”
is in position (2,4) in the grid pattern, the nodes in the grid pattern neigh-
boring to the square are predicted using the estimated positions of the four
vertices of the “square”. Predicted node positions that are close to some
estimated electrode centers are replaced by the estimated ones. Further,
the new neighboring nodes in the grid pattern are predicted using the the
positions of the “square” vertices and already predicted node positions, and

so on until the whole pattern is filled. By doing this, the pattern tries to
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(b)

() (d)

Figure 6.4: Electrode Grid Extraction Steps. Figure (a) shows a part
of the estimated electrode centers in a postoperative MR scan (some of the
estimated centers are occluded by the three orthogonal slices through the
dataset). One can see a pattern of an 8 by 8 grid, but still the estimated
centers are not regularly arranged, some are missing and there are false
ones. Figure (b) represents the “low level topology” (“links” and “squares”)
as defined in the paper. Figure (c) shows the best match for an 8 by 8 grid
pattern using the estimated electrode centers and “low level topology”, while
predicting the missing electrodes. The non-regularity of electrode positions
is due to errors in estimated electrode center locations. It is significant in
the top row of the grid, since the wires are coming out of the grid at that
side causing increased artifacts. Figure (d) shows the electrode positions of
the best match after regularization. One can see that the electrode positions

form a more regular grid compared to the one in Figure (c).
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follow the estimated centers, but if some are missing their positions are pre-
dicted. Once this process is finished, it is counted how many node positions,
links and squares in the pattern match the estimated electrode positions,
“links” and “squares” from the “low level topology”. This sum is used as a
measure to find the best pattern match. Thus, for each “square” the pattern
is moved over all positions (and for both orientation), and the best match is

determined. An example of the best pattern match is shown in Fig. 6.4(c).

6.2.3 Regularization and Surface Interpolation

Estimated electrode positions and predicted positions of missing electrodes
have errors. However, these errors tend to cancel when a smooth surface of
a known geometry (representing the grid) is fitted through the best pattern
match. The reason why the errors tend to cancel is that there is no preferred
direction for errors in estimated and predicted electrode centers. We suggest
the following way to regularize the grid. If r1, r2, s and r4 are positions
of four electrodes making a square in the best pattern match (the vertices

of the square are connected as follows: 1-2-3-4-1), and

Iy — T4—-7T14+73-T2 _ T2-T1+73-T4
t = TrgT1tr3-T2> Yt = [Fp—TiiT3- T4l

r1+7ro+7rs3+T
n = x4 X yi, L
_ LTttYt _ axn
@ = Ty d = raxn|
~ _ a+d ~ _ a-d
5= S5T% =
a+d)’ Y= la=d

then it is not difficult to see that c is the origin, and & and § are orthogonal
unit vectors of a planar coordinate system fitted through the four vertices

and centered at the square center. Furthermore, & is approximately in
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direction 2-3 (and 1-4), while § is approximately in the direction 1-2 (and 4-
3). This is used to improve the vertex positions, knowing the inter-electrode

distance (DISTANCE), as follows:

[y ] [ 1] [ 1 1]
[N 1 DISTANCE | -1 1 &
=C + e
rs 1 2 1 1|9
T4 1 1 -1
- - new - = - =

This computation is done for each square in the grid. Since a vertex
may be shared by two, three, or four squares, its new position is computed
as the average of its new positions in each of the squares it belongs to. Let
R be a vector of all the electrode positions in the grid pattern. Combining
previous equations for all the “squares” in the grid pattern, one can relate the
electrode positions for two subsequent iterations, as Ri+1 = f(Rg), where
k is the iteration index. The entire process is iteratively repeated until the
electrodes assume steady state positions, i.e. until [|[Rpi1 — Rilleo < € 3.
The procedure converges in practice. By doing this, the grid keeps its shape,
while distances between electrodes are forced to come closer and closer to the
ideal inter-electrode distance. An example of grid regularization is shown in
Fig. 6.4(d).

Regular grids can now easily be interpolated by spline or some other
smooth surfaces. However, since electrode grids are just slightly curved,
each square is approximately flat, and practically there is no need to do
better than a linear piece-wise interpolation. Due to the aforementioned

reasons, this interpolation provides almost a smooth surface and it very

3Infinity norm of a vector is its maximum element (Definitions A.24 and A.26).
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Figure 6.5: Examples of Electrode Grid Extraction. These two figures
show examples of the final electrode grid, represented as a smooth surface
with disk-shaped electrodes properly oriented. The electrodes can be colored

to denote certain functional areas.

closely satisfies the invariance of (6.1). In addition, the surface can be
extrapolated to model the grid-supporting material margins, and surface
normals can be computed to properly orient disk-shaped electrodes. Two
examples are shown in Fig. 6.5. A linear surface interpolation was used for

these examples, while a spline one is described in Section 6.4.

6.2.4 Summary

We have compared the algorithm output to manually localized electrodes,
concluding that the maximal error was within 1.5 mm, while the mean
error was within 1 mm, which is sufficient for clinical applications. Table
6.2 presents the comparison results for 5 patients each having at least 64

electrodes (an 8 by 8 electrode grid), and some having 84 electrodes (an 8
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subject || number of electrodes | mean [mm]| | max [mm]
1 64 0.8 1.3
2 84 1.0 1.5
3 64 1.0 1.4
4 64 0.9 1.3
5 84 0.8 1.4

Table 6.2: Automatically Determined Electrode Location Errors.
The table presents the errors of automatically determined electrode locations
for 5 subjects. Each subject had at least 64 electrodes implanted. The
automatically determined electrode locations were compared to the “true”

electrode locations, which were determined manually.

by 8 and a 2 by 10 electrode grids) implanted.

The whole procedure takes a few minutes on an SGI Octane machine.
The method, as currently implemented, works for rectangular grids of elec-
trodes, but can easily be adjusted to work for non-rectangular grids and
strips of electrodes as well.

This method is a step forward in electrode localization and visualization,
especially when it is compared to what was used before: either manual

electrode localization, or just mere looking at postoperative MR images.

6.3 Interactive Electrode Manipulation

In Section 6.2 we presented an automatic algorithm for extraction of im-
planted electrode grids form postoperative MR images. Although the al-

gorithm has an acceptable accuracy (typical error of electrode location is
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1 - 1.5 mm), due to big artifacts sometimes there is a need for interactive
(manual) post-processing, particularly because this is a medical application,
and the results should be reliable. Since electrode grids are not stretched
or compressed during the implantation this is a property that one wants to
preserve during the manipulation of the grid surface. E.g. the user would
interactively move one of the electrodes on the grid and the whole grid
would deform correspondingly so that the distances along the grid surface
(also known as intrinsic surface distances) are preserved. In other words, by
moving one electrode the user would indirectly move others (mainly from
the electrode’s neighborhood) in a physically correct way. Such surface de-
formation is known as locally isometric transformation, or local isometry.
In Chapter 4 we developed a deformable surface model that allows only
for locally isometric surface deformation, i.e. it preserves intrinsic surface
distances. We use this model to allow the user to interactively manipulate
electrode grid models that were generated by the automatic electrode local-
ization algorithm. An example of interactive electrode strip manipulation is

shown in Figure 6.6.

This tool allows clinicians to correct, if needed, the output of the au-
tomatic electrode grid localization algorithm, or to directly use it for in-
teractive electrode grid positioning, without even using the automatic algo-
rithm. While an interactive electrode grid manipulation tool is necessary
as a backup, the model-based approach treats electrode grids as structures
taking into account their physical properties. This renders electrode grid
manipulation easier than the case when each electrode is manipulated inde-

pendently.



Figure 6.6: Interactive Electrode Strip Manipulation. These four fig-
ures demonstrate an electrode strip manipulation. The user selected an
electrode from the strip and interactively moved it in the direction perpen-
dicular to the electrode disk until the strip assumed an improved shape.
Electrodes can be interactively moved in tangent directions, too. As the
user moved the electrode, the rest of the strip moved in a physically correct
way. Then the user selected another electrode and repeated the process un-
til the electrode strip was properly positioned. Note that the strip was not
stretched or compressed during the manipulation, i.e. that the distances

along the strip were preserved.
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6.4 Electrode Visualization

In order to properly visualize electrodes, one needs to draw the very disk
shaped electrodes, as well as the supporting rubber material. Once this is
done, it is easy to set the color of each electrode depending on the function it
corresponds to. To display electrode disks, for each disk one needs to know
its center, the direction of the disk axis, the disk radius and the disk height.
The disk radius and height are known since the electrode specifications can
be obtained from the electrode manufacturer; e.g. electrodes used at Yale
New Haven Hospital (manufactured by [1]) have the following specifications:
for electrode grids and strips, the electrode disks are 2 mm in radius, .5 mm
in height, with 10 mm center to center inter-electrode distance in both
directions, and with 4 mm supporting rubber material margins from the
border electrode centers, while the depth electrodes are .5 mm in radius,
2.5 mm in height, with 6.5 mm center to center inter-electrode distance and

2 mm supporting rubber material margins.

Since electrode localization methods, both automatic and manual, out-
put electrode centers, the only unknowns are the electrode disk orientations,
i.e. the directions of the disk axes and the supporting rubber material sur-

face points.

The way to determine the orientation of electrode disks and to generate
the supporting rubber material surface differs for electrode grids, electrode
strips, and depth electrodes, and the following three sections describe each

case separately.
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6.4.1 Visualization of Electrode Grids

The idea is to interpolate a surface through the electrode centers and then
having the surface, to generate the supporting rubber material points (as
points on the interpolated surface) and also compute the surface normals at
each electrode position, obtaining the orientation of the electrode disks. The
problem is that the surgeon sometimes cuts out one or more parts of the
electrode grid before it is implanted, making holes in the grid surface or re-
moving some of the border electrodes. This makes the surface interpolation
problem more difficult, since a preferably C; surface should be fit through
a non-rectangular set of points. Our approach is to first interpolate smooth
curves along the rows and along the columns of the electrode grid, where it
is possible (where the electrodes are removed, the interpolation curves are
interrupted), and then generate surface from the interpolated curves. There
are a few reasons for using this approach. First, it is computationally less
complex compared to the interpolation of a polynomial surface through the
electrode centers. We interpolate cubic splines along the rows and columns
of the electrode grid. Let’s say that the electrode grid has N by N elec-
trodes. For each row or column the cubic spline has to be interpolated
through N points, and this task is of complexity O(N) (Appendix B). Since
there are 2N lines (N rows and N columns), the complexity of interpolating
the rows and columns is O(N?). We generate the interpolated surface from
the row and column spline curves using Coons patches blended by cubic Her-
mit polynomials which provide a C; surface ([7], [20]). Having the curves
available, there is no computation involved with Coons patches other than
a direct evaluation. At the other hand, the interpolation of a polynomial

surface through N by N electrodes involves inverting matrices of size N2,
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which is a task of O(N®) complexity, since the complexity of matrix inver-
sion is O(M?), where M is the matrix size ([58]). When the surface is not
cut, i.e. when the electrode centers make a rectangular set of points, they
can be interpolated using tensor product interpolation, which has O(N*%)
complexity (section 15.12 of [20]). Even in this case, it is slower than our
approach (O(N?) complexity). The speed is important when the electrode
grids are interactively deformed by the user, and the surface interpolation
has constantly to be recomputed. Another advantage of using spline curve
interpolation through the rows and columns of the electrode grid, is that
it can be directly applied to the case of electrode strips and depth elec-
trodes, which have only one row, and naturally need a curve interpolation.
Finally, since electrode grids are never very curved surfaces, even a sim-
ple linear interpolation achieves acceptable results as far as visualization of
supporting material surface is concerned. We have decided to generate a C
surface to avoid “broken surface” artifacts (due to linearly interpolated Cy
surface) for cases when a grid of electrodes is significantly zoomed by the
user. Figure 6.7 shows the steps in the visualization of a regular (not cut)
electrode grid, while Figure 6.8 presents the case of a non-regular (cut) elec-
trode grid of the same size. Once the surface is interpolated, we extrapolate
it at borders, to generate the margins of the supporting rubber material.

4 are missing (i.e.

For the cut parts, when one or two quarters of a “square”
when one or two electrodes of the “square” are removed by the surgeon),

we still use Coons Patches to generate (interpolate) the non-missing part

1A “square” is defined by the four neighboring electrodes forming a square. When one,
two or three of the four electrodes are removed by the surgeon, one needs to generate
(interpolate) only part of the “square” surface. When all four electrodes are removed, no

“square” surface is displayed.
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of the “square” surface, while when three quarters are missing, we use a
transitional surface (section 21.3 of [20]) to generate (interpolate) the left

quarter of the “square”.

6.4.2 Visualization of Electrode Strips

In this case, since electrode strips have only one row of electrodes, we inter-
polate a cubic spline through the (row of) electrodes. In order to determine
the orientation of the electrode disks, we use the estimated electrode orienta-
tions from the automatic localization of the electrodes or the exact electrode
orientations from the manual manipulation of the electrode strip, whichever
is the way the electrode strip was positioned. This is necessary, since in
the case of electrode strips, one cannot fit a surface through one row of elec-
trodes, and thus cannot compute the normal to the surface, and use it as the
orientation of the electrode disks. Knowing the interpolated curve through
the row of electrodes, and electrode orientations, at each electrode one can
compute the vector orthogonal to the interpolated cubic spline and the elec-
trode disk normal by a cross (also known as “vector”) product. This vector
and the tangent to the cubic spline are used as a basis of the tangent plane
of the supporting rubber material surface at each electrode, and in between
electrodes the basis is interpolated. Having the basis of the tangent plane
of the material, one can generate its surface. Figure 6.9 shows the steps in

the visualization of an electrode strip.

6.4.3 Visualization of Depth Electrodes

Depth electrodes, similarly as electrode strips, have one row of electrodes,

and we interpolate a cubic spline through them. Having the interpolated



116

() (b)

(c) (d)

Figure 6.7: Regular Electrode Grid Visualization. (a) electrode cen-
ters output from the automatic or manual electrode localization, (b) the
cubic spline curves interpolated through the rows and columns of the elec-
trode grid, (¢) the C; surface interpolated through the row and column
curves using Coons patches blended by cubic Hermit polynomials, and (d)
final display of the rubber supporting material surface and electrodes, which

orientation is determined by the normal to the surface at their locations.



117

(a) (b)

(c) (d)

Figure 6.8: Non-Regular Electrode Grid Visualization. (a) electrode
centers output from the automatic or manual electrode localization, (b)
the cubic spline curves interpolated through the rows and columns of the
electrode grid (the curves are interrupted where the electrodes are missing,
(c) the C; surface interpolated through the row and column curves using
Coons patches blended by cubic Hermit polynomials, and (d) final display
of the rubber supporting material surface and electrodes, which orientation

is determined by the normal to the surface at their locations.
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() (b)

(c) (d)

Figure 6.9: Electrode Strip Visualization. (a) electrode centers output
from the automatic or manual electrode localization, (b) the cubic spline
curve interpolated through the row of electrodes, (¢) the interpolated Cy
surface using the interpolated cubic spline and provided electrode disk ori-
entations, and (d) final display of the rubber supporting material surface

and electrodes.
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spline, it is straightforward to determine the orientation of electrode disks as
the tangents of the cubic spline. The material surface is generated as a cylin-
der around the cubic spline. Figure 6.10 shows the steps in the visualization
of a depth electrode.

There is a problem in visualization of depth electrodes due to the same
radius of the very metal electrode disks and the cylindrical supporting rubber
material. When the depth electrode is curved (and it is curved in practically
all cases), the displayed material “cuts” the electrode disks hiding parts of
them. This is illustrated in Figure 6.11 (a). To prevent this artifact from
happening, we reduce the supporting rubber material cylinder radius a little
bit, so that it does not “cut” the electrode disks, even when the depth
electrode is maximally curved.

Figure 6.11 (b) shows the case of maximally curved depth electrode.
Since depth electrodes, when implanted, are not very curved, we can set the
minimal possible radius (7,i,), corresponding to the maximal curvature’.
Given the electrode disk radius (r. = d./2) and the electrode disk height
(he), it is not difficult to compute the maximal possible radius (rme; =
dmaz/2) of the supporting rubber material cylinder, so that it does not
cut electrodes, even when the depth electrode is maximally curved. The

expression is

1
Tmaz = Tmin — \/('rmm - 're)2 + Zhg

Note in Figure 6.10 (d) that the cylindrical supporting material is of
slightly smaller radius that the very electrodes (in reality the electrodes

and the cylindrical material have the same radius), and that there are no

SFor depth electrodes used at Yale New Haven Hospital, we set rmin = 8.3 mm, which

is a conservative figure, since depth electrodes are never that curved.
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() (b)

(c) (d)

Figure 6.10: Depth Electrode Visualization. (a) electrode centers out-
put from the automatic or manual electrode localization, (b) the cubic spline
curve interpolated through the row of electrodes, (c) the electrode disks,
which orientations are defined by the tangents of the cubic spline at the
electrode centers, and (d) final display of the electrodes and the rubber

supporting material surface generated as a cylinder around the cubic spline.
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(a) (b)

Figure 6.11: Depth Electrode Visualization Artifacts. (a) the cylin-
drical supporting rubber material cuts the electrodes, partially hiding them,
(b) geometry of the maximally curved depth electrode, such that the cylin-

drical material still does not cut electrodes.
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artifacts as ones in Figure 6.11 (a).

6.4.4 Examples of Localized Electrodes

To illustrate the usefulness of the presented tools, in Figure 6.12 we show
a few examples of localized electrode grids from postoperative MR images.
Such views allow for much easier analysis of spatial relations between func-
tional locations and anatomical structures, compared to the use of non-

processed postoperative MR images (e.g. see Figure 6.2).

6.5 Discussion

We addressed the problem of localization and visualization of subdural elec-
trode grids, strips, and depth electrodes. While conventionally each elec-
trode is independently manually localized in postoperative MR images, we
suggested a combination of automatic and interactive steps for reliable elec-
trode grid localization. The approach takes advantage of the fact that elec-
trodes are grouped into grids (and strips and depth electrodes) connected
by a supporting material. Electrode grids are never stretched or compressed
when implanted, and this is built into the approach, which significantly
helps electrode localization. Generated electrode grid models, shown to-
gether with anatomical and functional images, greatly enrich 3D displays,
helping clinicians to better understand spatial relations between function

and anatomy.
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Figure 6.12: Examples of Localized Electrode Grids. Some of the
electrodes are colored based on the brain function they correspond to. In

the first three figures electrodes are displayed together with fMRI data.
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Appendix A

An Overview of

Mathematical Concepts

This appendix is an overview of mathematical concepts used throughout the
thesis, providing their definitions as well as useful inter-relations. Although
relevant literature is referenced in all the chapters, this overview makes the
thesis self-contained. In addition, it introduces the terminology and notation
used in the thesis. The material in the appendix is based on [3], [8], [9], [16],
[27], [32], [39], [40], [63], and [64].

A.1 Algebra

A set is a collection of definite, well-defined objects (set elements) to form
a whole. Sets are denoted by capital letters (X,Y]...), elements of sets are
denoted by lowercase letters (p,z,...). If p is an element of X, it is denoted

as p € X, and p ¢ X, if p is not an element of X.

Definition A.1 A setY is a subset of another set X (in symbols: Y C X )

125
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if every element y € Y is also an element of X.

Definition A.2 Difference between sets X and 'Y (read X without Y ) is

X\Y={z|zeXandx ¢Y}.

Definition A.3 The (Cartesian) product of sets X andY is X xY =
{(z,y) |lze X,y eY}.

The Cartesian product of set X with itself is denoted as X2 = X x X.
Similarly, the definition can be generalized to the case of X™, where n is a

positive integer.

Definition A.4 A subset f of the Cartesian product X X Y is called a
function from X to Y (in symbols: f: X — Y ) if from (z,y1),(x,y2) € f

it follows that y1 = y2. The function is said to be single-valued.

Definition A.5 A function f isinjective (also called one-to-one) if f(x1) =

f(x2) always implies x1 = x5.

Definition A.6 A function f: A+~ B is surjective (also called onto) if
for every y € B there is x € A such that y = f(z).

Definition A.7 A function is bijective if it is injective and surjective.

Definition A.8 A (binary) operation x on a set A is a function * :
A X A A (in symbols, the binary operation * associates to any elements

z,y € A an element xxy € A).

Definition A.9 A pair (A,*) of a set A and a binary operation * on A is
a group if the following four properties apply:
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1. Closure:

Ve, y€e A, zxy € A.
2. Associative law:

Vr,y,2 € A, zx (y*2) = (T *y) * 2.
3. Ezistence of a neutral (identity) element e € A:
Ve € A, sxe=exx =u.

4. Ezistence of an inverse element = € A for each x € A:

zxzx =z sz =c.

Definition A.10 A group (A, %) is called Abelian (or commutative) if

the commutative law holds, i.e.:

Ve,y €A, cxy=1yx*z.

Definition A.11 A triple (A,*,0) is a field if the following applies:

1. (A,x*) is an Abelian group with the neutral element zero (0; zero ele-

ment).

2. (A\{0},0) is an Abelian group. Its neutral element is often referred to

as one (1, unit element).
3. Distributive law:

Vz,y,z € A, xo(yxz)=(zoy)*(roz).
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A.2 Vector Analysis

Definition A.12 A (linear) vector space is a structure (M, (K, +,-) ,®,®),
where M is a set of so-called vectors, (K,+,-) is a field (often called scalar
field), @ is a binary operation on M, and ® is an external operation (often
called scalar multiplication), ® : K x M — M, if the following applies for
all a,b € K and z,y' € M:

1. (M, ®) is an Abelian group.

2. Associative law:

a®box)=(a-b)0O.
3. (First) distributive law:
(a+b)ox=(@oz)®(box).
4. (Second) distributive law:

a@(xdy)=(a0x)d(a0y).

Vee M, 10z = .

Although a vector space is the whole structure (M, (K, +,"),®,®), often
just set M is referred to as a vector space. Using Definition A.12 one can
show many useful results, e.g. 0@ =0 or —1 ® £ = —x, where 0 is the
neutral element of (K, +) group, 1 is the neutral (unit) element of (K\{0},-)
group, —1 is the inverse element of 1 in (K, +) group, 0 is the neutral element

of (M, ®) group, and —x is the inverse element of & in (M, ®) group.

'Vectors are denoted by lowercase bold letters (z, v, ...)
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It will be assumed that ® has precedence over @. In order to simplify

notation, ® will be omitted, and & will be replaced by +.

Definition A.13 A nonempty subset W of a vector space V is called a
subspace of V if W is itself a vector space with respect to the operations

defined in V.

Theorem A.1 A nonempty subset W of a vector space V is a subspace if

and only if 0 € W and

Ve,y e W and Vo, € K, ax + fy € W.

Definition A.14 Let V be a vector space and K associated (scalar) field.
For an integer n > 2, ®1,®2,...,&Ln € V, and a1,00,...,an € K, the
eTPression

a1y + ey + ...+ apy

is called a linear combination of vectors ¢1,x2,...,%n.
Definition A.15 The span of vectors 1, ®2, ..., &y S set
S={axz1 + wxas+... + apxn | a1, a9,...,0p € K}.

It is said that S is spanned or generated by those n vectors.

Theorem A.2 The span of vectors &y, xs,..., Ly is a vector space.
Definition A.16 A set of vectors &1, 2, ..., %, is linearly independent
iforey +asxa+...+apey =0 only if a1 = ao = ... = a,, = 0. Otherwise,

the vectors are linearly dependent.
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Definition A.17 A set of linearly independent vectors of a vector space
that span the vector space is a basis of the vector space. The elements of a

basis are called basis vectors.

Theorem A.3 All bases of a vector space have the same number of ele-

ments.

Theorem A.3 leads to the definition of the dimension of a vector space.

Definition A.18 The dimension of a vector space is the number of ele-

ments of a basis of the vector space.

Let R denote the set of real numbers, and R"™ the set of all n-tuples of

real numbers.

Theorem A.4 Set R" is a vector space of dimension n (n > 1).

Theorem A.5 All real m x n matrices (with m and n fized) form a vector

space of dimension mn.

Definition A.19 Let V and W be vector spaces with the same scalar field

K. A functionT : V — W is q linear transformation if

Veyi,22 €V, and Vo, a0 € K, T (Oél.fc]_ + 0&2182) =T (:B]_) + asT (wz) .

Definition A.20 An isomorphism is a bijective linear transformation of

vector spaces.

Theorem A.6 All vector spaces of dimension n are isomorphic to R™.
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Definition A.21 An isomorphism from a vector space V to R"™ is called a

co-ordinate system for V.

Definition A.22 Let D C R™. A scalar field on D is a function f : D —
R.

Definition A.23 Let D C R". A vector field on D is a function f : D —
R™.

Definition A.24 Let V be a vector space. A vector norm is a function
f V= R (standard notation: f(x) = ||z||) that satisfies the following

properties:
1. ||lz|| >0, Ve e V.
2. |z||=0 & x=0.
3. || Az]| = |All|lz|, V& € V, VA € R.
4. |z +y| < x|+ |lyll, Yo,y € V (triangle inequality).

Definition A.25 A unit vector with respect to the norm || - || is a vector

x that satisfies ||z|| = 1.
Definition A.26 A p-norm (or L, norm) for space R™ is defined by
|2y = (|21]? + [P + -+ + [2a[?) "/,

where p > 1. In practice, most commonly used cases are p =1 or 2, and a

third norm, ||x||e (the latter as defined below), that is,

1. ||z|1 = |z1| + |z2| + -+ + |zn| (“L1 norm”).
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2. |||z = \/:17% + 23+ -+ 22 (“Buclidean norm” or “Ly norm”).

3. ||lloo = limpyo0 || 2|, = maxy |zx|. (“Loo norm?”).

Definition A.27 Let U : R" — R be a scalar field. The vector field

VU:(BU ou B_U)

Oxy’ O0zs’ Oz,

is the gradient of U.

Definition A.28 Let F : R™ — R™ be a vector field. The scalar field

} oF, OF, OF,
divF = ——L + 222 1 .
w o1 + 0zxo oot Oxn,

is the divergence of F', where F = (F1, F,,..., F,).

Definition A.29 Let U : R™ — R be a scalar field. The scalar field

#U U U

AU = I Tt
B:E%-l_a:c%-i_ +6m%

is the Laplacian of U.

The formulas in Definitions A.27, A.28, and A.29 are in the Cartesian coor-

dinates, and it is assumed that the partial derivatives exist.

A.3 Functional Analysis

Definition A.30 A metric or distance on a non-empty set X is a func-

tion d : X? — R, for which the following applies for all z,y,z € X,
1. d(z,y) >0,

2. d(z,y) =0 & z=uy,
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5. d(a,y) = d(y,z) (symmetry),
4. d(z,y) <d(z,z) +d(z,y) (triangle inequality).
Definition A.31 A metric space is a pair (X,d), where X is an arbitrary

non-empty set (called the underlying set) and d is a metric on X.

Definition A.32 The Euclidean or Ly metric on R" is defined by

Ly(z,y) = i(ﬂﬂk — yk)2.
Jk:l

Definition A.33 The Euclidean space is the metric space (R", Ls).

Definition A.34 The L, metric (p > 1) on R" is defined by

n 1/p

Lp(may) = <Z |$k - yk|p> .
k=1

In addition to Ly metric, common are L; and L, metrics (defined below).

Definition A.35 The Ly metric on R™ is defined by

Lo(z,y) = pli)l{)loLp(a?ay) = mkax‘l'k - yk|-

Definition A.36 Let (X1,d1) and (Xo,ds2) be two metric spaces. A func-

tion f : X1 — Xo preserves distances if

da (f(x1), f(22)) = di (21, 72)

for all 1,20 € X;. An isometry is a bijective function that preserves
distances. If there is an isometry f : X1 — Xgo then the metric spaces

(X1,d1) and (X3,ds) are isometric.
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Definition A.37 The open ball with center ¢ and radius v > 0 in a metric

space (X,d) is defined as

B.(c) ={z € X | d(z,c) <T}.

It is said that B,(c) is an open ball around c.

Definition A.38 A non-empty set U C X is an open set in a metric

space (X, d) if for each x € U there is v > 0 such that B,(z) C U.

Definition A.39 A set V C X is a neighborhood of = in space X, if

there is an open set U such that t ¢ U C V.

Definition A.40 Let X and Y be two metric spaces. A function f : U C
X — Y is continuous at x € U if given € > 0, there exists a § > 0 such

that
f(Bs(p)) C Be(f(p))-

Function f is said to be continuous in U if f is continuous for allp € U.

Definition A.41 Let X and Y be two metric spaces. A function f : X — Y

is a homeomorphism if the following applies
1. f is bijective,
2. f is continuous,
3. f~ is continuous.

If there is a homeomorphism f : X — Y, two metric spaces X and Y are

said to be homeomorphic or topologically equivalent.
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A.4 Differential Geometry

Definition A.42 A parametrized differentiable curve is a differen-
tiable function o : I — R3 of an open interval I = (a,b) of R into R3. The
set a(I) C R? is called the trace of a.

Definition A.43 Let « : I — R3 be a parametrized differentiable curve.

The vector o'(t) is called the tangent vector of the curve « at t.

Definition A.44 A parametrized differentiable curve o : I — R® is said to
be regular if o/(t) # 0 for all t € I. A point t where o'(t) = 0 is called a

singular point of the curve a.

Definition A.45 Let F : U C R"™ — R™ be a differentiable function. Each
p € U is associated with a linear function dFy, : R" — R™ which is called
the differential of F' at p and is defined as follows. Let w € R™ and let
a: (—€€) — U be a differentiable curve such that o(0) = p and o'(0) = w.
By the chain rule, the curve = F o« : (—¢,€) — R™ is also differentiable.

Then
dFy(w) = B'(0).

It can be shown that the above definition of dF},(w) does not depend on the
choice of the curve which passes through p with tangent vector w, and that

dF, is, in fact, a linear function.

Definition A.46 A subset S C R? is a regular surface if, for each p € S,
there exists a neighborhood V in R® and a function  : U — V NS of an

open set U C R? onto VNS C R? such that
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1. x is differentiable. This means that if the function is written as
z(u,v) = (2(u,v),y(u,v), 2(u,v)), (u,v) €U

the functions z(u,v), y(u,v), and z(u,v) have continuous partial deriva-

tives of all orders in U.

2. x is a homeomorphism. Since x is continuous by condition 1, this
means that & has an inverse x ™' : VNS +— U which is continuous; that
is, ! is the restriction of a continuous function F : W C R® — R?

defined on an open set W containing VN S.

8. (The regularity condition.) For each q € U, the differential dz, : R* —

R3 is one-to-one.

The function « is called a parametrization or a system of (local) coordi-
nates in (a neighborhood of) p. The neighborhood VN S of p in S is called

a coordinate neighborhood.

Definition A.47 A parametrized surface = : U C R? — R? is a differ-
entiable function x from an open set U C R? into R3. The set ¢(U) C R3
is called the trace of . x 1is regular if the differential dx, : R? — R3 is
one-to-one for all ¢ € U (i.e. the vectors Ox/0u, Ox/Ov are linearly inde-
pendent for all g € U). A point p € U where dxq is not one-to-one is called

a singular point of x.
Note that a parametrized surface, even when regular, may have self-intersections

in its trace.

Theorem A.7 Let ¢ : U C R? — R> be a regular parametrized surface
and let ¢ € U. Then there exists a neighborhood V of q in R? such that

z(V) C R? is a regular surface.
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Definition A.48 A tangent vector to a regular surface S, at a point
p € S, is the tangent vector o/(0) of a differentiable parametrized curve

a:(—e€) = S with a(0) = p.

Theorem A.8 Let ¢ : U — S be a parametrization of a reqular surface S

and let g € U. The vector subspace of dimension 2,
dz,(R?) C R?,
coincides with the set of tangent vectors to S at x(q).

The plane dz,(R?), which passes through x(g) = p, does not depend on the
parametrization . This plane is called the tangent plane to S at p and
will be denoted by T,(S). The choice of the parametrization = determines
a basis {(9z/0u)(q), (0z/dv)(q)} of T,(S), called the basis associated to x.

Sometimes it is convenient to write dx/0u = x,, and Oz /0v = .

Definition A.49 Given a point p on a regular surface S, there are two unit
vectors of R? that are normal to the tangent plane T,(S); each of them is

called a unit normal vector at p.

Definition A.50 Let S and S be two regular surfaces. A function f:V
S of a neighborhood V of p € S is a local isometry at p if there exists
a neighborhood V' of f(p) € S such that f : V +— V is an isometry. If
there exists a local isometry into S at every p € S, the surface S is said
to be locally isometric to S. S and S are locally isometric if S is locally

isometric to S and S is locally isometric to S.
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Appendix B

Remarks on Cubic Spline

Interpolation

Given a set of N function values (z;, 4 = 1,...,N), and their corresponding

parameter values (¢;, 2 = 1,..., N), one can compute a cubic polynomial
z(t) = at® + bt + ct + d, (B.1)

for each interval [t;,t;41], ¢ = 1,...,N — 1, such that the piecewise cubic

polynomial on the [t1,tx] interval is continuous in second derivative at the
interval boundaries; this is known as a cubic spline. One way of determining
the coefficients of the cubic polynomial for each interval is to compute the
values of the second derivative at the interval boundaries (Section 3.3 of [58]).
This leads to a system of linear tridiagonal equations, which can be solved
in O(N) time ([58]). If the spline is uniform® (which is reasonable to use in

the case of electrode center interpolation, since electrodes are equidistantly

'Tn uniform parametric interpolation the parameter is increased by one for each suc-

ceeding point in the sequence.
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spaced in electrode grids, strips and depth electrodes), one can assume that
for each interval the parameter ¢ goes from 0 to 1, and in this case, the
coefficients of the form B.1 can be computed as follows:

1/ 1 1 1 1
Ty — 21 1 )
a = 6 ,bZT,C:.’L‘Q—J)l—?—F,d:Il, (B2)

where z; and zy are the function values at the beginning (¢ = 0) and at
the end (¢ = 1) of the interval, and =/ and z/] are the corresponding values
of the second derivative. To summarize, knowing the function values and
the values of the corresponding second derivatives (which can be computed
as explained in Section 3.3 of [58]), one can compute the cubic polynomial
coefficients using B.2 and then interpolate the function using B.1. The form
B.1, which involves 5 multiplications and 3 additions, can be rearranged into
the following form,

z(t) = ((at + b)t + o)t + d, (B.3)

which has 3 multiplications and 3 additions, and is thus computationally
more efficient. The form B.3, generalized to the case of N-th order polyno-

mial, is known as Horner’s rule (Section 3.7 of [7]).
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nonlinear, 99, 100

predictive, 99, 100

finite element method, 24
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frame-to-frame displacement, 33

function, 126
bijective, 126
continuous, 134
injective, 126
one-to-one, 126
onto, 126

surjective, 126

gradient, 132

gradient ascent, 33

gravity, 69

group, 126
Abelian, 127

commutative, 127

Hermit polynomial, 113
hexahedral element, 72
homeomorphic, 134
homeomorphism, 134
homogeneous model, 78

Horner’s rule, 140

identity

transformation, 30
identity element, 127
image

3D, 100
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noise, 96 law

similarity measure, 30 associative, 127, 128

smoothing, 100 commutative, 127
imaging system, 101 distributive, 127, 128
injective function, 126 linear
inter-electrode distance, 112 combination, 129
interior node, 73 filtering, 100
interpolation, 74, 113 space, 128

cubic spline, 139 transformation, 130

surface, 113 vector space, 128

tensor product, 114 linearly

trilinear, 74 dependent, 129

uniform, 139 independent, 129
intracranial pressure, 69 local isometry, 49, 137
intraoperative local minimum, 30

brain deformation, 67, 68 localizer

intrinsic surface distance, 49 mechanical, 72

inverse element, 127 locally isometric, 137

isometric, 133

locally, 137 marker
isometry, 133 fiducial, 72
local, 49, 137 matrix
isomorphism, 130 rotation, 53
sparse, 25
kernel, 100

transposition, 53
Laplacian, 132 matrix inversion, 114

smoother, 73 mean square difference, 30



mechanical localizer, 72
mechanical tissue properties, 69
mesh

unstructured, 72
metric, 132

L4, 133

Lo, 133

L,, 133

Lo, 133

Euclidean, 133
metric space, 133
minimum

local, 30
model

damped spring, 49
multiplication

scalar, 128

mutual information, 30

neighborhood, 134

coordinate, 136
net

damped spring, 49
neutral element, 127
node

interior, 73

surface, 73
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noise, 96
nonlinear
optimization, 32
nonlinear filtering, 100
norm, 131
Ly, 131
Lo, 132
L,, 131
Lo, 132
Euclidean, 132
p-, 131
normal
vector to a surface, 137
normalized cross correlation, 30
normalized cross-correlation, 100

normalized mutual information, 30

one-to-one function, 126
onto function, 126
open ball, 134
open set, 134
operating room, 72
operation, 126
binary, 126
external, 128
optimization, 32

nonlinear, 32



158

orientation
electrode, 96

oscillation, 49

p-norm, 131
parameter estimation, 78
parametrization of a surface, 136
parametrized

curve, 135

surface, 136
patient coordinate system, 68
patient variability, 69
piecewise

cubic polynomial, 139
point

singular, 135, 136
polynomial

cubic, 139
postoperative

scan, 93
predictive filtering, 100
principal curvature, 32
principle of virtual work, 24
probability density function, 30
product, 126

cross, 115

vector, 115

quasi-static analysis, 55

real number, 130
regular
curve, 135
surface, 135
regularity condition, 136
rest length, 49
rigid body transformation, 53

rotation matrix, 53

scalar field, 128, 131
scalar multiplication, 128
scanner
MR, 101
segmentation, 71
self-intersection, 136
set, 125
difference, 126
element, 125
open, 134
shape function, 25
single-valued, 126
singular point
of a parametrized curve, 135
of a parametrized surface, 136
smoother

Laplacian, 73



soft tissue deformation, 11
space, 128, 133
Euclidean, 133
homeomorphic, 134
metric, 133
topological equivalence, 134
span, 129
sparse matrix, 25
spline, 139
cubic, 113, 139
interpolation, 139
uniform, 139
spring, 49
damped, 49
nonlinear, 49
steady state, 49
stereo
cameras, 26
guidance, 26
strain energy, 31
subdural
depth electrode, 93
electrode, 93
electrode grid, 93
electrode strip, 93
subset, 125

subspace, 129
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supporting rubber material, 94, 112
surface
Cy, 113
curve, 99
deformable model, 49
extrapolation, 114
interpolation, 100, 113
intrinsic distance, 49
node, 73
normal vector, 137
parametrized, 136
regular, 135
regularization, 100
rendering, 71
smoothness, 31
specularity, 27
transitional, 115
surgery
epilepsy, 76
surgical navigation system, 67
surjective function, 126

symmetry, 133

tangent
plane, 137
vector to a curve, 135

vector to a regular surface, 137
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tensor product interpolation, 114
topological equivalence, 134
trace

of a parametrized curve, 135

of a parametrized surface, 136
transformation

affine, 30

identity, 30

rigid body, 53
transitional surface, 115
translation vector, 53
transposition, 53
triangle inequality, 131, 133
tridiagonal linear equations, 139

trilinear interpolation, 74

underlying set, 133

uniform
interpolation, 139
spline, 139

unit element, 127

unit vector, 131

unstructured mesh, 72

vector, 128
basis, 130
norm, 131

product, 115

translation, 53

unit, 131
vector field, 131
vector space, 128

dimension, 130
visualization

electrode, 112
voxel, 100

Yale New Haven Hospital, 96, 112

zero element, 127



