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The non-invasive quantitative estimation of regional cardiac deformation has important

clinical implications for the assessment of viability in the heart wall. In this work we

describe a general framework for estimating soft tissue deformation from sequences of

three-dimensional medical images. We also explore some of their theoretical constraints

which can be used to guide the selection of an appropriate model for the displacement field.

We then apply this framework to the problem of estimating left ventricular deformations

from sequences of 3D image sequences. The images are segmented interactively to extract

the endocardial and epicardial surfaces. Then, initial frame-to-frame correspondences

are established between points on the surfaces using a shape-tracking approach. The

myocardium is modeled using a transversely isotropic linear elastic model, which accounts

for the preferential stiffness of the left ventricular myocardium along its fiber directions.

The measurements and the model are integrated within a Bayesian estimation framework.

The resulting equations are solved using the finite element method, to produce a dense

displacement field for the whole of the left ventricle. The dense displacement field is,

in turn, used to calculate the deformation of the heart wall in terms of the strains.

This method was tested on over 40 image sequences, and the strains produced using

this non-invasive technique exhibit high correlation with strains simultaneously obtained

from invasive measurements using implanted markers and sonomicrometers. We also

demonstrate that these strains are useful as predictors of the viability of the underlying

tissue and can be used to distinguish between classes of subjects in which there was

moderate or severe injury. This proposed method provides quantitative regional 3D

estimates of left ventricular deformation from three-dimensional sequences of Magnetic

Resonance, Ultrasound, and X-Ray CT images.
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Chapter 1

Introduction

1.1 Structure of the Thesis

The major goal of this thesis is the development of an approach for the estimation of

three-dimensional left ventricular deformation from medical images derived from different

modalities. A secondary goal is the development of a more general framework for the

estimation of soft-tissue deformation from medical images.

The thesis reads as follows: chapter 2 is an extended literature review for the

area of cardiac image analysis with a special emphasis on the techniques used which

would be of more general application in the area of soft-tissue deformation. In chapter

3 we present material relating to the problem of left ventricular segmentation. The

segmented endocardial and epicardial surfaces are the inputs to the geometrical techniques

of chapter 4. Chapter 4 itself provides some geometrical background and describes two key

applications of geometrical ideas in this work, namely, 3D mesh generation and shape-

based tracking. The background material concludes with chapter 5. Here we present

material relating to continuum mechanics and a brief description of the finite element

method.

In chapter 6 we discuss issues related to the development of a general framework

for the estimation of soft-tissue deformation from sequences of 3D medical images. Finally,

in chapter 7 we present experimental results and validation for the application of the

1



2

overall methodology to the problem of left ventricular estimation.

1.2 Introduction to the Problem

The estimation of soft tissue deformation is related to the general non-rigid motion prob-

lem in Computer Vision and especially the problem of optical flow estimation [46]. Since

deformation measures are calculated as combinations of the derivatives of displacement

fields, the key problem in this line of work is the estimation of a dense and noise-free dis-

placement field for the region of interest. Once this displacement field has been estimated,

the deformation can be calculated.

In areas such as surgical training and image guided surgery, the displacement

field is what is actually needed. The deformation measures themselves become important

as measures of function of actively deforming organs such as the left ventricle. It is

the general consensus that the analysis of heart wall deformation provides quantitative

estimates of the location and extent of ischemic myocardial injury.

The major problem faced here is that is in general difficult to obtain dense dis-

placement fields from medical images. In practice the displacement field can be measured

only at sparse locations in the region of interest and these measurements are often cor-

rupted by noise. The key to solving this deformation estimation problem is the techniques

used to smooth and interpolate these sparse displacements in order to obtain a dense dis-

placement field for the whole object. The selection of an appropriate model is constrained

by many factors such as lack of knowledge about the underlying material properties and

computational cost.

In this work we describe a methodology for estimating soft-tissue deformation

from image derived information. We review a number of approaches proposed in the

literature and propose our own extensions to account for some of the problems. We use

this methodology to estimate left ventricular deformations from 3D medical images ob-

tained using different modalities, primarily Magnetic Resonance and Echocardiography.

The images are segmented interactively and then initial correspondence is established

using a shape-tracking approach. A dense motion field is then estimated using a trans-
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versely anisotropic linear elastic model, which accounts for the fiber directions in the

left-ventricle. The dense motion field is in turn used to calculate the deformation of the

heart wall in terms of strain in cardiac specific directions. The strains obtained using this

approach in open-chest dogs before and after coronary occlusion, show good agreement

with previously published results in the literature. They also exhibit a high correlation

with strains produced in the same animals using invasive techniques such as implanted

markers and sonomicrometers. This proposed method provides quantitative regional 3D

estimates of heart deformation from 3D Images.

1.3 Contributions of this Work

There are two major contributions of this work:

• The in-detail analysis and comparisons of various approaches to modeling the dis-

placement field as used in many medical image analysis problems. We also identify

similarities and problems with these approaches and propose a new approach to deal

with many of these deficiencies. We call this new model the active elastic model.

• The development of a framework for accurate and reliable 3D left ventricular de-

formation estimation from medical images, including techniques for image segmen-

tation. Of paramount importance here was the proper integration of biomechanics

with image analysis techniques. This framework has been tested on a large num-

ber of studies and the results are shown to correlate well with invasive measures of

deformation as well as other indicators of myocardial function.

We also note that there are some less substantial contributions in the area of in-

teractive segmentation. We also developed some interesting geometric techniques to solve

problems such as mesh generation and nearest neighbor estimation in three-dimensions.
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1.4 A Personal Note on Methodology

Alexander Solzhenitsyn in this Nobel Lecture 1 tries to capture two possible attitudes to

art. He writes:

“One artist sees himself as the creator of an independent spiritual world; he

hoists onto his shoulders the task of creating this world, of peopling it and

of bearing the all-embracing responsibility for it; but he crumples beneath it,

for a mortal genius is not capable of bearing such a burden. Just as man in

general, having declared himself the center of existence, has not succeeded

in creating a balanced spiritual system. And if misfortune overtakes him,

he casts the blame upon the age-long disharmony of the world, upon the

complexity of today’s ruptured soul, or upon the stupidity of the public.

Another artist, recognizing a higher power above, gladly works as a humble

apprentice beneath God’s heaven; then, however, his responsibility for every-

thing that is written or drawn, for the souls which perceive his work, is more

exacting than ever. But, in return, it is not he who has created this world,

not he who directs it, there is no doubt as to its foundations; the artist has

merely to be more keenly aware than others of the harmony of the world, of

the beauty and ugliness of the human contribution to it, and to communicate

this acutely to his fellow-men. And in misfortune, and even at the depths

of existence–in destitution, in prison, in sickness–his sense of stable harmony

never deserts him.2”

1This lecture was delivered only to the Swedish Academy and was not actually given as a lecture, as

Solzhenitsyn could not leave the Soviet Union at the time (1970).

2Often at the end of some of my many discussions with Prof Turan Onat, I could see the contrast

between the two approaches. Where I would see problem after problem and tried to force a solution and

move on, he would often, to my frustration, be in a state of wonder and curiosity at the intricacy and

almost ‘perfection’ of the left ventricle. Much of the work on the active models in this thesis is directly

derived from this sense of wonder, and an attempt to understand it.
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In many respects one finds analogues to the above expressions in the attempt to

devise solutions to complicated engineering problems. In the case of the estimation of left

ventricular deformation (and soft tissue deformation in general) a number of choices need

to be made which place the engineer in one of two categories above. For example, consider

the problem of modeling the displacement field itself. Does one try to use a method

that tries to approximate in some way the real properties of the material (Solzhenitsyn’s

second category) or does one try to find a model which is driven more by convenience and

computational requirements, such as a more generic smoothness model? What is the next

step, if the approach appears to not work satisfactorily? How much is the methodology

driven by the data itself or how much are we trying force existing approaches on to the

problem?

Looking through the contents of the thesis, in retrospect (after the work was

completed) one finds a mixed bag.3 The segmentation work is clearly in the first category

where we try to force our own convenience and models onto the problem by segmenting a

3D (if not 4D) object in a slice-by-slice basis. The ability to see 3D surface reconstructions

in almost real time tries to mitigate this deficiency somewhat. In the geometry work,

the ‘symmetric’ nearest-neighbor is a step towards letting the problem dictate, but the

shape-based tracking work is still very much asymmetric (unlike the bimorphism work

[98].) In the review of the various techniques for modeling displacement fields we point

out the pitfalls of trying to force seemingly innocent ideas such as smoothing onto the

real world. The blind use of linear elasticity is also seen to be problematic. The active

elastic model which tries to capture the reality of an actively deforming tissue offers

the promise of solving such problems in the future. For the same reason, while using

continuum mechanics models to model the tissue, we avoid terms such as ‘stress’ and

‘force’ because these would be referring to simulated data ‘forces’ and not their physical

analogues. Attempts to calculate the stress on the myocardial wall without accounting

for the wall pressure are doomed to fail even though a quantity labeled ‘stress’ is available

after the deformation analysis.

3Clearly for Solzhenitsyn, and for this author as well, the second category is the preferable one.
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Perhaps the most telling single experiment was the attempt to see whether the

methodology of this thesis could be used to distinguish between animals where there

was post mortem-confirmed globally transmural as opposed to nontransmural injury (see

section 7.4.1). In this case, the cardiac specific strains, which amount to forcing the left

ventricular deformation to measured in a cylindrical coordinate frame, failed to produce

a significant difference. Using the principal strains instead which are the major directions

of deformation of the material irrespective of the external coordinate system, led to the

desired outcome. This is a clear case when letting the data dictate led to a better answer

than our preconceived notions of how things ought to work.



Chapter 2

Cardiac Image Analysis

In this chapter we describe research in the area of estimation of cardiac motion and de-

formation from medical images. We focus primarily on the use of 3D magnetic resonance

image sequences, but we will also discuss the application of some methods to ultrafast

CT and 3D echo.

2.1 Introduction

The estimation of cardiac motion and deformation from 3D images has been an area

of major concentration in medical image analysis. In these problems, the image data

utilized are typically acquired in 16–20 frames consisting of 10–16 slices each in the case

of Magnetic Resonance. One such image slice through a canine heart acquired using

magnetic resonance imaging is shown in figure 2.1 (as well as a reconstructed long-axis

slice). In the figure, we label major areas such as the left and right ventricles and the two

ventricular walls which bound the left ventricular myocardium (the endocardium and

the epicardium). Most researchers have focused almost exclusively on the motion and

deformation of the left ventricle. More recently, however, some preliminary work on right

ventricular deformation has also appeared in the literature [42].

The estimation of regional 3D cardiac deformation is an important issue as is-

chemic heart disease is a major clinical problem. Myocardial injury caused by ischemic

7
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Short−Axis MR Slice

Right Ventricle

Left Ventricle

Long−Axis MR Slice

 Myocardium

Endocardium

Epicardium

Figure 2.1: Geometry of the Mammalian Heart. In the discussion to follow the terms

endocardium and epicardium will be used to refer to the bounding surfaces of the left

ventricular myocardium.

heart disease is often regional. It is the fundamental goal of many forms of cardiac imag-

ing and image analysis to measure the regional function of the left ventricle (LV) in an

effort to isolate the location and extent of ischemic or infarcted myocardium. Figure 2.2

illustrates the effect of a blocked artery; in this case the left-anterior descending artery

(LAD) has been occluded. There is a change in the deformation in a local region which

is supplied by the LAD, which instead of the normal thickening behavior, actually thins

on contraction. Quantitative estimation of these changes is a major goal of cardiac im-

age analysis, as it will hopefully allow for the measurement of both the location and the

extent of the affected region.

In addition, the current management of acute ischemic heart disease is directed

at establishing coronary reperfusion and, in turn, myocardial salvage. Also, understand-

ing the physiology of the heart is an important research problem in cardiology, for the

evaluation of various surgical procedures such as Transmyocardial Revascularisation [36].

The rest of this chapter reads as follows: In section 2.2, we briefly describe alterna-

tive invasive techniques to estimating cardiac deformation, involving surgically implanted

beads or ultrasound transducers. Then in sections 2.3 and 2.4, we turn our attention to
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Normal Left Ventric le Image Sequence

Post−Occlusion Left  Ventricle Image Se quence

Figure 2.2: Short-axis magnetic resonance images from two 3D acquisitions of a canine

heart. The top sequence was acquired before left coronary anterior artery occlusion

and the bottom sequence post-occlusion. The occlusion generates a disruption of the

normal thickening behavior of the myocardium in contraction in the highlighted region.

The quantification of such parameters from 3D image sequences is the focus of methods

reviewed in this chapter.
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Arrays of
Sonomicrometers Myocardium

Left−Ventricular
Blood−Pool

Figure 2.3: Typical placement of arrays of sonomicrometer crystal (or implanted bead) ar-

rays in the left ventricle. These can produce highly accurate estimates of the deformation

at a small number of locations in the left ventricle.

describing current and previous research efforts in the medical imaging community with

respect to estimating Cardiac Motion and Deformation. Typically, any given method will

combine a set of sparse, noisy, image derived and sometimes partial set of displacement

estimates (the ‘data’) with a model which is used to simultaneously smooth and interpo-

late these estimates as necessary (the ‘model’). This combination of ‘data’ and ‘model’

produces the resulting displacement field. We will first analyze the ‘data’-component of

the presented methods in section 2.3 and the ‘model’-component in section 2.4. Next in

section 2.5 we turn to the all important topic of validation. Finally, in section 2.6 we

present some possible future research directions in this area.

2.2 Invasive Approaches to Measuring Myocardial Defor-

mation.

A variety of work is evident in the cardiac physiology literature attempting to quanti-

tatively measure transmural myocardial strain. Several noteworthy efforts in particular

have used sonomicrometers [35, 34, 27] and arrays of implanted markers (see, for example,
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[104, 68]). Figure 2.3 shows a schematic of a typical implantation of sonomicrometers in

the left ventricle. While accepted as being accurate, in both cases only a sparse number

of specific sites on the LV can be measured, due to the difficulty in implanting the so-

nomicrometers and the markers. It would be quite difficult to measure a large number of

sites simultaneously.

Also, it is possible that these implanted devices can alter myocardial perfusion

and function, although there is little published evidence of this. While many of these

measurements are performed in animals, we note that some interesting measurements of

strain using markers have been produced even in humans [52]. Finally, we also note that

some researchers have looked at measuring in vivo strain using attached strain gauges

[26] (as noted in Azhari [7]), although little has been pursued along these lines.

2.3 Approaches to Obtaining Estimates of Cardiac Defor-

mation from 4D Images

There are two aspects to this problem; the first relates to the manipulation of the acqui-

sition parameters to obtain the most useful images and the second to the post-processing

of these images to estimate cardiac deformation. Regarding the first aspect, a signifi-

cant level of activity has been performed within the magnetic resonance imaging (MRI)

community regarding the development of MR tagging, and to a lesser extent, MR phase

velocity imaging. The underlying physics of these techniques is beyond the scope of this

chapter; the interested reader is referred to a review article by Leon Axel [6].

The second aspect of this problem, the analysis of the images, relates to work

traditionally done in the computer vision community, especially in the areas of non-rigid

motion estimation, including the case of variable illumination, segmentation and surface

mapping. A general, although somewhat dated, coverage of the field can be found in

Horn [46].

In this section, we focus on the image-derived characteristics used to obtain the

initial somewhat sparse, often noisy and partial displacements and/or velocities which
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Figure 2.4: Samples of short-axis and long-axis magnetic resonance images illustrating

magnetic resonance tagging at 3 time points in the cardiac cycle. Courtesy of Dr Jerry

L. Prince, John Hopkins University.

are combined with a model to produce complete and dense displacement and deformation

estimates.

2.3.1 Methods Relying on Magnetic Resonance Tagging

In this approach, grid lines at certain positions can be generated at one point in the cardiac

cycle and their deformation tracked over a portion of the cycle, primarily using gated

acquisition techniques. The development of the grid tagging approach to the measurement

of myocardial strain has been vigorously pursued by two groups in particular, at the

University of Pennsylvania [6] and Johns Hopkins [67], who are the original developers

of the tagging ideas. Figure 2.4 shows an example of such an acquisition. Three frames

are shown. In frame 1 the original tags are laid out parallel to the vertical axis and are

shown to deform with the material in the subsequent frames.

Much of these groups’ current efforts are focused on how to create dense fields

of measurements in 3D by putting together several orthogonal tagging grid acquisitions.

Their approaches certainly show promise, because of the inherent capability of including

discernible patterns that deform with the tissue, but currently have the following limita-

tions: i.) it is difficult to track the tags over the complete LV cycle due to decay of the

tags with time, ii.) multiple acquisitions are required to assemble 3D information and iii)

it is still quite difficult to assemble the detected tags into a robust 3D analysis/display. All

of these problems are being aggressively pursued by the two primary groups mentioned
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Figure 2.5: Reconstruction of 3 perpendicular tagging planes acquired in different acqui-

sitions. From Kerwin et al.[55] Courtesy of Dr Jerry L. Prince, John Hopkins University.

above, as well as at a few other institutions (e.g. Amini [1]).

In general, there seem to be three different approaches to estimating initial dis-

placement data from magnetic resonance tagging as follows:

• Tagging in multiple intersecting planes and using the tag intersections as tokens for

tracking [1, 55, 109].

• Tagging in multiple intersecting planes and then for each tagging plane estimating

the magnitude of the motion perpendicular to the plane. This generates a sense of

partial displacements (i.e. the component parallel to the tag lines is missing) to be

combined later [42, 24].

• Attempting to model the tag fading over time using a model for the Bloch equations

and using a variable brightness optical flow approach to extract the displacements

[86, 40].

Using intersections: The multiple intersecting planes are either generated by impos-

ing a tag-grid pattern in a single acquisition, which can only be done for two-dimensional

grid patterns, or by tagging along different planes in separate acquisitions and superim-

posing the tagged-planes to create the grid later (see work by Kerwin and Prince [55],
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Amini [1], Young and Axel [109], etc.) An example of the later approach is shown in

figure 2.5, from the work of Kerwin and Prince [55]. The underlying idea here is to try to

generate ‘material’-markers at the intersection points and then use these as the features

for the overall motion-estimation scheme.

Using the whole tag lines: The second approach instead of using just the intersec-

tions tries to use the whole of the tag lines (planes). (See work by Haber and Metaxas

[42], or Denney and Prince [24].) This has the advantage of being more robust to noise

than the first approach, as it uses more of the tag-line and also can provide partial infor-

mation in regions where there are few intersections. This becomes especially useful in the

case of the right ventricle [42], where the thickness of the heart wall is much smaller and

the likelihood of having regularly spaced intersections is very low. The penalty paid for

this technique is that, at this stage, one can only generate displacement estimates perpen-

dicular to the tag-plane which need to be processed later to generate a full displacement

field.

In both of the above approaches, in the pre-processing stage, there is also a need

to identify which of the intersections or parts of the tag lines lie within the myocardium

and to discard all the others. This results in the need for at least a crude segmentation of

the myocardium. The segmentation is commonly done interactively such as in the work of

Guttman et al, [41], Young et al, [109] or Kumar et al, [57]. (It is worth noting, however,

that Denney [23] proposes a new method which bypasses this segmentation step.)

Both the tag detection step and the pre-segmentation work, in general use meth-

ods based on deformable models, following the original work by Kass [54]. (See also the

review article by McInerney and Terzopoulos [66].) A deformable model tries to find

the curve which minimizes an energy functional which consists of an image based term

(typically the gradient) and an internal energy or smoothness term. In the formulation

of Kass [54], the snake equation had the form:

∫

s
|∇I(x, y)|2 + α[(

dx

ds
)2 + (

dy

ds
)2] + β[(

d2x

ds2
)2 + (

d2y

ds2
)2]ds (2.1)
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Figure 2.6: An example of a low-frequency tagged MRI image. From Thetokis and

Prince[4]. Courtesy of Dr Jerry L. Prince, John Hopkins University.

where I(x, y) is the image as a function of the coordinates x, y, s is the arclength which

parameterizes the curve c(s) = (x(s), y(s)) and α and β are the smoothing parameters.

The gradient term ensures adherence to the image data, whereas the second term tries

to keep the curve smooth. This approach is modified to allow for different deformable

model geometries, such as grids [57] and for better image adherence terms using some

knowledge of the underlying physics such as in the case of Amini [2].

Variable Brightness Optical Flow Methods: In the third case, the whole image

is used and data are extracted using a variable brightness optical flow approach on the

image intensity. Sinusoidal tagging patterns are primarily used in this case which provide

for the smooth intensity fields needed for efficient optical flow computation. See figure

2.6 for an example of this.

The variable brightness part of the algorithm is based on modeling the fading of

the tag intensity over time using a model of the imaging process as generated by the

Bloch equations [86, 40]. For example, in the work of Gupta [40], the signal (brightness)
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at time t is modeled as:

ψ(t) = D0e
−TE/T2(1− e−TR/T1) +D0e

−TE/T2(ξ − 1)(e−t/T1 − eTR−T1) (2.2)

where D0 is the proton density, T1 and T2 are the relation time constants, TR is the

repetition time, TE is the echo time, and ξ is the tag modulation coefficient. The first

three parameters (D0, T1, T2) are properties of the underlying tissue where as the last

three (TR, TE , ξ) are the acquisition parameters. In Gupta [40] a composite of the tissue

parameters is estimated as part of the displacement estimation algorithm.

As with all intensity based-methods, the original estimates of the displacement

field consist of the component of the displacements perpendicular to the isophotes, (this

limitation is known as the aperture problem, see Horn [46] for details) which are later

regularized to produce a full displacement estimate. The quality of these estimates are

highest in the middle of the wall and can be very noisy near the myocardial boundaries.

This method has the advantage of not having to detect tags explicitly, but here the bright-

ness variation parameters must be either known or estimated. A rough pre-segmentation

of the ventricle is also needed here to avoid smoothing across the boundaries. These

methods have, so far, been applied only in 2D.

2.3.2 Methods Relying on Phase Contrast MRI

Several investigators have employed changes in phase due to motion of tissue within a

fixed voxel or volume of interest to assist in estimating instantaneous, localized velocities,

and ultimately cardiac motion and deformation. While the basic ideas were first suggested

by van Dijk [102] and Nayler[72], it was Pelc and his team [82, 83, 81] that first bridged

the technique to conventional cine MR imaging and permitted the tracking of myocardial

motion throughout the cardiac cycle. This technique basically relies on the fact that a

uniform motion of tissue in the presence of a magnetic field gradient produces a change

in the MR signal phase that is proportional to velocity. In principle, these instantaneous

Eulerian velocities can be derived from each pixel in an image acquisition. An example
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Magnitude X−Velocity Y−Velocity Z−Velocity

Figure 2.7: Three-slice thick volumetric dataset obtained using magnetic resonance phase

contrast images. The left column shows the magnitude images for the three slices and

the other columns show the magnitudes of the velocity in the X, Y and Z directions

respectively. From Shi et al[91]
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of such an acquisition is shown in figure 2.7.

However, clusters of pixels within regions of interest (ROI’s) are typically ana-

lyzed when predicting point-wise motion, primarily due to signal-to-noise issues. It is

worth noting that, as with MR tagging, accurately tracking myocardial motion in 3D

requires additional image processing, and little has been reported in the literature about

this problem. Assembling the dense field phase velocity information into a complete and

accurate 3D myocardial deformation map is currently a limiting problem for this tech-

nology. Furthermore, current phase contrast velocity estimates near the endocardial and

epicardial boundaries are less accurate. This is due to the fact that the required size of

an ROI, for signal-to-noise purposes, is typically large and can include information from

outside the myocardial wall. Thus, as with MR tagging, the most accurate LV function

information is obtained from the middle of the myocardial wall, and the least accurate

information is usually near the endocardial and epicardial wall boundaries. In general

there seem to be the following two common approaches to extracting useful information

from phase contrast images:

• Processing the data directly to estimate strain rate tensors [105, 82].

• Integrating the velocities over time, via some form of tracking mechanism to esti-

mate displacements [70, 20, 111, 44].

We also note that Shi [91] combined the phase-contrast velocities with shape-based

displacements [90] within an integrated framework based on continuum mechanics.

2.3.3 Computer Vision Based Methods

Quantifying the deformation of the LV could be seen as a two-step process: first estab-

lishing correspondence between certain points on the LV at time t and time t + 1 and

second, using these correspondences as a guide, solving for a complete mapping (em-

bedding) of the LV between any two time frames. This problem could be posed for the

entire myocardium or just portions of it, such as the endocardial surface alone. There has
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been considerable effort in general on these two topics, although rarely have they been

addressed together.

One common approach to establishing correspondence is to track shape- related

features on the LV over time as reported by Duncan [29], Amini[3], Goldgof [53], Ayache

[19], McEachen [64] and Shi [90]. The preliminary displacement estimates here are, in

general, generated using the following steps:

• First extract the endocardial and epicardial surfaces from the images.

• Then calculate the quantity that is used as the shape feature from these surfaces.

These tend to be the curvatures; either the principal curvatures [90] or the Gaussian

curvature [53].

• Track points on the surfaces from one frame to the next by minimizing a metric

such as bending energy or difference in curvature.

Then the displacement field is smoothed (as was the case with previous methods)

to produce the final output displacements. A validation study of shape-based tracking

by comparing trajectories with implanted markers was reported by Shi [90], which found

that the accuracy of tracking was within the resolution of the image voxel sizes. Another

interesting approach by Tagare [99] poses the mapping problem in 2D as a bimorphism

between two curves, thus eliminating the basic asymmetry in the tracking process. This

has not been extended to 3D yet.

In general all of the methods here depend on an accurate segmentation of the

LV walls, but have the advantage of being imaging modality independent. They have

been used on MR, CT [90] and 3D ultrasound [78]. The dependency on obtaining an

accurate segmentation, however, remains a significant issue, as there still are no fully

automated robust and efficient LV surface segmentation methods. The accuracy of the

LV segmentation needed for these methods to be successful is obviously greater than in the

case of methods using MR Tagging. This is because the surfaces themselves provide the

features as opposed to being bounding surfaces within which to search for intersections.
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There has been some work done on using the intensity of the images directly to

track the LV. Song and Leahy [93] used the intensity in ultrafast CT images to calculate

the displacement fields for a beating heart. This is similar in scope to some of the work

done with MR tagging (e.g. Gupta [40]) but does not have the advantage of a specially

modulated image.

2.4 Modeling used for Interpolation and Smoothing

In general, the initial displacement fields produced by the methods discussed in the pre-

vious section have the following characteristics:

• They are sparse. Displacements and/or velocities are only available at certain points

and not the whole of the myocardium.

• They are noise-corrupted. This is an inherent problem in all medical image analysis

methods, although the level of noise is very method dependent.

• They may be partial. Even where displacements and/or velocities are available,

only a certain component of the displacement vector may be known.

The estimation of accurate myocardial deformation requires a dense, smooth and

complete displacement field. This is because the deformation is typically captured in

terms of the strain which is a function of the derivatives of the displacement field. The

process of taking derivatives is very noise-sensitive and this is what makes this problem so

challenging as compared to simply estimating the volume of the LV which is an integral

measure and hence relatively less sensitive to noise.

The interpolation and smoothing of the displacement field has been attacked in

a number of ways. This step essentially constitutes the modeling-step and it is data-

independent. The models contain implicitly or explicitly the assumptions made about

the displacement field. All of the ‘models’ currently used in this area are passive; they

ignore the fact that the heart is an actively contracting organ and not a passive lump of

tissue. Some of the modeling strategies are:
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• Impose a regularization constraint which penalizes the spatial derivatives, either

explicitly [24, 107, 40] combined in some cases with an isochoric constraint1 [24, 93].

This is further developed in the use of explicit continuum mechanics models, which

behave as regularizers [90, 42, 77].

• Model the displacement field by using a smooth spatial parameterization such as

affine [70, 73] or splines [55, 1]. This method is used most often when displacement

field modeling and tag-extraction are combined in a single step, and is driven by

the ease of parameterizing the geometry.

• Use of temporal smoothness or damping [80, 42, 99, 91] and temporal periodicity

constraints [64].

In a sense, all of the above methods try to penalize the derivatives of the dis-

placement either in space, or in time, or both. We note that imposing a polynomial

distribution such as an affine model is equivalent to setting all derivatives higher than a

certain order to zero. This is a limiting case of penalizing spatial derivatives and will be

explored in more detail in chapter 6.

Spatial Smoothness Constraints: The application of spatial smoothness constraints

relies on the intuition that given that the myocardium is a single object, its displacement

field can be expected to be smooth. If this is violated then the tissue would tear apart.

Therefore, high values of derivatives in the displacement field (or equivalently high fre-

quency components of its Fourier Transform in the spatial sense) are likely to be the result

of noise. This results in methods that penalize the spatial derivatives as in the optical

flow method proposed by Horn and Schunk [47]. In this case the optimal displacement

field is found as a trade-off between satisfying the gradient constraint equation and a

1The myocardium is considered to be nearly incompressible and the isochoric constraint tries to enforce

this incompressibility.
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regularization term as follows:

û =
argmin

u

∫

x
(
dI

dt
+ u.∇I)2 + λ(

∑

ij

(
dui
dxj

)2)dx (2.3)

where the u is the displacement vector field over a space x which can be two or three-

dimensional, t is time and I represents the image.

The gradient constraint term (It + u.∇I)2 essentially tries to match points of

equal intensity and is the data term, whereas the sum of squared derivatives multiplied

by the smoothness factor λ constitutes the regularizing term. The regularizing term can

be thought of as a model term as it contains no image related information. It captures

the authors’ prior belief in the properties of the displacement field.

This framework is used in many of the approaches described earlier, although it

is adapted to either match the data or the prior information. For example, in the case

of the variable brightness optical flow method [40, 86], the gradient constraint term is

replaced by a different measure which allows for the fading in the tag pattern. In a more

general case, the gradient constraint term can be replaced by an image-data adherence

term. This term tries to find a displacement field which stays close to some pre-existing

displacement estimates obtained using approaches described in section 2.3. For example

if an estimate um of the displacement field exists, we could modify the Horn and Schunk

framework as follows:

û =
argmin

u

∫

x
|(u− um)|2 + λ(

∑

ij

(
dui
dxj

)2)dx (2.4)

We can expand on this model by also using an isochoric constraint which tries to

penalize volume changes, as was done in Denney [24] and Song [93]. This takes the form

(∇.u)2 and is motivated by the fact that the myocardium, like most soft tissue, is thought
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to be approximately incompressible2. Alternatives also include the use of thin-plate spline

energy terms [55] or B-spline terms [1].

The combination of the smoothness and isochoric terms describes the myocardium

in terms of what is essentially an internal energy function. Continuum mechanics models

of the myocardium as found in the biomechanics literature [51] are also described as

internal energy functions, which also essentially penalize derivatives. So it is a natural step

at this point to try to bridge some of this knowledge into the inverse problem of motion

estimation. To do this, the regularization term is replaced by an explicit mechanical

model, which is in most cases an isotropic linear elastic model[91, 80, 42]. A transversely

isotropic elastic model is used by Papademetris [78]. This allows the model to account for

the preferential stiffness of the myocardium along the fiber directions. It is interesting to

note that, from continuum mechanics theory [62], an internal energy function can describe

a real material if and only if it is invariant to rigid translation and rotation, otherwise

this material violates the 2nd law of thermodynamics. It can be shown that the classical

model of Horn and Schunk is not invariant to rotation and would fail this criterion.3

If we discretize equation (2.4), differentiate it with respect to u, and concatenate

all the individual displacements u into a large vector U we can write the generalized

expression:

[K]U = F (2.5)

where K is the assembled matrix of local derivative operators (as in Kass [54]) and is

sparse. This contains the model constraints which can be derived either from a regular-

ization term or an explicit continuum mechanics model. F is the external driving force

which tries to deform the model to adhere to the image data. This equation is most easily

2There is in fact some change in volume, due to blood flow (reperfusion) into the wall, but this is

considered to be small.

3We will discuss this in more detail in section 5.2.
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solved using the finite element method [9] in cases of complex geometry and especially in

three dimensions.

Temporal Smoothness Constraints: There are two types of temporal smoothness

constraints in the literature. In the first case, we have an explicit temporal filtering

scheme applied to individual displacements. This is primarily, but not exclusively, done

in the case where the input data is derived from phase contrast velocity. In the work of

Meyer [70], a Kalman-filtering approach is used to smooth the displacement field. Zhu

[111] and McEachen [64] parameterize the problem in the frequency domain by expanding

the displacement of an individual point over time in terms of Fourier series and try to

take advantage of the periodicity of the left-ventricular motion.

The second case involves extending equation (2.5) to include dynamics. This

results in the following generalized expression:

MÜ + CU̇ +KU = F (2.6)

where M is a mass matrix and C is a damping matrix. This approach also results in

a form of temporal smoothing, which is motivated by similar approaches in continuum

mechanics. In the work of Park [80], this was reduced to CU̇ = F by ignoring the mass

matrix and setting the stiffness to 0. In Haber [42] the stiffness term is also preserved. The

full dynamical model is employed in Shi [91]. In this case both shape-based displacements

and phase-contrast velocity information are used. The full dynamical model is also used in

work done in the computer vision and graphics communities by Metaxas and Terzopoulos

[101].

We also note that Pentland [48] and Nastar [71] use this approach and by ignoring

the damping term, reduce it to a modal finite element equation, which parameterizes

the deformation in terms of the eigenmodes of the stiffness matrix K. In both of these

approaches, however, there is no explicit notion of correspondence between material points

and the displacements are found using a global distance measure.
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2.5 Validation of Results

The validation of LV deformation results is an extremely important and often neglected

aspect of work in this area. In general, we need to address the following questions:

• Does the imaging modality produce an accurate picture of the underlying geometry

and/or displacement and velocity?

• Does the analysis algorithm extract these data accurately and reliably?

• Are the results meaningful for clinical and/or physiological purposes? Do they

discriminate between healthy/dysfunctional regions?

In general, the first two questions are difficult to address in vivo. Often phantoms

are used with known shapes and displacements, so there is ground truth information to

compare any measurements with (e.g. Kraitchman [56] and Constable [20]). An example

of this is shown in figure 2.8. In Young [108] it was shown that away from the free surfaces

of the gel-phantom, a Rivlin-Mooney [62] analytic model accurately reproduced the 2-D

displacement of magnetic tags. This showed agreement between the theory (model) and

the image-derived displacements. However, the real in vivo measurement of the beating

heart usually presents additional complexities which introduce problems not typically

accounted for in phantoms, such as full and complex 3D motion and fast blood flow

through the ventricle. These can generate artifacts in the images and cause significant

distortions.

The second question has been attacked in approaches based on MR tagging (e.g.

Amini[1] Prince [86] and Haber [42]) using simulations. One example shown in figure 2.9

uses a kinematic model of the left ventricular motion by Arts [5] within an MR tag image

simulator [103] to generate synthetic images with known displacements. Comparison with

manual extraction has often been used as the gold standard to validate the process of

tag-extraction, as in Kraitchman [56].

In the shape-tracking work of Shi [90], implanted markers are used as the gold

standard. These markers are physically implanted in the myocardium before the imaging.
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Figure 2.8: MR image of gel phantom with SPAMM (tag) stripes in undeformed state.

(From Kraitchman [56]) Courtesy of Dr Leon Axel, University of Pennsylvania.

An MR image of a heart with implanted markers is shown in figure 2.10. This approach to

validation tries to attack the first two questions simultaneously. Here, algorithm generated

displacements are compared to the marker-displacements (these are easily identifiable

from the images). This technique has the disadvantage of comparing trajectories in a

smaller number of points, however, it is done on real data as opposed to simulations.

The third question is not addressed much in the image analysis literature, quanti-

tatively. Often an example of the results on a normal and a hypertrophic heart is shown

and the differences ‘correlated’ with other evidence from the cardiology literature. It is

known from the literature (e.g. Croisille et al, [21]) that on average the changes between

normal and abnormal regions in terms of radial and circumferential strains is on the order

of 10−15%, and much smaller in the case of borderline regions. A quick calculation shows

that, in the case of MR tagging based work where the tags are typically 5 voxels apart

at end-diastole, the change in the spacing at end-systole is going to be around 0.5 voxels
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Figure 2.9: Example of the use of the cardiac simulator [5, 103] used to validate methods

based on MR tagging. Left: the undeformed prolate spheroidal model of the LV in the

reference state. Right: a tagged image corresponding to a selected image plane. (From

Amini[1]) Courtesy of Dr Amir A. Amini, University of Washington, St Louis.

Figure 2.10: 2D MR image slice of left ventricle with implanted markers. These are used

to validate shape-based displacement estimates. (From Shi [90])
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or less. In the case of shape-based methods where the whole of the ventricle is used,

this number is somewhat larger (around 0.8 voxels). If such changes are to be detected

reliably, and we were to ignore accumulated tracking errors after the tags and/or bound-

aries have been extracted, we need to be able to extract tags/boundaries at a precision of

0.25–0.4 of a voxel or less. This is currently beyond the performance level of all automatic

algorithms on real data; hence manual and semi-automatic algorithms are used in most

cases.

In Croisille [21], the reported results are averaged over a number of studies to

reduce the effects of errors in detecting individual tag lines and variations among different

subjects. This may be useful for exploring the physiology but not plausible in the case

of diagnosis, unless the results are averaged over large sections of the ventricle to reduce

noise.

2.6 Conclusions and Further Research Directions

The major problem/bottleneck in most of the work presented in this chapter is the ex-

traction of features such as tag lines and especially left ventricular surfaces from the

image data. As mentioned in the previous section, there is a reliance on manual and

semi-automatic techniques to obtain this information. Another problem, which is less an

issue of image analysis and more an issue of medical imaging technology, is the difficulty

of using magnetic resonance in a clinical setting. It is not possible to image patients in an

emergency room (as is the case for example with ultrasound) and metallic objects such

as pacemakers cause serious problems and dangers when placed in the magnet.

As mentioned earlier, most of the models used to smooth and/or interpolate the

displacement field are passive; they do not contain any active contraction information.

This can result in an underestimation of the deformation, as the model biases the results

towards no change. This was noted in the work of Park [80] and is the reason why no

spatial smoothness was employed there. This, however, is not a sufficient solution to the

problem as some spatial smoothing is often needed to cope with the noise in the data

and the sparseness in the image information. A possibly better solution would be to
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incorporate some knowledge of the active contraction of the left ventricle during the first

half of the cardiac cycle. This has the potential of eliminating the bias problem, although

it would introduce more parameters to be set or ideally estimated from the image data.

We explore this problem in more detail in chapter 6.

Magnetic resonance imaging represents a promising modality and the development

of improved analysis techniques will enhance the possibilities of it being used clinically.

In the meantime we note that improvements in 3D echocardiography technology, such

as the introduction of harmonic imaging [13] and contrast agents [84], are beginning to

make this modality an attractive and somewhat cheaper alternative. We have already

reported preliminary work in this area [78]. A more detailed exposition can be found in

chapter 7.



Chapter 3

An Interactive Approach to Left

Ventricular Segmentation

3.1 Introduction

In this chapter, we present the methodology used to extract the bounding surfaces of the

left-ventricular myocardium from an image sequence. These surfaces are used as inputs

to the mesh generation and shape-based tracking methods, which will be described in

sections 4.3 and 4.4.

For the accurate estimation of cardiac deformation, the accuracy required is above

what automated algorithms can currently achieve. We therefore used a semi-automated

approach which allows for both user interaction and correction. Recently some interesting

work in the area of interactive segmentation has appeared in the literature [60, 50]. To

satisfy the need for user interaction at all stages of the segmentation process, we take a

slice-by-slice approach to 3D segmentation. In this way the surface is extracted in a 2D

fashion one contour at a time (a contour representing the intersection of the surface with

the 2D image slice) and reconstructed using shape-based interpolation (see section 4.1.1)

and Delaunay triangulation (see section 4.2.1).

Two-dimensional contour extraction in Biomedical image analysis has often been

done using deformable models or snakes. These were first introduced by Kass et al[54]. A

30
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review article by McInerney and Terzopoulos [66] describes the use of deformable models

in more detail. We also note the alternative level-set approach [87, 110] which instead

considers the contour to be the zero-level set of a three dimensional function and tries to

evolve this function to solve the segmentation problem. The level-set approach is not well

suited for easy user interaction1 so in this work we use a snake-based deformable model

approach.

We further represent the two-dimensional contours as B-splines [22]. The choice

of B-splines was determined by two major factors (1) the ease of parameterization of

a curve with excellent smoothness and continuity properties and (2) the ease of user

interaction for editing curves before and after the automated segmentation stage. Also

splines are available in the Open-Inventor toolbox[106] used for the visualization part of

the segmentation.

Ease of interaction was was probably the principal reason for the use of B-splines

as opposed to the Fourier parameterization employed by Staib [95] and Chakraborty [15].

3.2 Parameterizing Closed Curves Using B-splines

In this section we describe how closed curves can be parameterized using B-splines. We

start by defining the terms normalized arclength, knots, knot points and control points.

Next we describe the definition of the B-spline itself. Finally we put the two together to

parameterize a closed curve using B-splines.

Definitions We will define a two-dimensional curve as:

c(s) = (x(s), y(s)) , s ∈ [0.0, 1.0) (3.1)

1In the case of level-sets the definition of the curve is implicit. This makes it is harder to come with an

easy way to interactively edit the curve. One way might be to first extract the zero-level set, parameterize

it using splines, edit this, and then form the level-set function again. While this is doable, it is also

cumbersome.
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Curve
(N=6, n=4)

Control
Polygon

q3q0 p0 ,s=k0=0.0 p3 ,s=k3

p1 ,s=k1
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q5

p5 ,s=k5

p2 ,s=k2

q2

q4

p4 ,s=k4

s

Knot Point 3 at s=k3

Control Point 3

Figure 3.1: The elements of a B-spline. This curve is parameterized using six (N=6) cubic

(n=4) B-splines. The parameterization is defined N , n the location of the control points

(qi) and the knot sequence (ki). The curve is divided into N non-overlapping segments.

Adjacent segments are joined together at the knot points pi. The curve has continuity

C2 at the knot points, and C∞ elsewhere.

where s is the normalized arclength, that is the arclength divided by the total circumfer-

ence of the curve. Each curve is divided into N non-overlapping segments. We define the

knot vector k, to be the concatenation of the normalized arclengths of the points where

the adjacent segments of the curve are joined. For example segment 0 and segment 1 are

joined at the point s = k1.
2 The point pi = c(ki) is called a knot point. These definitions

are illustrated in figure 3.1.

We further note that the knot vector k has sizeN . For later notational convenience

we define a (recursive) periodic extension to k as:

ki = ki 0 ≤ i < N

= ki+N i < 0

2Hence the use of the term knot, a place where two different things are joined together.
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= ki−N i ≥ N

B-splines Here we follow the notation of Lancaster[58, section 4.4] (see also deBoor[22].)

Definition: Let ki where i = −3,−2, . . . , N+3 be knots satisfying km < km+1,m ∈
(−3, N + 3). A one-dimensional B-spline of order n, n=1,2,3,4 with these knots is a

piecewise (n-1)th degree polynomial not identically zero of continuity class C (n−2) in the

region [k−3 ≤ x < kN+3] and of minimal support. When n = 1 we interpret the class

C−1 as admitting functions with discontinuities at the knots ki.

B-splines of orders 1 to 4 are shown in figure 3.2(left). Note that a spline is defined

as Bi,n where i defines the start of the region of support of the B-spline in terms of the

knot sequence ki and n defines the order of the spline. All of the splines in figure 3.2(left)

start at i = 1 hence are all B1,n. A function is approximated as a sum of different splines

as also illustrated in figure 3.2(right).

We compute the value of a B-spline recursively as follows:

Bi,n =
s− k1

ki+n−1 − ki
Bi,n−1(s) +

ki+n − s
ki+n − ki+1

Bi+1,n−1(s) (3.2)

Bi,1 =







1 ki ≤ s < ki+1

0 otherwise
(3.3)

where i = 0, . . . , N − 1 and n = 1, 2, 3, 4..

B-splines calculated in this way also have the additional property that:

N−1∑

i=0

Bi,n(s) = 1 (3.4)

Using the above definitions we represent a function f(s) as a weighted sum of order n
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k0 k1 k2 k3 k4 k5 k6 k7
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f

Figure 3.2: Approximation of a function with B-splines. Left: B-splines of orders 1 to

4. Note (i) the limited support of each spline and (ii) that the order of the polynomial

describing each spline is one less than the order of the spline. Right: Representation of

a function f as a set of cubic (fourth-order) B-splines. We can represent function f in

the region [k3, k4) as a linear combination of the B-Splines B0,4, B1,4, B2,4 and B3,4, e.g.

f(s) =
∑3

i=0 qiBi,4, where qi are the appropriate weights.



35

B-splines as:

f(s) =
N−1∑

i=0

qiBi,n(s) (3.5)

where qi are the appropriate weights. We further note that we can write the derivatives

of f(s) as linear combinations of the derivatives of Bi,n(s) as:

drf(s)

dsr
=

N−1∑

i=0

qi
drBi,n(s)

dsr
(3.6)

A two-dimensional curve c(s) = (x(s), y(s)) is parameterized as:

x(s) =
N−1∑

i=0

qx,iBi,n(s) , y(s) =
N−1∑

i=0

qy,iBi,n(s) (3.7)

So the full representation of the curve c(s) consists of a set of knots ki, a corre-

sponding set of weights qx,i, qy,i and the choice of the order of the B-spline n (see figure

3.1). We describe the selection of these, next, in reverse order:

Choosing the order of the B-splines: In this work we only use fourth-order (n = 4,

cubic) B-splines. This ensures at least C2 connectivity over all the curve which allows us

to compute the second partial derivatives needed in the segmentation work (see section

3.3).

Selecting the knots: There are two common choices for setting of the values of the

knots ki. The first is the so-called uniform parameterization which sets ki =
i
N . A better

choice is the chord length parameterization which sets ki+1 = ki+|pi+1−pi|
L , where L is

the total length of the curve. The chord length parameterization has the advantage of

allowing the placement of more knots in regions of high curvature. There still is, however,

no firm concept of an optimal knot spacing [33].
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Selecting the weights via a control polygon: Often the pair (qx,i, qy,i) is given a

geometrical interpretation as the coordinates of the equivalent control point for knot point

i. These control points are often linked together to form the so called ‘control-polygon’

for the spline as shown in figure 3.1. Next we define the following vectors which consist

of the x and y coordinates of the knot points and the control points respectively:

px = [x(k0), x(k1), . . . , x(kN−1)]
′ , qx = [qx,0, qx,1, . . . , qx,N−1]

′

py = [y(k0), y(k1), . . . , y(kN−1)]
′ , qy = [qy,0, qy,1, . . . , qy,N−1]

′

It can be shown that px = [W ]qx and py = [W ]qy where W is an N ×N matrix.3 We can

use this relationship to generate a set of control points from a set of knot points specified

by the user in some fashion. This is also exploited in the interactive segmentation part of

this work. The user may adjust the knot points (px, py) which are on the curve and the

control points (qx, qy) can be computed using a simple matrix multiplication. The matrix

W only needs to be inverted once at the start of the process. It is also worth pointing

out that for cubic B-splines W is a circulant pentadiagonal matrix and can be inverted

using sparse matrix methods [85].

Alternatively the control points qx, qy and the knots ki can be generated by per-

forming a least squares fit to a set of ordered points. Algorithms exist which will auto-

matically select the number of knots as well as the placement of control points and knots

given a smoothness criterion. For more information see Dierckx[25, chapters 3-6].4

3This is easy to see. The position of any point on the curve v(s) = (x(s), y(s)). We can write

x(s) =
∑N−1

i=0
Bi(s)qx,i and similarly y(s) =

∑N−1

i=0
Bi(s)qy,i. For the r-th element of px and py, s = kr

and Bi(s) = Bi(kr) is a constant. So the r-th element of px (and similarly the r-th element of py) can be

written as a linear combination of the control point coordinates qx,i weighted by the constants Bi(kr).

We collect the values of these constants into the N ×N matrix W .

4When using standard packages for the implementation of B-splines such as FITPACK [25] or Open In-



37

3.3 A B-spline Snake Implementation

A snake is a controlled continuity spline deforming under the influence of image forces.

The deformation tries to minimize an energy functional of the form:

E =

∫ 1

0
Eint(c(s)) + Eext(c(s))ds (3.8)

where Eint is the internal energy function which tries to preserve the smoothness of the

curve and Eext is the external or potential energy term which tries to attract the curve

towards desirable image features. Typically, Eint consists of squared derivatives of c(s)

with respect to s. Eext is usually defined as the negative of the magnitude of the image

gradient.

3.3.1 The Internal Energy Functional

In our implementation we set the internal energy to be equal to:

Eint(c(s)) =
(∂2x(s)

∂s2

)2
+
(∂2y(s)

∂s2

)2
(3.9)

We will discuss the external image function in section 3.3.2.

ventor [106] one can only specify knot spacing and control points for open curves. Closed curves can be gen-

erated by using the following trick. Consider a curve parameterized usingN cubic (n = 4, N ≥ 4) B-splines

with control points q = [q0, . . . , qN−1] and knot vector k = [k0, . . . , kN−1]. Both FITPACK and Open In-

ventor will require this closed curve to be converted into open-curve notation. This is achieved by padding

the knot vector as: k = [1− kN−1,1− kN−2,1− kN−3, k0, . . . , kN−1,1+ k0,1+ k1,1+ k2,1+ k3].

and setting the control point vector to have the form q = [qN−1, q0, . . . , qN−1,q0,q1]. We note here

number of extra elements in the vectors k and q (shown in bold-print) is independent of the number of

control points N and is solely a function of the order of the B-splines n. These adjustments generate the

equivalent open curve for use in algorithms which do not assume closed curves.
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The snake c(s) is parameterized using B-splines. This enables us to construct a

straightforward numerical algorithm to find the optimal c(s).5

We use fourth-order or cubic B-splines. This is the lowest order which ensures C2

continuity throughout the curve. This enables us to calculate the Eint term as defined

in equation (3.9). The knots ki are also kept fixed during the iterations of the snake.

Hence the change in the position of the snake is solely a function of the location of the

control-points (qx, qy).

3.3.2 The External Energy Functional

.

The external energy functional (the Eext term of equation (3.8)) defines the type

of feature which we would like the snake to be attracted to. One common form of this is

Eext(s) =

∫ 1

0
−|∇I(c(s)|2ds (3.10)

which tries to attract the snake towards maxima in the local image gradient. This is the

most common energy function when one is trying to detect relatively clean boundaries,

such as is the case in MR images.

Chakraborty et al [14] demonstrate the improvement that can be obtained by us-

ing also an intensity homogeneity constraint for the interior of the contour. This approach

leads to a generalized form for Eext(s) as follows:

Eext(s) =
M∑

m=1

αm

∫ 1

0
Em(c(s))ds (3.11)

where now the external energy is dependent on M different modules Em weighted by

5The original implementation for uniformly parameterized contours was by Hemant Tagare [no ref-

erence available] who generously allowed the author access to his source code. This was subsequently

extended for cases where the parameterization was not uniform.
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their relative confidence αm.

In this work we use a combination of the following three modules; the gradient

module where as above E1(c(s)) = −|∇I(c(s))|2, E2(c(s)) which is derived from a texture

module and E3(c(s)) which is derived from a prior curve vp(s).

The texture module: This is a classification scheme where each pixel in the image

is assigned to a texture class c. This work approach described in detail by Chakraborty

[15, 14, Section 3.3] and is derived from the work of Manjunath[63]. We follow here

the presentation given in Chakraborty [14] and model the intensity image as a Gaussian

Markov random field (GMRF). This models the conditional probability of the image

intensity given the classification.

Let S denote the M × M image lattice, i.e. S = {(i, j), 1 ≤ i, j ≤ M}. Let

{Ls, s ∈ S} and {Ys, s ∈ S} denote the labels and the zero mean array obtained from

the image data respectively. Note that the labels can belong to only a certain number of

texture classes (typically 2 or 3). Let Ns denote the symmetric second order neighborhood

of a site s consisting of the eight nearest neighbors. Now, assuming that all the nearest

neighbors of s also have the same label as s, we can write the following expression for the

conditional density of the intensity at the pixel site s[63]:

P (Ys = ys|Yr = yr, r ∈ Ns, Ls = l) =
exp(−U(Ys = ys|Yr = yr, r ∈ Ns, Ls = l))

Z(l|yr, r ∈ Ns)

(3.12)

where Z(l|yr, r ∈ Ns) is the partition function of the conditional Gibbs distribution, and

U(Ys = ys|Yr = yr, r ∈ Ns, Ls = l) =
1

2σ2l



y2s − 2
∑

r∈Ns

Θl
s,rysyr



 (3.13)

In (3.13), σl and Θl are the GMRF model parameters of the lth texture class. Further,
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the model parameters satisfy: Θl
s,r = Θl

s−r = Θl
r−s = Θl

r. These parameters for each

region are estimated by a least squares estimate method using a window around a user

specified point, representative of that particular region.

Once the intensity image Y ∗ has been modeled, the next task is to determine the

classification. This is achieved by maximizing the posterior distribution of the texture

labels given the intensity image:

P (L|Y ∗) =
P (Y ∗|L)P (L)

P (Y ∗)
(3.14)

where L corresponds to the classified image with Ls describing the label at the sth pixel.

The label field L is modeled as a second order MRF, which says that P (Ls|LS/s) =

P (Ls|Lr, r ∈ N̂s) where LS/s is the whole label field excluding the site s. It acts as a

prior that emphasizes the property that neighboring pixels of the classified image share

the same label (see Leahy [59] for details). Maximizing (3.14) gives an optimal Bayes

estimate. We maximize (3.14) using the coordinate-wise descent method of Leahy [59],

similar to the iterated conditional mode (ICM) algorithm [10, 11].

Once the classification L has been obtained we would like to attract the curve to

locations where there is a texture boundary. So we create an energy function E2(c(s)) =

−|∇L(c(s))|2 to be included in equation 3.11.

The prior module: The third term in equation (3.11) comes from a prior curve. For

the purpose of generating E3(c(s)) we represent the prior curve as its distance map

(generated using the chamfer method of section 4.1.1. If this prior curve was to be

derived from a number of curves, it could simply generate as the zero set of the (possibly

weighted) means of the distance functions of these curves.

In this particular work the prior curve is used to enforce a temporal constraint on

the segmentation. Consider a time frame t where we are trying to estimate curve c(t).
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Texture+Intensity
 Energy Map

Original Image Texture Based MRF
Segmentation

Intensity Energy Map

Figure 3.3: External Energy Functions for intensity and intensity+texture snakes. Note

that the intensity only energy function is very noisy inside the left-ventricular blood-pool

which creates many local minima for the deformable contour. The use of the texture

eliminates most of these minima.

End−Diastole

End−Systole 3D wireframe in ima ge cards rendering

Figure 3.4: Left: Images and superimposed extracted contours. Only two of the eight

frames are shown. Right: 3D rendering showing all the wire-frame contours superimposed

on a long axis (original) and a short-axis (interpolated) image slices.
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(a) (b) (c)

(f)(d) (e)

Figure 3.5: This figure illustrates the use of multiple external energy functions. (a) shows

the original image, (b) the texture segmentation, (c) the temporal smoothness term, (d)

the external energy function using the gradient alone, (e) gradient+texture external en-

ergy function and (f) enlarged gradient+ texture+ temporal smoothness external energy

function.

We can generate a prior curve for the segmentation as follows:

dm(cp(t)) = 0.5β(dm(c(t− 1)) + dm(c(t+ 1))) + (1.0− β)dm(c0(t)) (3.15)

where dm() is the distance map of a curve as defined in section 4.1.1. The curves c(t −
1), c(t+ 1) represent the current estimates of the same contour in the previous and next

time frames and c0(t) represents the last estimate of this curve. The factor β is the

damping factor. All these are used to generate an estimate for the current curve cp(t).
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Given dm(cp(t)) (there is no need to explicitly extract cp(t)) we can generate an external

energy term E3(c(s)) as follows:

E3(c(s)) = −|dm(cp(t))| (3.16)

which tries to constrain c(s) to stay close to cp(t). In a similar way we could impose a

known expected thickness constraint such as the one in Zeng [110] to keep a curve within

a certain distance from another curve. In that case E3(c(s)) would take the form:

E3(c(s)) =







0 |dm(cp(t))| < t

−1 otherwise
(3.17)

where t is the pre-specified thickness. Note that while both in this definition and also

in Zeng[110] there is no explicit correspondence between the two curves/surfaces, an

‘asymmetric nearest neighbor’ correspondence is implicitly used6. This is because at

each point p on the curve/surface the value of dm(cp(t)) is the distance between p and its

nearest neighbor on the prior curve cp.

Minimization of Energy Functional: Having defined the terms of the energy func-

tional of equation (3.8) we describe here the procedure used to obtain the final curve.

First given the external energy function Eext(x, y) defined over the image plane we cal-

culate its derivatives with respect to x and y, ∂Eext
∂x and ∂Eext

∂y . These derivatives are the

driving terms for the deformation of the snake. Further we note that the coordinates of

control point i, (qi,x, qi,y) are the weights for the B-spline Bi (we use Bi to abbreviate

Bi,4 as the order of the B-splines from here on is assumed to be 4). We can write the

6This approach runs into problems when the two curves are locally not parallel as whole regions of

one curve map to a single point on the other curve. Also, whole regions on the second curve may not

contribute to this map resulting in ‘cutting corners’. We will discuss this problem in greater detail in

section 4.1.2.
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energy function E as a sum of N parts each relating to a B-spline part of the snake Bi

as:

E =
N∑

i=1

Ei (3.18)

Ei has a region of support from ki ≤ s < ki+4. The individual elements7 Ei are defined

as:

Ei(s) =

∫

s
Bi(s)×

(

Eint(s)
︸ ︷︷ ︸

internal energy

+ Eext(c(s))
︸ ︷︷ ︸

external energy

)

ds (3.19)

where the integration is carried over the region of support of Ei. In this way we also

approximate Ei(s) using the same B-spline parameterization. Then essentially we perform

a local steepest descent, by moving one control point at a time until convergence. This

is best described algorithmically as follows:

• numiter = 0

• New Iteration:

– numiter 7→ numiter + 1

– Set maxshift = 0.0.

– For all control points i

∗ Calculate current estimate of Eint(s) = E0int.

∗ Next estimate Eδx
int which is is the internal energy function after shifting

control point (qi,x, qi,y) by δx.
8

7The use of the word element here is deliberate. This approximation is essentially a specialized

application of the finite element method. We will discuss the details of this method in section 5.3.

8Typically δx = δy = 0.5 pixels.
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∗ At this point calculate ∂Eint
∂x as:

∂Eint

∂x
=
Eδx

int − E0int
δx

∗ Then reset curve to original position, shift control point (qi,x, qi,y) by δy

and similarly calculate ∂Eint
∂y .

∗ Perform steepest descent at control point (qi,x, qi,y by estimating the shift

(dx, dy) as:

dx = β ×
(∂Eint(s)

∂x
+
∂Eext(x, y)

∂x

)

qi,x 7→ qi,x + dx

dy = β ×
(∂Eint(s)

∂y
+
∂Eext(x, y)

∂y

)

qi,y 7→ qi,y + dy

where β is the step size which is set adaptively.9

– maxshift 7→ max(|dx|, |dy|,maxshift).

• If maxshift > threshold and numiter < maxiterations goto New Iteration:

• End:

9This comes from the work of Hemant Tagare [no reference available]. The user sets a starting value

β = β0. Then until β
√

dx2 + dy2 < 3.0. we scale β 7→ 0.5β, to ensure that the optimization does not go

too fast.
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3.4 An Interactive Surface Segmentation Platform

In this section we describe a software platform which implements the ideas presented

so far in this chapter. This software package called SurfaceEdit has been used to sig-

nificantly reduce the time needed to accurately segment cardiac images. The package

can automatically propagate contours from slice to slice and time-frame to frame if set

in ‘batch’-mode. Also it has on option to interpolate across frames saving the expert

user the need to initialize all the frames before the automated segmentation can start, as

illustrated in figure 3.6. Once a set of results is generated the user can use the ‘editor

module’ (see figure 3.8) to correct the curves by moving the knot points. A simple click

of the ‘update’ button updates, in almost real time, the 3D rendering of the surface in

the 3D viewer shown in figure 3.7 which can also be displayed in long axis view as shown

in figure 3.9.

SurfaceEdit has an intuitive user interface and can simultaneously display or-

thographic views of the 3D-image, for both Cartesian-space images (such as magnetic

resonance) and cylindrical-polar space images (such as 3D ultrasound). It can also dis-

play multiple surface sections as well as multiple 3D surface rendering from any angle. All

of the above can also be displayed in cine-mode. This is important as sometimes, espe-

cially in the case of ultrasound, the expert user needs to see the heart in motion in order

to determine where the boundary is. Additionally the colors and transparency of the sur-

faces can be edited to allow the user to display one surface inside another. The software

development was done in C++[97] using the Open Inventor 3D Graphics Toolkit[106] and

the Motif[43] toolkit on the Silicon Graphics(SGI) Platform. The FITPACK package [25]

was used for the implementation of the spline algorithms.
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Figure 3.6: This figure illustrates the effectiveness of temporal interpolation. On the left

the original hand traced contours for every second frame between end-diastole(ED) and

end-systole(ES). One the right the contours produced by linearly interpolating between

ED and ES. Though somewhat smoother they still are very close to the ‘true’ answer and

would represent excellent initialization positions for the deformable contour algorithm.
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Figure 3.7: 3D Viewer: this shows embedded surfaces and orthogonal image slices which

help the expert user evaluate and correct the results of the segmentation. This viewer

can also be used to display the images in ‘cine-mode’, i.e. in movie mode.
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Figure 3.8: The Editor Module: we use a deformable contour-based segmentation to

extract contours on short-axis slices and then form the surfaces using a Delaunay Trian-

gulation. The contours are parameterized using B-splines which allows for easy editing

by moving knot points, so that the expert user can easily correct for cases where the

image data is not ideal. The editor also allows the user to edit up to four contours at any

given time.

Figure 3.9: A long axis view: the user has almost instantaneous feedback in 3D of any

changes made in the 2D contour editor. Contours can be propagated both spatially and

temporally which reduces the amount of manual input necessary and takes advantage of

the smooth variation of the contours across time and space.



Chapter 4

Geometrical Background and

Techniques

This chapter is divided in four sections. In section 4.1 we present techniques in two di-

mensions for interpolating between curves and generating ‘symmetric-nearest’ neighbors

for points on two curves. In section 4.2, we review the geometry of surfaces and focus on

techniques for surface construction from a set of planar contours, local curvature calcu-

lation and an extension to the ‘symmetric-nearest’ neighbors technique to 3D. Then in

sections 4.3 and 4.4 we describe the two two major applications of exclusively geometrical

ideas in this work, the generation of a hexahedral mesh for a volume and the shape-based

tracking algorithm.

4.1 Geometrical Methods in Two-dimensions

In this section we describe two numerical techniques: the shape-based contour interpola-

tion technique and the symmetric nearest-neighbor correspondence-finding technique.

4.1.1 Shape-Based Interpolation of Contours

The geometrical input to this work is slice-by-slice contours of the left ventricular surfaces,

extracted using the methods presented in chapter 3. One of the key post-processing steps

50
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Figure 4.1: Chamfer transformation templates. The two templates used by the dual cham-

fering processes to calculating the distance maps: template (a) for the top-to-bottom,

left-to-right chamfering, and template (b) for the bottom-to-top, right-to-left chamfering.

in generating either equally sampled surfaces or tesselating between surfaces to generate

solids is contour interpolation. Pengcheng Shi in his thesis [89] provides motivation for

generating equispaced contours and an introduction to the Chamfer-based shape inter-

polation technique. In this work we extend this work [89] to the sub-pixel level. This is

important because the movement of points on the left-ventricular wall is on average less

than one voxel per frame, hence it is crucial that the input surfaces preserve as much as

possible a sub-pixel resolution.

The first step in the interpolation process is to convert each contour into a gray-

value 2D image, where pixel values represent the shortest distance of points from the

contour, with positive values for inside the contour and negative values for outside. After

the initialization, where we assign positive distances to points inside the contour and

negative distances to points outside the contour, for all points that lie within 2 pixels of

the contour, the complete distance map is calculated from two consecutive chamfering

processes. The first chamfering updates the pixels row by row from top to bottom with

a left-to-right ordering within the rows, using the leftmost template in figure 4.1. The

second chamfering updates the pixels row by row from bottom to top with a right-to-left

ordering within the rows, using the rightmost template in figure 4.1. These templates

are scaled versions of the ones used in Shi [89], and this is done to improve sub-pixel

resolution. The choices of the original unscaled two 3 × 3 templates have been justified
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Figure 4.2: Extracting Zero Crossings. The numbers represent the distance values of the

output distance map. The new contour (in this case half-way between the two original

contours) is shown in a solid line. Note that the contours goes through squares where

there is at least one sign change across one of the sides of the square.

to be near-optimal [45]. The resulting image represents the chamfer distance map of the

given contour.1

The second step in the interpolation process is the generation of the output dis-

tance map. This is done by combining the input distance maps in the appropriate way. If

we label two contours as c1 and c2 and their distance maps to be dm(c1) and dm(c2) respec-

tively and we need to find the mean contour cm, we first generate dm(cm) = (dm(c1)+dm(c2))
2 .

The third step is the extraction of cm from its distance map dm. We define cm to

be the zero level set in the distance map dm and we extract it using a border following

scheme adapted from the level-set work of Malladi et al [87] (which in turn is derived from

the marching cube work of Lorenson [61].) It is this last step which gives the method

its sub-pixel resolution compared to the one used in Shi [89]. There are four possible

combinations of distance values for each square connecting the centroids of four pixels;

the three non trivial ones are shown in figure 4.2. These are:

1. All distances have the same sign. In this case the contour does not pass through

1The chamfer procedure is very efficient as it uses integer arithmetic only.
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this square. This is the trivial case.

2. Two adjacent points have the same sign and the other two (also adjacent) have the

opposite sign. In this case the contour intersects the sides of the square in which

there is a sign transition (i.e. sides connecting a point of positive distance to a point

of negative distance). See figure 4.2(left).

3. One point having a different sign from the other three. In this case the contour

divides the square such that this one point lies on the one side and the other three

on the other. See figure 4.2(middle).

4. Two non-adjacent points have the same sign and the other two (also non-adjacent)

have a different sign as shown in 4.2(right). In this case the contour has to enter

and exit the grid twice. To avoid ambiguity, we define the preferred direction of

the contour to be anti-clockwise. Then the contour enters and exits preferentially

to accommodate this constraint.

4.1.2 Symmetric Nearest Neighbor Correspondences in Curves

The estimation of a nearest neighbor correspondence between two curves (and two sur-

faces) plays an important role in many parts of the work presented in this thesis. In most

computer vision applications and in previous work [89, 65] the estimation of initial corre-

spondences is done using what we will term an ‘asymmetric nearest neighbor’ technique.

In this case for each point on curve/surface c1 the nearest point on curve/surface c2 is

found and labeled as the initial point. This has problems when the two curves are locally

not parallel as whole regions of one curve map to a single point on the other curve. Also,

whole regions on the second curve may not contribute to this map resulting in ‘cutting

corners’ as demonstrated in figure 4.3. In this section we focus on the 2D case; we present

extensions to the full three-dimensional case in section 4.2.4.

Motivated by the bimorphism work of Tagare[98, 99] we develop a symmetric

technique to estimate initial correspondences without ‘cutting corners’. This is important

so as to ensure that as much as possible the whole of curve c1 maps to the whole of curve
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Symmetric
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Match from inner
curve to outer curve

Match from outer
curve to inner curve

Cutting Corners

Reconstructed curve after connecting points

Figure 4.3: Illustration of problems with asymmetric nearest neighbor matches. The two

examples (left and middle) where the correspondence is driven exclusively in one direction

show problems such as ‘cutting corners’ when the two curves are not roughly parallel. In

the third case by using a symmetric nearest neighbor map the problem is avoided.

c2 and that the map is free from singularities (such as two points mapping to the same

point) which are not either permissible or plausible in the areas of application of this

algorithm.2 Further, we emphasize that the aim of this technique is not to estimate a

registration between two curves or two surfaces but rather to generate a set of initial

correspondence vectors based purely on distance that can be used as a starting point for

a nonrigid registration/correspondence method which incorporates information such as

shape.3 This method is useful in its own right in the case of mesh generation.

2In the case of true 3D deformation, material particles cannot appear or disappear. This requires that

the map between two solids (and surfaces) be invertible.

3We use the 3D extension of this algorithm to initialize the shape-based tracking algorithm in section

4.4.



55

The symmetric nearest neighbor algorithm has three steps as follows:

1. For all points on curve c1 find the nearest neighbors on curve c2 using a Euclidean

distance metric. So for example for a point p1 on curve c1 we have a corresponding

point p2 on curve c2. Then for point p2 estimate its nearest neighbor p̂1 on c1. If

p1 = p̂1 then the points (p1, p2) are symmetric nearest neighbors and the match is

retained. Otherwise, the match is discarded.

2. For all points on curve c1 which do not have symmetric nearest neighbors on c2,

find a matching point on c2 by interpolating between the matching points of its

neighbors. We do this until all points on c1 have a matching point on c2.

3. Smooth the displacement field slightly to eliminate potential near-singularities.

Step 1 is self-explanatory, although it can be extremely time consuming for large

surfaces (on the order of 10,000 points each) unless the points are somehow sorted to

reduce the search time. The more difficult part is the implementation of step 2, which

we now describe.

Here we take advantage of the fact that a curve can be parameterized using its

arclength. An example will help to illustrate the point: consider the case that curve c1

has four points (c1(0.0), c1(0.25), c1(0.5), c1(0.75)) which match to different positions on

c2, as illustrated by figure 4.4, and noting that c1(s1) represents the point on curve c1 at

arclength of s = s1. In this case step 1 resulted in three symmetric neighbor pairs and

left one point without a match. We can represent the points on c2 by their arclengths as

follows:

[c1(0.0), c1(0.25), c1(0.5), c1(0.75)] 7→ [c2(0.0), c2(0.4), ??, c2(0.9)]

In this case point c1(0.5) has no corresponding point after step 1. To generate a

match for c1(0.5) we interpolate between the corresponding points of c1(0.25) and c1(0.75)

the nearest points to c1(0.5) on c1 that do have symmetric nearest neighbors. This results
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c1(0.0)

c1(0.25)

c1(0.75)

c1(0.5)

c2(0.0)

c2(0.4)

c2(0.9)

c1(0.25)

c1(0.75)

c1(0.5)

c2(0.0)

c2(0.4)

c2(0.9)

Nearest Neighbour of
c1(0.5). Not used. c2(0.65)

c1(0.0)

Figure 4.4: An example of the 2D Implementation of the symmetric nearest neighbor

algorithm. In this case we try to map the inner curve c1 to the outer curve c2. Curve

c1 is defined by four points (c1(0.0), c1(0.25), c1(0.5), c1(0.75)), all of which apart from

c1(0.5) have a symmetric nearest neighbor. The nearest neighbor of c1(0.5) is shown on

the left (bad) and the point c1(0.5) is mapped to by the algorithm is shown on the right

(c2(0.65) good!).

in c1(0.5) 7→ c2(0.65). Note that we in effect place the corresponding point of c1(0.5) at

the centroid of the (shortest) segment4 of the curve c2 connecting the corresponding

points of its neighbors (c2(0.4) and c2(0.9)). This generalization will become useful when

we move to 3D.

So the result of step 2 is:

[c1(0.0), c1(0.25), c1(0.5), c1(0.75)] 7→ [c2(0.0), c2(0.4), c2(0.65), c2(0.9)]

Then in step 3 we smooth the displacements slightly5 to ensure no near singularities.

4Since the curve is closed there are two possible segments of the curve connecting any two points on it.

We choose the shortest segment. Then we essentially interpolate along this segment, using the arclength,

to find the position of the corresponding point for c1(0.5), as 0.65 = 0.5(0.4 + 0.9).

5We smoothed the arclengths on c2 by convolving them with a small Gaussian kernel.
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This could result in a map like:

[c1(0.0), c1(0.25), c1(0.5), c1(0.75)] 7→ [c2(0.05), c2(0.38), c2(0.62), c2(0.88)]

which tries to equispace the points on c2 subject to staying close to their original positions.

For this approach to work well in practice where the curves are discretized, c2 has to be

sampled much more finely than c1 (typically 5 to 8 times more).

4.2 Geometrical Methods in Three-dimensions

In section 4.2.1– 4.2.3 we describe the process of constructing a surface from planar

contours, non-shrinking surface-smoothing and for the estimation of the local curvatures

of a discretized surface.6 This process is summarized graphically in figure 4.5. In section

4.2.4 we describe an extension of the symmetric nearest neighbor algorithm to 3D.

4.2.1 Delaunay Triangulation Between Planar Contours

In this section, we describe a method to calculate the 2D-constrained Delaunay triangula-

tion [89, section 3.4] for a surface to be constructed from planar contours oriented in the

same direction (in this case anticlockwise). This restriction enables the implementation

of a simple and fast triangulation algorithm. This algorithm creates the triangulation

which has the smallest total length of triangle sides of all possible triangulations between

the two planar contours. Consider the case of figure 4.6(A). Here two adjacent triangles

are shown. If we flip the middle line (drawn as a dotted line) we can create an alternative

triangulation. This triangulation method is optimal in that no flipping of connections can

decrease the total length of all the sides of all the triangles. For the case of constructing

6All of this material is directly derived from the work of Pengcheng Shi [89] and the interested reader

is referred to Shi [89, 90] for the details. In this work we simply highlight some of the aspects of this work

which are particularly important in the context of this thesis.



58

 1. Slice−by slice
 b−spline contours

2. Slice−by slice 
sampled points

6

4. Surface Rendering
of Wireframe

5. Smoothed
Surface

6. 1st Principal
Curvature Map

7. 2nd Principal
Curvature Map

3. Triangulated 
Surface

Figure 4.5: Steps involved in moving from slice by slice contours to full surface representa-

tion. (1) Slice by slice B-spline parameterized contours as extracted by the segmentation

process. (2) Discretized contours as equally-spaced points. (3) Formation of wire-frame

by Delaunay triangulation. (4) Surface rendering of surface. (5) Smoothing of surface

using non-shrinking smoothing algorithm. (6)+(7) First and second principal curvatures

of surface.
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a set of triangles between two discretized, anticlockwise oriented, closed planar contours

the procedure is as follows:

• Initialization Step:

1. Initialize empty list of triangles.

2. For a point p1 on contour c1 find the nearest point (in the Euclidean sense) to

it p2 on contour c2. For this p2 find the nearest point to it p̂1 on contour c1.

3. If p1 = p̂1 label s1 = p1, s2 = p2 as the starting pair of points and goto

Connection step.

4. If p1 6= p̂1 choose another point on contour c1 and repeat the initialization

step.

5. The process fails if there is no point p1 for which this criterion is satisfied.

(This is extremely unlikely).

• Connection Step:

1. Given starting points s1, s2 find the two test points t1 and t2. t1 is the next

point along c1 from s1, and t2 which is the next point along c2 from s2. See

figure 4.6B.

2. If |t1 − s2| < |t2 − s1| label next point np = t1 else np = t2, and add triangle

s1, s2, np to the list.

3. If np = t1 then set s1 = np, else set s2 = np.

4. If s1 = p1 and s2 = p2 goto End.

5. Repeat Connection Step.

• End: procedure stops as we have returned to the starting point.

Proof: In this section we prove that this algorithm generates the triangulation which

has the smallest total lengths of the sides of the triangles. First, note that clearly all points



60

s1

s2

t1

t2 w2

C1

C2

C1

C2

A B

Figure 4.6: Schematic for the proof of the optimality of the triangulation procedure.

on c1 will be connected to their adjacent neighbors on c1 and similarly for all points on

c2. This reduces the proof to finding the optimal ‘inter-connections’ between c1 and c2.

Given a good starting point p1 and p2, we can always choose the shortest possible length

(in the connection step) for the next point to be attached, hence this further reduces the

proof to showing that the proposed method of initialization using points p1 and p2 which

are symmetric nearest neighbors is appropriate. This is equivalent to points p1 and p2

being part of a triangle in the optimal triangulation.

Instead of using this method for initialization, let us consider the case were we

initialize using points g1 and g2 which is the pair that generates the globally smallest inter-

connection distance between curves c1 and c2 as found by exhaustive search. Clearly this

pair would satisfy the criteria for optimality. Then we proceed around the contours as

per the connection step. Consider the case of figure 4.6B, and assume that t1 and t2 are

symmetric nearest neighbors. The next triangle will either be s1, t2, w2 if w2−s1 < t1−t2
(bad case) or s1, t2, t1 otherwise.

This further reduces the proof to showing that t1 − t2 < w2 − s1. Since t1 and t2

are symmetric nearest neighbors, this implies that locally c1 and c2 are almost parallel.

Hence t1 − w2 < s1 − w2. But t1 − t2 < t1 − w2 as t1 and t2 are symmetric nearest

neighbors. Therefore t1 − t2 < s1 − w2 which concludes the proof.
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Figure 4.7: Left: portion of a triangulated endocardial surface. Right: closeup illustrating

the neighbors of point p. Points labeled (1) are the first order neighbors, points labeled

2 are second ordered neighbors and the point labeled 3 is a third order neighbor. (Not

all second and third order neighbor points are shown.)

This implies that in an optimal (from a shortest length viewpoint) triangulation

the side t1, t2 will exist if t1 and t2 are symmetric nearest neighbors. So we can start

the triangulation using any pair of symmetric nearest neighbors, as opposed to the more

computationally expensive alternative of finding the pair of points g1, g2 described above.

Connectivity Distance: The Delaunay triangulation defines the connectivity of the

points on each surface and provides the all-important concept of a neighboring point, as

illustrated in figure 4.7. We further define the distance between the two points to be the

order of their connection. A point has a distance of 0 with itself, a distance of 1 with a

first order neighbor, a distance of 2 with a second order neighbor and so on. We will call

this the connectivity distance dc.

4.2.2 Non-Shrinking Surface Smoothing

Once the surface triangulation has been constructed, we smooth the surfaces to correct

for noise in the segmentation and to make the computation of curvatures more stable.
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In this work we use the non-shrinking two stage Gaussian algorithm proposed by Taubin

[100]. It is compared to the more typical one stage Gaussian filtering in Shi [89]. The

algorithm works as follows:

• For all points p on surface s define the set of its first order neighbors W .

1. For all odd-numbered iterations

p 7→ (1− λ1)p+ λ1
∑

q∈W

q

2. For all even-numbered iterations

p 7→ (1− λ2)p+ λ2
∑

q∈W

q

with λ1 = 0.33 and λ2 = −0.34. This alternating smoothing and unsmoothing process

was shown to preserve the shape visually better. An example is shown figure 4.5 parts 4

and 5. (For further analysis again see Shi [89, pages 66–75].)

4.2.3 Curvature Computation

Here we briefly review the method used for the computation of curvature. First we briefly

review some basic concepts of differential geometry (see DoCarmo [28] and also Shi [89,

pages 76–91] for more details.)

Differential geometry of a surface: A general surface S ⊂ R3 is defined as follows:

For each point p ∈ S there exists a neighborhood V ∈ R3 and a map x : U 7→ V
⋂
S on

an open set U
⋂R2 onto V

⋂
S ⊂ R3 such that:

• x(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ S is differentiable.

• x is a homeomorphism. And since x is continuous by the previous condition, this

means that x has an inverse x−1 : V
⋂
S 7→ U which is continuous; that is, x−1

is the restriction of a continuous map F : W ⊂ R3 7→ R2 defined on an open

set W containing V
⋂
S. (This condition prevents self-intersections in S, and also

means that objects defined in terms of a parameterization do not depend on this

parameterization but rather only on the set S itself.)
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• For each q ∈ U , the differential dxq : R2 7→ R3 is one-to-one. (This condition

guarantees the existence of a tangent plane at all points of S).

The mapping x is called a parameterization or a system of local coordinates in a

neighborhood of p. The neighborhood V
⋂
S of p in S is called a coordinate neighbor-

hood. This definition allows us to place each point p of a regular surface in a coordinate

neighborhood, and to define the local properties of point p in terms of the coordinates u

and v.

The plane dxq, which passes through x(q) = p, does not depend on the parame-

terization x. This plane is called the tangent plane to S at p, and is denoted by Tp(S).

The choice of the parameterization x determines a basis {(∂x/∂u)(q), (∂x/∂v)(q)}, or
{xu(q),xv(q)}, of Tp(S), called the basis associated to x. Similarly, a unit normal vector

at point x(q) = p of S is determined by

Np =
xu ∧ xv

|xu ∧ xv|
(q)

where ∧ denotes cross product. See figure 4.8 for an illustration.

We then proceed to define the following quantities at point p = (u0, v0):

E(u0, v0) = < xu,xu > (4.1)

F (u0, v0) = < xu,xv > (4.2)

G(u0, v0) = < xv,xv > (4.3)

e(u0, v0) = − < Nu,xu >=< N,xuu > (4.4)

f(u0, v0) = − < Nv,xu >=< N,xuv >= − < Nu,xv > (4.5)

g(u0, v0) = − < Nv,xv >=< N,xvv > (4.6)
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N

p

Figure 4.8: At any point p in a differentiable surface we can find a local parameterization

x parameterized along vectors u and v. We also define the outward normal of the surface

at this point to be N .

These quantities which appear in the definition of the first and second fundamental forms

of the surface [28] enable us to define the the Weingarten Mapping Matrix as follows:

[β] = −






e f

f g











E F

F G






−1

(4.7)

This is also known as the shape operator matrix of the surface. This matrix

determines surface shape by relating the intrinsic geometry of the surface to the Euclidean

(extrinsic) geometry of the embedding space. The Gaussian curvature of a surface can

be defined from the Weingarten mapping matrix as its determinant:

K = det[β] =
eg − f2
EG− F 2 (4.8)
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Meanwhile, the mean curvature of a surface is similarly defined as half of the trace of the

Weingarten mapping matrix:

H =
tr[β]

2
=
eG− 2fF + gE

2(EG− F 2) (4.9)

We also define the principal curvatures which are the eigenvalues of the Wein-

garten mapping matrix, with their directions along the two eigenvectors. They are can

be calculated in terms of the Gaussian and mean curvatures as:

κ1 = H +
√

H2 −K (4.10)

κ2 = H −
√

H2 −K (4.11)

Calculating the curvature at a point on a discretized surface: We calculate the

principal curvatures κ1 and κ2 at a point p on a discretized surface s by first fitting a

biquadratic surface to the collection of all the points r on s that have a connectivity

distance dc(p, r) < t where t is a constant and defines the scale of the neighborhood. This

has to be large enough to avoid local segmentation noise and small enough to capture the

local differential properties. In this work where surfaces are sampled to 0.5 voxel spacing

we use a window size of t = 4.

Before the biquadratic surface is constructed, we first rotate the coordinates of all

the points that satisfy dc(p, r) < t to a local coordinate system with point p as the origin,

the local surface normal N as the z axis and two tangent directions as x and y axis. We

estimate the normal N by averaging the normals of all the triangles of which point p is a

node. Then we estimate the coefficients of the biquadratic surface which takes the form:

z = h(x, y) = a1x
2 + a2xy + a3y

2 + a4x+ a5y (4.12)

These are estimated using a least squares fit to the neighborhood points , and can
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be used then to form the Weingarten mapping matrix and hence compute the curvatures.

An example of such curvatures is shown graphically in figure 4.5 parts 6 and 7.

4.2.4 Symmetric Nearest Neighbor Correspondences in Surfaces

In this section, we extend the work of section 4.1.2 to three-dimensions. It is generally

true that easy geometrical problems in 2D become almost impossible in 3D as a result

of the loss of the arclength parameterization. So the key step here is to find a way of

replacing the arclength parameterization. We attempt to do this by using the Euclidean

distance and partially using a connectivity distance defined on the surface. We focus here

on steps 2 and 3 of the algorithm; step 1 is identical to the 2D case and need not concern

us any further.

Some additional definitions: If a point p1 on surface s1 is mapped to a point p2 on

surface s2 then we define the displacement vector u(p1) = p2 − p1. Any point p1 on s1

that has a corresponding point on s2 also by definition has a displacement vector.

A description of Step 2: This is the step in which we find corresponding points for

all the points on p1 that do not have a symmetric nearest neighbor. It is best explained

algorithmically as follows: (see also figure 4.9.)

• Set i = 0

• beginning:

• Let point p1 be point pi on surface s1.

1. If point p1 has a displacement vector goto endloop.

2. If none of the first-order neighbors of point p1 have a displacement vector goto

endloop.

3. Average the displacement vectors of all the first order neighbors of point p1

that do have displacement vectors, to generate a displacement vector u1
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p1

p1

a
a’

b
b’

c

c’

d

e

fs1
s2

u(c)
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Figure 4.9: Symmetric Nearest Neighbor Algorithm in 3D. A portion of surface s1 shown

on the left centered on a point p1 which has first order neighbors a, b, c, d, e, f . Of these

neighbors a, b, c have symmetric nearest neighbors a′, b′, c′ on s2 shown on the right. p1

itself does not have a symmetric nearest neighbor on s2. We generate the first estimate

of the position of the corresponding point of p1, p̂1, by averaging u(a), u(b) and u(c) the

displacement vectors of points a,b,c to estimate a vector u1 and translating p1 by u1.

Then p̂1 is mapped to surface s2 by finding its (asymmetric) nearest point on s2. This

is point p2 which is the corresponding point of point p1 on surface s2. We also define

u(p1) (not shown) as u(p1) = p2 − p1. We further show the first order neighbors of p2 on

surface s2 labeled as g, h, i and j.
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4. Translate p1 by u1 to a point p̂1.

5. Find the nearest neighbor of point p̂1 on s2. Label this point as p2 and then

calculate the displacement vector u(p1) = p2− p̂1. p2 is also the corresponding

point of p1. Now point p1 has a displacement vector.

• endloop: i 7→ i+ 1.

• If i < Np where Np=number of points on s1 goto beginning.

• If not all points on s1 have a displacement vector set i = 0 and goto beginning.

• end.

So long as one point on s1 has a symmetric nearest neighbor after step 1 this

algorithm will generate a set of point pairs. This algorithm is illustrated in figure 4.10.

We next consider approaches to step 3, the smoothing step.

A Euclidean approach to smoothing: This approach is labeled Euclidean as the

term being smoothed is the ‘Euclidean distance’. This is an alternating iterative process,

and it works as follows:

• For all odd numbered iterations and for all points p1 on s1:

1. Find the average displacement vector un of all its first order neighbors. (These

would be u(a), u(b), u(c), u(d), u(e) and u(f) of figure 4.9.)

2. Generate a new displacement vector u(p1) 7→ 0.75u(p1) + 0.25un.

• For all even number iterations and for all points p1 on s1:

1. Translate p1 by û to a point p̂1.

2. Find the nearest neighbor of point p̂1 on s2. Label this point as p2 and then

calculate the displacement vector u(p1) = p2− p̂1. p2 is also the corresponding

point of p1 on s2.
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D: Step 3(2)
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C: Step 2 (2)

A: Step 1
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B: Step 2 (1)
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E: Step 3(4) F: Step 3(6)

Figure 4.10: Symmetric 3D Nearest Neighbor Algorithm. (This is shown in 2D for sim-

plicity.) Part A shows the result of step 1, where only points 1 and 6 have corresponding

points. In part B (Step 2 iteration 1) points 2 and 5 also acquire displacements as at least

one of their neighbors has a displacement (points 1 and 6 respectively). Note that the

displacement vectors of points 2 and 5 have two parts. The first shown using a dotted line

is the average of the displacements of the neighbors, and the second part, shown using

a solid line, is as a result of mapping this position to next surface. In part C (Step 2

iteration 2) points 3 and 4 also have displacements. Parts D-F show iterations of the Eu-

clidean distance based approach to smoothing. Note how the map becomes progressively

more regular.
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A connectivity distance approach to smoothing: In this case we try to maximize

the connectivity distances of the corresponding points p2 on s2 as follows:

• For all iterations and all points p1 on s1:

1. Generate the set N which contains all the corresponding points of the first

order neighbors of p1 on surface s2. (Note that the points in N lie on s2, and

would be points a′, b′, c′, d′, e′ and f ′7 of figure 4.9.)

2. Generate the set W which contains p2 and all its first order neighbors. (Again

note that the points in W lie on s2, and would be points g, h, i, j and p2 of

figure 4.9.)

3. For all points in W look for the point p̂2 that maximizes:

p̂2 =
argmin

p ∈W
(argmax

q ∈ N dc(p, q)
)

In words this tries to find the point in W that is nearest to the centroid of N

as defined by connectivity distance.

4. Let u(p1) = p̂2 − p1 and let p̂2 be the corresponding point of p1 on s2.

This method has the advantage of relying less on the Euclidean distance and more

on the geometry of the surfaces. It is computationally more expensive however.

As a final post-processing step for both of this approaches, surface s1 is translated

by translating each point p1 on s1 by its corresponding displacement vector u(p1) to a new

point p̂1 and then slightly smoothed using 5 iterations of the non-shrinking algorithm de-

scribed in section 4.2.2. Then the resulting u(p1) is adjusted to be u(p1) 7→ u(p1) + p̂1 − p1.
This is needed as it is computationally not feasible to have surface s2 be sampled a factor

of 5 − 8 times more finely than s1. In practice s2 is sampled three to four times more

finely than s1.

7d′, e′ and f ′ are not shown in the figure but will by now exist as each point has a corresponding point.
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It also worth noting that there is no algebraic proof of the quality of these meth-

ods.8 They have been both tested (and especially the Euclidean approach) and have been

found to perform well over a large number of datasets.

4.3 Generating Hexahedral Meshes

After we have extracted and tessellated the endocardial and epicardial surfaces we need

to construct a solid mesh in the space between them, to represent the heart wall muscle,

the myocardium. This is needed for the application of the finite element method9 in the

deformation estimation stage. We choose to divide this solid into hexahedral elements as

these have significant numerical advantages over the more common tetrahedral elements.

As mesh generation in three-dimensions is a notoriously difficult problem for

complicated geometries[8], we propose here an algorithm which takes advantage of the

‘cylindrical-like’ geometry of the left ventricle, to make the problem easier. The two basic

building blocks of the algorithm are the shape-based contour interpolation method of

section 4.1.1 and the symmetric nearest neighbor correspondence algorithm described in

section 4.1.2. The algorithm is best described with reference to figures 4.11 and 4.12. It

consists of four steps as follows:

• Step 1: Interpolate on a contour by contour basis between the endocardial and epi-

cardial surfaces using shape-based interpolation to generate an appropriate number

of in-between interpolated surfaces (typically 3 or 4). Because of the greater geo-

8The odd numbered iterations of the Euclidean based smoothing method can be proven to converge.

Essentially we are solving a system of the form [A]xk = xk+1 where A is a square 3N × 3N smoothing

matrix and xk is the 3N vector of the positions of all the points in iteration k. This is analogous to

the Gauss Seidel method[85] which can be shown to converge if the matrix A is diagonally dominant i.e.

Aii >
1
2

∑N

r=1
Air, ∀i ∈ [1, N ]. In the Euclidean based smoothing method this is the case as Aii = 0.75,

and
∑N

r=1
Air = 1. It is harder to show convergence for the odd numbered iterations as the mapping step

is non-linear. However in practice the method converges very rapidly (in 3-5 iterations.)

9The finite element method is described in section 5.3.



72

Endocardial
surface 
contour

Epicardial
surface 
contour

Interpolated
contours ���������
	��
�������������������

interpolation)
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Figure 4.11: A schematic of the mesh generation process. First, we interpolate between

the endocardial and epicardial surfaces on a contour by contour basis using shape based

interpolation to create the interpolated surfaces. Next, we find correspondences between

the contours on the endocardial surface starting at the middle level using the 2D algorithm

of described in section 4.1.2. Next, we find correspondences on each slice starting from

the endocardium, using the same algorithm. Finally, we connect the dots to generate the

elements. A 3D illustration of this can be found in figure 4.12
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Figure 4.12: A further illustration of the mesh generation process. This figure illustrates

steps 2 and 3 of the mesh generation algorithm.

metrical complexity of the endocardium, we space the interpolated surfaces to be

preferentially closer to the endocardium.10 Discretize the contour on the middle

slice of the endocardium to the desired number of nodes (typically 35-45).

• Step 2A: Using the symmetric nearest neighbor algorithm, estimate correspondences

between slices on the endocardial surface on a contour by contour basis starting in

the middle slice. This generates a grid of connected points on the endocardium.

These correspondences are shown in blue in figures 4.12 and 4.11.

• Step 2B: For the points present in the correspondence maps of step 2A, find their

correspondences within each slice starting at the endocardium and moving on level

at a time towards the epicardium. This generates a grid of connected points on

each slice. These correspondences are shown in purple in figures 4.12 and 4.11.

• Step 3: Use transitivity of connections to complete the mesh. These connections

10Let sn and sp be the endocardial and epicardial surfaces respectively. We could generate two in-

between interpolated surfaces s1 and s2 as s1 =
2sn+sp

3
and s2 =

sn+2sp

3
. To space the surfaces preferen-

tially closer to the endocardium we actually generate the first interpolated surface s1 as s1 =
3sn+sp

4
.
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are drawn with dotted blue lines in figures 4.12 and 4.11. Because of the grid-

like nature of the mesh, once a correspondence is established on the endocardial

surface, the correspondence is fixed for the mid-wall and the epicardial surfaces as

well. Consider the following example which is illustrated in figure 4.12. A point P1

on slice S10 is mapped to point P5 on slice S11 on the endocardial surface (step

2A), and point P3 on slice S10 on the first midwall surface (step 2B). Further, point

P5 on slice S11 on the endocardium corresponds to point P7 on slice S11 of the

first midwall surface (step 2B). By transitivity P3 also has to connect to P7. This

completes the quadrilateral which forms one face of the element.

4.4 A Shape-Based Tracking Algorithm

The shape-based tracking algorithm tries to follow points on successive surfaces using a

shape similarity metric. This distance is based on the difference in principal curvatures.

The method was validated using implanted markers [89]. In this work, we modify the

initialization step of this algorithm to take advantage of the symmetric nearest neighbor

correspondence finding algorithm previously described in section 4.2.4.

The first step in this algorithm is to estimate for all points on surface s1 their

symmetric nearest neighbor, as explained in section 4.2.4. Next, for any given point p1 on

a surface s1 at time t1 and which has a corresponding point p2 on surface s2 at time t2 as

a result of the symmetric nearest neighbor estimation step we construct a plausible search

window W on s2. This search window W consists of all the points on s2 which have a

connectivity distance less than a threshold t from p2 on s2, i.e. pw ∈W iff dc(p2, pw) < t.

Next, a search is performed within this plausible regionW on the deformed surface

s2 and the point p̂2 which has the local shape properties closest to those p1 is selected. The

shape properties here are captured in terms of the principal curvatures κ1 and κ2. This

is illustrated in figure 4.13. The distance measure used is the bending energy required to

bend a curved plate or surface patch to a newly deformed state. This is labeled as dbe

and is defined as (see Shi[89]):
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Figure 4.13: The shape-tracking algorithm. For a point p1 on the original surface, a

window W of plausible matching points on the final surface is first generated around

point p2 which is the symmetric nearest neighbor of p1 on the deformed surface. (In this

case ∀pw ∈ W : dc(p2, pw) < 3). Then the point p̂2 in W which has the most similar

shape-properties to p1 is selected as the candidate match point. The distance function

for shape-similarity is based on the principal curvatures.

dbe(p1, p2) =
((κ1(p1)− κ1(p2))2 + (κ2(p1)− κ2(p2))2

2

)

(4.13)

The displacement estimate vector for each point p1, u
m
1 is given by

um1 = p̂2 − p1 , p̂2 =
argmin

p2 ∈W
[

dbe(p1, p2)
]

Confidence Measures in the match: The bending energy measures for all the points

inside the search region W are recorded as the basis to measure the goodness and unique-

ness of the matching choices. The value of the minimum bending energy in the search

region between the matched points indicates the goodness of the match. Denote this
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value as mg, we have the following measure for matching goodness11

mg(p1) = −dbe(p1, p̂2) (4.14)

On the other hand, it is desirable that the chosen matching point is a unique choice

among the candidate points within the search window. Ideally, the bending energy value

of the chosen point should be an outlier (much smaller value) compared to the values of

the rest of the points. If we denote the mean values of the bending energy measures of all

the points inside window W except the chosen point as d̄be and the standard deviation

as σd
be, we define the uniqueness measure as:

mu(p1) =
dbe(p1, p̂2)

d̄be − σd
be

(4.15)

This uniqueness measure has a high value if the bending energy of the chosen

point is small compared to some smaller value (mean minus standard deviation) of the

remaining bending energy measures. Combining these two measures together, we arrive

at one confidence measure cm(p1) for the matched point p̂2 of point p1:

cm(p1) =
1

k1,g + k2,gmg(p1)
× 1

k1,u + k2,umu(p1)
(4.16)

where k1,g, k2,g, k1,u, and k2,u are scaling constants for normalization purposes.

We normalize the confidences to lie in the range 0 to 1.

11This is the negative of the equivalent definition in Shi [89]. That definition is really a measure of

badness!



Chapter 5

Continuum Mechanics Models

and the Finite Element Method

This chapter is divided in three sections. In section 5.1 we examine the purely geometrical

aspects of continuum mechanics methods. The focus here is the definition of the all-

important concept of strain. In section 5.2 we use the concept of strain to define a method

for capturing the material properties of an object in terms of a strain energy function.

Finally in section 5.3 we present an overview of the finite element method which is the key

numerical technique used in this work for the solution of problems involving mechanical

models. It must be emphasized however that the finite element method can be used to

solve other kinds of partial differential equations (see Huebner [49] for examples), though

it is most often used in this context.1
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B(0) B(t)

X

dX

dx

u x

Figure 5.1: Definition of displacement

5.1 Deformations

5.1.1 The Deformation Gradient Matrix

In this section we follow the presentations in Spencer [94, chapter 6] and Hunter[75].

Consider a body B(0) which after time t moves and deforms to body B(t). A material

particle initially located at some position X on B(0) moves to a new position x on B(t).

If we further assume that material cannot appear or disappear there will be an one-to-one

correspondence between x and x, so we can always write the path of the particle as:

x = x(X, t) (5.1)

1A commonly used misnomer is the term ‘finite element model’. There exists no such thing. The finite

element method is simply a numerical procedure for solving partial differential equations whose source

defines the model.
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We can also define the displacement vector for this particle as

u(t) = x(t)−X (5.2)

This relationship is also invertible, given x and t we can find X. If we consider two

neighboring particles located at X and X = dX on B(0). In a new configuration B(t)

using equation (5.1) we can write:

dx =
∂x

∂X
dX (5.3)

The Jacobian matrix F (t) = ∂x(t)/∂X is called the deformation gradient matrix. We

note that by definition F (0) = I. Using this we can rewrite equation (5.1) more fully as:

dx(t) = F (t).dX (5.4)

Fij = ∂xi
∂Xj

, F (0) = I

= ∂ui
∂Xj

+ δij , u(0) = 0

δij =







1 i = j

0 otherwise

The mapping defined by equations (5.1)–(5.5) has two components: a rigid motion

component and a change in the shape or deformation of the object. For the purposes of

capturing the material behavior (to be discussed in section 5.2) we need to extract from

F the component which is a function of the rigid motion and the component which is a

function of the deformation.
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To extract the deformation component we use the polar decomposition[96] to

write F as:

F = R
︸︷︷︸

Rotation Matrix

× U
︸︷︷︸

Symmetric Matrix

(5.5)

The matrix R is a rotation matrix having the properties R ∗R′ = I, det(R) = 1 and U is

a symmetric matrix i.e. U ′ = U .

It is also useful to define the right Cauchy-Green deformation matrix G = F ′F .

When we apply the polar decomposition we get:

G = F ′F = U ′R′RU = U ′U (5.6)

This shows that G is independent of the rotation and is purely a function of the defor-

mation. In the case of a pure rotation i.e. F = R we find that G = I. This shows that

G in the case of a rotation is equal to identity. We also note that G has three invariants

under a coordinate transformation defined as follows:

I1 = trace(G)

I2 =
1

2
((trace(G)2 − trace(G2))

I3 = det(G) (5.7)

In particular, in the case of an incompressible material det(G) = I3 = 1. We next consider

the important case of small deformations and rotations.
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5.1.2 Small Deformations and Rotations

If the deformations and the rotations are small (< 2−3%), we use the approximation[94,

section 6.6]:

∂u

∂x
≈ ∂u

∂X
(5.8)

From here we can re-write F = RU as:

F = RU = (I + ω)(I + ε) (5.9)

Here ω is the small rotation tensor and is antisymmetric. ε is the small(infinitesimal)

strain tensor and is symmetric. These are defined as:

ω = 1
2(F − F ′) =









0 1
2

(
∂u1
∂x2

− ∂u2
∂x1

)
1
2

(
∂u1
∂x3

− ∂u3
∂x1

)

1
2

(
∂u2
∂x1

− ∂u1
∂x2

)

0 1
2

(
∂u2
∂x3

− ∂u3
∂x2

)

1
2

(
∂u3
∂x1

− ∂u1
∂x3

)
1
2

(
∂u3
∂x2

− ∂u2
∂x3

)

0









ε = 1
2(F + F ′)− I =









∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)

1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)

1
2

(
∂u3
∂x1

+ ∂u1
∂x3

)
1
2

(
∂u3
∂x2

+ ∂u2
∂x3

)
∂u3
∂x3









(5.10)

Often, taking advantage of the symmetries these tensors are written in vector form as:

e = [ε11 , ε22 , ε33 , ε12 , ε13 , ε23]
′ , θ = [0 , 0 , 0 , ω12 , ω13 , ω23]

′

This e is the classical definition for strain in infinitesimal linear elasticity[94].
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5.1.3 Finite Deformations

The infinitesimal deformation measures are applicable only for very small deformations

and rotations. In the case of soft-tissue deformation and specifically the left ventricle

these are not applicable. Using equation (5.6) for the definition of G we can define the

Lagrangian (or Green) strain tensor E as:

E =
1

2

(

C − I
)

(5.11)

The components of E become equal to zero when there is no deformation (G = I), and

in the case of small deformations and rotations reduce to the strain tensor2 of classical

infinitesimal elasticity theory. We can also write this in component form as:

Eij =
1

2

(∑

k

∂xk
∂Xi

∂xk
∂Xj

− δij
)

=
1

2

( ∂ui
∂Xj

+
∂uj
∂Xi

+
∑

k

∂uk
∂Xi

∂uk
∂Xj

)

(5.12)

5.1.4 Some Further Properties of the Strain Tensor

Given a strain tensor Ex (a 3 × 3 matrix) which was computed in a coordinate frame x

parameterized by three unit vectors x1, x2, x3 we can transform it to a coordinate frame

y similarly parameterized by unit vectors y1, y2, y3 as follows. First construct the 3 × 3

rotation matrix R. Each component of R, Rij is given by the dot product of xi and yj ,

i.e. Rij =< xi, yj >. This results in R : x 7→ y. Using this matrix R we can write the

2The finite strain tensor has the form 1
2
(F ′F − I) as opposed to the infinitesimal strain tensor which is

defined as 1
2
(F + F ′)− I = 1

2
(F + F ′ − 2I). Hence the approximation involved in the infinitesimal strain

tensor is F +F ′−2I ≈ F ′F − I. If we define F = I+dF we can write F ′F − I = (I+dF )′(I+dF )− I =

dF ′ + dF + dF ′dF and F ′ + F − 2I = dF + dF ′. So in making the infinitesimal approximation the

assumption is that the second order term dF ′dF ≈ 0, and so can be ignored. This is easily seen from

equation (5.12).
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image of Ex in the y coordinate frame Ey as:

Ey = RExR
′ (5.13)

We also note that the eigenvalues of E are known as the principal strains and the eigen-

vectors as the principal directions. These are invariant to a change of coordinate frame.

The principal strains are particularly useful in the case of comparing strains produced

from two sets of measurements whose relative coordinate transformation is unknown.

5.2 Material Models

So far we have restricted our description to the geometry of the deformation. In this

section we extend this to account for what happens when a material deforms and relate

the deformation to the change in the internal structure of the material. Before proceeding

to give examples of possible material models we first note that there some theoretical

guidelines which must be observed[32]. The most important ones for this work are:

1. The axiom of objectivity–this requires the material model to be invariant with re-

spect to rigid motion or the spatial frame of reference.

2. The axiom of material invariance–this implies certain symmetry conditions depen-

dent on the type of anisotropy of the material, and implicitly reduces the number

of free parameters.

The first axiom can be satisfied by postulating an internal or strain energy function which

depends on the gradient deformation matrix F only through the Green deformation tensor

G, the Green strain tensor E, on in small deformation cases the infinitesimal strain tensor

ε. The strain energy function serves as the material model. If we postulate an internal

energy which is not invariant to a global rotation we arrive at the following problem.

Suppose that work is needed to rotate the object clockwise. From conservation of energy

principles, this energy will be returned when the object is turned counter-clockwise. We
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can keep turning the object counter-clockwise to get more and more energy and in this

way we have created a perpetual motion machine and not a material model.

5.2.1 Linear Elastic Energy Functions

In this section e will be used to denote the vector form of either the Green strain tensor E

or the infinitesimal strain tensor ε as appropriate. The simplest useful continuum model

in solid mechanics is the linear elastic one. This is defined in terms of an internal energy

function W which has the form:

W = e′Ce (5.14)

where C is a 6×6 matrix and defines the material properties of the deforming body3, as it

relates the change in geometry (strain) to the internal energy function W . The simplest

model is the isotropic linear elastic model used widely in the image analysis literature

[42, 30]. In this case the matrix C takes the form:

C−1 =
1

E

















1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

















(5.15)

3This class of model is linear as it results in a linear stress-strain relationship i.e. σ = Cε. We do not

use stresses in this work so we will not express material models explicitly in terms of their stress-strain

relationships. In this chapter, we deliberately avoid the terms ‘force’, ‘stress’ and ‘equilibrium’. These

would be inappropriate as the problem we are trying to solve has no real forces as such. The use of the

word ‘forces’ in related work such as Terzopoulos[101] in the context of physics-based vision may have

been appropriate as the authors were not trying in any way to use real physics in their methods. In this

work, since we are using real mechanical models to model real tissue properties we would only use words

such as force to describe real forces.
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Figure 5.2: Fiber direction in the left ventricle as defined in Guccione et al [39]. More

details can be found in section 7.2.2.

where E is the Young’s modulus which is a measure of the stiffness of the material and

ν is the Poisson’s ratio which is a measure of incompressibility.

In this work, the left ventricle of the heart is specifically modeled as a transversely

elastic material to account for the preferential stiffness in the fiber direction. This is an

extension of the isotropic linear elastic model which allows for one of the three material

axis to have a different stiffness from the other two. In this case the matrix C takes the

form:

C−1 =

















1
Ep

−νp

Ep

−νfp

Ef
0 0 0

−νp

Ep

1
Ep

−νfp

Ef
0 0 0

−νfpEf

Ep

−νfpEf

Ep

1
Ef

0 0 0

0 0 0
2(1+νp)

Ep
0 0

0 0 0 0 1
Gf

0

0 0 0 0 0 1
Gf

















(5.16)

where Ef is the fiber stiffness, Ep is cross-fiber stiffness and νfp, νp are the corresponding

Poisson’s ratios and Gf is the shear modulus across fibers. (Gf ≈ Ef/(2(1 + νfp)). If

Ef = Ep and νp = νfp this model reduces to the more common isotropic linear elastic
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model. The fiber stiffness was set to be 3.5 times greater than the cross-fiber stiffness

[39]. The Poisson’s ratios were both set to 0.4 to model approximate incompressibility.

5.2.2 Non-Linear Energy Functions

Linear models do not capture the progressive hardening of many materials (especially soft

tissue) when it is stretched. In the case of linear elastic models the effective stiffness is a

constant with respect to the strain whereas in practice the stiffness increases as the strain

increases.4 Even though, in this work we use a linear model, the following summary of

non-linear models is included here for the sake of completeness.

One common non-linear model in the case of isotropic incompressible materials

is the Mooney-Rivlin material model[62]. In this case the internal energy function is a

function only of the invariants of the right Cauchy-Green deformation matrix G (this is

as a result of the axiom of material invariance) and can be written as:

W (I1, I2) = a(I1 − 3) + b(I2 − 3) (5.17)

with the further constraint that the solution must satisfy I3 = 1. This is often imposed

as a Lagrange multiplier in an optimization framework.

In the work of Guccione and McCulloch[39] a transversely isotropic model is used

for the myocardium, defined as follows:

W =
C

2
(eQ − 1)− p

2
(I3 − 1) (5.18)

Q = b1E
2
11 + b2(E

2
22 + E233 + E223 + E232) + b3(E

2
12 + E221 + E213 + E231)

4This is an effect of a transition in the process of stretching. In elastomers, at low strains, the stretching

results mostly in ‘uncoiling’ the long polymer chain molecules which effectively results in low stiffness. At

higher strains, once the chains are fully uncoiled, the stretching process is trying to extend the polymer

chains themselves which gives rise to a much higher stiffness.
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In this case, the model can have different stiffness along the local x direction from

the one in the y and z directions. Also the incompressibility constraint is imposed by

penalizing the variation of the third strain invariant I3 from 1. Further refinements of

this work, including the incorporation of active contraction and electrophysiology, can be

found in Hunter[75].

5.3 The Finite Element Method

The finite element method is a numerical analysis technique for obtaining approximate

solutions to a wide variety of engineering problems[49]. The key to this method is that the

domain of problem is divided into small areas or volumes called elements. The problem

is then discretized on an element by element basis and the resulting equations assembled

to form the global solution. In this work we discretize the problems using the custom

mesh generation technique described in section 4.3.

5.3.1 An Example Problem

In this section we will describe an example problem and outline how it could be solved

using the finite element method. We will pose the problem in terms of an energy mini-

mization framework where the goal is to estimate the displacement field u(x, y, z) which

is an optimal tradeoff between an internal energy function5 W (C, u) and approximating

a noisy displacement field um(x, y, z) in a weighted least squares sense.

We define the optimal solution displacement field u is the one that minimizes

functional P (u). This is defined as:

P (u) =

∫

vol
( W (C, u) + V (u, um))d(vol)

W (C, u) = e(u)′Ce(u)

5Note that although W is defined as function of the strain e, as e is a function of the displacement u,

W can also be written as a function of the displacement field u.
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Figure 5.3: A 3D hexahedral mesh generated by interpolating and filling between the

endocardial and epicardial boundaries.

V (u, um) = α(um − u)2

where W (C, u) is the internal energy function defined by a strain energy function. C is

the constitutive law and e is the local strain which is a function of the displacements u.

V (u, um) is the external energy term. um is the original (shape-tracking) displacement

estimate and α is the confidence in the match.

5.3.2 Outline of the Solution Procedure

Step 1: Divide Volume into elements (tetrahedra or hexahedra) to provide the basis

functions for the discretization. In figure 5.3 a myocardium is shown tessellated into

hexahedral elements. (See section 4.3.)

Step 2: Discretize the problem by approximating the displacement field in each element

as a linear combinations of displacements at the nodes of each element. For a hexahedral
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1 (−1,−1,−1)
2 (1,−1,−1)

7 (1,1,1)

O

ξ2

ξ3

1 (−1,−1) 2 (1,−1)

3 (1,1)4 (−1,1)

O
ξ1

ξ1

ξ2

4 (−1,1,−1)

5 (−1,−1,1)

8 (−1,1,1)

6 (1,−1,1)

3 (1,1,−1)

Figure 5.4: Definition of local element coordinate system ξi and node coordinates for

the nodes of a 2D 4-node isoparametric element (left) and a 3D 8-node isoparametric

element(right). For example, in the 2D case, node 1 has coordinates (-1,-1). The centroid

of the element O is the origin of the element specific coordinate system. Note also that

the axes are not necessarily orthogonal.

element this discretization can be expressed as:

u ≈
8∑

i=1

Niui

where Ni is the interpolation shape function for node i and ui is the displacement at node

i of the element. For the isoparametric hexahedral element shown in figure 5.4, we define

a local coordinate system ξi, and in this the shape functions Ni take the form[49, section

5.5]:

Ni(ξ1, ξ2, ξ3) =
1

8
(1 + ξ1ξ1,i)(1 + ξ2ξ2,i)(1 + ξ3ξ3,i) (5.19)
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where (ξ1,i, ξ2,i, ξ3,i) are the local coordinates of node i. It is easy to verify that the shape

function Ni takes a value of 1 at node i, a value of 18 at the origin and a value of 0 at all

other nodes. These functions are the generalization in 3D of the linear splines of figure

3.2.

Step 3: Write down internal energy equation as the sum of the internal energy for each

element:

W (u) =
∑

all elements

[

∫

vel

e′Ced(vel)] (5.20)

We further note that in an element we can approximate the derivatives of u with respect

to components of the global coordinate system x as follows (note that the ui are constant

in this expression):

∂u

∂xk
=

8∑

i=1

∂(Niui)

∂xk
=

8∑

i=1

∂Ni

∂xk
ui

However the shape functions Ni are expressed in terms of the local coordinate

system ξ. Using the chain rule we can write:







∂N
∂ξ1

∂N
∂ξ2

∂N
∂ξ3







=









∂x1
∂ξ1

∂x2
∂ξ1

∂x3
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

∂x3
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

∂x3
∂ξ3









×







∂N
∂x1

∂N
∂x2

∂N
∂x3







(5.21)

or equivalently in matrix notation as Nξ = [J ]×Nx.

Hence we can calculate the desired derivatives Nx from the known derivatives Nξ

by inverting the Jacobian as follows: Nx = [J ]−1Nξ. As long as the elements do not have

intersecting sides the Jacobian will remain invertible.
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Note also that the derivatives of the displacement field u (i.e. ∂u
∂xk

) are a linear

function of the nodal displacements ui. Since the infinitesimal strain tensor consists of

only sums and differences of partial derivatives (see equation (5.10)) the infinitesimal

strain tensor can also be expressed as a linear function of the nodal displacements.6 This

can be written in matrix form as e = Bu. Substituting this in equation (5.20) we get:

W (u) =
∑

all elements U e′
[∫

vel

B′CBd(vel)
]

U e

=
∑

all elements U e′[Ke]U e

where Ke7 is the element stiffness matrix8, and U e is a vector obtained by concatenating

all the displacements of the nodes of the element i.e. :

U e = [u1,x, u1,y, u1,z, . . . , u8,x, u8,y, u8,z]

where ui = (ui,x, ui,y, ui,z) is the displacement of node i.

6The finite strain deformation case is non-linear and does not allow for this simplification. The subse-

quent expressions are so complicated that it makes the material beyond the scope of this brief overview.

The reader is referred to Bathe [9].

7The integration is carried out using Gaussian quadrature [49].

8Each component of Ke indicates the ‘stiffness’ between any two nodes. One could in some sense think

of Ke
14 as the stiffness of a spring connecting the x-directions of local nodes 1 and 2. (This ‘2’ is not a

typo. The first three rows of Ke correspond to the components of the displacement of node 1, the second

three to the displacement of node 2 etc. See the definition of U e.)
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Step 4: Rewrite the internal energy function in matrix form. First, we define the global

displacement vector U as:

U = [u1,x, u1,y, u1,z, u2,x, u2,y, u2,z, . . . , un,x, un,y, un,z]
′ (5.22)

where n is the total number of nodes for the solid. We also define the global stiffness

matrix K as the assembly of all the local element stiffness matrices Ke as:

K =
∑

all elements

I(Ke) (5.23)

where I is the re-indexing function. This takes an element Ke
ij and adds it to the element

Kkl, where k and l are the global node numbers of local nodes i and j.9

The internal energy can now be written as W (U) = U ′KU .

Step 5: Write down the external energy function as a weighted least squares term:

V (u) =
n∑

i=1

αi(u
e
i − ui)2

If there is no initial displacement estimate for a given node j set αj = 0.

9Within an element the nodes are always numbered from 1 to 8. However this is a local index (short-

hand) to the global node numbers. When the global matrix is assembled the local indices (1 to 8) need to

be converted back to the global indices (e.g. 1 to n). Ke has dimensions 24× 24 and K has dimensions

3n× 3n. Ke
14, which is the stiffness between the x-directions of local nodes 1 and 2 would be part of Kkl

where k = 3(a− 1)+ 1 and a is the global index of local node 1 and l = 3(b− 1)+ 1, where b is the global

index of local node 2. Since nodes appear in more than one element the final value of Kkl is likely to be

the sum of a number of local Ke
ij ’s.
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Step 6: Rewrite external energy in a matrix form: We define the global initial dis-

placement vector Um in the same way as U above (see equation (5.22)) and the global

confidence matrix A to be a diagonal matrix with the confidence values for each displace-

ment (αi) forming the elements of the leading diagonal as follows:

A =






















a1

a1

a1

. . .

an

an

an






















(5.24)

The external energy can be rewritten as V (U) = (Um − U)′A(Um − U).

Step 7: Form total potential energy equation P (U) =W (U)− V (U).

Step 8: Solve for U. Differentiate P (U) w.r.t U and set to 0. This results in the final

equation

KU = A(Um − U)

This is then solved for U using sparse matrix methods.10 U represents the values of u

at the nodes, and by means of the finite element approximation (u ≈ ∑8
i=1Niui) we can

compute the resulting values of the displacement field u anywhere in the volume.

10In the case of finite deformations we end up with an expression of the form K(U) = A(Um−U) which

is solved iteratively.



Chapter 6

Modeling the Displacement Field

In this chapter we expand on material presented in section 2.4 regarding the use of mod-

eling for interpolation and smoothing. In section 6.1 we present the general regularization

framework and discuss a probabilistic formulation for this as well as some generic implica-

tions. Next in the section 6.2 we focus on the common first-order regularization function,

which we examine in some detail. We also briefly examine the thin-plate functional. In

section 6.3 we consider the use of the linear elastic functional and discuss the problems

associated with this as well as various possible solutions. Finally in section 6.4 we describe

a possible extension to the elastic model paradigm, the Active Elastic Model.

6.1 The General Regularization Framework

6.1.1 The Energy Minimization Framework

In this section we describe a framework in which the goal is to estimate a displacement

field u which approximates another displacement field um. We will assume that um is

derived from some image-based algorithm, such as the shape-based tracking algorithm,

where the relationships between different displacements are not modeled. We simplify the

approximation problem to be a least-squares fit of u to um subject to some constraints.

94
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This takes the form:

û =
argmin

u

(∫

V
W (α, u, x) + c(x)|um(x)− u(x)|2dv

)

(6.1)

where:

• u(x) = (u1, u2, u3) is the vector valued displacement field defined in the region of

interest V and x is the position in space.

• um(x) = (um1 , u
m
2 , u

m
3 ).

• c(x) is the spatially varying confidence in the measurements um.

• W (α, u, x) is a positive definite functional which defines the approximation strategy

and is solely a function of u, a parameter vector α and the spatial position x.

This is commonly known as the regularization approach which was already de-

scribed in section 2.4. W (α, u, x) is known as the stabilization functional. In certain cases

the input displacement field um is sparse and is defined only on a finite number (P) of

points p within V . In this case the overall functional takes the form:

û =
argmin

u

(
∫

V
W (α, u, x)dv +

P∑

i=1

c(pi)|um(pi)− u(pi)|2
)

(6.2)

6.1.2 A Probabilistic Interpretation

We now derive a probabilistic interpretation of the energy minimization framework. In

this setup again we aim to estimate the output displacements u from a set of measure-

ments um. We further assume that we are given the measurement probability density

function p(um|u), which also corresponds to the noise model for the measurements, and

the prior probability density function for u, p(u).1 We pose this as a Bayesian a-posteriori

1We will not define the basic terms of probability here, they can be found in standard textbooks such

as Papoulis [79].
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estimation problem. Within this framework, the solution û is the u that maximizes the

posterior probability density p(u|um). Using Bayes’ rule we can write the posterior prob-

ability as:

û =
argmax

u

{

p(u|um) =
p(u, um)

p(um)
=
p(um|u)p(u)

p(um)

}

(6.3)

First we note that p(um) is a constant once the measurements have been made and can

therefore be ignored in the maximization process. We can re-write the above expression

by taking logarithms to arrive at:

û =
argmax

u

(

log p(u) + log p(um|u)
)

(6.4)

This expression is now in the same general form as equation (6.1). As previously

demonstrated by Geman and Geman[38] and applied to medical image analysis problems

(e.g. Christensen [16], Gee [37]), there is a correspondence between an internal energy

function and a Gibbs probability density function. Given an energy function W (α, u, x)

we can write an equivalent prior probability density function p(u) (see equation (6.3)) of

the Gibbs form[38]):

p(u) = k1 exp(−W (α, u, x))

log(p(u)) = log(k1)−W (α, u, x) (6.5)

where k1 is a normalization constant.

Next we define the noise n = u− um. Then we can model the noise probabilisti-

cally, using a multivariate Gaussian distribution, as:

p(n) = k2 exp(
−n′Σ−1n

2
)
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log p(n) = log k2 −
1

2
n′Σ−1n (6.6)

where k2 is also a normalization constant and Σ is the covariance matrix which in this

case can be assumed to be diagonal. The mean of the noise is assumed to be equal to

zero. Substituting for n in this expression we get:

log p(um|u) = k2 −
1

2
(um − u)′Σ−1(um − u) (6.7)

By an appropriate choice of Σ the second term can be mapped to the data adher-

ence term of equation (6.2). In this case Σ−1 will be a diagonal matrix with values c(pi)

on the leading diagonal very similar to the matrix A of equation (5.24).2

6.1.3 Advantages of the Probabilistic Interpretation

In the soft tissue deformation problem there are usually two types of information: (i) the

image derived data which is corrupted by noise and (ii) the material properties of the

soft tissue.

The data term is best modeled probabilistically in order to allow for the con-

struction of a proper noise model. Here we can use ideas from the field of Digital Signal

Processing (see for example Openheim and Schafer[74]). The material term however is

best defined in terms of a continuum mechanical model. The ability to generate an equiv-

alent probability density function for an internal energy function, as was done in equation

(6.5), allows us to take a continuum mechanics model defined in terms of an internal or

strain energy function and generate a probability density function which can then be used

together with the probabilistic noise model within a Bayesian Estimation framework.

2This is very similar to the way the classical least squares problem is converted into a Bayesian

estimation problem by assuming a Gaussian noise model. The advantage in both cases is that this

generalization allows for more complicated models for the noise to be introduced more cleanly.
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6.1.4 The Problem of Different Units

There is one fundamental problem with the probabilistic framework, which is also present

but less obvious in the energy minimization framework. This is the problem of ‘different

units’. This problem arises because the model stiffness is measured in different units from

the noise variance. It is best explained by means of an example.

Let as assume for the moment that W = e(u)′Ce(u) which is the linear elastic

model defined in equation (5.14) and the noise model used is model of equation (6.6).

When these are substituted into equation (6.4) we get (ignoring the constant terms k1

and k2):

û =
argmax

u
−
(

e(u)′Ce(u) +
1

2
(um − u)′Σ−1(um − u)

)

(6.8)

Given the fact that the um’s are constant and that u, and hence the e(u)’s, are

unknowns, the user controlled terms are C and Σ. C defines the mechanical model and

Σ−1 the inverse covariance. We can write both of these matrices in this general form

(using the n× n matrix M to be either C or Σ−1) as:

M =









M11 . . . M1n

. . . . . .

Mn1 . . . Mnn









=Mmax[M̄ ] , [M̄ ] =









M11
Mmax

. . . M1n
Mmax

. . . . . .

Mn1
Mmax

. . . Mnn

Mmax









(6.9)

where Mmax is the maximum value of M . In the case of the material matrix C, Cmax

would the highest value of the stiffness or the Young’s Modulus, whereas in the case of the

Covariance matrix Σ−1, Σ−1
max would be the smallest variance, or the highest confidence

in any of the measurements. We can now rewrite equation (6.8) as:

û =
argmax

u
−
(

Cmaxe(u)
′[C̄]e(u) +

Σ−1
max

2
(um − u)′[Σ̄−1](um − u)

)
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û =
argmax

u
−
(

e(u)′[C̄]e(u)
︸ ︷︷ ︸

dimensionless

+
Σ−1

max

2Cmax
(um − u)′[Σ̄−1](um − u)
︸ ︷︷ ︸

dimensionless

)

(6.10)

At this point, it is clear that the absolute values of Cmax and Σ−1
max enter into

the functional only through their ratio Σ−1
max

Cmax
. Given that the rest of the expressions in

equation (6.10) are dimensionless3 for equation (6.10) to add up from a dimensionality

viewpoint we need to convert this ratio Σ−1
max

Cmax
in order to also make it dimensionless.4

This is done by multiplying by a scaling constant ksc of the appropriate units i.e.

Σ−1
max

Cmax
7→ kscΣ

−1
max

Cmax
(6.11)

From a dimensionality viewpoint the value of the scaling constant ksc is completely arbi-

trary.5 This value can be interpreted as defining in some sense the ratio of the relative

confidences in the data as a whole and the model as a whole. One method for setting the

value of this constant can be found in section 7.2.3.

6.1.5 Soft Tissue Objects as Markov Random Fields

In using the Gibbs form (equation (6.5)) we have modeled the displacement field of the

solid probabilistically as a Markov Random Field, an example of this is shown in fig-

3The term ‘dimensionless’ is used to describe a quantity that is a pure number and has no associated

units. A dimensionless quantity will have the same value regardless of the system of units used in its

calculation. For example the ratio of two lengths will the same regardless of whether the lengths are

measured in meters or in feet.

4Cmax is measured in Pascals and Σmax in voxels. Hence their ratio will not be dimensionless.

5Consider the following example. We are trying to optimize the design criteria for a new computer

and two criteria are speed S in MHz and cost C in dollars. We proceed to optimize the criterion αS+βC.

The value of the ratio α
β
which will determine the optimal S and C is completely arbitrary as S and

C have different units. It is up to the designer/salesperson to select the value that matches some other

external criterion.
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Figure 6.1: Example of an object discretized by particles shown as black circles. If the

displacement field is modeled as a first-order Markov Random Field (MRF) the displace-

ment of a specific particle p depends only on external data and the displacements of its

immediate neighbors a, b, c, d.

ure 6.1. The Markov random field (MRF) then can be thought of as the probabilistic

analog of the continuum mechanical model. There are two interesting similarities: (i)

Both can be defined using energy functions and (ii) the energy functions at any given

point are functions only of the values of that point and its immediate neighbors. In the

case of the MRF point (ii) comes from the fact that the the Gibbs probability density

function is often defined on first and/or second order cliques which are very local neigh-

borhoods of the point. So if the displacement field is modeled as a MRF, the probability

of the displacement of a given point p effectively only depends on the displacement of its

neighbors. In the case of the mechanical model described using a strain energy function,

the value of the internal energy function, which via exponentiation in equation (6.5) be-

comes the probability density function, at a given point depends only on the local strains.

These local strains are only dependent on the displacements of the neighbors of the point

and not on the displacements of the whole volume.
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6.2 A First-Order Regularization Functional

In this section we begin by examining the most common regularization functional, first

proposed by Horn and Schunk[47, 46] and subsequently used by many others with various

modifications [86, 24, 109, 93]. In this case W (α, u, x) takes the form:

W (α, u, x) =
∑

i,j

αij

(∂ui
∂xj

)2
(6.12)

which tries to enforce smoothness by penalizing all first order derivatives, hence the name.

The main motivation for its use is the assumption that it makes very weak and generic

assumptions about the underlying material properties. We will show this statement to

be false later in this section. A perennial problem with this model is the setting of the

values of the constants αij , for which there is no good criterion.

6.2.1 The Two Dimensional Dense Case

In this case, for simplicity, we will consider the two dimensional dense case. Here we

assume that um is defined over the whole volume of the object V . We further set all

the weighting constants αij equal to a single constant λ. We substitute for this W in

equation (6.1) to obtain:

û = argmin
u

( ∫

V
λ
((∂u1
∂x1

)2
+
(∂u1
∂x2

)2
+
(∂u2
∂x1

)2
+
(∂u2
∂x2

)2)

+(u1 − um1 )2 + (u2 − um2 )2 dx1dx2
)

(6.13)

This can be divided into two functionals one for each component of û. Since the

two functionals will have same form, we consider only the first component û1. In this
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case we have:

û1 =
argmin

u

(∫

V
λ
((∂u1
∂x1

)2
+
(∂u1
∂x2

)2)

+ (u1 − um1 )2 dx1dx2
)

(6.14)

A Frequency Domain Interpretation Taking the Fourier transform (F : (x1, x2) 7→
η1, η2) and using the the capital letters signify the function in the transform domain i.e.

U = F(u), Um = F(um) etc.) results in:

Û1 =
argmin

U

∫

η
λ
(

(η1U)2 + (η2U)2
)2
+(U − Um)2 dη1dη2

Using calculus of Variations we ‘differentiate’ this functional with respect to U to get

Û1 =
Um

1 + λ(η21 + η22)

which has the same basic form as a spatial low-pass filter with λ controlling the cut-off

frequency. Thus this first order regularization model can be seen to be a generalization

of the low pass filter.

Limiting Case–The Translational Model: In the limiting case as λ → ∞ this

reduces to taking the D.C. term of Um which makes um a constant over the whole object.

This is a complicated way of deriving the translational model for the displacements which

has all the derivatives equal to zero. In this case we can rewrite equation (6.14) to take

the form:

û1 =
argmin

u

(∫

V
(u1 − um1 )2 dx1dx2

)

(6.15)

subject to:
(∂u1
∂x1

)2
+
(∂u1
∂x2

)2
= 0
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This effectively defines u1 to be a constant k1. The problem is reduced to finding the k1

that minimizes the functional. In this case k1 will be the spatial average of um1 .

6.2.2 Relationship with Infinitesimal Linear Elasticity

The linear elastic model was defined to have the form W = e′Ce in equation (5.14). We

note that for the infinitesimal strain case, we had defined the strain tensor ε and the small

rotation tensor ω as (see equation (5.10)).

εij =
1

2

(∂xi
∂uj

+
∂uj
∂xi

)

(6.16)

ωij =
1

2

(∂xi
∂uj

− ∂uj
∂xi

)

(6.17)

We further note that εij + ωij = ∂xi
∂uj

. This allows us the rewrite the first order

regularization functional in terms of the strain and rotation tensor as;

W (α, u, x) =
∑

i,j

αij(εij + ωij)
2 (6.18)

The first non-trivial observation that can be made by looking at equation (6.18),

is that the first order regularization model implicitly assumes small deformations and

rotations, as it is solely a function of the infinitesimal deformation and rotation tensors.

More importantly however, as it is a function of ω, this functional is not invariant to a

global rotation (even allowing for the small rotation case). In this case it violates the

axiom of objectivity, (see section 5.2.) This means that no real material could possibly

behave in this way. Further we contradict the desired underlying assumption in the use

of this model, that it makes weak and generic assumptions for the material properties.

In fact this model makes assumptions so strong that no possible material could behave
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Figure 6.2: Example of an object described by a set of springs connecting neighboring

points. (a) Four elements of a simple solid. (b) An element of the simple solid and (c)

An element of a more complicated solid model.

this way.6

6.2.3 The Discrete Spring Model

One way to make the first-order regularization model invariant to rotations is to set

αij = 0 when i 6= j. This results in the so-called ‘spring-model’ which is illustrated in

figure 6.2 (a). This model tries to describe the solid as a discrete set of point masses

connected by springs. Alternatively, and more frequently, the same stabilizing functional

is derived from the local internal energy function of the springs. To further simplify this

we will only consider half the setup as shown in figure 6.2(b). Assuming constant stiffness

k for all springs, and small deformations we can write this internal energy function as:

W (α, k, u) = αk
(

(u1(c)− u1(p))2 + (u2(b)− u2(p))2
)

(6.19)

6The fact that reasonable results have often been obtained using this first order regularization model

probably has to do with the quality and density of the input data um. Given perfect data no model is

needed, and given very good data, even a poor model will do a reasonable job.
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Next we note that ∂u1
∂x1

= u1(c)−u2(p)
l and ∂u2

∂x2
= (u2(b)−u2(p)

l , where l is the length

of the springs. Substituting for these we get:

W (α, k, u) = αkl2
((∂u1
∂x1

)2
+
(∂u2
∂x2

)2)

= λ
((∂u1
∂x1

)2
+
(∂u2
∂x2

)2)

(6.20)

This can be recognized is a form of the first order regularization functional of equation

(6.12), with all the constants αij , i 6= j equal to zero. Further we note that using the

second half of figure 6.2(a) will result in another expression of the same form and the two

can be added to yield the final expression.

This model now is a simplification of an infinitesimal isotropic linear elastic model

(see equation (5.15)), with the Poisson’s ratio ν = 0. This implies that shearing is not

penalized. One way to fix this is to add diagonal springs as shown in figure 6.2(c).

However at this point it is probably easier to abandon this discrete model and go to the

full continuum model.

6.2.4 A Second-Order Regularization Functional and the Affine Model

Another common model is the second order regularization functional, which in two di-

mensions has the form:

û = argmin
u

( ∫

V
α
((∂2u

∂x2

)2
+
(∂2u

∂y2

)2
+
( ∂2u

∂x∂x2

)2
+

(∂2u2
∂x2

)2
+
(∂2u2
∂y2

)2
+
( ∂2u2
∂x∂x2

)2)

+(u1 − um1 )2 + (u2 − um2 )2 dx1dx2
)

(6.21)

The solution to this takes the form known as the ‘thin-plate’ spline as used by

Bookstein and others[12]. It is again interesting to note the limiting case where α→∞.
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In this case u and v take the form:

u1 = a1x1 + b1x1 + c1 , u2 = a2x1 + b2x2 + c2 (6.22)

which is the affine mapping. So if α =∞ the process of solving equation (6.21) is reduced

to estimating a parametric form of the displacement as defined by equation (6.22), using

a straightforward least-squares approach.

This model, unlike the first order regularization model, is invariant to rigid ro-

tation and hence satisfies the axiom of objectivity. It is, however, also invariant to an

affine transformation which means that there is some deformation for which there is no

penalty, as the affine transformation can also change the shape of the object. This is a

problem in real tissue we do not have energy free deformations.7

6.3 The Use and Abuse of Linear Elasticity

The isotropic infinitesimal linear elastic model was most likely introduced into the medical

image analysis literature as a means of avoiding the arbitrariness of setting parameters

for the generic first-order regularization model. The isotropic linear elastic model has

two8 parameters, the Young’s modulus and the Poisson’s ratio. Moreover by virtue of the

observations of section 6.1.4, the absolute value of the Young’s modulus is not important,

only its ratio to the highest data confidence is important.

There are two fundamental problems with the use of this model: (i) the obvious

restriction to small deformations, and (ii) a bias towards no deformation. While problem

(i) is important and easy to observe from the name of the model9, it is (ii) that constitutes

7The exception is the case of actively deforming tissue, see section 6.4.

8Compare this with the possible nine parameters in the generic first-order regularizer of equation

(6.12). Even though these nine parameters can all be set to be equal, hence reducing the number to one,

there is no principled reason for doing so.

9This is also easily solved by using a finite strain formulation and perhaps also a non-linear elastic
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the bigger problem. Often, given poor performance, there have been solutions proposed

with problem (i) in mind (such as the fluid model) whereas the real problem was problem

(ii). Also, even when problem (ii) was observed[31] the solutions were ad-hoc.

The problem of bias The easiest way to see the bias problem is the following: Since

the elastic model penalizes all deformations, any estimation framework which uses it

as a prior model or internal energy model as defined in equations (6.4) and (6.1) will

underestimate the actual deformation. The linear elastic model can be thought of as a

prior probability density function on the strain with zero mean and variance proportional

to the reciprocal of the Young’s modulus.

When the linear elastic model is used to regularize estimates of myocardial defor-

mation (with strains of the order of 20− 30%) this causes serious problems.

In some respects the thin-plate spline model of section 6.2.4 has an advantage

here in that it penalizes the deviation from an affine transformation and not the total

transformation. If most of the deformation can be captured by an affine model this would

effectively only generate a bias in that component of the deformation left over after the

affine transformation. This is probably why it is successfully employed in many brain

registration problems.

A number of methods have been proposed to implicitly deal with this problem, we

discuss these next, but note that none of these has dealt with the cause of the problems,

they are in sense trying to limit, with varying degrees of success, its effects.

6.3.1 Zero Stiffness

One approach by Park[80] eliminates the elastic model altogether and provides some noise

reduction by temporal filtering. While this eliminates the problems associated with bias

it also forfeits all the usefulness of exploiting the spatial relationships between different

points in the model. The method is successful in part because the input data are very

clean.

model.
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Figure 6.3: Example of bias in the maximum a-posteriori approach. The bias is the

difference between the true solution and the actual solution. Note that the bias is more

pronounced as the true solution (the maximum of p(um|u)) deviates more from the prior

mean (which is zero).

6.3.2 Bias Correction

This is essentially the approach we use in chapter 7. If at the end of a step there is some

known information about the position of a point, (that is should lie on a surface or line),

the point gets mapped to this surface via a ‘nearest’ neighbor method. This eliminates

bias in some directions but not others (i.e. bias is corrected perpendicular to the surface

but not along the surface).
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6.3.3 The History-Free Approach

In this case the problem is divided into a number of small steps and at the start of each

step the strain is assumed to be zero.10 By splitting the problem into many small problems

the effect of the bias is reduced, as in each step the deformation is small. Consider the

example shown in figure 6.3. In case (A) the whole measurement 2r is applied at once

resulting in a large bias 2r−z. In the second case (figure 6.3) the measurement is applied

incrementally in two steps B and C. In step B we apply a displacement r and we get an

output z1. If the process does not remember the past, for the second step C, though we

apply a displacement 2r, in practice this is the same as 2r− z1 as the new position of the

solid is taken to be the rest state. So in this case p(u) has a mean of z1. This reduces

the bias in the second step resulting in a better overall estimate and a bias reduction.

The incremental approach substantially reduces the bias, but as the history of

the deformation is lost at each step it cannot capture issues such as relative hardening of

parts of the model. Hence in this way we cannot capture aspects of real materials such as

progressive hardening with increased strain (using non-linear elastic models) as at each

step the strain is assumed to be zero. We also note that this is the approach effectively

used in deformable model segmentation and optical flow estimation where at each step

the model is assumed to be deformation free.

6.3.4 Fluid Model

This is essentially the limiting case of the history free approach. In the work of Christensen[17]

it takes the differential form:

µ∇2v + (λ+ µ)∇(∇.v) = F (6.23)

10This is part of the solution used in chapter 7 of this thesis in the estimation of left ventricular

deformation.
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where F is the image derived forcing function and v is the local velocity vector related

to the displacement u as[17]:

v =
du

dt
=
∂u

∂t
+

3∑

i=1

vi
∂u

∂xi
(6.24)

where in this definition u and v are defined is a Eulerian Framework, as opposed to the

standard Lagrangian framework used in solid mechanics.11

The isotropic linear elasticity model can also be written in differential form by

differentiating the energy functional posed in equation (6.1) and generating a force F

by grouping together all external displacements um. This takes the form (as derived in

Christensen [18]):

µ∇2u(X) + (µ+ λ)∇(∇.u(X)) = F (6.25)

where λ and µ are the Lamè constants which are defined in terms of the Young’s modulus

E and the Poisson’s ratio ν as[49]:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

If we compare equations (6.23) with (6.25) we see that they are essentially the same,

with the one being in terms of the velocity v and the other in terms of the displacement

u. The fluid model can be seen to be the limiting case of the history free approach

of the previous section (section 6.3.3) as the step size goes to zero. First note that

11In the Lagrangian formulation the vector u is attached to the particle originally at location X whereas

in the Eulerian formulation u is the displacement of the particle currently at this position. As Strang

points out, in the context of Fluid Mechanics[96]: “The fluid is flowing past Euler, who sits at a point

and watches Lagrange go by.”
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v = limδt→0
u(t+δt)−u(t)

δt . Then if the problem were solved using the history-free approach

and a large number of steps the effective displacement u would approach the velocity as

the step size gets smaller.

The ‘fluid-model’ approach has the advantage of explicitly stating its assumptions

properly and possibly some numerical advantages. However it does not essentially change

the solution that would have been obtained given the history-free approach and a linear

elastic solid.

6.4 Active Elastic Models

6.4.1 Problems With Passive Models

The rational for the use of biomechanical models in the recovery of soft tissue deformation

from medical images, is that they capture something of the real material properties of

the object. If the object though, as in the case of the left ventricle, is deforming actively,

a passive model such as those discussed earlier in this chapter has severe bias problems.

We can try to deal with the effects of the bias problems in a number of ways as

discussed in the previous section, but none of these methods can provide the following

properties:

1. Incorporate a prior model for the deformation which preferentially penalizes some

deformations but not others.

2. Include the ability to model the deformation from start to finish and at any time

in the process penalize the deformation from the original state.

Regarding the first point, most elastic models will penalize deviations from rigid

motion, that is all deformations. Models based on the thin-plate spline (see section

6.2.4) penalize any deviations from an affine deformation. This would be a good choice

if we knew that the true deformation was on average affine, but this is not very likely in

arbitrary soft tissue deformation.
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The second point would allow the imposition of constraints such as fiber hardening

or locking. In the case of the left ventricle (and generally where elastomers are concerned)

a material will become rigid in certain directions after a certain amount of deformation.

Any attempt to deform it further in this direction will result in a twisting motion as the

deformation has to be captured in a direction other than the one that has locked.

6.4.2 A Proposed Extension

One possible correction for the elastic models is the adjustment of the model for non-zero

bias. Consider the following generalization of the standard linear elastic model, which we

will label the active elastic model :

W = (e− ea)′C(e− ea) (6.26)

This is the equivalent of having a non-zero mean prior probability density for the defor-

mation. The strain e is divided into two parts. The part ea which is energy free and the

part e− ea which is penalized. If this model where used, we would be assuming that the

expected value of the deformation would be close to ea and not to zero as is currently

done. This has the advantage over the thin-plate spline model (which also penalizes only

part of the deformation) of being able to map the the active deformation directly in terms

of local strains.

6.4.3 A Hierarchal Estimation Scheme for Finding the Active Compo-

nent

In this scheme we are proposing an approach for solving for the active component ea in a

multi-frame estimation setup, such as for left ventricular deformation. The problem is to

be solved in an iterative fashion where we iterate over the frame-set a number of times

until convergence.

The first step in the approach is the generation of a database of strains from a

previously analyzed set of experiments of the same type. We will label this prior database
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to generate a prior probability distribution for ea, p(ea), with mean ed.

At any given frame we label the value of the strain at the previous time frame as e−

and the value at the next frame as e+ if these are available (unless it is the first iteration we

will have estimates of these.) We use this to generate the average strain et = 0.5(e−+et),

and we model the difference et − ed with a zero mean Gaussian distribution as:

p(et|ea) = k exp (−(et − ed)′Σ−1(et − ed)) (6.27)

Then êa can be defined as the maximum a-posteriori estimate of ea given measurements

et and the prior probability density function of ea derived from the strain database. Thus

ea would take the form:

êa =
argmax

ea
p(et|ea)p(ea) (6.28)

This best estimate of ea, êa can then be used as the mean from the prior probability

density function of e itself, by inserting it into the ‘active’ energy function of equation

(6.26).

We further note that there is an interesting side issue here. In equation (6.26)

the matrix C plays a role similar to the covariance matrix. However we can determine

an alternative covariance matrix from the estimation of êa. It is not clear what the

best choice ought to be, but it is possible that the matrix C could also be adjusted to

take account of the probabilistic variation of the strains given the values of the adjacent

frames and the strain database. If for example the strain in a particular direction does

not vary over a number of experiments we would be tempted to increase the stiffness in

that direction to keep this variation low regardless of whether this would contradict the

underlying material properties. In practice, one would hope, that the strain along stiffer

material directions, as measured from biomechanical experiments, would be less variable

and hence C as derived from the model would be close to the estimated covariance of e

as derived from the strain database.



Chapter 7

Estimating Left Ventricular

Deformation

In this chapter we turn our attention to the major practical application in this thesis: the

estimation of left ventricular deformation from three-dimensional medical images from a

variety of modalities.

In section 7.1 we first describe how the images were acquired. Following this

in section 7.2 we focus on how the general methodology developed in chapters 3–6 was

applied to the analysis of the left ventricular image sequences. In section 7.3 we compare

the output of the algorithm to implanted sonomicrometers and markers used as a gold

standard. Finally in section 7.4 we describe the output of this method from various

datasets and see how these correlate with invasive measurements such as histochemical

markers of infarction and measures of myocardial blood flow.

7.1 Image Acquisition

7.1.1 Canine MR-images

ECG-gated magnetic resonance imaging was performed on a GE Signa 1.5 Tesla scanner.

Axial images through the LV were obtained with the gradient echo cine technique. The

imaging parameters were: section thickness=5 mm, no intersection gap, 40 cm field of

114



115

Myocardium

Left−Ventricular
Blood−Pool

3D Ultrasound
probe

Ultrasound 
Gel Pad

Figure 7.1: Image acquisition geometry for the 3DE images, in the case of open chest

dogs.

view, TE 13 msec, TR 28 msec, flip angle 30 degrees, flow compensation in the slice and

read gradient directions, 256 x 128 matrix and 2 excitations. The resulting 3D image set

consists of sixteen 2D image slices per temporal frame, and sixteen temporal 3D frames

per cardiac cycle, with an in-plane resolution of 1.6mm and a slice thickness of 5mm. The

dogs were positioned in the magnetic resonance scanner for initial imaging under baseline

conditions. The left anterior descending coronary artery was then occluded, creating

an infarcted region producing mechanical dysfunction, and a second set of images was

acquired. An example of such an acquisition was shown in figure 2.2. In some of the

studies, markers were implanted for validation purposes. This will be discussed in more

detail in section 7.3.

7.1.2 3D Echocardiography (3DE)

The 3DE images were acquired using an HP Sonos 5500 Ultrasound System with a 3D

transducer (Transthoracic OmniPlane 21349A (R5012)). The 3D-probe was placed at the
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apex of the left-ventricle of an open-chest dog using a small ultrasound gelpad (Aquaflex)

as a standoff. This is illustrated in figure 7.1. Each acquisition consisted of 13–17 frames

per cardiac cycle depending on the heart rate. The angular slice spacing was 5 degrees

resulting in 36 image slices for each 3D frame. In some of the studies we also implanted

sonomicrometer crystals for validation, see section 7.3 for the details.

7.1.3 Human MR-images

The Human MR images were acquired using breath-hold techniques at 16 slice levels.

These acquisitions provide exquisite full, cine-3D image sequence magnitude data within

several minutes at a spatial resolution of 1.5mm x 1.5mm x 5mm and a temporal resolution

equal to the duration of the cardiac cycle divided by 20 phases (usually around 40msec).

7.1.4 Dynamic Spatial Reconstructor Data

The Dynamic Spatial Reconstructor is a three-dimensional X-Ray computed tomography

scanner at Mayo Clinic. It can provide accurate, stop-action images of moving organs of

the body. The canine data we are using was acquired at 33 msec frame intervals in real

time, with the spatial resolution of 0.91mm in all three dimensions. For more information

the reader is referred to Robb[88].

7.2 Image Analysis

7.2.1 Segmentation and Shape-Based Tracking

The endocardial and epicardial surfaces were extracted interactively using a software plat-

form [76] which was described in section 3.4. In the case of the 3DE images the contours

were extracted from the original images then resampled to generate planar contours in

Cartesian space, to match the output from the MR and the DSR data. Interpolated

contours were generated between the extracted ones using chamfer interpolation (see sec-

tion 4.1.1) to give isotropic sampling of the resulting surfaces. The distance between

adjacent points on the surface was approximately 0.5 voxels. The surfaces were then
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reconstructed using Delaunay Triangulation (section 4.2.1) and smoothed using the non-

shrinking algorithm described in section 4.2.2. Curvatures were calculated (section 4.2.3)

and the shape based tracking algorithm applied to generate a set of initial matches and

confidence measures for all the points on the surface. (see section 4.4)

Probabilistic modeling the initial displacement estimates: Given a set of dis-

placement vector measurements um and confidence measures cm, we model these estimates

probabilistically by assuming that the noise in the individual measurements is normally

distributed with zero mean and a variance σ2 equal to 1
cm . In addition we assume that the

measurements are uncorrelated. Given these assumptions we can write the measurement

probability for each point as:

p(um|u) = 1√
2πσ2

e−
(u−um)2

2σ2 (7.1)

This constitutes the data term of the deformation model.

7.2.2 Modeling the myocardium

The myocardium is modeled as a transversely isotropic linear elastic solid. This model

is described in section 5.2.1 and enabled us to capture the preferential anisotropy of the

tissue along fiber directions. The fiber orientations were modeled using the model of

Guccione et al [39] which resulted in the fiber pattern shown in figure 5.2.

This model assumes that fibers lie in the plane defined by the local circumferential

(C) and longitudinal (L) axes. First we define the cardiac-specific coordinate system

shown in figure 7.2. In the undeformed state, the radial (R) axis points outwards, the

circumferential axis (C) is along the circumference of a planar section and the longitudinal

axis (L) is vertical. The fiber (F) and cross-fiber axis (X) lie in the plane defined by C

and L. The fiber orientation can then be defined by the angle θ as shown in the diagram.

The epicardial fiber angle varied between −43◦ at the base and −53◦ at the apex, and

the endocardial fiber angle varied between 82◦ at the base and 97◦ at the apex. All the
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Figure 7.2: Coordinate system used to define fiber orientation. The fiber direction (F)

lies in the plane defined by the circumferential (C) and longitudinal axis(L) at an angle

θ anti-clockwise from the circumferential axis.

other fiber angles can be found by linearly interpolating both along the vertical and the

radial directions[39].

The model resulted in an internal energy functionW (C, u), where C represents the

material properties and u the displacement field. This was used to generate an equivalent

prior probability density function p(u) of the Gibbs form:

p(u) = k1 exp(−W (C, u)) (7.2)

Geometrically the myocardium was discretized using the algorithm described in

section 4.3 to produce a hexahedral mesh. This mesh consisted of 1000− 2000 elements

(depending on the geometry).
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7.2.3 Integrating Model and Data

Having defined both the data term (equation (7.1)) and the model term (equation (7.2))

as probability density functions we naturally proceed to write the overall problem in a

Bayesian estimation framework. Given a set of noisy input displacement vectors um,

the associated noise model p(um|u) (data term) and a prior probability density function

p(u) (model term), find the best output displacements û which maximize the posterior

probability p(u|um). Using Bayes’ rule we can write.

û =
argmax

u
p(u|um) =

argmax

u

(p(um|u)p(u)
p(um)

)

(7.3)

The prior probability of the measurements p(um) is a constant once these mea-

surements have been made and therefore drops out of the minimization process. In this

expression we also note that there is an undefined constant. This is the scaling factor ksc

that translates the stiffness of the mechanical model to the effective maximum value of the

covariance matrix of its equivalent probability density function p(u). This was discussed

in more detail in section 6.1.4. The value of this constant (ksc) sets the relative weight of

the data term to the model term. We set this adaptively to be as large as possible (which

pushes the optimum towards the data side) subject to solution convergence. In this way

we make the following assumption: the best solution is the one which adheres as much as

possible to initial estimate of the displacement field but still results in a connected solid.

Convergence fails when the Jacobian of the deformation field1 becomes singular. In this

case we lower the value of this weight to produce a smoother displacement field.

Model bias and correction: We also note that the mechanical model prior is gener-

ated by a passive biomechanical model. As this does not capture the active deformation

of the heart, it has a major weakness in that it penalizes all deformations. This model

could be thought in some sense as having a mean of zero strain and a variance propor-

1The Jacobian of the deformation is the matrix F defined in figure 5.1.
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tional to the reciprocal of the stiffness. It will tend to bias the strain estimates towards

zero. As a certain amount of deformation does occur the use of this passive model results

in an underestimation of the deformation. At this point the problem is dealt with by

forcing the nodes which lie on the endocardial and epicardial surfaces at time t to lie on

the segmented surfaces at the time t+ 1. (See also section 6.3.)

7.2.4 Numerical Solution

Taking logarithms in equation (7.3) and differentiating with respect to the displacement

field u results in a system of partial differential equations, which we solve using the finite

element method [9]. This is almost identical to the example problem described in section

5.3.

For each frame between end-systole (ES) and end-diastole (ED), a two step prob-

lem is posed: (i) solving equation (7.3) normally and (ii) adjusting the position of all

points on the endocardial and epicardial surfaces so they lie on the endocardial and

epicardial surfaces at the next frame using a modified nearest-neighbor technique and

solving equation (7.3) once more. This ensures that there is a reduction in the bias in

the estimation of the deformation.

7.2.5 Strain Analysis

For the purpose of analyzing the results, the left-ventricle of the heart was divided into

a number of cross-sectional slices, slice 1 being at the apex of the ventricle, with the

slice number increasing towards the valve plane. Each slice was further subdivided into

8 sectors, as shown in figure 7.3. We report, depending on the application, the average

of radial(RR), circumferential(CC) and longitudinal(LL), fiber (FF) and cross-fiber (XX)

strains for these sectors. In some cases we will report average strains over endocardial

and epicardial half-sectors, again as shown in figure 7.3 in the case of sector 7.
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Figure 7.3: Division of the left ventricle(LV) into slices and sectors for the the purpose of

reporting results, and comparing the postmortem and regional blood flow data. In this

example the LV is divided into four slices, although this number differed depending on the

size of the LV and the purpose of the data analysis. Each sector consists of approximately

75 elements in the finite element mesh. In some cases we divide each sector into two half-

sectors, an endocardial half-sector and an epicardial half sector. (For an example see

sector 7.)

7.2.6 Measures of Myocardial Viability

In this section we present two techniques used to invasively assess myocardial viability.

The results of these techniques are used to assess whether the image derived strains are

an effective measure of the underlying state of the tissue, that is if they can be used to

distinguish between different pathophysiological states of the myocardium.

Postmortem: Triphenyl-Tetrazolium Chloride (TTC) staining was used to define the

extent of cell necrosis (death) following five hours of coronary occlusion, thus defining the

area of actual injury in the tissue. The regional volume of the postmortem injury zones

are found by digitizing color photographs of the TTC–stained post mortem myocardial
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Figure 7.4: Labeling of sectors on one postmortem slice based on TTC staining. A

sector was labeled as Infarct (INF) if the injury extended around the full extent of the

endocardium within the sector. When the infarct area was less substantial (< 25%) the

sector was labeled as Mixed (MX). In cases where a sector had little or no injury zone

but was next to a MX or an INF sector it was labeled as a Border (BD) (This part of the

labeling also accounted for the labels of the sectors in slices above and below the sector).

All other sectors were labeled as normal (NL).

slices (5mm thick) from the excised hearts. The endocardial, epicardial and infarction

zone boundaries of each post mortem left ventricular slice are hand-traced, aligned, and

stacked to reconstruct the three-dimensional profile of the injury zone. Each slice is

divided into 8 sectors, as was the case with the regional strains (see figure 7.3). Each sector

is then labeled as Infarct (INF), Mixed (MX), Border (BD) or Normal (NL) depending

on the percentage of injury within the sector and the labels of the neighboring sectors as

described in figure 7.4. We also calculate the percentage of the injury in each sector.

Regional Blood Flow: In the 3DE studies, where the postmortem information was

not available, the regional blood flow in the myocardium was used to identify the un-



123

derlying functional state.2 The regional blood flow was determined using a radio-labeled

microsphere technique. Here, radio-labeled microspheres were injected into the left atrium

and reference blood samples were drawn from the femoral arteries. Regional myocardial

blood flow was calculated using a method previously described by Sinusas et al[92]. We

again divide the left ventricle into four slices (as shown in figure 7.3) and each slice into 8

sectors. A sector is considered to be in the risk area if endocardial microsphere flow was

less than 0.25ml/min/g at the time of the occlusion. In the case of LAD occlusion the

normal region was defined by 5 transmural sectors located in the posterior lateral wall

at the base of the heart (sectors 5,6,7 of the basal slice and sectors 6,7 of the mid-basal

slice).

7.3 In-Vivo Validation

In this section we present validation of the image derived strains using implanted markers

and sonomicrometers as gold standards. We note that, to the best of our knowledge, this

is the only such validation currently in the literature.

7.3.1 Implanted Image-Opaque Markers:

Methodology: To validate the image-derived strains markers were implanted on canine

hearts as follows: First the canine heart was exposed through a thoracotomy. Arrays of

endocardial, midwall and epicardial pairs of markers were then implanted as shown in

figure 7.5. They were loosely tethered, combinations of small copper beads (which show

up dark in the MR images) at the endocardial wall and the midwall region and small

plastic capsules filled with a 200:1 mixture of water to Gd-DTPA at the epicardial wall

(which show up bright in the MR images). Marker arrays were placed in two locations

on the canine heart wall. The location of each implanted marker is determined in each

temporal frame by first manually identifying all pixels which belong to the marker area

2These blood flow measurements were also available for the canine MR studies, but since the post-

mortem information was also available, the blood flow measurements were not used in that case.
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Figure 7.5: Implantation of Image-Opaque Markers. This figure shows the arrangement

of markers on the myocardium. First a small bullet-shaped copper bead attached to an

elastic string was inserted into the blood pool through a needle track. Then the epicardial

marker was sutured (stitched) to the myocardium and tied to the elastic string. Finally,

the midwall marker was inserted obliquely through a second needle track to a position

approximately half-way between the other two markers.

Endo     Mid     Epi
Marker Centroids

Identified Point

Figure 7.6: Localization of implanted markers. Arrays consisting of 12 markers each were

placed at two positions on the left ventricle. In this figure, we show the portion of one

marker array as it intersected a short-axis MR image slice. A human observer identified

the pixels corresponding to each marker (left) and the marker positions (right) were found

by calculating centroids of these points.
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R2   = 0.89
S.E.= 0.08

Figure 7.7: Algorithm-derived Strains vs. Implanted Marker-derived Strains. Left: Re-

constructed LV volume from cine-MRI at ED with marker positions noted as spheres

(red=endo,yellow=mid,green=epi). Right: Scatter plot of principal strains derived from

baseline and post-infarction cine-MRI studies using algorithm vs. same strains derived

from implanted marker clusters at two positions in the LV wall for N = 4 dogs (There

was a total of 12 useable extracted marker arrays).

(because of imaging artifacts the marker ‘image’ extends to more than one voxel) and

then computing the 3D centroid of that cluster of points, weighted by the grey level3.

Figure 7.6 shows a short-axis MR slice of the heart with the identified marker pixels

shown in blue (left). The marker centroids are shown on the right.

Results: The image-derived strains were compared to strains derived from implanted

markers. In the case of the markers the strains were computed as follows using only the

epicardial and endocardial markers. In each region of the LV that contained markers,

groups of either 6 or 8 markers (depending on the geometry) were connected to form

either prism or hexahedral elements. Given the known displacements, we then calculated

the strains in these markers. These strains were compared to the average strains in the

3In the case of dark markers the image is first inverted.
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elements contained within each marker array. We used principal strains4, as the marker

arrays where large and included elements where the cardiac-specific directions varied

widely.

Comparison results are shown in figure 7.7 for N = 4 dogs (2 acquisitions per

dog, one pre-occlusion and one post-occlusion). We observe a strong correlation of the

principal strain values (r2 = .89).

7.3.2 Sonomicrometers

Methodology: In the case of the 3DE images we validate the strain estimates using

implanted sonomicrometers. The canine heart is again first exposed through a thora-

cotomy. With the aid of an implantation device constructed in our laboratory, two

crystal-arrays each consisting of 12 crystals (3 sub-epicardial, ∼2.0 mm, 6 mid-wall and

3 sub-endocardial, ∼0.75 mm diameter) were placed in the heart wall. To define the LV

long axis a crystal was implanted in the LV apex and two at the base of the LV, one

near the bifurcation of the left main coronary artery and the second in the posterior wall.

Finally, to define a fixed coordinate space, 3 crystals attached to a plexi-glass frame were

secured in the pericardial space under the right ventricle.

Digital sonomicrometry employs the time of flight principal of ultrasound to mea-

sure the distance between a transmitter and a receiver. A total of 32 crystals are used

in each study. The distances between all possible pairs of crystals are recorded along

with LV and aortic pressure at a sampling frequency of greater than 125 Hz. There are

a number of preprocessing steps involved in obtaining the positions of the crystals over

time from the crystal to crystal pair lengths. These are described by Dione et al[27].

The efficacy of this technique was illustrated by additional work [69] that showed that

the distances obtained with sonomicrometers compared favorably (r = 0.992) with those

obtained using the more established technique of tracking implanted bead displacements

using biplane radiography.

4These are defined in section 5.1.4.
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Figure 7.8: 3DE Algorithm-Derived Strains vs. Sonomicrometer-derived Strains. Left:

Placement of arrays of sonomicrometers in the Left Ventricular Wall. Right: Scatter plot

of principal strains derived from N=3 3DE studies using the algorithm vs. same strains

derived from sonomicrometer arrays (12 crystals in each cluster) at two positions in the

Left Ventricular wall. Note the high correlation between the two sets of strain values

(r2 = .80).

Results: We compared our image-derived strains to concurrently-estimated sonomicrometer-

derived strains at several positions in the LV myocardium in the same dogs. The sonomi-

crometers were visually located from the images and the two nearest sectors of algorithm-

derived strains were selected for comparison purposes. The comparison of the principal

strain components in two separate regions for a set of 3 studies (the sonomicrometer data

was not available for study ‘D4’) showed a strong correlation (r2 = 0.80). Here we com-

pare the principal strains as it is difficult to estimate the cardiac specific directions in the

case of the sonomicrometer data. A scatter plot of algorithm-derived principal strains

versus sonomicrometer derived principal strains is shown in figure 7.8. This validation

is still in a preliminary stage and we hope in the future to also validate strain patterns

which are not fully averaged across the wall.
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Figure 7.9: Average strain information at baseline for N=8 dogs. Endocardial (EN)

vs. epicardial strains (EP) are significantly different for all strains except longitudinal

(p < .05); Note that RR=radial, CC=circumferential, LL=longitudinal, FF=along fiber,

XX=cross-fiber strains.

7.4 Results

In this section we presents results obtained using this algorithm on Magnetic Resonance

(both canine and human), 3D Echocardiography and DSR Images. Further, in the case

of canine MR we compare the results with postmortem information and in the case of

3DE with myocardial flow measurements. No complementary measure was available for

the human MR and the DSR images.

7.4.1 Canine MRI

Normal: For reporting purposes, the left ventricle was divided into three slices each

consisting of eight sectors. We observed uniformity of Radial (R) and Circumferential

(C) strains (ranges: R:15 ± 6% to 23 ± 7%; C:−9 ± 5% to −12 ± 2%). Regional LV

strains and shears were consistent between dogs and comparable to values derived using

both implanted markers and MR tagging [21]. Figure 7.9 shows average strains in the
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Figure 7.10: Baseline (normal) canine LV strains derived from cine-MRI. Development

of radial and circumferential strain at 3 slice levels in 8 radial sectors in a single study.

Each plot shows the strain evolution from ED to ES in 2 transmural halves (endocardial

half=blue, epicardial half=magenta).
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Figure 7.11: Strain Development in Post-Infarction (and vs. Baseline) Canine LV derived

from cine-MRI. Left side: mid-ventricle cutaway views through the 3D reconstructed

volume show the strain patterns that develop at 1/3, 2/3 and 3/3 of the time between

ED and ES. The leftmost displays illustrate the circumferential (CC) strains (normal

ED-ES shortening is in the blue-green region). The displays just to the right show the

radial (RR) strains (normal ED-ES thickening in yellow-red region).

endocardial half-sectors and the epicardial half-sectors. Note that statistically significant

differences were observed between the endocardial and the epicardial half-sectors.5

Figure 7.10 shows the temporal development of Radial and Circumferential strains

from End-Diastole (ED) to End-Systole (ES) for one canine study. Here we plot strain

for half-sectors (each sector is divided into an endocardial half and an epicardial half).

This is also illustrated in the top half of figure 7.11 which compares the raw non-averaged

strain patterns with those obtained after LAD occlusion.

5In the simplified case of a thick cylinder contracting without changing its volume, it can be shown

that the in-plane (perpendicular to the long-axis of the cylinder) deformation varies as a function of 1
r2

where r is the distance from the long axis. Hence, were this model to be applied in the case of the

left ventricle, it would predict that the radial and circumferential endocardial strains would be larger

than the corresponding epicardial strains. While this model offers a course approximation to the actual

deformation, it is nice to see that the real results are in qualitative agreement with it.
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Figure 7.12: Average radial and circumferential strains (vertical axis is %

strain) for different postmortem-classified regions, from N=8 post-occlusion

cine-MRI studies. Note that CC is able to separate all classifications

(INF=infarct,MIX=mixed,BD=border,NL=normal), while RR can only separate

NL from the other classifications.

Post-Occlusion The occlusion of the LAD causes significant changes in the observed

strain patters as expected. A pre-occlusion/post-occlusion comparison is shown in figure

7.11. This shows the same pattern as the raw images shown in figure 2.2.

For quantitative analysis, the ventricle was divided to have the same number of

slices as the histochemical staining maps of the actual injury zone, to make registration

between the two easier. In the first part of the analysis each slice was further subdivided

into eight sectors. The histochemical staining maps were used to label these sectors as

one of four categories: infarcted (INF), mixed (MIX), adjacent (BD), and normal (NL).

Given the relative uniformity of the radial and circumferential strains from the

normal data-set, we tested whether any of the strain components as estimated in the

post-occlusion studies could be used to discriminate between these different classes (INF,

MIX, BD, NL). We found that the circumferential strain discriminated all myocardial

regions to a level of significance p < 0.05. This demonstrated that this methodology can

be applied to discriminate different regions non-invasively as shown in figure 7.12.
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p<0.05

Figure 7.13: Results from Nontransmural (N = 6) vs. Transmural (N = 6) Acute

Canine Studies: Shown are the 3 principal strains (p1,p2,p3) derived from cine-MRI.

Note significant difference in first principal endocardial strain.

In the second part of the analysis we attempted to see whether this methodol-

ogy could distinguish between animals where there was post mortem-confirmed globally

transmural injury, as opposed to nontransmural injury. Here, we used 12 studies per-

formed experimentally and imaged as described above, which separated into two N = 6

groups based on the following post mortem criteria. The first group, labeled transmural,

contained the dogs that had two or more post mortem infarct (I) sectors with greater

than 75% injury. The other dogs were placed into the nontransmural group. For testing

purposes, we then compared the principal strains within the endocardial and epicardial

halves of 1.) the sectors having greater than 75% infarct in the transmural dogs and 2.)

the sectors having greater than 25% infarct in the nontransmural dogs. We found that

there was a significant difference between the transmural and nontransmural dogs in the

values of the endocardial, first principal strains, indicating the plausibility of using 3D

strain for separating these physiological states. A graph of all of the endocardial and

epicardial principal strains for both the transmural and nontransmural dogs is shown in

figure 7.13.
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Figure 7.14: “3DE-tissue-tagging”- a slice through a 3D visualization with the algorithm-

driven deforming mesh overlaid on one slice through a 3DE dataset at four time points

between ED and ES. This demonstrates the output of the algorithm which tries to follow

(or tag) material points in time, similar to the Magnetic Resonance Tagging approach.

7.4.2 3D Echocardiography

We report here on results from 3DE studies (N = 4). The images were obtained either

before (D1 and D2) or after occlusion of the left anterior descending coronary artery (D3

and D4), using the procedure described in section 7.1.2

The potential of our methodology is illustrated in figure 7.14, which shows a cut

through our tracked 3D mesh overlaid on a slice through the original 3DE image data

over time. This could be seen as a form of software-derived, 3DE-based “tissue tagging”

somewhat in the sense of MR tagging. Note the spreading grid lines near the endocardium

on the right as the LV thickens from ED to ES. There is also an infarct region in the

lower left half of the image which exhibits bulging instead of contraction. The progressive

development of regional radial and circumferential strains for ‘D3’ is shown in figure 7.15.
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Figure 7.15: A long-axis cut-away view of the LV showing 3DE-derived circumferential

(top) and radial (bottom) % strain development at 4 time points between ED and ES

in a dog following LAD occlusion (on the lower right half of the heart). The strains

shown here are averaged in eight transmural sectors in each slice as described in figure

7.3. Note the normal behavior in the left half of the heart, showing positive radial strain

(thickening) and negative circumferential strain (shortening) as we move from ED to ES.

The lower right half of the heart where the affected region was located showed almost the

opposite behavior, as expected.
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Study D1 D2 D3 D4

Normal Radial Strain 17.7 13.8 22.4 17.2

Normal Circumferential Strain -13.4 -13.1 -8.4 -12.4

Normal Longitudinal Strain -4.3 -3.2 -3.4 -3.1

Risk Area Radial Strain n/a n/a -4.3 -13.7

Risk Area Circumferential Strain n/a n/a 1.9 -7.3

Risk Area Longitudinal Strain n/a n/a -0.7 -2.0

Table 7.1: Summary of results for four animal studies. There was no risk area (n/a=not

applicable) in studies D1 and D2 as the 3DE images, in these cases, were obtained before

coronary occlusion.

The quantitative results are summarized in Table 7.1. Function in the risk area,

which was independently defined by microsphere flow, was markedly reduced compared to

non-affected regions and the control normal animal. The radial strain is notably smaller

in the risk area after coronary occlusion. The circumferential strain becomes less negative

also indicating a loss of function. There was a small decrease in the longitudinal strain

as well.

It is interesting to note that in a recent publication, Croisille [21] reported sim-

ilar values (Radial=23.2± 1.9%, Circum.=−10.5± 2.0% and Long. =−7.5± 1.0%) for

strains in the normal regions of dog hearts using three-dimensional tagged MRI. How-

ever, they observed smaller reductions in strains post-occlusion, which can be attributed

to coronary reperfusion in their model. This probably allowed for partial recovery of

function in the risk region.
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Figure 7.16: Human cine-MRI-derived results. Left: Magnitude breath-hold ED and ES

images at a single slice level. Upper right: (see color scale in fig 7.11) radial strains at

3 long axis time points between ED and ES. Lower right: mean cardiac-specific strain

values for N = 3 studies at mid-LV.

ED

ES

Figure 7.17: Algorithm-derived Strains from Cine-CT (DSR) Images. Left: Example

axial slice from baseline dog study at end-diastole (ED) and end-systole (ES). Upper

right: Radial strains at 3 time points ED to ES. Lower right: Average radial (RR),

circumferential (CC) and longitudinal (LL) strains for N = 3 dogs.
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7.4.3 Human MRI

We also tested the algorithm on N = 3 sequences of breathhold images of normal human

subjects. The one difference in the processing, between these acquisitions and the canine

MR acquisitions, was that since, in this case, different 3D slice levels are acquired at

different breath holds, slices at the same time frame can be misaligned along the long

axis of the heart. We have corrected for this by manually aligning the data in each frame.

7.4.4 DSR

To show the utility of our strain computation approach in a third modality, it was also

tested on three cine-CT canine experiments performed by Dr. Erik Ritman, at the Mayo

Clinic, using the Dynamic Spatial Reconstructor (DSR). The results for a set of baseline

(normal state) dogs are shown in figure 7.17. Note that the values reported are in the

same range as strains from our own cine-MRI data and those from MR tagging [21].

7.5 Conclusions

In this chapter we have illustrated the application of the general methodology described

in this thesis to estimating left ventricular deformation from three-dimensional medical

images. We note that modality specific forms of data can be added to this general frame-

work. In the case of magnetic resonance such information could be derived from MR

tagging and/or phase contrast (see section 2.3). In the case of 3D Echocardiography

we could potentially used velocity data generated using Doppler ultrasound techniques

and/or displacement information generated from following graylevel patterns in the im-

ages, sometimes known as speckle tracking. However, we have tested the method so far,

only using shape-based displacements as an input. The results have been validated in-vivo

using implanted markers in the case of MRI and sonomicrometers in the case of 3DE. We

further demonstrate the usefulness of the estimated strains in determining myocardial

viability non-invasively.

Further research could include the use of the active model proposed in chapter
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6, to properly handle the bias problems inherent in the passive biomechanical model.

The active model could also be used as a means of incorporating a temporal continu-

ity/periodicity constraint (see section 6.4.2.)

Ultimately this deformation estimation algorithm could be combined with a seg-

mentation algorithm, to segment and track the LV within an integrated framework, where

the processing is done in an iterative fashion. The output of the segmentation algorithm

can be used as the input to the deformation estimation algorithm to generate an esti-

mate of the deformation (as was done in this thesis). Then the deformation estimation

algorithm (assuming the presence of an active model) could be used to generate a better

estimate of the segmentation. Then this new estimate of the segmentation can be used

to initialize the next iteration of the segmentation algorithm. This combination of the

two algorithms would then result in a closed-loop system, where information from the

segmentation algorithm is used to guide the deformation estimation algorithm and vice-

versa, and could potentially result in substantial savings in the time needed to obtain a

good segmentation of the images.
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