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A novel approach has been developed in this thesis for the problem of segmenting

volumetric layers, a type of structure often encountered in medical image analysis. This

approach is aimed towards the use of structural information to enhance the performance

of the segmentation process. While some organs have more consistent global shape and

can be characterized using a specific shape model, other anatomical structures possess

much more complex shape with possibly high variability which needs a more generic shape

constraint. The three-dimensional(3D) nature of anatomical structures necessitates the

use of volumetric approaches that exploit complete spatial information and therefore are

far superior to the non-optimal and often-biased 2D methods. Our method takes a volu-

metric approach, and incorporates a generic shape constraint – in particular, a thickness

constraint. The resulting coupled surfaces algorithm with a level set implementation

not only offers segmentation with the advantages of minimal user interaction, robust-

ness to initialization and computational efficiency, but also facilitates the extraction and

measurement of many geometric features of the volumetric layer.

The algorithm was applied to 3D Magnetic Resonance (MR) brain images for

skull-stripping, cortex segmentation and various feature measurements including cortical

surface shape and cortical thickness. Validation of the model was done through both



synthetic images with “ground truth” and a wide range of real MR images with expert

tracing results. As a natural follow up to the segmentation work, a new approach was

developed for the extraction of sulcal ribbon surfaces which are distinctive cortical land-

marks of the brain. This effective and efficient 3D method of sulcal ribbon extraction

has potential in a variety of applications such as the automatic parcellation of cortical

regions and the problem of geometry-constrained brain atlas building. The tools of cor-

tical and sulcal shape analysis developed in this work are of great importance to studies

of neuroanatomy through medical imaging, and are bringing about new understanding of

brain anatomy and function.
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Chapter 1

Introduction

1.1 Introduction

Segmentation and quantitative analysis of objects depicted in an image have tremendous

applications in the field of computer vision. For example, modern medical imaging tech-

nology provides exceptional views of internal anatomy by peering noninvasively into the

human body [92]. Medical imaging is playing an increasingly important role in diagnosis,

as well as in the planning and treatment of disease. In order to fully realize the value

of medical imaging in both clinical and research settings, information about anatomical

structures must be extracted and quantified from medical images with accuracy, efficiency

and reproducibility.

There are many sources of information to assist in the recovery of anatomical

structures of interest. Medical imaging techniques depend on differentiating properties

among tissue types, for example their density and water content. As a result, homogeneity

of features in an image, such as similarity of gray level and texture pattern, is displayed by

tissue belonging to the same anatomical region. A change in such characteristics is usually

1



2

evidence of the presence of a boundary between regions. Image gradient, a measure of

the intensity difference between neighboring voxels, and image curvature, an indicator

of corner information, are among the most commonly used features for estimating such

changes from images. While such image-derived sources of information are intuitive and

direct tools to use, they are often inconsistent due to the ambiguity in image content

caused by a host of artifacts, and are incomplete for defining coherent structure due to

the limitation that they provide only local information.

Structural information which reflects our knowledge of anatomy can be introduced

to help solve these problems. This knowledge can be the perception of the particular

shape of a certain structure, or the neighboring relationships between structures. This

type of information can be used in various ways. One simple thing to do is to use it

as a guideline for grouping or other post-processing after image classification. More

sophisticated methods investigate its integration into the mechanism of shape recovery

as a direct constraint. While some organs have more consistent global shape and can

be characterized using a specific shape model, other anatomical structures possess much

more complex shape with possibly high variability where a more generic shape constraint

is helpful or necessary. The successful incorporation of structural information depends

on the nature and purpose of a specific task. The challenge lies in having a model that

not only describes the structure to certain precision, but also permits variations in the

reflecting characteristics that are observed across different subjects [55].

The 3D analysis of anatomical structures that are volumetric in nature is made

possible by modern imagery such as MR and Computed Tomography (CT). Processing of

such volumetric images on a slice by slice basis is a labor intensive process, and requires

further processing to stack and interpolate results into 3D. Moreover, such processing can
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make incorrect assumptions by ignoring inter-slice correlation in a 3D image, and therefore

is often non-optimal or even biased. To obtain an accurate and robust segmentation of

3D anatomical structures, volumetric approaches are of particular importance.

1.2 Overview

This thesis is aimed at using structural information to assist 3D segmentation and analysis

of one type of structure that is encountered in medical image analysis – namely volumetric

layers of finite thickness bounded by two surfaces. Key examples include the myocardium

of the left ventricle (LV) and especially the cortical gray matter of the brain (see Figure

1.1). Others include vessel walls, the lining of the membrane inside the liver, and the

sigmoid wall of the bowel lumen.

Chapter 2 reviews related image segmentation techniques, concerning the use

of region-based methods, deformable model-based methods, the incorporation of shape

priors and the integration of the above, with an emphasis on 3D approaches. Background

knowledge of the level set method, which is the mechanism of surface propagation in our

work, is also given in this chapter.

In Chapter 3, we discuss the nature of the problem of segmenting a volumetric

layer, as well as the motivation behind using a coupled surfaces approach with a thickness

constraint. We discuss a level set narrow band technique that was developed especially

for the coupled surfaces propagation. With this narrow band implementation of our

algorithm, the correspondence between the points on two bounding surfaces automatically

falls out of the rebuilding of narrow bands at each iteration. This correspondence is

essential for the coupling between the two surfaces through the thickness constraint.

We then apply the method to MR brain images to segment cortical gray matter.
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Figure 1.1: (a): Myocardium of the left ventricle bounded by the epicardium and the

endocardium. (b): 3D volume rendering of the cortical gray matter from our 3D algorithm

with oblique cutting planes. The convoluted thin bright ribbons are the cortical gray

matter captured on the cutting plane, the darker parts are the rendering of the out-of-

plane gray matter.
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Chapter 4 describes the design of speed terms for the coupled surfaces propagation which

is key to the segmentation algorithm. The speed terms for the coupled surfaces are

influenced by two factors – an appropriate image gray level transition captured by a local

operator specifically designed to exploit image homogeneity, and a thickness constraint

emulating the nearly constant thickness of human cerebrum cortex. Validation of the

segmentation algorithm is presented through experiments on both simulated images with

“ground truth” information, and real images with expert tracing results. The results

from our algorithm on real images with a range of quality are also compared to those

from various classification-based methods, to demonstrate the advantage of the thickness

shape constraint.

Chapter 5 showcases a number of cortical geometric measurements made possible

by the coupled surfaces algorithm, such as the cortical shape index and cortical thickness.

Several studies are shown to demonstrate the usage of such measurements in the study

of neuroanatomy.

In Chapter 6, we present a 3D method of intra-sulcal ribbon extraction. This work

is a natural follow-up to the coupled surfaces algorithm for cortex segmentation, however,

it can be used with general brain segmentation methods. We also discuss how this sulcal

ribbon extraction work can be applied in many ways to facilitate neuroanatomy studies.

1.3 Main Contributions

A novel coupled surfaces approach has been developed for segmenting and measuring

volumetric layers bounded by two surfaces [100, 99, 101] (see Figures 4.4, 7.1). Surface

propagation is driven by the search for boundaries of interest which are characterized by

appropriate image gray level transitions. A local operator exploiting image homogeneity
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is designed specifically to capture such transitions. A generic shape constraint, namely a

thickness constraint, is also incorporated into the system to guide the recovery process.

This is motivated by the coupled nature of the inner and outer bounding surfaces of

such layers. Through this coupling, image information on one bounding surface is made

available to the partner surface, thus achieving a more robust segmentation.

The algorithm is implemented using a level set method with a specifically-designed

coupled narrow band technique. This is one of the first times shape constraints have

been incorporated into level set methods. As a result of the level set implementation, our

system not only performs automatic segmentation with the advantage of minimal user

interaction, robustness to initialization and computational efficiency, but also offers a

compact representation of the volumetric layer that easily facilitates a variety of geometric

measurements.

The system is applied to the problems of cortical segmentation and shape analysis,

which are significant to the study of brain morphology. Our segmentation algorithm is ex-

tensively validated through both simulated images with “ground truth” and a wide range

of real MR images with expert tracing results. Several cortical geometric measurements,

such as the cortical surface shape and cortical thickness, can be derived directly from the

coupled surfaces algorithm. Sulcal ribbons, which are distinctive cortical landmarks, can

be efficiently extracted using a 3D method derived from the coupled surfaces algorithm.

The extraction and measurement of these cortical and sulcal geometric features made

possible or made easy by our work are offering new understanding of neuroanatomy, and

have the potential of facilitating new studies of brain structure and function.



Chapter 2

Related Work

In this chapter, we review image segmentation techniques that are relevant to our work,

with an emphasis on 3D approaches. Despite their importance in medical image analysis,

full volumetric approaches are still underdeveloped compared to those in 2D.

Detailed discussions of traditional low-level image processing techniques, such as

thresholding, region growing, edge detection and mathematical morphology operations,

are not provided here since they can be found in a number of textbooks [31, 70]. Overall,

these low-level techniques have considerable limitations when applied to medical image

segmentation, largely due to their under-constrained nature. Excellent reviews of recent

development of image segmentation techniques can be found in [55, 62].

2.1 Region-Based Methods

Region-based methods exploit homogeneity in images. They primarily depend on the

underlying consistency of any relevant feature in different regions, e.g. gray level values

and texture properties etc, to assign individual voxels into classes.

7
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2.1.1 MRF-based approach

Markov Random Fields (MRF) are a natural and powerful way of incorporating spa-

tial correlations into a segmentation process. Following the work by Geman & Geman

[25], MRF-based methods have been widely used for image restoration and segmentation.

The underlying assumption is that for a range of degradation, the posterior distribution

of an image is an MRF with a structure akin to the image model. The task becomes

to compute the maximum a posteriori estimate of the original image given a degraded

realization. Geman & Geman’s work draws an analogy between images and statistical

mechanics systems. The assignment of an energy function in the physical system deter-

mines its Gibbs distribution. Because of the Markov-Gibbs equivalence established by the

Hammersley-Clifford Theorem, the assigned energy function determines the MRF image

model. This energy function is a more convenient and natural mechanism for embodying

image attributes than are the local characteristics of the MRF. Now by gradual temper-

ature deduction in the physical system, low energy states, i.e. the most probable states

under the Gibbs distribution, are recovered. The resulting method is a highly parallel

“relaxation” algorithm for MAP estimation with the convergence to a global maximum.

When applied to image segmentation, MRF-based methods label each pixel or

voxel with different classes [11, 12, 32, 41, 42, 51, 98]. There are two things that need to

be estimated simultaneously for this type of application: the parameters of the underlying

Gibbs Random Field, and the labels for each pixel or voxel. Lakshmanan and Derin [41]

developed an adaptive algorithm which recursively yielded segmentations and parameter

estimates that converged to the MAP segmentation, and the ML estimates of the Gibbsian

model parameters.

Leahy et al. applied MRF’s as a statistical image model to medical imaging. In
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medical images, with the exception of the boundary between different anatomical regions,

the image intensity tends to vary slowly. MRFs well capture this property with a suitable

choice of the Gibbs energy function to model the high degree of local correlation between

neighboring voxels in regions of a single tissue type.

MRF models have been extended into 3D for volumetric image segmentation

[12, 32, 98]. The 3D MRF models better capture the spatial correlation, and are demon-

strated to outperform the 2D models. When applied to brain data [32], 3D MRF-based

segmentation algorithm was able to capture features that are of special importance for

MR images, i.e., distributions of tissue intensities, neighborhood correlations, and signal

inhomogeneities.

2.1.2 Mixture models and the EM algorithm

Finite mixture models have been very popular recently especially in MR brain image

segmentation [34, 43, 93, 96], because they are capable of modeling the volume averaging

effect in medical imaging, i.e., the voxel intensity reflects contributions from different

types of tissues that make up the voxel. Instead of assigning each voxel into a single class,

mixture models label each voxel with several classes probabilistically, thus achieving a

“soft” segmentation. The Expectation-Maximization (EM) algorithm is widely used to

approximate ML estimates for such incomplete data problems [56, 68]. Liang et al. [43]

also employed the information criteria of Akaike (AIC) and Schwarz & Rissanen (MDL)

to determine the number of classes in the image.

Overall, the advantage of region-based methods lies in their relatively insensitivity

to noise [10]. However, they typically require further processing to group segmented re-

gions into coherent structures. Moreover, quantitative measurement of geometric features

of objects of interest does not follow immediately.
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2.2 Deformable Model-based Methods

Deformable models have been a very popular technique in medical image analysis in recent

years. Combining geometry, physics and approximation theory, they overcome the local

limitation of traditional low-level image processing techniques, and offer a unique and

powerful approach to segmentation problems [55]. Geometry serves to represent object

shape, physics imposes constraints on how the shape may vary over space and time, and

optimal approximation theory provides the underlying mechanism for fitting the model

to image data. In addition, their compact representation of objects segmented greatly

facilitates the quantification of measurements which are of importance in medical imaging

applications.

2.2.1 Snakes, Balloons and T-snakes

One of the most commonly used deformable model-based methods is the snakes approach

due to Kass et al. [36]. A snake is an energy-minimizing spline guided by internal forces

governing the smoothness of the spline, and external forces that attract the spline onto

nearby lines and edges. The minimization process can be achieved by using a variational

method that involves solving the corresponding Euler equation. One concern regarding

this method is that a close initialization has to be provided in order to obtain good final

results. Otherwise, the spline has the tendency to shrink.

A balloon model with a pressure force outward was then introduced as a way to

generalize and solve some of the problems encountered with the above snake method [15].

This internal “inflation” force expands a snakes model past spurious edges towards the

real edges of a structure, making the snake less sensitive to initial conditions. Extensions

to 3D were made, and finite-element methods were adopted to solve the model yielding
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greater stability and fast convergence.

Others have also made efforts to offer solutions to the problems associated with

the original snake methods. Radeva et al. [64] used both the magnitude and direction

of image gradient in the attracting force. As a result, the snake has a selective behavior

according to edge orientation.

However, despite these improvements, the snake method still has the problem of

having too many parameters to optimize over. The internal energy constraints can limit

its geometric flexibility and prevent it from representing shapes with significant protru-

sions. Furthermore, the topology of the object of interest must be known in advance since

the above snake models are parametric and are incapable of topological transformation

without additional machinery.

To improve over the above stated problems, McInerney and Terzopoulos devel-

oped topologically adaptable snakes (T-snakes) [53], and further extended it to 3D [54].

Embedded in an Affine Cell Decomposition (ACD) framework, their model maintains

the traditional parametric physics-based formulation, and handles complex geometry and

topologies. The computational load is very heavy for 3D T-snakes, however it can poten-

tially be alleviated on parallel machines.

2.2.2 Fourier surface

Staib and Duncan [81] described a 3D surface model with a Fourier parameterization for

deformable boundary finding. The model decomposes surfaces into a weighted sum of

sinusoidal basis functions. Since the higher-index basis functions in the sum represent

higher spatial variations, the series can be truncated to allow relatively smooth surfaces

to be described with a small set of parameters. Surface finding can then be formulated as

an optimization problem using gradient ascent to fit surfaces to places with high image
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gradient. One concern about this model lies in its limitation in capturing convoluted

surfaces.

2.2.3 Free-Form deformation

Free-Form Deformation (FFD) was a generalization by Sederberg and Parry [75], following

the work of Barr [5] on deformation by creating operators for stretching, twisting, bending

and tapering surfaces around a central axis. This method imposes an initial deformation

lattice on a parallelepiped, and defines the deformable space as the trivariate splines

volume defined by the lattice points. The parallelepiped form of the lattice allows points

of an embedded object to be quickly parameterized in the space of the lattice, and as

the lattice is deformed, the deformed points can be calculated by simple substitution into

the defining equations of the trivariate volume. This method is widely used because of

its power to create many types of deformations with little user-interaction. Recently, the

FFD model is starting to show promise in applications to medical imaging. Bardinet et

al. used FFDs to reconstruct the myocardium of the Left Ventricle [4].

2.2.4 Level Set Method

While the above listed deformable models have been widely used in various medical

imaging applications, they have severe limitations: they are unable to handle complex

geometry and changing topology without extra machinery and heavy computational load.

To circumvent this, a new family of deformable models based on the level set techniques

of Osher & Sethian [77] have recently been introduced [47, 48, 49, 60, 77, 78].

Level set methods are powerful numerical techniques concerning the motion of a

closed interface γ(t) propagating along its normal direction. This closed interface γ(t) :

[0,∞)→ RN , can either be a curve in 2D space (N = 2) or a surface in 3D space (N = 3).
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The essential idea is to represent the front γ(t) as the zero level set of a high dimensional

function Ψ. Let Ψ(x, t = 0), where x ∈ RN , be defined by

Ψ(x, t = 0) = d, (2.1)

where d is the signed distance from position x to γ(0), and plus(minus) sign is chosen

if the point x is outside(inside) the initial front γ(0). Thus we have an initial function

Ψ(x, t = 0) : RN → R with the property that

γ(t = 0) = (x | Ψ(x, t = 0) = 0) (2.2)

The goal now is to produce an equation for the evolving function Ψ(x, t) so that

Ψ always remains zero on the propagating interface. Let x(t), t ∈ [0,∞) be the path of a

point on the propagation front. That is, x(t = 0) is a point on the initial front γ(t = 0),

and xt = F (x(t)) with the vector xt normal to the front at x(t). Since the evolving

function Ψ is always zero on the propagating front, we have

Ψ(x(t), t) = 0. (2.3)

By the chain rule, we have

Ψt +
N

∑

i=1

Ψxixit = 0 (2.4)
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γ(0) γ(t)

γ: zero isocontour ;    Ψ: high dimensional surface;          : object of interest;

Ψ(x,0) Ψ(x,t) 

image plane image plane

Figure 2.1: Example of 2D curve propagation with the level set method. In this case,

a curve contracts to capture the oval object of interest on the image plane. Notice the

evolution of the signed distance function Ψ, and the resulting contraction of its zero level

set γ.

where xi is the ith component of x. Since

N
∑

i=1

Ψxixit = (Ψx1 ,Ψx2 , ...,ΨxN ) · (x1t , x2t , ..., xNt) = F (x(t)) | ∇ψ |, (2.5)

the evolution equation for ψ is then:

Ψt + F | ∇Ψ |= 0 (2.6)

Figure 2.1 shows a diagram of curve propagation with the level set method. F

can be a function of the front characteristics (such as the curvature, normal direction
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Ψ<0

image plane image plane image plane

t=0 t=1 t=2

Ψ<0
Ψ<0

Ψ<0

Ψ<0

Ψ>0 Ψ>0 Ψ>0
Ψ<0

Figure 2.2: Example of three circles propagating with constant speed along normal di-

rection. At t = 0, Ψ takes minus sign within the circles in the shaded area, and plus sign

outside the circles. Thus the circles are the zero level set of Ψ(t = 0). As time goes on,

the shaded areas where Ψ takes negative values start to merge. As a result, the zero level

set of Ψ, which corresponds to the current front, changes topology.

etc.) and the image characteristics (e.g. gray level and gradient etc.). When applied

to segmentation problems, the speed term F of the propagation front is designed to be

dependent on image information, and stop at desired places by having a zero value there.

Since the level set method concerns the motion of closed fronts, when used to extract open

curves or surfaces in an image, problems of extracting closed fronts need to constructed

where the desired open curves and surfaces are part of the closed fronts. This can usually

be done by adding artificial boundaries at the opening of the desired curves or surfaces.

The major advantages of using this method over other active contour strategies

include the following. First, although the evolving level function Ψ(x, t) remains a func-

tion, the embedded propagating front γ(t) may change topology, break, merge and form

sharp corners as Ψ evolves. This ability of handling flexible topology change and complex



16

geometry is taken care of without additional machinery as in traditional parameterization

models such as the splines. As a result, initializing curves or surfaces for segmentation

in an image do not need to be placed close to the boundary of interest and in similar

topological form, thus relieving user-interaction in the stage of initialization. Figure 2.2

illustrates the merging of three expanding circles with the level set method.

The second advantage of this Eulerian formulation concerns numerical approx-

imation. Because Ψ(x, t) remains a function as it evolves, we may use a discrete grid

in the domain of x and substitute finite difference approximations for the spatial and

temporal derivatives [77]. For example, using the image grid with nodes ij and spacing

h, and employing the standard notation that Ψn
ij is the approximation to the solution

Ψ(ih, jh, n4t), where 4t is the time step, we can write:

Ψn+1
ij −Ψn

ij

4t + F (∇ijΨ
n
ij) = 0. (2.7)

Third, the intrinsic geometric properties of the front may be easily determined

from Ψ. For example, at any point of the front, the normal vector is given by ~n = ∇Ψ.

Finally, There are no significant differences in handling fronts in 3D space and

fronts in 2D space. Surface propagation works in similar fashion as curve propagation,

only differing in that Ψ changes to a function in 4D.

This original formulation, as proposed by Malladi et al. [77] is not derived from

an energy minimization point of view. When applied to image segmentation, it requires

careful design of the stopping criterion for the propagating fronts.

A modified approach, which considers the deformation of a level set as a gradient

flow to a state of minimal energy [47, 78] performs better provided that objects can clearly
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be identified from their boundaries [60]. This approach elegantly connects energy and

curve evolution approaches of active contours. However, it has drawbacks in its sensitivity

to initializations due to the possibility of being trapped at a local minimum of energy.

2.3 Incorporating a Shape Prior

In medical image analysis, the use of implicit or explicit anatomical knowledge to guide

shape recovery is of great importance for automatic and robust image interpretation.

There have been a number of efforts aimed at the integration of shape information into

deformable models as shown below. Other efforts can be found in [16, 34].

2.3.1 Model-based Snake

The first approach uses local shape information integrated with the original snake method.

To relieve the initialization problem, Gunn and Nixon [30] used a dual active contour

model, with one contour expanding from inside the target feature and the other contract-

ing from the outside, to improve parameterization. A local shape model with constraints

on contour curvature was imposed to favor circular shape.

A similar effort was made by Radeva et al. [64] by using internal forces that

included structural information about the expected snake shape. In particular, a term

reflecting the difference between the derivatives of the current active contour and the

model contour was added to the internal force. As a result, changes from the model

shape were penalized, and the snake model had a tendency to keep the model shape and

resist shrinkage.

Though an improvement over the original snake model to some extent, these

methods are still limited to handle only simple shapes. In addition, extension to 3D is
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not trivial.

2.3.2 Deformable shape templates

Deformable shape templates are another form of using a priori knowledge to constrain

the shape variations in objects of interest.

Superquadrics are examples that are often used for the recovery of compact volu-

metric models [79, 87, 90]. Superquadrics allow a small number of intuitive global shape

parameters to govern the gross shape of a target anatomic structure. Furthermore, the

global parameters can often be coupled with local shape parameterizations such as the

splines to reconstruct the fine details of complex shapes.

Tagare [84] proposed a formulation of a template matching algorithm using orthog-

onal curves. This method used a lower-dimensional search space than the conventional

methods by precomputing extensions of the deformable template along the orthogonal

curves. The reduction in search space allowed the use of dynamic programming to obtain

globally optimal solutions and reduce the sensitivity of the algorithm to initial placement

of the template. Although successfully applied to 2D case, this model has yet to be

extended to solve 3D problems.

2.3.3 Using statistical shape priors

Other researchers use deformable models in a probabilistic framework to include statistical

shape information, i.e. the prior probability distribution on shape variables.

Staib and Duncan [80] used elliptic Fourier descriptors as model parameters to

represent open and closed boundaries. A priori shape information was included as a

spatial probability expressed through the likelihood of each model parameter. Thus, the

Fourier coefficients served to bias toward a range of shapes favored by the shape prior



19

distribution. A Bayesian approach [57] was used to solve the estimation.

Cootes et al. [18] described a method of building models of image objects from

a training set of example images. Each model consisted of a flexible shape template

describing how important points of the object could vary, and a statistical model of

the expected gray levels in regions around each model point. The deformations were

modeled using the eigenvectors of the variation from the mean shape, to allow deformation

reflecting the variations obtained in the training set.

Szekely et al. [83] proposed a segmentation technique combining shape repre-

sentation by Fourier parameterization and modeling of natural shape variability. Their

flexible parametric shape models were represented by a parameter vector describing the

mean contour and by a set of eigenmodes of the parameters characterizing the shape

variation. Elastic fit of the mean model in the subspace of eigenmodes restricted possi-

ble deformations, and found an optimal match between the model surface and boundary

candidates.

Wang and Staib [91] exploited the similar idea of investigating the statistical

variation of object boundary points in a training set, but used it in a more sophisticated

way. A Bayesian formulation, based on this prior knowledge and the edge information

of the input image, was employed to find the object boundary. The Bayesian framework

allowed the model to adjust the weighting between the statistical shape model and the

image information based on the image quality and the reliability of the training set. The

structure of interest was delineated and the spatial correspondence of these points to the

model was established when the a posteriori probability was maximized using conjugate

gradient optimization.

The deformable models listed above have already shown the power of statistical
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shape priors in image segmentation. However, extensions to 3D for recovering complex

shapes are yet to be fully realized, due to difficulties in 3D parameterization, volumetric

model building and computational requirements.

2.4 Integrated Methods

Since different segmentation techniques have different advantages when applied to images,

it is only natural to consider an integration of methods to achieve more robust and

accurate results. Some effort has been made toward this goal in recent years. Many

of these efforts are customized for a specific task either by using a pipeline of different

segmentation techniques [35, 74], or by optimizing a single global objective function that

combines different objectives [10]. Others aim at a more elegant solution.

One piece of notable work was done by Zhu and Yuille on region competition with

a statistical and variational approach [104]. This algorithm was derived by minimizing a

generalized Bayes/MDL criterion using the variational principle. The algorithm combined

aspects of snakes/balloons and region growing, and was guaranteed to converge to a local

minimum. Indeed the classic snakes/balloons and region growing algorithm could be

directly derived from the region competition approach. Theoretical analysis of accuracy

of boundary location, criteria for initial conditions, and the relationship to edge detection

using filters were also provided.

Other effort includes that of Bozma and Duncan [9]. Image analysis systems

aimed at robust segmentation often require integration of a variety of modules. Con-

cerning the importance of adhering to the multiple coexisting nature of the objectives

of different modules, they developed a segmentation system aimed at module integration

using a game-theoretic approach. The existence of a Nash equilibrium which corresponds
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to a most rational segmentation was investigated. Chakraborty [10] further developed

the system to integrate region-based segmentation and boundary finding with Fourier

parameterization.

The search for an optimal integration of information is far from complete. Each

of the various region-based methods and deformable models listed above can be used as

a candidate component in the integrated segmentation system. The selection of such

components depends heavily on the nature of a particular segmentation problem. And

the choice of integration technique can be greatly influenced by both the region-based

and boundary-based components, and the nature of shape information of the particular

anatomy of interest.

In solving challenging 3D problems in segmenting complex medical images, we

expect that models which use region-based and boundary-based information, as well as

incorporate anatomical knowledge, are required. As described in detail in the following

chapters, the work in this thesis makes an initial effort in combining shape information

and region-based information using a level set approach.



Chapter 3

Volumetric Layer Segmentation

with Coupled Surfaces

Propagation

3.1 Motivation and Model

In medical image analysis, we often encounter the problem of segmenting a volumetric

layer of finite thickness. For example, in 3D cardiac image analysis, the myocardium of

the left ventricle is a thick structure bounded by the endocardial and epicardial walls (see

Figure 1.1(a)). In the analysis of neuroanatomical structures from 3D MR images, the

cortex, which is the outermost layer of gray matter in the brain (see Figure 1.1(b)), is

bounded by the outer cortical surface (Cerebral Spinal Fluid(CSF)/gray matter interface)

and the inner cortical surface (gray/white matter interface). The two surfaces which

bound the layer can be viewed as coupled in several ways, ranging from loose coupling

(e.g. the endocardial and the epicardial boundaries) to tight coupling where the thickness

22
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of the layer is nearly constant(e.g. the outer and the inner cortical surfaces).

This nature of the coupling between the inner and outer bounding surfaces is

characteristic to the volumetric layer. If incorporated into the segmentation process,

this coupling would greatly enhance accuracy and robustness. More specifically, because

of the limitations of the imaging technique used and the volume averaging effect, it is

often observed that in some regions, there is not enough information from the image data

to clearly define either the outer or the inner bounding surface. When applying a single

surface approach, we may very well end up with error in such a region. While through the

coupling, information on one surface is available to the partner surface, thus improving

boundary finding.

The volumetric layer is bounded by two surfaces. Across each surface, there is

a local difference in the gray scale values, while in between the two surfaces there is a

homogeneity of certain voxel statistics. The layer is defined completely by its bounding

surfaces and the homogeneity in between. Based on this definition, we propose a new

approach of coupled surfaces propagation, which takes into account the coupling informa-

tion through the distance between the two surfaces. By evolving two embedded surfaces

simultaneously, each driven by its own image-derived information while maintaining the

coupling, we are able to achieve a more robust segmentation on this special set of volumes.

The information used to drive the surface propagation should distinguish the inner and

outer boundary features, and reward the homogeneity inside the layer.

Take for example the MR brain images. Due to volume averaging, in some regions

the boundary between white matter and gray matter is not well shown, while the CSF

appears clearly. The single surface approach may hence have the inner cortical surface

collapse into CSF. However, with the coupled surfaces approach, we can maintain some
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coupled surfaces 
approach prevents 
the inner surface 
from collapsing 
into CSF

coupled  surfaces 
approach prevents 
the outer  surface
from penetrating 
non−brain tissue

Figure 3.1: Single vs. coupled surfaces approach on cortex segmentation. Top: cut view

of surfaces resulting from the single surface approach shown on a sagittal slice of the

original image (finding the inner and outer cortical surfaces separately); bottom: cut

view of surfaces resulting from the coupled surfaces approach shown on the same sagittal

slice of the skull-stripped data (skull-stripping was done by our expert with manual

tracing). Both the single surface approach and the coupled surfaces approach were run

on the original 3D image. The result from the coupled surfaces approach is shown with

the skull-stripped brain to demonstrate that the outer cortical surface resulting from the

algorithm nicely fits the boundary from expert tracing.
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minimal distance between the inner cortical surface and CSF, thus preventing the inner

cortical surface from going into CSF. There are also places where structures such as

the eye sockets obscure the CSF in the image. With the coupled surfaces approach, the

white/gray matter boundary information is then used to stop the propagation of the outer

cortical surface before it penetrates non-brain structures. Figure 3.1 shows examples of

the above mentioned cases where the coupled surfaces approach outperforms the single

surface approach, and illustrates the motivation of using the coupled surfaces approach.

3.2 Coupled Surfaces Propagation with Level Set Method

We chose the level set method as the surface propagation mechanism of our coupled

surfaces approach for a number of reasons: its ability to handle complex geometry and

topological changes, its computational efficiency, its natural correspondence between the

bounding surfaces, and its easy measurements of volume and many geometric features of

the layer.

In our coupled surfaces formulation, embedding each surface as the zero level set

in its own level function, we have two equations:

Ψint + Fin | ∇Ψin | = 0 (3.1)

Ψoutt + Fout | ∇Ψout | = 0

The coupling of the two surfaces is embedded in the design of Fin and Fout.

In particular, the speed of the outer surface will depend on information of the current

position of the inner surface, and vice versa. To ensure that the coupled surfaces stop at
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desired places in images to perform satisfactory segmentation of volumetric layers, Fin

and Fout also depend heavily on characteristic image features. In Chapter 4, we propose

the use of a local operator to capture inner and outer boundary features, and reward the

homogeneity inside the layer. More discussions on speed term design can also be found

in Chapter 4.

Here, we first discuss the details of algorithm construction with the level set

method for coupled surfaces propagation. The above equations are discretized on the

image grid (see Equation 2.7), and solved iteratively.

3.2.1 Initialization

The ease of initialization has always been a desirable feature of any segmentation algo-

rithm. Since the level set method handles the change of topology, our initializing surfaces

do not need to be placed close to the boundaries of interest and in similar topological

form. We thus use concentric spheres as initialization for the inner and outer surfaces.

Such concentric spheres can be specified with simple mouse clicks on images. We choose

to place the concentric spheres inside the inner bounding surface, and have them prop-

agate outward to capture the volumetric layer. In this way, with the signed distance

function Ψin and Ψout, we can easily track the inside and outside of the volumetric layer.

Examples of concentric spheres as initialization are shown in Figure 4.4. Studies of the

robustness to initialization will be discussed in Chapter 4 as well.

3.2.2 Marching Cubes algorithm for iso-surface construction

In order to construct the current position of the propagating surfaces, we use the Marching

Cubes algorithm to get the zero level set of Ψ functions. The Marching Cubes algorithm

was designed by Lorensen and Cline to extract surface information from a 3D field of
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(i,j,k)

(i,j,k+1)

(i,j+1,k+1) (i+1,j+1,k+1)

Figure 3.2: The 15 cube combinations used in the Marching Cubes algorithm (Courtesy of

J. Sharman, http://exaflop.org/docs/marchcubes/). In our case of getting iso-zero level

set of Ψ functions, each cube unit has 8 corners at positions (i, j, k), (i + 1, j, k), (i, j +

1, k), (i+ 1, j + 1, k), (i, j, k + 1), (i+ 1, j, k + 1), (i, j + 1, k + 1), and (i+ 1, j + 1, k + 1)

on the 3D image grid. The blue spheres denote corners that have tested as inside the

zero level set, and the green arrows denote the surface normals of the relevant triangles

of zero Ψ value.
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values [14]. In our case, the 3D field of values are Ψin and Ψout for the inner and outer

surfaces respectively.

The basic principle behind the Marching Cubes algorithm is to subdivide space

into a series of small cubes. In our case of getting the iso-zero level set of function Ψ, each

cube unit has 8 corners at positions (i, j, k), (i+1, j, k), (i, j+1, k), (i+1, j+1, k), (i, j, k+

1), (i+1, j, k+1), (i, j+1, k+1), (i+1, j+1, k+1) on the 3D image grid. The algorithm

then marches through each of the cubes testing the Ψ value of corner points, and records

an appropriate set of polygons at the interpolated iso-zero intersection.

With 8 corners for each cube unit, there are potentially 256 possible combinations

of corner status of either being inside or outside the zero level set surface. This complexity

can be reduced to 15 cases (see Figure 3.2) by taking into account the duplication caused

by reflection and rotational symmetry.

As illustrated in Figure 3.2, the result of the current zero level set of function Ψ

constructed using the Marching Cubes algorithm is thus a set of triangles in 3D space.

In the following discussion, we refer to the vertices of such triangles as points on the

constructed iso-zero surface.

3.2.3 Narrow band implementation

The updating of level set function Ψ on the entire image grid at each time step is com-

putationally very expensive. Upon careful examination, it is observed that to move the

front, it is only necessary to update Ψ at a small set of points in the neighborhood of the

zero level set. Algorithms can thus be implemented using a narrow band method [77],

which modifies the level set method so that it only explicitly updates the points close to

the current propagating fronts. Our implementation of the narrow band method uses this

idea, but is designed specifically for coupled level sets so that the distance between the
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two embedded surfaces (necessary for being used as a thickness constraint) is available

with no further computation after the narrow band rebuilding.

Based on the fact that any point b in the narrow band of the current surface should

be within some neighborhood of a certain point a on the current surface, the narrow band

is constructed dynamically in the 3D neighborhood of each point on the current surface by

including points that lie within a certain distance range (i.e. bandwidth) away from that

particular point. Also, since a point b in the narrow band can be within the neighborhood

of several points a1, ..., al on the current surface, we update the value of the level function

Ψ at b to be

sign(Ψ(b)) · (Mini=1,...,ldist(b, ai))

where function dist gives the positive Euclidean distance.

The steps for rebuilding the narrow band and reinitializing Ψ inside the band at

each time step are as follows:

for every point a on the current front {

for every point b in the neighborhood of a {

if b is not already in the narrow band,

then add b to the narrow band;

if dist(b, a) is less than the absolute value of the current Ψ(b),

then update Ψ(b) to be sign(Ψ(b)) · dist(b, a);

}

}
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Figure 3.3: Schematic of the narrow band implementation for the case of 2D curves (same

argument holds in 3D). (a): dynamic construction of the narrow band and the update of

the level function Ψ within are performed in the neighborhood of the current surface. (b):

inner and outer surfaces with their narrow bands. Notice the inner surface lies within the

narrow band of the outer surface, and vice versa.
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The size of the neighborhood depends on the allowed bandwidth, and therefore

is fixed. Thus, for a surface with N points (as mentioned before, points here refer to the

triangular vertices from the Marching Cubes algorithm), the construction of its narrow

band and the update of Ψ in the narrow band is an O(N ) calculation. We constrain the

neighborhood to be a cylinder-shaped area centered at points on the propagation surface,

with the axis of the cylinder pointing in the surface normal direction (for a schematic

drawing, see Figure 3.3(a)). To further improve efficiency, we also pre-calculate and store

the set of possible offsets to surface points in the cylinder-shaped neighborhood depending

on its axial direction. Thus when rebuilding a narrow band, we loop over every point on

the current surface, and use the pre-calculated offsets depending on the surface norm to

visit through its neighborhood.

In our application, two different narrow bands are computed for the inner and

outer interfaces, Ψin and Ψout, respectively. As shown in Figure 3.3(b), to ensure that

the distance-based correspondence between the coupled surfaces falls out automatically,

the two bandwidth ranges (for the inner and outer narrow bands separately) are chosen

such that the inner surface lies within the narrow band of the outer surface and vice

versa.

3.2.4 Extending speed function

Based on the fact that the speed terms are designed to force the propagating level set to

stop at the desired boundary, the image dependent speed terms have meaning only on

the front, i.e. the zero level set of Ψ. However the level set equation of motion is written

for the function Ψ defined over the entire image grid. We thus extend the speed terms

from the zero level set to the whole narrow band at each iteration as described by [77],

i.e. point b takes on the speed of point a which is the closest point to b and lies on the
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concentric spheres as initialization,
 store narrow bands information

calculate speed term on the current surfaces from image information and 
the distance to the partner surface; extend speed term to the whole narrow 
band;   calculate Ψ       from speed term and  Ψ      (i,o : both inner and outer)

construct surfaces from  Ψ     using Marching Cubes algorithm

  reinitialize  Ψ      within  new narrow bands,  store information of 
the new narrow bands and the shortest distance correspondence

speed term = 0 ? 

yes

no

i,o
n+1

i,o
n+1

end

Coupled Surfaces Algorithm Diagram

i,o
n+1

i,o
n

Figure 3.4: Diagram of the coupled surfaces algorithm

zero level set. The correspondence between any point b in the narrowband and its closest

point a on the current surface is determined during the reconstruction of the narrowband

described above.

3.2.5 Summary of the coupled surfaces algorithm

To summarize, the algorithm diagram is shown in Figure 3.4.

We begin with concentric spheres as initialization for the coupled surfaces. Ψin
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and Ψout at t = 0 are calculated as the narrow bands around the inner and outer surfaces

are constructed. In the process of building the narrow bands, the shortest distance

correspondence between the points in the narrow bands and the points on the surfaces

are determined.

We then calculate the speed term for all the points on the current inner and outer

surfaces, and extend speeds to the whole narrow bands using the stored shortest distance

correspondence. Ψin and Ψout are then updated in their own narrow bands using the

discretized version of level set Equation 2.7.

The new position of inner and outer surfaces are then constructed from the up-

dated Ψin and Ψout using the Marching Cubes algorithm. New narrow bands for the

inner and outer surface are rebuilt respectively, and Ψin and Ψout are reinitialized simul-

taneously within the narrow bands.

We repeat the above process of calculating speed term, updating level functions

within the narrow bands, constructing the new position of propagating surfaces, and

rebuilding narrow bands. The whole process stops when the speed terms for both the

inner and outer surfaces reach a zero value everywhere.



Chapter 4

Application to Cortex

Segmentation

4.1 Introduction

In this chapter, we apply the coupled surfaces algorithm to the problem of segmenting

cerebral cortex, a focus of a number of recent neuroanatomy studies. As the outer most

aspect of the brain, the cerebral cortex is responsible for human cognitive function, and

abnormalities of the cortex are believed to be associated with a number of neurological dis-

orders, such as schizophrenia and Alzheimer’s. Despite recent advances in neuroimaging

technology that facilitate the visualization of detailed cortical features, accurate quanti-

tative measurement has yet to be fully realized, largely due to the lack of a reliable and

efficient means of quantifying information from brain images. Segmentation is the first

step toward achieving such goals.

The cerebral cortex is characterized by its convoluted surface (see Figure 1.1(b)).

The narrow groove between adjacent convolutions is called a sulcus, and the ridge between

34
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two sulci is call a gyrus. Due to its convoluted nature, the segmentation of the cortex

must be considered in 3D. For example, although the cerebral cortical layer is nearly 3mm

thick [7] everywhere on the cortex, an oblique 2D slice that happens to be approximately

parallel to a particular sulcus will give the appearance of a much thicker structure. Also,

a slice can show several disconnected regions of cortical gray matter despite the fact that

the cortical gray matter is all connected in 3D. Only by going through the neighboring

slices can we get complete information to perform segmentation. Slice by slice manual

tracing of the cortex is extremely tedious and labor intensive, hence automatic, reliable

and relatively efficient segmentation which enables automated measurement is a highly

desirable goal.

4.2 Related Work

There have been a number of cortical segmentation efforts. The first group to consider are

region-based methods, which exploit homogeneity in images. Cline et al. used a multi-

spectral voxel classification method [14] in conjunction with connectivity to segment the

brain into different tissue types from 3D MR images. Liang et al. [43] applied a material

mixture model. Kapur et al. [35] used an MRF model, together with prior encoding

of the relative geometry of structures, and gave a probabilistic segmentation of different

tissue types in MR brain images. As discussed in Chapter 2, region-based methods need

additional machinery for region grouping. In addition, they do not directly provide a

compact representation of segmented regions for boundary analysis and incorporating

shape information.

Other techniques use deformable models. MacDonald et al. presented an iterative

algorithm for simultaneous deformation of multiple surfaces with inter-surface proximity
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constraints and self-intersection avoidance, where the deformation was formulated as a

cost function minimization problem [45, 46]. This method was applied to 3D MR brain

data to extract surface models for the skull and the cortical surfaces. This approach

takes advantage of the information of the interrelation between the surfaces of interest.

However, drawbacks lie in its extremely high computational expense, and the difficulty

of tuning weighting factors in the cost function due to the complexity of the problem.

Teo et al. [86] used a system that exploited knowledge of cortical anatomy, in

which white matter and CSF regions were first segmented. After the connectivity of the

white matter was verified in regions of interest, a representation of the gray/CSF surface

was created by a constrained growing-out from the gray/white matter boundary. The

algorithm was quite complex with a set of rules for connectivity checking. The focus

of this work was to create a representation of cortical gray matter for functional MRI

visualization. It was argued that the goal of this work was to achieve similar qualitative

results to manual segmentation.

Davatzikos et al. introduced the concept of a ribbon for modeling the outer

cortex in cross-sectional brain images [21] and then extended the model into 3D [20].

A deformable surface algorithm was constructed to find the central layer of the cortex.

Based on this parameterization, the cortical structure was characterized through its depth

map and curvature map. This method explicitly used the structural information of the

cortex. However, close initialization and significant human interaction were needed to

force the ribbon into sulcal folds. To compensate for this, Xu et al. further extended

the method by using a new external force model called gradient vector flow for surface

deformation [97], and solved the problem to some extent. However, the method was still

subject to the problem of surface self-intersection.
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Figure 4.1: A local operator to derive image information.

4.3 Image Information Derivation

To apply the coupled surfaces algorithm, we first need to derive image features that could

select the boundary points on both the inner and outer cortical surfaces, and keep them

well distinguished.

Medical images consist of a number of different anatomical regions. The ho-

mogeneity of each region can usually be characterized by various voxel statistics inside.

Thus, by using gradient features (information of gray level difference between neighboring

voxels) alone, we actually lose important pieces of information. Here in our approach,

instead of using gradient features, we design a local operator which makes use of the gray

level information, and gives a measure of the likelihood of a voxel lying on the boundary

between tissue A and tissue B. This model can also be extended to make use of a vector

of registered parametric images (such as T1, T2 and PD MR images) or images from

different modalities.

At each voxel site s, a small neighborhood around s is drawn (see Figure 4.1).

Now given a possible boundary with normal direction ~θ, dividing the neighborhood into

parts R1 and R2, the probability that s lies on the boundary between tissue A and tissue
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B is:

pAB(~θ) = p(R1 ∈ TissueA) · p(R2 ∈ TissueB) (4.1)

Given an estimation ~θ∗ of ~θ, we can use p(~θ∗) as a measure of the likelihood that s lies

on the boundary between tissue A and tissue B.

One way of estimating ~θ∗ is to first generate the vector P = [p(~θ1), p(~θ2), ...,

p(~θk)]
T where k is the number of possible directions corresponding to the 26 first order

neighbors. Then, ~θ∗ is the direction which corresponds to the element in vector P that has

the largest magnitude. Here we make the assumption of one single parametric imageX, in

which voxels belonging to tissue A are independently drawn from a Gaussian distribution

G(µA, σA), and voxels belonging to tissue B are independently drawn from G(µB, σB).

Thus, we have

pAB(~θ) =
∏

r∈R1

1√
2πσA

e
−

(Xr−µA)2

σ2
A ·

∏

t∈R2

1√
2πσB

e
−

(Xt−µB)2

σ2
B (4.2)

In our laboratory, brain images were first processed with MR inhomogeneity cor-

rection followed by a histogram normalization procedure [73]. The MR inhomogeneity

effect was reduced by correcting using a simple fixed map, which was determined manu-

ally by sampling tissue types throughout the field to decide the average inhomogeneity.

More sophisticated approach of MR inhomogeneity correction that combines ideas of

multi-modality registration criteria, non-rigid registration and models of geometric and

intensity distortion in MR image formation is currently being developed [82]. The his-

togram normalization procedure set the modal white matter and gray matter peaks to
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(a) (b) (c) (d)

Figure 4.2: Results from our local operator compared to the magnitude of image gradi-

ent. (a): axial(top) and coronal(bottom) slices from original 3D brain images; (b): the

magnitude of image gradient; (c): pBC(~θ
∗) from our local operator, B= gray matter, C=

white matter; (d)pAB(~θ
∗), A= CSF, B= gray matter.

predefined gray level values (200 and 300, respectively). This has the benefit of nor-

malizing the relative brightness of the images across subjects, so that difference in pixel

intensity cannot contribute to error in manual tracing. Our algorithm starts with such

processed data, and takes the fixed distribution parameters as input to the local operator.

This gives us the convenience of processing large numbers of images without tuning pa-

rameters, however, more elaborate adaptive estimation of tissue distribution parameters

would further enhance the algorithm performance.

In our implementation, R1 and R2 are now set to include one voxel each. A limited

expansion to several voxels could potentially further enhance the capability of capturing
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homogeneity. In Figure 4.2, we show examples of results from our local operator showing

how well it selects the appropriate gray level transition, which is crucial for subsequent

processing. Note that more complicated MR image models [25, 41, 42] can be used to

calculate p(~θ).

4.4 Speed Term Design

To apply the coupled surface algorithm to the cortical segmentation problem, we consider

two moving interfaces describing the inner and outer cortical bounding surfaces respec-

tively. Starting from inside the inner cortical surface (i.e. inside the white matter), with

an offset in between (see Figure 4.4), the interfaces propagate along the outward nor-

mal direction stopping at the desired place, while maintaining a certain distance between

them.

Embedding each surface as the zero level set in its own level function, we have

two equations:

Ψint + Fin | ∇Ψin | = 0 (4.3)

Ψoutt + Fout | ∇Ψout | = 0 (4.4)

where Fin and Fout are functions of the surface normal direction, image-derived informa-

tion and distance between the two surfaces. The coupling is embedded in the design of

Fin and Fout. At places where the distance between the two surfaces is within a normal

range, the two surfaces propagate according to the image-based information. Where the

distance between the two surfaces is out of the normal range, the distance imposes a

constraint on the propagation of the surfaces.
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g(p(θ  *)) h(d)

|d|maxmin d       d

d: distance between the two bounding surfaces
|d|: absolute value of the distance
min: minimal distance allowed
max: maximal distance allowed

1         2 1        2

Figure 4.3: Functions g and h used in speed term design.

With the level set implementation, we have a natural way to establish a corre-

spondence between the points on the two evolving surfaces through distance, which is

evaluated with little extra computational expense. Recall that the value of the level func-

tion of a front at any point is simply the distance from this point to the current front,

which is calculated as the shortest distance from this point to all the points on the front

[77]. In our case of two moving surfaces, for any point on the inner moving surface, the

distance to the outer moving surface is the value Ψout at this point, and vice versa for

the point on the outer moving surface. Hence, we write

Fin = g(pBC(~θ
∗))h(Ψout) (4.5)

Fout = g(pAB(~θ
∗))h(Ψin) (4.6)

where g and h are the functions whose shapes are as shown in Figure 4.3, and A, B, C

denote CSF, gray matter and white matter respectively.

Function g maps larger likelihood to slower speed, i.e., as the likelihood gets
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larger, g tends to zero, while as the likelihood gets to near zero, g tends to a constant.

Function h penalizes the distance out of the normal range. As the distance goes out

of normal range, h goes to zero. Thus, each surface moves with constant speed along

its normal direction, and slows down when either the image-based information becomes

strong or the distance to the other surface moves away from the normal range. Each

surface finally stops when the image-derived information is strong enough or the distance

to the other surface is out of the normal range. For smooth speeds, g and h can take form

of the following functions with their slopes being Hermite polynomials to have shapes

shown in Figure 4.3:

g(p) =































1 0 ≤ p ≤ p1;

1− 3( p−p1

p2−p1
)2 + 2( p−p1

p2−p1
)3 p1 < p < p2;

0 p2 ≤ p ≤ 1

h(d) =































( |d|−dmin

d1−dmin
)2(3− 2 |d|−dmin

d1−dmin
) dmin ≤| d |≤ d1

1 d1 <| d |< d2

1− 3( |d|−d2

dmax−d2
)2 + 2( |d|−d2

dmax−d2
)3 d2 ≤| d |≤ dmax

In our experiments, we have found that the slopes in the functions g and h have

little effect on the algorithm results, since the surface propagation only stops when the

speed value reaches zero. For computational efficiency, we keep p1 close to p2 to ensure

relatively fast propagation speed when surfaces are away from desired boundary. The

time step is set to a small value so that the propagating surfaces move less than half a

voxel size at each iteration, thus avoiding stepping over desired boundaries. The allowed

distance between the inner and outer surfaces is set to a range from dmin = 1.5mm
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to dmax = 5.5mm, based on knowledge from reported post mortem studies [7] to cover

typical variations of cortical thickness. Parameter p2 is set to allow the surface to stop

at a strong intensity change. Weak intensity changes would cause propagating surfaces

to leak out, however the leakage can partially be controlled by the thickness constraint

imposed.

Due to the level set formulation, we have a notion of the inside and outside of

the current moving front, which is embedded in the outward normal direction ~n. This

information can be used to reduce the feasible space of possible ~θs, or ~n can be used

directly as an estimate of ~θ∗, thus obtaining a better result. In our implementation, we

directly use ~n as an estimate of ~θ∗, which contributes to computational efficiency as well.

4.5 Verification of Cortical Volume Connectivity

With the signed distance function Ψ, the level set formulation keeps track of the inside

and outside of the current moving front. Once the evolution of the coupled surfaces is

completed, the cortical gray matter voxels are those that lie inside the outer (gray/CSF)

cortical surface while outside the inner (gray/matter) cortical surface. In the same fash-

ion, non-brain tissue voxels will be the ones that are outside the outer cortical surface, and

voxels of white matter will lie inside the inner cortical surface in addition to sub-cortical

gray matter and ventricles.

We then perform a connectivity check on the estimated gray matter volume based

on the fact that cortical gray matter is a single sheet encasing white matter. Starting from

a candidate gray matter voxel, we find all the gray matter voxels that are connected to

the candidate using a second order neighborhood system. We keep the largest connected

group as cortical gray matter, and remove isolated gray matter voxels which usually
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correspond to sub-cortical structures in deep brain or are caused by erroneous edges.

Even after this removal process, there are chances that our gray matter volume contains

sub-cortical structures that are actually connected to cortical gray matter, such as the

hippocampus. The delineation of such structures can be done relatively easily either in

pre-processing or post-processing stage with manual or other automatic methods.

Because the signed distance-based measures have sub-voxel accuracy, we can ob-

tain a sub-voxel segmentation instead of a binary segmentation on the data set. In other

words, if the distance from a voxel to the zero level set surface is less than the voxel size

in width, the voxel is considered to contain multiple tissue types.

4.6 Segmentation Results

In this section, we show validations of our approach using various simulated and real MR

data, as well as applications to specific cortical studies. We use only T1-weighted images

because they provide the best gray/white contrast [72] and are therefore commonly used

for neuroanatomical analysis. Figure 4.4 shows the propagation of the coupled inner and

outer cortical surfaces.

4.6.1 Validation using simulated MR data with ground truth

We first present our segmentation results using simulated MR brain images provided by

the McConnell Brain Imaging Center at the Montreal Neurological Institute [52]. The

images are generated using an MRI simulator [40] which allows users to independently

control various acquisition parameters to obtain realistic MR images. The ground truth

of the phantom is provided in the form of membership functions of each voxel belonging

to different tissue types, such as the skull, CSF, gray matter and white matter.
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Figure 4.4: Propagation of the outer (pink) and inner (yellow) bounding surfaces. Top:

pairs of concentric spheres (only the outer ones are shown on the left, both are shown

in one pair with a cutting plane on the right) as initialization in unedited 3D MR brain

images; middle: intermediate step in surface propagation; bottom: final result of the

outer and inner cortical surfaces.



46

The simulated data we tested our algorithm on were T1 images of a normal

brain, with the following parameter settings: voxel size= 1mm3, noise= 3%, intensity

non-uniformity= 0%. Starting from the unedited images, no further user interaction is

needed after initialization using several pairs of concentric spheres. The spheres grow out

and automatically lock onto the inner and outer cortical surfaces. As long as the spheres

are placed inside the white matter, the algorithm is robust to starting position (for more

quantitative analysis, see section 4.6). Measurement of the volume is then performed as

described above; we use a binary segmentation in this experiment. In our implementation

of cortex segmentation, the allowed distance between the inner and outer surfaces is set

to range from 1.5mm to 5.5mm based on knowledge from reported post mortem studies

[7]. Therefore, to ensure the proper overlapping of the inner and outer narrow bands, the

bandwidth ranges for the inner and outer interfaces are chosen to be (−3mm, 6mm) and

(−6mm, 3mm) respectively.

To evaluate the segmentation result, we apply several measures defined as follows.

For any tissue type T in the region of interest, we denote the voxels of tissue type T

recovered from our 3D algorithm as Va and the voxels that are mostly of tissue type T

according to the phantom (i.e. the value of tissue T membership function is greater than

0.5) as Ve. We denote the overlap of Va and Ve as Vae, and the part that is in Va but

not in Ve as Vae′ . A true positive(TP) rate is then defined to be the size of Vae relative

to the size of Ve, while the false positive(FP) rate is defined to be the ratio of the size

of Vae′ to the size of Ve. We also define the volume ratio to be the volume of all the

voxels segmented as of tissue type T by our algorithm to the total sub-voxel volume of

tissue type T ) specified by the phantom (sub-voxels contribute in only part of the voxel

volume).
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% whole brain cortical gray matter ∗ white matter

TP rate 92.3 92.8 92.4

FP rate 2.0 6.0 3.3

volume ratio 96.3 103.2 98.1

Table 4.1: Comparison of our volume measurements with the phantom ground truth.

whole brain: total brain tissue (white+gray matter) on all slices; cortical gray matter ∗:

cortical gray matter on the frontal 49 coronal slices and the top 56 axial slices;

Table 4.1 shows our measurement results over 3 types: total brain tissue (including

white matter and gray matter), cortical gray matter in selected slices, and white matter.

Since the algorithm is designed specifically for the nearly constant thickness of the cerebral

cortex, it recovers only part of the gray matter in the brain stem and the cerebellum where

the constant thickness constraint is not well satisfied. These regions account for most of

the errors in the TP rate and volume ratio for whole brain tissue. For the same reason that

the algorithm is specifically tailored for the cerebral cortex, we would compare the cortical

gray matter volume only in the cerebrum. Since the phantom data does not provide the

information related to partitioning cerebrum, the cerebellum and the brain stem, we only

compare the cortical gray matter volume on selected slices where cerebellum and brain

stem are not present: frontal 49 coronal slices and top 56 axial slices. The resulting

average error of the TP and FP rate is around 6% to 7% , and the volume ratio error is

within 4%. For the white matter, the errors for the TP, FP rate and volume ratio are

also low. These results show that our algorithm performs well in isolating the brain from

non-brain tissues and in segmenting the cortex.
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4.6.2 Validation on 20 normal brains

To further evaluate our segmentation approach under a wide range of imaging conditions,

we tested the algorithm on real MR data and compared the results obtained with gray

segmentation by manual experts. Since for 3D data it is a very labor intensive job to

segment gray and white matter, we utilized the data provided by the Internet Brain

Segmentation Repository (IBSR) of the Center for Morphometric Analysis (CMA) at

Massachusetts General Hospital [33].

The purpose of IBSR is to encourage the development and evaluation of segmen-

tation methods by providing test image data, human expert segmentation results, and

methods for comparing segmentation results. It is one of the first efforts to offer solu-

tions to the problem of validating and comparing new algorithms in this rapidly growing

medical image analysis field. The test image data sets provided in this repository permit

a standardized mechanism for evaluation of the sensitivity of a given analysis method to

signal to noise ratio, contrast to noise ratio, shape complexity, degree of partial volume

effect, etc.

We obtained 20 normal MR brain data sets and their manual segmentations from

IBSR. These 20 coronal 3D T1-weighted spoiled gradient echo MRI scans were performed

on two different imaging systems. Ten FLASH scans on four males and six females were

performed on a 1.5 tesla Siemens Magnetom MR System (Iselin, NJ) with the following

parameters: TR = 40 msec, TE = 8 msec, flip angle = 50 degrees, field of view = 30

cm, slice thickness = contiguous 3.1 mm, matrix = 256x256, and averages = 1. Ten

3D-CAPRY scans on six males and four females were performed on a 1.5 tesla General

Electric Signa MR System (Milwaukee, WI), with the following parameters: TR = 50

msec, TE = 9 msec, flip angle = 50 degrees, field of view = 24 cm, slice thickness =
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contiguous 3.0mm, matrix = 256x256, and averages = 1.

All data sets were positionally normalized at CMA by imposing a standard 3D

brain coordinate system on each 3D MR scan using the midpoints of the decussations

of the anterior and posterior commissures and the mid-sagittal plane at the level of the

posterior commissure as points of reference for rotation and (non-deformation) trans-

formation [85, 23]. The repositioned scans were then resliced into normalized 3.0mm

coronal, 1.0mm axial, and 1.0mm sagittal scans which were used for subsequent analysis.

Manual segmentation was performed on the normalized scans by trained inves-

tigators at CMA using a semi-automated intensity contour mapping algorithm [37, 33].

Once the external border was determined by intensity contour mapping, grey-white mat-

ter borders were demarcated using signal intensity histograms. Using this technique,

borders were defined as the midpoint between the peaks of the bimodal histogram for a

given structure and its adjacent tissue. Other neuroanatomical structures were segmented

similarly [24].

An overlap metric is used by IBSR to compare results from automatic segmen-

tation and manual segmentation. While manual segmentations are not “ground truth”,

they provide a reasonable way to compare automated segmentation methods. The over-

lap metric is defined for a given voxel class assignment as the number of voxels that have

the class assignment in both segmentations divided by the number of voxels where either

segmentation has the class assignment, which is equivalent to TP/(1+FP ). This metric

ranges from 1.0 , for perfect agreement, to 0.0, for no agreement of classified voxels.

We interpolated and resampled the image data into 1mm thick coronal slices, and

then ran our coupled surfaces algorithm. Figure 4.5 shows the overlap metric for gray

matter segmentation on 20 normal brains from the manual method, various automatic
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Figure 4.5: Average overlap metric (with expert tracing results) for gray matter segmen-

tation on 20 normal brains from various segmentation methods. The results of automatic

segmentation methods provided by IBSR were from work done by Rajapakse [65]. MAP:

Maximum A Posteriori Probability. ML: Maximum-Likelihood. ∗: using frontal 13 coro-

nal slices and upper 50 axial slices of each brain to exclude brain stem and cerebellum.

segmentation methods and our coupled surfaces algorithm. The results from the auto-

matic segmentation provided by IBSR were from work done by Rajapakse, and partially

based on the methods described in Rajapakse et al. [65]. The gray matter overlap metric

for our algorithm on the whole brain is 0.657, which is well above those from the other

6 listed automatic methods ranging from 0.473 to 0.564 (shown in columns 1-6 in Figure

4.5). Since our algorithm is designed specifically for the cerebral cortex, we compute an

improved overlap metric on the upper and frontal part of the brain (to exclude brain

stem and cerebellum) of 0.701. Moreover, considering that the other 6 listed automatic
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methods started with brain-only data sets, while the coupled surfaces algorithm started

with the original un-stripped brain images, the advantage of our method with geometric

structural constraints is clear.

These 20 brain scans were chosen by IBSR because they have been used in pub-

lished studies [65], and cover a range of image quality [33] with the worst ones having

low contrast and relatively large intensity inhomogeneities. The overlap scores shown in

Figure 4.5 from the automatic classification methods may appear low, however they need

to be taken into the context of a wide range of image quality, and should not be com-

pared with numbers from different studies. More recently acquired (i.e. better quality)

data should result in far better results from the automatic classification methods, which

holds for our coupled surfaces algorithm as well. In fact, as shown in the section above,

the overlap metric for our phantom cortical segmentation is 0.928/(1 + 0.060) = 0.875,

which compares well with the manual overlap metric of 0.876 showing inter-operator

reproducibility from tests on 4 brains averaged over 2 experts (see Figure 4.5).

4.6.3 Results on real MR data for frontal lobe study

We also tested our algorithm on the frontal lobes of 7 high resolution MRI data sets

(SPGR, 2NEX, TR=24 msec, TE=5 msec , flip angle= 45 degrees, field of view = 30 cm,

1.2 × 1.2 × 1.2mm3 voxels) from a randomly chosen subset of young adult autistic and

control subjects from ongoing studies to measure frontal lobe volume. After preprocessing

to reduce the effects of MR bias field inhomogeneity using a simple standard nonlinear

map (this is also a step before expert manual tracing), we ran the coupled surfaces

algorithm to isolate the brain tissue and segment the cortex (see Figure 4.4). Figure 4.6

shows 2D orthogonal slices of original image data, results from expert tracing and results

from our algorithm. The frontal lobe was then manually defined independently in the left
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and right hemispheres as all tissue anterior to the central sulcus, excluding sub-cortical

nuclei [67]. We then create a mask of the frontal lobe, and use it to exclude the posterior

part of the volume.

As shown in Table 4.2, over the 7 frontal lobes, the TP and FP rate (compared

to manual tracing by our neuroanatomy specialist) of the whole frontal lobe averaged

94.1% and 2.1% respectively, which demonstrated that our algorithm nicely isolated the

brain tissue from the non-brain tissue. The average TP and FP rate for the cortical

gray matter (measured on 2 orthogonal slices, one coronal and one axial, to cover the

entire range of the frontal lobe) in the frontal lobe were 86.7% and 20.8%. Note that the

FP rate for gray/white segmentation is a very sensitive measure, especially considering

the fact that manually drawing a boundary between gray and white matter to some

extent depends on subjective individual judgment. However, in quantifying the difference

between populations, despite the FP rates, the volume measurements would still yield

useful information as long as they are consistent.

The volume of the constituent parts of the brain is often the measurement of

interest for comparison among different subjects in studies of neuroanatomy. Thus, as a

second way to analyze the utility of our algorithm, we compute reliability statistics on

the volume measurements using the methods described in Schultz and Chakraborty [72]

(see also [100]). There was strong agreement between the algorithm and the expert on

the volume of the frontal lobe (Pearson r = .991; intraclass correlation coefficient [ICC]

= .901). The algorithm systematically estimated the frontal lobe volume to be less than

the expert tracer (mean difference = 4%), and this accounts for the lower ICC than the

Pearson coefficient. Similarly, for gray matter volume of the frontal lobe there was also

good agreement (Pearson r = .96). Thus, for both whole frontal lobe volume and frontal
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Figure 4.6: Results of cortical gray matter segmentation shown on orthogonal slices from

3D images. Left: original image slices; middle: gray matter from manual tracing of those

slices; right: gray matter from our 3D algorithm shown on the same slices.



54

frontal lobe frontal lobe cortex

TP(%) FP(%) TP(%) FP(%)

93.8 3.4 83.6 25.5

93.9 1.9 86.2 20.1

95.2 2.9 86.5 24.4

93.7 1.7 86.7 24.5

94.5 1.5 88.9 21.2

94.1 1.7 87.0 20.5

94.1 1.4 89.0 19.5

Table 4.2: Our measurements on 7 frontal lobes compared with expert tracing results

gray matter volume, the coupled surfaces algorithm produced measurements that were

very similar to expert tracings.

4.7 User Interaction and Speed Issues

In addition to robustness and accuracy, minimum user interaction and computational

efficiency have always been two important issues in the problem of segmenting and mea-

suring the cortex. For an expert to manually isolate non-brain tissue (using a combination

of image thresholding, region growing, and fine editing with manual tracing slice by slice

to carefully remove any non-brain voxels such as the CSF within sulci and the dura) alone

can take about 2 hours. (Structures such as the dura and the CSF in sulci can only be

removed by careful slice-by-slice inspection. Therefore, considering the thoroughness and

obsessiveness of the fine editing, we believe 2 hours is a fair estimate of the processing
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time.) The manual tracing of cortical gray matter is even more time consuming. Mac-

Donald et al. deformed two ellipsoids with inter-surface constraints to approximate the

inner and the outer cortical surfaces. Their processing time for such segmentation on

each subject was reported to be 100 hours on a SGI Origin 200 R10000 processor running

at 180 MHz [46]. Davatzikos and Bryan [20] reported that the “ribbon” algorithm was

a fairly computationally demanding iterative procedure; while manual placement of the

initial cortical surface and a multi-scale formulation could decrease the computational

load. The processing time per subject for Xu’s method was reported to vary between 4.5

to 6.5 hours on a SGI O2 workstation with a 174MHz R10000 processor [97].

The initialization for our algorithm only requires the user to specify several pairs

of concentric spheres in the unedited images, which can be done with several mouse clicks

within seconds. It should be emphasized that neither the number nor the placement of

the spheres (within a broad range of acceptable values) affects the accuracy or the re-

producibility of the final result. To illustrate this, Figure 4.7 shows the coupled surfaces

propagation on the same brain as in Figure 4.4 but from a different set (and different

number) of initializing spheres. The final results of the surfaces show little visual differ-

ence. Quantitatively the TP rate of the gray matter volume from one with respect to

that from the other is over 99.5%, and FP rate is less than 0.5%.

For a 3D image (1.2 × 1.2 × 1.2mm3 in voxel size) of the whole brain, our algo-

rithm runs in about 1 hour on a SGI Indigo2 machine with a 195MHz R10000 processor.

Skull-stripping, segmentation and measurement of the cortex are done si-

multaneously. (Geometric measurements are discussed in detail in the next Chapter.)

Comparatively, to our knowledge, our algorithm outperforms other related techniques

with respect to user interaction and computational efficiency.
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Figure 4.7: Coupled surfaces propagation on the same brain image as in Figure 4.4

but with a different set of initializing spheres. For the two final results from different

initializations, the TP rate of the gray matter segmentation from one initialization with

respect to that from the other is over 99.5%, and FP rate is less than 0.5%, which

demonstrates our algorithm’s robustness to initialization.



Chapter 5

Cortical Geometric Measurement

and Analysis

5.1 Introduction

In this chapter, we discuss the derivation of several geometric measurements facilitated

by our coupled surfaces algorithm, and present some results on cortical feature analysis.

This type of analysis is important in the study of neuroanatomy and related disorders.

For example, cortical convolution is believed to be associated with the develop-

ment of functionally distinct regions. In particular, during the development of the brain

in embryo, connections between specific cortical regions and connections between cortical

regions and sub-cortical structures, in conjunction with an overall growth process con-

strained by the skull, are believed to induce the inward folding of the cortex, resulting in

the formation of sulci [50]. The curvature and shape index measurements proposed below

offer convenient tools for the automatic identification and analysis of cortical folds.

In addition, the cerebral cortex is composed of columns of neurons, aligned per-
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pendicularly to the cortical surface, that serve as basic units of information processing.

Cortical surface area is likely to be proportional to column number and therefore surface

area could be related to functional capacities. Moreover, regional cortical thickness may

relate to functional capacity, and alteration in each of these features has been suspected

in specific neuropsychiatric disorders [76].

5.2 Curvature and Shape Index Measurements

One advantage of the level set implementation is that geometric properties of the prop-

agation front are easily calculated [77]. In our case of surfaces propagating in 3D space,

there are many choices of surface curvatures of the front (for formal definitions of the

curvatures, refer to [22]), including mean curvature, κM , and Gaussian curvature, κG.

Both may be conveniently expressed [77] in terms of the level set function Ψ:

κM =

∑

(i,j,k)∈C((Ψii +Ψjj)Ψ
2
k − 2ΨiΨjΨij)

2(Ψ2
x +Ψ

2
y +Ψ

2
z)

3/2
(5.1)

κG =

∑

(i,j,k)∈C(Ψ
2
i (ΨjjΨkk −Ψ2

jk) + 2ΨiΨj(ΨikΨjk −ΨijΨkk))

(Ψ2
x +Ψ

2
y +Ψ

2
z)

2
(5.2)

where C = {(x, y, z), (y, z, x), (z, x, y)} is the set of circular shifts of (x, y, z).

The maximum principle curvature, κ1, and the minimum principle curvature, κ2,

are related to Gaussian and mean curvatures through the following formulas:

κ1 = κM +
√

κ2
M − κG; κ2 = κM −

√

κ2
M − κG; (5.3)
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We also adopt the classification of surfaces by Koenderink [39] using the numerical

relationship between the two principal curvatures. A shape index function is defined as:

si =
2

π
arctan((κ1 + κ2)/(κ1 − κ2)) (5.4)

which classifies surfaces into nine types as shown in Figure 5.1. With the shape index,

gyri (mostly ridges) and sulci (mostly ruts) are automatically identified. Further potential

use of the shape index includes the definition of an atrophy index (sulci widen with age).

This information can also be used to study the percentage of the cortical surfaces that

are buried in sulcal valleys.

Figure 5.1 shows the outer and inner cortical surfaces of a frontal lobe colored

with their shape indices. As we see, most parts of the gyri are automatically identified

as ridges while most parts of the sulci are identified as ruts, which coincides with our

knowledge of the cortical structure.

5.3 Surface Area

The marching cubes algorithm [44] is performed on the signed distance functions, Ψin

and Ψout, to extract the embedded zero level sets. The resulting surfaces are realized

using a triangular representation. Surface area is then calculated as the sum of the areas

of the composing triangles.

5.4 Thickness Measurement

As discussed earlier, the value of the level function of a front at any point is the distance

from this point to the current front. Also recall that the inner and outer surfaces are the
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Figure 5.1: The outer and inner cortical surfaces of a frontal lobe colored with the specified

spectrum representing shape index si.

zero level sets of Ψin and Ψout. Thus, for any point on the outer surface, the absolute

value of Ψin at the point is simply the distance from the point to the inner surface. Using

this measure, we obtain a thickness map between the inner and outer cortical surfaces,

which can be used to study the normal thickness variations across different regions of the

brain, and also abnormalities in brain structures.

We applied our algorithm to more than 50 high resolution MRI data sets (SPGR,

2NEX, 1.2×1.2×1.2mm3 voxels) to obtain cortical thickness maps. Figure 5.2 showcases

a sample of such maps with red color indicating cortical thickening and green indicating

cortical thinning. Though the cortical thickness and pattern vary from subject to subject,

we have consistently observed the pattern of thinning behind the central sulcus in the

gyral area, as well as the thinning in the occipital lobe.

We further computed regional cortical thickness by lobe and in 2 specific regions

(see Figure 5.3(a)) of 10 normal males (average IQ = 109), and compared findings with
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 1      2 2.5 3 3.5 4        5       6(mm)

Figure 5.2: Cortical thickness map of 9 normal subjects obtained through our 3D cou-

pled surfaces algorithm. Notice the variation in cortical thickness and its pattern across

different subjects, as well as the consistent thinning behind the central sulcus in the gyral

area.
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that from post mortem studies. The lobes of the brain were labeled using locally developed

software [66] in conjunction with the ANALYZE software package [69]. The frontal lobe

was segmented by tracing the central sulci directly on 3D renderings of the brain, and

then in successive 2D slices extending the traces to the depth of the sulci and through the

white matter to the mid-line at an angle perpendicular to the inter-hemispheric fissure.

Next, the temporal lobes were segmented by tracing the sylvian fissure on 3D renderings

until the point where the fissure arched upward into the parietal lobe. At that point of

inflection, a plane parallel to the AC-PC was used to segment the temporal and parietal

lobes. The occipital-parietal boundary was set at mid-line by placing a oblique plane

through the pariet-occipital sulcus, and a coronal plane at the intersection of the pariet-

occipital sulcus and the calcarine fissure. The pre-central gyral area was then defined as

the portion in the frontal lobe that was between the pre-central sulcus and the central

sulcus. In a similar fashion, the post-central area was defined to be the part of the parietal

lobe that was between the central sulcus and the post-central sulcus. Figure 5.3(a) shows

the parcellation of the 4 lobes and the 2 specific areas of a brain, as described above.

Shown in Figure 5.3(b) are the side and back views of an outer cortical surface

colored with cortical thickness. Figure 5.4 shows the regional cortical thickness mea-

surements in 4 lobes and 2 specific areas over the 10 subjects. We compared the mean

thickness of each lobe to the data on 63 males from the post mortem study of Pakkenberg

and Gundersen [61], and found the same rank ordering of thickness; the frontal cortex was

the thickest and the occipital cortex the thinnest (see Figure 5.4). The post mortem data

measurements were 5 to 14% thinner by lobe than our in vivo data. This might be due to

both the older age of the subjects, tissue shrinkage in the post mortem study, and volume

averaging with our MRI data. However, it is important to note that the variability of
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Figure 5.3: Brain partitioning and regional cortical thickness. (a): Parcellation of lobes

and specific areas of interest where regional cortical thickness was measured. (b): Side

and back views of an outer cortical surface colored with cortical thickness.
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Figure 5.4: Plot of the mean and standard deviation of regional cortical thickness in 4

lobes (frontal, temporal, parietal and occipital) and 2 specific areas (pre-central and post-

central gyral area) averaged over 10 normal male subjects. For each lobe or area, the left

blue column and the right red column show the result on the left and right hemispheres

respectively, while the middle black column shows the result over the two hemispheres.

thickness was the same for both samples (about 0.15 mm). This gradient of thickness

from front to back in the brain is well known and due to the greater number of large

pyramidal neurons in the anterior as compared to the posterior cortices. In addition,

the post-central gyral area was the thinnest among different regions, as we observed over

a larger sample size consistently. This too was in good agreement with known cortical

thickness variations [7].

A repeated measures analysis of variance (ANOVA) tested whether cortical thick-

ness differed by lobe, and found significant differences between the 4 lobes (F[3, 27] =

56.3, p < .0001). Post hoc paired t-tests showed that the frontal and temporal lobes
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Figure 5.5: Flattening of an outer cortical surface using surface relaxation that simulates

a mean curvature flow (iteration=0,50,250). Flattening is useful for the visualization of

cortical features, especially within deep sulci. Here, high maximum principal curvature

points are shown in red.

were each significantly thicker than either the parietal or occipital lobe (p’s < .001), but

they did not differ in thickness from one another. Likewise, the thickness in parietal and

occipital lobes was not significantly different. Differences between the left and right hemi-

spheres were also present in the thickness measurements, which could suggest interesting

findings related to anatomical and functional asymmetry of the brain.

5.5 Cortical Surface Flattening

A flattened outer cortical surface map provides us with a better visualization of corti-

cal features buried in sulcal ruts. Figure 5.5 shows an example of the visualization of

maximum principal curvature on a cortical map. As the surface flattens, more and more

details are shown from any single viewing angle.

We have implemented a straightforward method that simulates a mean curvature

flow to realize the flattening. Our cortical surface is represented as a set of triangles
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resulting from the Marching Cubes algorithm. For each triangular vertex v on the cortical

surface, its position is updated with an average of the positions of its first order neighbors

on the triangular net. Thus, the concave and convex parts of the surface flatten out.

The flattening was carried out iteratively over all surface vertices, and stopped till the

maximum move of all surface vertices was within a preset threshold.

Note that in this straightforward flattening method, the preservation of surface

features, such as surface area and curve angles, is not our goal since we do not intend to

carry out quantitative analysis of the flattened surface map. However, the connectivity

of the triangles on the surface net does not change in our operation, so our method serves

a second purpose of checking the topology of the original unflattened surface from our

segmentation algorithm. Work on cortical surface flattening with emphasis on surface

feature preservation can be found in [2, 19].



Chapter 6

Sulcal Ribbon Extraction

In this chapter, we present a new approach to 3D automatic intra-sulcal ribbon finding

using dynamic programming and surface deformation [102], following the work on cortical

segmentation with coupled surfaces propagation .

6.1 Introduction

Sulcal medial surfaces are 3D thin convoluted ribbons embedded in cortical sulci (see

Figure 6.1 for a schematic drawing). The deepest part of a sulcus is called the fundus,

which often demarcates the boundary between cortical regions with observable differences

in their cytoarchitecture (the packing density and laminar distribution of different neu-

ron types) and function [63]. Sulci thus provide important gross anatomical features for

distinguishing different functional regions of the cortex, and thereby can serve as geomet-

ric guidelines in brain volume warping and cortical atlas building. In functional brain

mapping, numerous efforts are in progress to propose cortical functional maps, as well

as to correlate the gyral/sulcal anatomy of one individual and his/her neuro-functional
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recordings. Relevant applications include the study of cerebral metabolism, hemodynam-

ics or neurochemical and neurophysiological function [28]. All of this work depends on

the development of efficient, fast and objective methods of extracting and representing

sulcal patterns from brain images.

6.2 Related Work

Because of the importance of sulcal boundaries in brain structural and functional analysis,

a number of recent efforts have begun to deal with the automatic extraction and represen-

tation of sulci [88, 28, 103], the probabilistic study of sulcal geometry and configuration

[29], and automatic sulcal labeling [50].

Our work shares the same aim of previous work in [88, 28, 103], which is to

automatically extract a sulcal ribbon surface and provide a parametric representation,

thereby further facilitating quantitative shape analysis and cortical-constrained brain

matching and warping.

Zhou et al. [103] described sulci as a collection of 2D contours generated from

successive image slices, and proposed an algorithm that included two phases: contour

generation and sulcal surface generation. The 2D sulcal contours were generated by using

a voxel-coding method to extract 2D skeletons from segmented regions. In phase two, the

integration between slices for the surface parametric representation resulted from testing

adjacency relationships of the contour end points within adjacent slices. This method

does not exploit the 3D nature of such sulcal ribbons, and the adjacency testing is rather

ad hoc. As a result, the ambiguity in contour connections prevents the method from

handling complicated cases that are common to sulcal patterns.

Vaillant and Davatzikos [88] used a physical model to retrieve sulcal ribbons.
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Figure 6.1: (a): 2D schematic representation of a sulcus; Gray scale view (b) and surface

view (c) of the signed distance function corresponding to the outer cortical boundary

shown in (a).
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They started by initializing an active contour at the exterior part of a sulcus (see Figure

6.1). A parametric representation of the sulcal medial surface was then obtained as the

active contour slides down toward the deep sulcal bottom under the influence of weighted

external forces, including a center-of-mass force and an inward force. The latter force is

based on a combination of surface normals, curve sliding speed and sliding acceleration.

This deformable model uses characteristics of the cortical shape, and has been successfully

applied to MR brain images. However, the manual placement of the initializing curve is

a limitation, and it is likely that the tuning of weights on the external forces is as well.

Goualher’s algorithm [28] used a very similar underlying mechanism of physical

modeling of multiple forces to drive a curve transversing through the entire sulcal area,

and differed only in its particular choice of the forces and its B-Spline curve parameteri-

zation.

6.3 Sulcal Ribbon Extraction Using Dynamic Programming

and Deformable Surface Models

Following our earlier work on cortex segmentation with coupled surfaces using a level set

implementation (see earlier chapters), we propose a new approach to automatic sulcal

ribbon finding. Through the utilization of the signed distance function in which the outer

cortical surface is embedded as its zero level set, we are able to formulate the sulcal

ribbon finding problem as one of surface deformation, avoiding possible control problems

of tuning weights on external forces in the sliding contour methods. This formulation

provides our algorithm with the capability of modeling the complexity of sulcal patterns.

Our sulcal ribbon finding algorithm starts from the outer cortical surface Sout and its

associated level function Ψout, and requires several steps as shown in Figure 6.2.
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Figure 6.2: Diagram of our intra-sulcal ribbon extraction algorithm.

6.3.1 Calculation of a signed distance function

After running our coupled surfaces algorithm for cortical segmentation, we have two level

functions Ψout and Ψin in which the outer and inner cortical surfaces Sout and Sin are

embedded as zero level sets respectively.

Because of the level set implementation, our segmentation algorithm has the ad-

vantage of handling highly convoluted structures. As a result, Sout captures the deep

sulcal folds and gets down to the interior sulcal bottom (see Figure 6.1 and 6.4) rather

than staying at the exterior sulcal top. Therefore, we can use this surface to extract a

sulcal bottom curve at the fundus, which greatly facilitates sulcal ribbon finding. This

is an important difference between our sulcal ribbon finding and the approach due to
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Vallaint and Davatzikos [88].

Though the sulcal ribbon finding algorithm proposed here is a natural follow up to

our earlier segmentation work, it easily applies in general settings. Sout can be extracted

from any segmented brain volume using the Marching Cubes algorithm [44]. To obtain

a smoother Sout from the brain volume, other iso-surface based methods with specific

constraints to preserve high curvature areas, such as that proposed by Gibson [27], can

be used. Ψout can then be calculated as the signed distance function:

Ψout(x) = −dist(x, Sout) if x ∈ brainvolume,

dist(x, Sout) else.

where dist is the Euclidean distance from position x on 3D image grid to Sout. Narrow

band techniques (see Section 3.3) can be used here as well to limit the calculation of Ψout

to positions close to Sout for computational efficiency.

6.3.2 Automatic extraction of sulcal curves

Our first step in sulcal ribbon finding is to define the interior sulcal bottom curve at the

fundus which resembles crest lines corresponding to points where maximum principal cur-

vature holds a local maximum [38]. The complex anatomy of different sulcal regions often

exhibits small bumps and dents on the cortical surface within sulcal valleys. To overcome

distractions from these, we pose the extraction of sulcal bottom curves given end points

as a control problem where
∫

(Curvmax − Curv(x))2dx needs to be optimized over all

possible curves on cortical surface. Curv(x) here denotes the largest maximum principal
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curvature on the surface. On our discretized outer cortical surface net, the maximum

principal curvature on each vertex Curv(vi) on Sout is calculated directly from Ψout as in

Equation 5.3. Figure 5.5 shows an example of high maximum principal curvature points

on an outer cortical surface.

We introduce the following notation for the description of our automatic curve

extraction method.

• V = {vi | 0 ≤ i < M} : the set of all vertices on the surface net, where M is the

number of vertices;

• T = {tj} : the set of all triangles on the surface net;

• E = {ei,j} : the set of all edges on the surface net, where ei,j is an edge if for some

triangle t ∈ T , vi, vj are vertices of t. ei,j is a degenerate edge if i = j.

• N(vi) = {vj | ei,j ∈ E} : the set of neighbors of vertex vi;

• Cost(ei,j) = cost(Curv(vi), Curv(vj)) · dist(vi, vj): the cost of stepping through

edge ei,j , where function cost(, ) penalizes small maximum principal curvatures,

and dist(vi, vj) gives the Euclidean distance between vertices vi and vj . Function

cost(Curv(vi), Curv(vj)) takes on the form of
(Curvmax−Curv(vi))

2+(Curvmax−Curv(vi))
2

2 ,

where Curvmax is the largest maximum principal curvature of all surface vertices.

• Pi0,i1,...,iK : a path from vi0 to viK , consisting of a sequence of edges ei0,i1 , ei1,i2 , ...,

eiK−1,iK (degenerate edges are allowed), where K is the number of steps.

The problem of finding a sulcal curve given the starting point vstart and the ending
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point vend becomes finding the optimal path on our discrete surface net:

P ∗ = arg min
Pi0,i2,...,iK

ΣK−1
k=0 Cost(eik,ik+1

) (6.1)

where vi0 = vstart, viK = vend, and K is the number of steps taken in the optimal path.

Dynamic programming [3, 6] is a technique well suited for such an optimization

problem. A similar application can be found in work by Khaneja et al. [38]. The basic

idea is as follows. Suppose there are M vertices on the surface net, then the optimal

path P ∗ takes no more than M steps, i.e. K ≤ M . If we can find an optimal path of

step K − 1 to the neighbors of vend, then P
∗ is just the optimal path to one particular

neighbor of vend, plus the edge from that particular neighbor to vend.

The algorithm works in the following fashion. First, we initialize a pathvalue for

vend to be 0, and +∞ for the rest of the vertices. Let PVt denote the set of possible

vertices at the end of step t(0 ≤ t ≤ K − 1). Since vend is the end of step K, it is

obvious that PVK−1 = N(vend). So for each vi ∈ PVK−1, we store pathvalue to be

Cost(eend,i), and assign vend to be the successor of such a vi. By similar reasoning, we

have PVt = {N(vi) | vi ∈ PVt+1}. Now for t = K − 1 down to 0, for each vi ∈ PVt,

we compare Pathvalue(vj) + Cost(eji) where vj ∈ N(vi), to find the optimal pathvalue

for vi and assign its corresponding successor. When the operation is done for t = 0,

starting from vstart, we trace back from the successor all the way to vend, which gives us

the optimal path.

Note that such a discrete optimal path is only an approximation of the weighted

geodesic curve on the continuous surface. However, since our triangulation of the surface

is done at the level of voxel size (the surface net of each whole brain has about 500,000
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triangles), we have found the discrete path to be a fine enough approximation, as verified

by expert inspection. In our implementation, the starting and ending points of a particu-

lar sulcus are specified by the user to allow flexibility, which only takes two mouse clicks

on a surface rendering. The maximal step number M is set to be 300 (large enough for

the possible steps for each sulcus) to provide nearly real-time operation – the extraction

of each sulcal curve takes 2-3 seconds on a SGI R10000 processor running at 250 MHz.

In the case of sulcal bifurcation, segments of a sulcus can be traced out separately and

assigned the same sulcal label. Example automatic traces are shown in Figure 6.3.

6.3.3 Compute a brain wrapper

After extracting the interior sulcal bottom curve, we then define the exterior sulcal top.

One simple way is to use the signed distance level function Ψout. While the outer cortical

surface Sout is the zero level set of Ψout, a positive value ε can be chosen so that the ε level

set of Ψout provides a brain wrapper – a surface that wraps around the brain volume,

while following indentations at exterior sulcal tops. In our implementation, ε is chosen

to be 3mm, which results in a consistent brain wrapper suitable for subsequent sulcal

ribbon extraction. After the brain wrapper surface is extracted, sulcal top curves are

automatically traced out on the brain wrapper surface in the same fashion that sulcal

bottom curves are on the cortical surface (see Figure 6.4). End points of the sulcal top

curves are specified by simple mouse clicks as well.

6.3.4 Sulcal surface extraction and representation

The sulcal ribbon surface corresponds to the medial axis of a particular sulcus. There are

different ways of extracting the medial axis of 3D structures, such as those using Voronoi

diagrams [8, 59, 58]. The drawbacks of 3D Voronoi methods lie in their algorithmic
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(a)

(b) (c)

Figure 6.3: Examples of nearly real-time automatic sulcal tracing on an outer cortical

surface. Volume rendering of the sulci shown with the cortical surface (a) and orthogonal

image cards (b,c showing the left and right sides of the brain) are central sulci (magenta),

superior frontal sulci (blue), inferior frontal sulci (yellow), superior temporal sulci (green)

and pre-central sulci (tan). The traces are not clearly visible in (a) due to the convolution

of the cortical surface. Also see Figure 6.5.
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Figure 6.4: (a): Traces of sulcal top curves on the brain wrapper corresponding to the

cortical surface in Figure 6.3. Cuts through the brain wrapper surface (yellow) and outer

cortical surface (red) on (b):sagittal and (c):axial brain image slices.
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difficulties caused by sampling problems and pruning procedures. Moreover, a parametric

representation of the sulcal ribbon does not follow immediately from these methods.

From the level function Ψout and the sulcal bottom and top curves traced out

automatically, we have a simple and natural way of defining the entire sulcal ribbon. Our

method is based on the fact that the medial axis of a sulcus corresponds to directional

local maximum of the signed distance function Ψout. This idea is illustrated by the 2D

schematic drawing in Figure 6.1. Figure 6.1(b,c) shows the image and surface view of the

signed distance function of the outer cortical boundary in Figure 6.1(a). The ridge curve

in the sulcal region shown in Figure 6.1(c) is the medial axis of the sulcus, and has the

property of being located at a local maximum of the distance function along its normal

direction. The 3D case is similar, only differing in that the medial axial ridge curve

becomes a surface that has a local maximum of Ψout along the surface normal direction.

Our goal now is to capture such a surface through Ψout.

We will define a sulcal surface mesh ~R(u, v) on the domain [0, 1] × [0, 1], so that

the parameter u runs in the direction parallel to the sulcal top and bottom curves, while

parameter v runs across the sulcal depth. Figure 6.6 helps in illustrating this process.

To start, we map ~R(u, 0) to be the interior sulcal bottom curve, and ~R(u, 1) to be the

exterior sulcal top curve. We parameterize both ~R(u, 1) and ~R(u, 0) in u from [0, 1]. This

parameterization is chosen for the convenience for measurement purposes. In this way,

a correspondence between the points on the sulcal top and bottom curves is also set up,

which helps to offer an intuitive and reasonable concept of sulcal depth discussed later in

Section 6.4.1.

We then realize a piece-wise linear triangulation between the sulcal bottom and
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top curves to generate the entire mesh as an initialization of the sulcal ribbon surface:

~R(u, v) = (1− v)~R(u, 0) + v ~R(u, 1) (6.2)

The number of v iso-parametric curves is chosen to be 20 in our implementation,

so that the triangulation of sulcal ribbon surfaces are fine enough to be on the order of a

voxel or less. Figure 6.6(a,b) shows such an initialization of a central sulcal surface and

a superior frontal sulcal surface.

We then deform the surface according to the following equation while fixing the

sulcal bottom curve ~R(u, 0):

∂ ~R(u, v)

∂t
= Fsmooth + Fimage (6.3)

= a(~Ruu + ~Rvv) + (∇Ψout ·NR(u, v))NR(u, v), (u, v) ∈ [0, 1]× (0, 1]

where NR(u, v) denotes the unit normal of the sulcal ribbon surface. The first term on the

right hand side of the equation guarantees the smoothness of the sulcal ribbon surface,

while the second force drives the sulcal surface along its normal direction towards the local

maximum of Ψout which corresponds to the sulcal medial axis. Thus, the surface deforms

to the sulcal medial axis while maintaining a certain smoothness decided by parameter

a. This equation is discretized on the surface mesh and solved iteratively. The iteration

stops when the increase in the value of
∫ ∫

~R(u,v)Ψoutdudv falls below a certain threshold,

which is set to be 0.05.

Figure 6.6(3,4) shows the captured central and superior frontal sulcal surfaces
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with their iso-parametric u and v curves superimposed. The iso-u parametric curves

show the correspondence between the points on sulcal top and bottom curves which is

used in the sulcal depth measurement, and the iso-v parametric curves help with the

visualization of the convolution across the sulcal depth.

The advantage of our approach is that the information defining the sulcal medial

axis is implicit in the signed distance function Ψout, and by using Ψout, the problem of

finding the sulcal ribbon becomes explicitly one of surface deformation. This formulation

avoids the difficulty in tuning the weights of multiple inward force components in the

sliding contour model.

6.4 Applications

In this section, we present some results of our sulcal ribbon finding algorithm, and discuss

how they can be used for structural and functional analysis of sulci. The MR images we

tested our algorithm on were acquired on a 1.5 T GE scanner, using a 3D SPGR volume

acquisition. The image resolution was 1.2× 1.2× 1.2mm3 in voxel size.

We first ran our coupled surfaces algorithm to segment cortical gray matter from

white matter and non-brain tissues, which resulted in the outer cortical surface Sout and

its level function Ψout. The segmented cortical gray matter volume was then inspected

by an expert, and corrections were made. Accordingly, Sout was modified and Ψout

recomputed locally at the places of correction. This completed the pre-processing step of

the sulcal ribbon finding algorithm.

As described in section 6.3.3, a brain wrapper surface Swrap was extracted based

on Ψout, and the maximum principal curvature was calculated on both Sout and Swrap.

Our expert then dropped starting and ending points of sulcal top and bottom curves on
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(a)

(b) (c)

Figure 6.5: Sulcal ribbon surfaces corresponding to sulcal curves in Figure 6.3. shown

with (a):cortical surface and with (b,c):3D orthogonal image cards. Notice the convolution

captured by our ribbon extraction algorithm.

Swrap and Sout respectively. After the sulcal curves were extracted automatically using

dynamic programming, a piecewise linear triangulation between them was realized as an

initialization of the sulcal ribbon. Finally, the sulcal ribbon was deformed to the sulcal

medial axis through Ψout using Equation 6.3.

Software written in C++/Open Inventor was used for these steps on a SGI Octane

machine with a 250MHz R10000 processor. The automatic tracing of sulcal curves can be

done in nearly real-time (about 2-3 seconds), and the deformation of each ribbon surface
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(a1) (a2) (a3) (a4)

(b1)

(b2)

(b3)

(b4)

Figure 6.6: Deformation of a (a):central sulcal ribbon and a (b):superior frontal sulcal

ribbon. (1): Sulcal top and bottom curves traced out automatically; (2): A piece-wise

linear mesh between the two curves serves as an initialization of the sulcal ribbon. The

final sulcal ribbon surface with iso-parametric (3):u and (4):v curves superimposed.
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(a) (b) (c)

Figure 6.7: Left and right central sulcal ribbons (magenta) and superior frontal sulcal

ribbons (blue) shown on (a):sagittal, (b):coronal and (c):axial images slices. Notice that

our sulcal ribbons capture the in-plane and out-of-plane 3D convolutions.

takes about 3− 5 seconds.

Shown in Figure 6.5(a) are the ribbon surfaces of central sulci (magenta), superior

frontal sulci (blue), inferior frontal sulci (yellow), superior temporal sulci (green) and pre-

central sulci (tan) on the outer cortical surface. Figure 6.5(b,c) shows sulcal ribbons of

the left and right hemispheres with orthogonal image cards. The cut views of central sulci

and superior frontal sulci on orthogonal image slices shown in Figure 6.7 demonstrate that

the sulcal ribbons from our algorithm capture the complexity of 3D sulcal convolution.

6.4.1 Quantitative measurement of central sulcal ribbons

Once the sulcal ribbons are captured in their parametric form, we can make quantitative

measurements such as surface area, sulcal depth and sulcal curvature etc. Sulcal ribbon

surface area is calculated as the sum of the area of all the triangles used to compose

the surface. A reasonable and consistent way to measure sulcal depth is to measure the
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Figure 6.8: Left(top) and right(bottom) central sulcal ribbons of 9 normal subjects ex-

tracted from MR images using our algorithm.

geodesics on the sulcal surface to the sulcal fundus from each point on the top curve, in

other words, the geodesics between R(u, 1) to R(u, 0) for all u ∈ [0, 1]. The geodesics are

computed using the dynamic programming technique described in Section 6.3.2, with the

cost function set to be simply the length of a step, i.e. dist(vik , vik+1
). Our experiments

suggest that most of time the geodesic from R(u0, 1) to R(u0, 0) for a particular u0

coincides with the iso-u curve R(u0).

We measured the depth and intra-sulcal ribbon surface area of the complete course

of the central sulcus in both hemispheres across 15 right handed subjects to demonstrate

our methods in an area of interest to neuroscientists. The fundus of the central sulcus is

the dividing point for the primary motor region (Brodmann area 4) on the anterior bank

and the primary somatosensory strip (Brodmann area 3b) on the posterior bank of the

sulcus. In addition to serving as boundaries, the depth of sulci and the total intra-sulcal

surface area may bear some relationship to the functional capacity of that region. There is
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a somatotopic mapping of the body on the primary motor and somatosensory regions, such

that different regions of these cortical strips process information from different regions

of the body. There are larger cortical representations for body parts with more complex

duties (e.g., hands vs. back, [26]) and greater signal resolution in areas containing more

tissue [71]. Recent work has suggested that anatomic asymmetry in the depth and surface

area of the region of the central sulcus which maps to the hand and arm may be associated

with asymmetry in motor function; right handers have a deeper central sulcus in this

region in the left hemisphere, while the opposite is true in left handers [95, 1, 94].

Figure 6.8 shows the central sulcal ribbons of 9 of the right-handed subjects to

demonstrate the sulcal variability captured by our algorithm. Although not presented

here, ongoing work in our lab is comparing regional measurements corresponding to the

representation of the hand in this group and a matched comparison group of left handers,

in order to test for structure function relationships. Results for the total central sulcus

in this group of 15 neurologically healthy young adults of normal general intelligence (IQ

mean ±SD = 108 ± 15) including 7 males and 8 females between the ages 9 and 41

years ( 23.8 ± 8.0 years) are as follows. Average sulcal depth of the complete central

sulcal ribbon was 18.12(±1.66)mm on the left and 18.08(±1.67)mm on the right, with no

significant right-left difference. Total surface area of the cortical ribbon (corresponding

to the surface area of one bank, not both sulcal banks) was 1724(±202)mm2 on the left

and 1764(±205)mm2 on the right. These measurements are roughly commensurate with

post mortem measurements [94] and prior in vivo morphometry [1], especially considering

the differences in measurement procedure (the cited methods were based on interpolation

between traces on 2D slices).
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6.4.2 Brain matching with cortical constraints

Another potential use of the extracted sulcal surfaces lies in non-rigid brain warping and

cortical atlas building. As distinctive features of the brain, sulcal surfaces can be used

as geometric guidelines in shape transformation methodologies. There has already been

work toward this direction [89, 17, 13], and our method offers an alternative for obtaining

a starting point.

6.5 Discussion

In this chapter we have presented a new approach to automatic 3D sulcal ribbon finding.

Dynamic programming is used to automatically extract interior sulcal bottom curves on

the outer cortical surface, and exterior sulcal top curves on a brain wrapper computed

from the distance function Ψout associated with the outer cortical surface. A sulcal ribbon

surface is then initialized through a piecewise linear triangulation between the sulcal top

and bottom curves, and deformed to the sulcal medial axis through the distance function

Ψout. The use of Ψout makes the information defining the sulcal medial axis implicit,

and the resulting surface deformation formulation is simpler without multiple forces to

tune. Though a natural follow up to our segmentation method, our sulcal ribbon finding

algorithm can be adapted to follow other segmentation procedures. By allowing the user

to define a sulcal ribbon with a few mouse clicks, our method offers automation, flexibility

and nearly real-time operation.

All the sulcal ribbon surfaces captured by our algorithm are evaluated slice by

slice on axial image slices by an expert. The positions of the ribbon surfaces are always

within one voxel’s distance from the sulcal medial axis by visual inspection. However,

since any type of expert tracing of the sulcal ribbon suffers from its own limitations in
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capturing the 3D nature of sulci, we feel the best way to do full quantitative analysis of

our algorithm is to create a phantom with known convolutions, and experiment on its

images.

Our method for extracting the brain wrapper has potential for further improve-

ment. There are no well-defined methods to locate the exterior top edge of a sulcus.

Although our way of extracting a fixed ε level set surface is consistent in its own right,

ideally different values of ε need to be chosen for different sulci in order to obtain a more

geometry-specific definition. Other directions of future research include localized sulcal

measurement and shape analysis, and the study of structure and function relationships

in sulcal regions by connecting our sulcal representation with functional data.



Chapter 7

Summary

This thesis presents a 3D approach for the problem of segmenting and measuring volumet-

ric layers - a type of structure often encountered in medical image analysis. Key examples

include the cortical gray matter of the brain and the left ventricular myocardium of the

heart. We adopt a definition of the volumetric layers that includes the inner and outer

bounding surfaces, as well as the homogeneity in between. Motivated by the nature of

the coupling between the bounding surfaces, we have developed a coupled surfaces ap-

proach where a generic shape constraint – more specifically, a thickness constraint, is

incorporated. By evolving two embedded surfaces simultaneously, each driven by its own

image-derived information while maintaining the coupling, a final representation of the

bounding surfaces and the automatic segmentation of the layer in between are achieved.

The image-derived information is obtained by using a local operator based on gray-level

information rather than image gradient alone, which gives our algorithm the ability of

capturing the homogeneity of the tissue inside the volumetric layer.

The algorithm was implemented using a level set method, a powerful numeric

technique for computing interface motion. A coupled narrow band algorithm was cus-

88
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tomized for the coupled surfaces propagation. The correspondence between points on

the two bounding surfaces falls out automatically during the narrow band rebuilding

which is required for surface propagation at each iteration. This shortest distance-based

correspondence is essential in imposing the coupling between the two bounding surfaces

through the thickness constraint. The level set implementation of the coupled surfaces

propagation offers the advantages of easy initialization, computational efficiency and the

ability to handle complex geometry and topology change, as well as the ready evaluation

of several characteristics of the layer, such as surface curvature and a thickness map.

Our approach was applied successfully to the problem of cortical analysis. We

presented extensive validation and experiments on both simulated MR brain images, as

well as real data with a range of image qualities. Comparisons were also given between

our algorithm and several classification-based techniques to show the power of the shape

constraint incorporated. With our method, skull-stripping, cortical gray matter segmen-

tation and measurements are done simultaneously. The geometric measurements made

easy by our algorithm, such as the cortical surface shape index and the cortical thickness,

are offering new insights into the understanding of brain structure and function through

neuroimaging. The 3D intra-sulcal ribbon algorithm derived from the coupled surfaces

work provides a new mechanism for the efficient analysis of sulcal patterns which are also

of great interest in the study of neuroanatomy and related disorders.

As a starting point, the coupled surfaces algorithm has shown promise in Left

Ventricular (LV) myocardium segmentation (see Figure 7.1 for an example). The advan-

tage of its easy initialization, computational efficiency, etc., translates into cardiac image

analysis as well.

There are, of course, areas of potential improvement that this work could benefit
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(a) (b)

(c) (d)

Figure 7.1: Example of LV Myocardium Segmentation. (a): initialization of curves rep-

resenting epicardium (red) and endocardium (green) boundary; (b,c): intermediate steps

in propagation; (c): final results of the captured epicardium and endocardium boundary.
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from. Computationally, even though the speed of our algorithm already compares favor-

ably with other methods available in the neuroscience community, further speed up could

help to realize its full analytic power in neuroimaging studies. This could be done with

more efficient use of data structures, and with the possibility of using multi-processors. In

the current implementation, the narrow band rebuilding at each iteration takes up most

of the processing time. Since updating the distance within the neighborhood of one point

on surface does not affect the rest places, this rebuilding process is perfectly suitable for

parallel programming.

The second possible improvement concerns better capturing the intensity ho-

mogeneity inside the volumetric layer. Currently, we simply check the immediately-

surrounding voxels in the regions around the propagating front to calculate the image

feature that partially determines the speed of the front. An investigation of voxels statis-

tics within a strip of potential cortical gray along the current propagating surface and in

between the coupled surfaces would help to make the segmentation process more robust

to image noise and poor contrast.

The third potential improvement is to incorporate additional information that will

help in trying to further capture of the full depth of each and every sulcus. Currently,

there is some residual inaccuracy in imperfect sulcal delineation, especially in the case

of tight sulci of young subjects. We may take advantage of the automatically identified

high maximum principal curvature points that are indicators of sulci, and “sink” them

locally into the brain volume with the help of information on the underlying cortical gray

matter and inner cortical surface as well as its associated distance function.

Other directions of future research include localized sulcal measurement and shape

analysis, and the study of structure and function relationships in sulcal regions.
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Finally we discuss the generalization of this work. The core idea of this thesis work

is using generic constraints to couple neighboring structures (in our case, the two bounding

surfaces that are part of the definition of the volumetric layer) for the purpose of more

robust and accurate segmentation. This idea can be further developed and generalized

for applications to other interesting problems in medical image analysis. For example, the

LV segmentation can potentially be helped by the information of the coupling between its

epicardium and endocardium, as well as the coupling between LV and the right ventricle.

Also, the segmentation of deep brain structures, such as the caudate, thalamus and

lateral ventricle etc., could benefit from their simultaneous recovery with constraints

emulating their neighboring relationships. This type of coupling offers an alternative to

traditional template-based approaches by using more generic constraints, and therefore

has the advantage of flexibility.
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