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Boundary Finding with Parametrically Deformable
Models

Lawrence H. Staib and James S. Duncan

7.1 Introduction

This work describes an approach to finding objects in images based on de-
formable shape models. Boundary finding in two and three dimensional images is
enhanced both by considering the bounding contour or surface as a whole and by
using model-based shape information.
Boundary finding using only local information has often been frustrated by

poor-contrast boundary regions due to occluding and occluded objects, adverse
viewing conditions and noise. Imperfect image data can be augmented with the
extrinsic information that a geometric shape model provides. In order to exploit
model-based information to the fullest extent, it should be incorporated explicitly,
specifically, and early in the analysis. In addition, the bounding curve or surface
can be profitably considered as a whole, rather than as curve or surface segments,
because it tends to result in a more consistent solution overall.
These models are best suited for objects whose diversity and irregularity of

shape make them poorly represented in terms of fixed features or parts. Smoothly
deformable objects do not necessarily have an obvious decomposition that can
be exploited. A uniform shape representation that describes the entire shape is
therefore needed and it should describe a relatively broad class of shapes.
For a representation to be useful for modeling it should be concise. Methods

based on explicitly listing points or patches on the surface are verbose because of
the implicit redundancy. Parametric representations capture the overall shape in a
small number of parameters. This means that the optimization of a match measure
between data and a model can occur in a lower dimensional space.
Boundary finding is formulated as a optimization problem using parametric

Fourier models which are developed for both curves and surfaces. The model is
matched to the image by optimizing in the parameter space the match between the
model and a boundary measure applied to the image. Probability distributions on
the parameters of the representation can be incorporated to bias the model to a
particular overall shape while allowing for deformations. This leads to a maximum
a posteriori objective function.

7.2 Related Work in Boundary Finding

Local edge detectors applied to real images produce spurious edges and gaps.
These problems can only be overcome by the incorporation of information from
higher scale organization of the image and models of the objects sought. Contextual
information has been used for boundary determination via grouping [1], relaxation
labeling [2] and scale-space methods [3]. These methods, by themselves, will not
necessarily find complete boundaries. Pixel search methods associate edge elements
by finding an optimal path through a two-dimensional image, based on criteria
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designed to find boundaries. The typical objective function combines boundary
strength and low overall curvature [4]. Pixel search does not generalize obviously
to three dimensions because there is no natural ordering of voxels in a surface.
An alternative method for boundary analysis is the Hough transform [5]. The

Hough approach is similar to the current method in that it finds shapes by looking
for maxima in a parameter space. However, the storage and computational com-
plexity of the Hough method are a great disadvantage, especially if deformations
are envisaged.
Other investigators have considered whole-boundary methods that adjust a

tentative curve or surface mesh in order to match to the image. By considering
the boundary as a whole, a structure is imposed on the problem that bridges gaps
and results in overall consistency.
For curve finding, Gritton and Parrish [6] used a flexible bead chain, where the

beads are putative boundary points. The beads are attracted towards pixels that
have a higher gradient magnitude. Cooper [7] formulated boundary estimation
using maximum likelihood. A boundary adjustment scheme similar to the bead
chain algorithm [6] is presented to perform the optimization. Kass et al. [8] used
energy-minimizing snakes that are attracted to image features such as lines and
edges while internal spline forces impose a smoothness constraint. The weights of
the smoothness and image force terms in the energy functional can be adjusted for
different behavior. The solution is found using variational methods.
For surface finding, Terzopoulos et al. [9] used energy-minimizing meshes that

are attracted to image features such as lines and edges while internal spline forces
impose a smoothness constraint. The goal was to find surfaces implied by silhou-
ettes in two-dimensional images. This idea has also been used for finding symmetry
surfaces from scale space stacks of two-dimensional images [10], surfaces in range
images [11, 12] and surfaces in three-dimensional images [13].
Other whole-boundary methods optimize in a parameter space. Parametric

representations are useful for modeling because they capture the overall shape
concisely. This means that the optimization of a match measure between data and
a model can occur in a lower dimensional space. Widrow [14] used parametrized
templates called rubber masks to model objects. The parameters are sizes and
relationships between subparts. Yuille et al. [15] used a similar method for finding
features in images of faces. Both of these methods describe the overall shape of
the structure using very few parameters. However, the object must have sufficient
structure to be represented in terms of parts and a new model must be developed for
each new object. Work has also been done developing deformable templates based
on Markov models of two-dimensional boundaries incorporating knowledge of shape
from statistical features [16]. In the next section we will discuss parametrizations
for surfaces in more detail.
Pentland and his group have developed a physically-based method for analyzing

shape [17, 18]. Shapes are represented by the low-order frequency displacement
eigenvectors corresponding to the free vibration modes of the object. Thus, it is
similar to a Fourier representation. The shape is recovered using the finite element
method.
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7.3 Curve and Surface Representations

Implicit equations are a traditional and natural representation which define a
relationship between coordinates such that all points that satisfy this relationship
belong to the structure. Such representations are ideal for determining whether
specific points belong to the object but there is no general way for generating
such points. Because such operations will be crucial for this work, only explicit
parametric representations will be considered further.
An arbitrary curve can be represented explicitly by two functions of one param-

eter: x(s) and y(s). A surface can be represented explicitly by three function of
two parameters: x(u, v), y(u, v) and z(u, v). A surface is indexed or parametrized
by the two parameters (u, v). While a curve’s points are naturally ordered (by
arclength), there is no natural ordering of points on an arbitrary surface. Cer-
tain classes of curves and surfaces can be represented as a single function. For
example, curves expressible as a single function of one parameter, r(θ), are radial
deformations of a circle. Similarly, surfaces expressible as a function of two an-
gles, r(θ, φ), are radial deformations of a sphere and are parametrized by (θ, φ).
Surfaces expressible as a single function of two coordinates, z(x, y), are perpendic-
ular deformations of a plane and thus the points in the plane, (x, y), provide the
parametrization.
The main approaches to parametric modeling in computer vision have been

polynomials [19], superquadrics [17, 20], spherical harmonics [5, 21] and generalized
cylinders [22]. All of these parametrizations are restricted to a limited class of
objects.

7.3.1 Polynomials

Second degree algebraic surfaces have been used extensively because of their
simplicity and conciseness. Conics are second degree curves including ellipses,
parabolas and hyperbolas. Quadrics are second degree surfaces which include
spheres, ellipsoids, cones, cylinders, planes, paraboloids and hyperboloids. Their
conciseness, however, greatly limits their expressiveness. Higher order polynomial
surfaces are expressed using implicit representations.

7.3.2 Superquadrics

Superquadrics are an extension of quadrics using an exponent that allows
the shape to vary from an ellipsoid to a rectangular parallelepiped. The two-
dimensional analog is the superellipse. Superquadrics can be expressed parametri-
cally by:

x(u, v) = x0 + a1sign(cos v cosu)| cosu|
ε1 | cos v|ε2

y(u, v) = y0 + a2sign(sin v cosu)| cosu|
ε1 | sin v|ε2

z(u, v) = z0 + a3sign(sinu)| sinu|
ε1 (1)

The surface parameters u and v represent latitude and longitude. The exponent
ε1 controls the squareness in the u plane and ε2 controls the squareness in the v
plane. The parameters a1, a2 and a3 control the size in the x, y and z directions.
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The basic shape can be altered by such operations as twisting, bending and
tapering [23], as can any explicit representation. The main disadvantage of su-
perquadrics is that even with these altering operations, superquadrics are limited
by their doubly symmetric cross-section and thus still only represent a very lim-
ited family of shapes (without resorting to composition). Superquadrics have been
augmented by deformations according to spline models [9] and strain modes [17] in
order to increase their expressiveness. Hyperquadrics [24] are a generalization of
superquadrics that allow smooth deformations from shapes with convex polyhedral
bounds, although no explicit parametrized form is possible.

7.3.3 Generalized Cylinders

Generalized cylinders (or cones) are a way of representing elongated objects.
They are defined by a one-dimensional curve representing the spine of the object
and a two-dimensional cross-section that is swept along the spine to define the
surface. This cross-section may vary along the spine. The actual properties of this
representation depend on the choices of spine (sweeping rule) and cross-section.
Practical choices usually limit the class of object that is representable. The most

common restriction is to straight, homogeneous generalized cylinders (SHGCs)
where the spine is straight and the cross-section shape is constant (allowing scal-
ing). These can be defined by [25]:

x(u, v) = r(u)x(v) + pz(u)

y(u, v) = r(u)y(v) + qz(u)

z(u, v) = z(u) (2)

where u varies along the spine, v varies along the cross-section, r(u) defines the
scaling, x(t) and y(t) define the cross-section shape and z(u), p and q define the
spine. If the spine is allowed to bend, the cross-section is usually taken to be
perpendicular to the axis. The cylinder radius must therefore be greater than the
radius of curvature or else the boundary will cross itself. If the spine and cross-
section are represented parametrically, as opposed to directly as an explicit list of
coordinates or segments, generalized cylinders can be completely parametric.
An object can be represented by a generalized cylinder only if there exists an

axis that a cross-section can sweep along in order to define the surface. The choices
for the form of the spine and the cross-section further limit the expressibility of
the representation.

7.3.4 Spherical Harmonics

Spherical harmonics have been used as a type of surface representation for
radial or stellar surfaces (r(θ, φ)). The surface is represented as a weighted sum of
spherical harmonics which are orthogonal over the sphere. A surface is represented
in polar coordinates by:

r(θ, φ) =

M
∑

m=0

N
∑

n=0

(Amn cosnθ +Bmn sinnθ) sin
n φP (m,n, cosφ) (3)
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Figure 1: The contour (dark line) at the left is constructed from three component
ellipses shown at three different times.

where P(m,n,x) is the nth derivative of the mth Legendre polynomial as a function
of x. The parameters of the representation are the weights Amn and Bmn.
This is a type of Fourier representation, as defined below, but restricted to

stellar surfaces. Stellar surfaces are obtained by deforming a sphere by moving
points only in the radial direction. This means that all surface points must be
seen from one point in the interior. Thus, spherical harmonics model a somewhat
limited class of objects.

7.4 Fourier Models

Smoothly deformable objects do not necessarily have an obvious decomposition
that can be exploited. A uniform shape representation that describes the entire
shape is therefore needed and it should describe a relatively broad class of shapes.
Fourier representations are those that express the function in terms of an or-

thonormal basis. The motivation for a basis representation is that it allows us to
express any object as a weighted sum of a set of known functions. An orthonormal
set is desirable because it makes the parameters (weights) distinct.
For example, to express the one-dimensional function f(t) on the interval (a, b)

in terms of the basis φk(t), we write:

f(t) =
∞
∑

k=1

pkφk(t) where pk =

∫ b

a

f(t)φk(t) dt (4)
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The coefficients p, the projections of the function onto the k basis functions, are
the parameters of the representation. In order to use this representation the sum
is truncated. In most such representations, the higher indexed basis functions
represent higher spatial variation. Therefore, if the function to be represented
is expected to have limited spatial variation, as is the case for most real object
boundaries, the series can be truncated and still accurately represent the function.
The usual basis functions are the sinusoids [26], although others, such as orthogonal
polynomials or spherical harmonics in two dimensions, are possible. The sinusoids
have the advantage of representing the familiar notion of frequency.

7.5 Fourier Curves

This one-dimensional decomposition can be used as a representation for curves
in two (or more) dimensions. A closed curve can be represented by two periodic
functions of t, where t varies along the curve from 0 to 2π, x(t) and y(t). A Fourier
representation for closed curves can be based on the Fourier decomposition of these
two functions using the sinusoidal basis

φ =
1

2π
,
cosx

π
,
sinx

π
,
cos 2x

π
,
sin 2x

π
, . . . (5)

If we write the resulting equations in matrix form, we get the elliptic Fourier
representation [27], [28], [29]:

[

x(t)
y(t)

]

=

[

a0

c0

]

+

∞
∑

k=1

[

ak bk
ck dk

] [

cos kt
sin kt

]

(6)

where:

a0 =
1

2π

∫ 2π

0

x(t)dt c0 =
1

2π

∫ 2π

0

y(t)dt

ak =
1

π

∫ 2π

0

x(t) cos kt dt bk =
1

π

∫ 2π

0

x(t) sin kt dt

ck =
1

π

∫ 2π

0

y(t) cos kt dt dk =
1

π

∫ 2π

0

y(t) sin kt dt

The closed curve is thus represented by praw = (a0, c0, a1, b1, c1, d1, . . .) which
will be referred to as the raw parameter vector. This particular version of Fourier
boundary representation has a number of advantages. A geometric interpretation,
in terms of ellipses, can be developed from this decomposition. The geometric
interpretation will allow for better visualization of the effect of the parameters and
invariance to starting point, scale and two-dimensional rotation and translation.
Invariance to rotation, scale and translation is important because these parameters
are determined not by the object but by the view of the object, which often cannot
be held constant.
In Equation 6, the first two coefficients, a0 and c0, determine the overall trans-

lation of the shape. Each term in the summation is the parametric form for an
ellipse. In the degenerate case akdk − bkck = 0 and the parametric form defines
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a straight line (a degenerate ellipse). In each term, the matrix determines the
characteristics of the ellipse. The contour can be viewed as being decomposed into
a sum of rotating phasors, each individually defining an ellipse, and rotating with
a speed proportional to their harmonic number, k. This can be seen in Figure 1
where a contour is shown constructed from three component ellipses forming a sort
of planetary system. The straight lines represent the phasors for each ellipse shown
at three different times. Thus, the point Cij traces out the ith ellipse at time j.
Each point is the center of the next higher ellipse. C0 is the center of the first
ellipse. Points C31, C32 and C33 are three different points on the final curve.

It is important that the curve representation that is decomposed into Fourier
components be both continuous and periodic. Discontinuities slow the convergence
because of the high frequencies inherent in a step jump. In this representation, both
x(t) and y(t) are periodic because the contour is closed, and both x(t) and y(t) are
continuous because the contour is continuous.

The geometric properties of each of the component ellipses can be derived from
the raw elements of each ellipse matrix. Each ellipse can be described by four
geometric properties: semi-major axis length, semi-minor axis length, rotation and
phase shift. The rotation is the angle from the x-axis to the major axis of the
ellipse, defined from −π/2 to π/2. The phase shift is the difference in phase from
the major axis to the position of t = 0 (the ellipse starting position), defined from
−π to π.

These ellipse properties can be derived as follows. First consider the general
form for an ellipse, which is the product of the raw ellipse matrix and the trigono-
metric basis function vector:

[

a b
c d

] [

cos kt
sin kt

]

(7)

In order to determine the ellipse parameters, consider the matrix for an ellipse
with its major axis aligned with the x-axis and with no phase shift where A and
B are the major and minor semi-axis lengths, respectively. The phasor moves
counterclockwise for B positive, clockwise for B negative. The ellipse can be
rotated simply by pre-multiplying the ellipse matrix by a rotation matrix. A phase
shift of the ellipse by φ0 means replacing t by t + φ0. This is the same as a pre-
multiplication of the basis function vector by a rotation matrix, or equivalently,
a post-multiplication of the ellipse matrix. Thus, a rotation of this ellipse by θ
and shift by φ can be written as a pre-multiplication and a post-multiplication by
rotation matrices:

[

cos θ − sin θ
sin θ cos θ

] [

A 0
0 B

] [

cosφ − sinφ
sinφ cosφ

]

(8)

This represents a general ellipse and is thus equivalent to the raw ellipse matrix
in Equation 7. Therefore, to find the ellipse parameters given the values of these
matrix elements, solve the following four equations that come from identifying
corresponding matrix elements for A, B, θ and φ.

a = +A cos θ cosφ−B sin θ sinφ b = −A cos θ sinφ−B sin θ cosφ

c = +A sin θ cosφ+B cos θ sinφ d = −A sin θ sinφ+B cos θ cosφ (9)
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This results in:

A2 =
α+

√

α2 − 4β2

2
B2 =

2β2

α+
√

α2 − 4β2

θ = tan−1 Ac+Bb

Aa−Bd
φ = tan−1 Ba−Ad

Ac+Bb
(10)

where:
α = a2 + b2 + c2 + d2, β = ad− bc

By taking A to be positive and B to agree in sign with j, we get a consistent
sign convention. These parameters, pref = (a0, c0, A1, B1, θ1, φ1, . . .), represent
the shape in terms of the ellipse properties and will be referred to as the refined
parameters.
A further conversion can improve this set by converting the rotation and shift

parameters from absolute quantities to values relative to the preceding harmonic
and by normalizing the axes’ lengths [30]. This conversion to relative quantities
will allow the isolation of an overall rotation parameter and the removal of the
overall phase shift, φ1, which is arbitrary. Normalizing the axes’ lengths creates
an overall scale parameter.

Open Curves

Open curves can be represented by having the parameter t start at one end of
the line, trace along the contour to the other end, and then retrace the curve in
the opposite direction to create a closed path. That is, x(t) = x(2π − t) and
y(t) = y(2π − t) [26]. The resulting functions are even and thus they can be
represented by the even sinusoidal basis functions

φeven =

{

1

2π
,
cosx

π
,
cos 2x

π
,
cos 3x

π
, . . .

}

(11)

This representation can be thought of as decomposing the curve into degenerate el-
lipses (flattened down to two coincident lines). The equations for the corresponding
ellipse parameters are simplified because the sine terms, bk and dk, are zero:

A2 = a2 + c2 B2 = 0 θ = tan−1 c

a
φ = 0 (12)

The ellipses are all degenerate with a fixed starting point at one end, thus forcing
both the minor semi-axis length, B, and the starting point, φ, to be zero.

7.5 Fourier Surfaces

In order to represent surfaces, a function of two variables is needed. Because
the parity of the functions will be important, a useful two-dimensional basis is [31]:

φ = {1, cos 2πmu, sin 2πmu, cos 2πlv, sin 2πlv, . . . , (13)

cos 2πmu cos 2πlv, sin 2πmu cos 2πlv,

cos 2πmu sin 2πlv, sin 2πmu sin 2πlv, . . . (m = 1, 2, . . . ; l = 1, 2, . . .) }
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Figure 2: An example torus surface (left) using up to second order harmonics and
an example open surface (right) using up to fourth.

The function is then represented by:

f(u, v) =

2K
∑

m=0

2K
∑

l=0

λm,l [ am,l cos 2πmu cos 2πlv + bm,l sin 2πmu cos 2πlv+
cm,l cos 2πmu sin 2πlv + dm,l sin 2πmu sin 2πlv]

(14)

where:

λm,l =







1 for m = 0, l = 0
2 for m > 0, l = 0 or m = 0, l > 0
4 for m > 0, l > 0

This allows the specification of even functions (using the cosine terms) and odd
functions (using the sine terms). The complex basis is useful for computational
purposes because the parameters can be computed in a single transform:

φ = {1, e2πi(mu+lv), . . . (m = ±1,±2, . . . ; l = ±1,±2, . . .) } (15)

Using Euler’s formula, eix = cosx + i sinx, we can derive the conversion between
the sine-cosine basis parameters and the complex basis parameters.
The bases presented can be used for parametrizing surfaces in three dimen-

sions. Such surfaces can be described explicitly by three functions of two surface
parameters:

x(u, v) = (x(u, v), y(u, v), z(u, v)) (16)

where u and v vary over the surface and x, y, and z are the associated Cartesian
coordinates. This surface representation imposes no restriction on the class of
surfaces representable. There are three corresponding sets of parameters: ax, bx,
cx, dx, ay, by, cy, dy, az, bz, cz, dz. While the choice of u and v is obvious for simple
surfaces such as spheres (use latitude and longitude) or cylinders (use longitude and
height), very complicated surfaces will require some further analysis to determine
the appropriate surface parametrization. Axis transforms [10] may provide a way
of determining the overall structure on which to base the surface parametrization.
There are four classes of simple surfaces in three dimensions that will be de-

scribed: tori (closed tubes), open surfaces (with one edge), tubes (open surfaces
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with two edges) and closed surfaces (no edges). The torus is formed using the entire
basis shown in Equation 14. The result is a torus because both surface parameters
are forced to be periodic. An example torus surfaces using this parametrization is
shown in Figure 2. The other three types of surfaces can be described using subsets
of the above basis which flatten out or constrain the torus in different ways.

7.5.1 Open Surfaces

Representing open surfaces with the basis in Equation 14 is complicated by the
periodicity property. Since the surface is open, a straightforward representation of
the surface would result in discontinuities at the boundary. Thus, these disconti-
nuities can be avoided by having the two surface parameters start at one side of
the surface, trace along the surface to the other end, and then retrace the surface
in the opposite direction to create a closed path.
This results in a function x(u, v) that is even and thus only the purely even

terms, ax,0,0, ax,m,0, ax,0,l and ax,m,l are nonzero. This also holds for y(u, v) and
z(u, v). The converse is also true; that is, any expansion with only those terms
nonzero for all l and m results in an even function and thus describes an open
surface. We are therefore effectively restricting the basis to include only even
functions of both u and v.

φopen = {1, cosmu, cos lv, . . . , (17)

cosmu cos lv, . . . (m = 1, 2, . . . ; l = 1, 2, . . .)}

Open surfaces are useful for a wide variety of structures including objects with
one prominent opening, the bounding surface between two touching objects and
flat objects. An example open surfaces using this parametrization is shown in
Figure 2.

7.5.2 Tube Surfaces

Tubes require the open representation along one of the surface parameters and
the closed representation along the other. This results in the following basis which
is even in v and unrestricted in u:

φtube = {1, cos lv, sinmu, cosmu, . . . , (18)

cosmu cos lv, sinmu cos lv, . . . (m = 1, 2, . . . ; l = 1, 2, . . .)}

Thus the only nonzero terms are ax,0,0, ax,0,l, ax,m,0, bx,m,0, ax,m,l and bx,m,l and
the corresponding y and z terms. Tubes are an extension of generalized cylinders
where the cross-section is no longer constrained to be planar. This allows for a
wider range of shapes to be represented. All of the standard types of generalized
cylinders can be represented in a Fourier representation as well. For example, the
SHGC defined in Equation 2 can be represented by decomposing the cross-section
function (x(v) and y(v)) using the closed curve representation, and decomposing
the scaling function (r(u)) and the spine (z(u)) using the open curve representation
described above.
Tubes are useful for elongated hollow objects and elongated objects with flat

ends. They are also useful for temporal sequences of planar images, where the third
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Figure 3: Two tube surface examples using up to fourth order harmonics.

dimension is time, and multimodal images, where the third dimension is modality.
In this case a simplified tube model would be used where the third dimension was
independent of the two surface parameters, for example, z(u, v) = t. Two example
tube surfaces using this parametrization are shown in Figure 3.

7.5.3 Closed Surfaces

Closed surfaces are the most difficult to represent because they are most dis-
similar to tori. One way to represent closed surfaces is by considering tubes whose
ends close up to a point at both ends instead of being open. This is done by
expressing x and y using the following basis:

φclosed-xy = {1, sin lv, . . . , (19)

cosmu sin lv, sinmu sin lv, . . . (m = 1, 2, . . . ; l = 1, 2, . . .)}

thus forcing both functions to constants at v = 0, π, 2π. This means that z must
be expressed using only the cosines:

φclosed-z = {1, cos lv, . . . , (l = 1, 2, . . .)} (20)

This requires that the values for v be repeated as for a open curve but negated for
x and y because they are both odd functions. The values for v are just repeated
for z because it is an even function. That is:

x(u, v) = −x(u, 2π − v)

y(u, v) = −y(u, 2π − v)

z(u, v) = z(u, 2π − v) (21)

This representation is limited in that the axis along z is straight because z(u, v) =
z(v). Because the axis is aligned along z, an additional general rotation is necessary
to allow for all orientations. Two example closed surfaces using this parametriza-
tion are shown in Figure 4, with terms up to fourth order on the left and eighth
order on the right.
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Figure 4: Two closed surface examples using up to fourth order harmonics on the
left and eighth order on the right.

7.5.4 Surface geometry

The Fourier surface description makes the calculation of geometric surface prop-
erties straightforward because a continuous description of the surface is known.
Without an analytic description of the surface, curvature can be calculated based
on the computation of derivatives from a local surface patch fit, or from a discrete
approximation of the derivatives at each point. These methods are dependent on
the proper choice of the size of the patch or neighborhood. For Fourier surfaces,
partial derivatives of the surface functions can be calculated from the functional de-
scription. Curvature is then calculated directly from these partial derivatives [19].
Surface curvature properties have been used to classify and characterize shape. For
example, surface regions can be classified by the sign of the surface curvatures as
peaks, ridges, saddles, valleys, pits and flats.

7.6 Boundary Finding Objective Function

In order to fit one of these models to the image data, a measure of fit is optimized
by varying the model parameters. The surface is expected to be distinguishable by
some measure of boundary strength (direction can also be used) computed from
the image. The sum or integral of the boundary strength image over a given surface
indicates the degree of correspondence between them, and this can be used as the
measure of fit.
Any measure that indicates a change in some property that distinguishes the

object from the background could be used as a boundary measure. A natural
candidate for many images is the gray-level gradient. The magnitude is the strength
of the boundary and the direction is the normal to the boundary. The gray level
gradient can be calculated by first smoothing with a Gaussian to reduce the effect of
noise. This is followed by a finite difference approximation to the partial derivatives
in order to control smoothing independently. The smoothed boundary response will
also help in the optimization by attracting the surface from further away. For two-
dimensional images, 2×2 or 3×3 finite differences are used. For three-dimensional
images, 2× 2× 2 or 3× 3× 3 finite differences are used.

12



The measure of fit for curves can be written as follows, here using only boundary
strength:

M(b,p) =

∫ S

0

|b(x(p, s), y(p, s), z(p, s))|ds (22)

where p is the vector consisting of the basis function parameters. Although this
implies fixing the highest order harmonic used, an iterative method for determining
the best K using a trade-off between conciseness and fit could be devised. The
equivalent measure for surfaces is:

M(b,p) =

∫ ∫

A

|b(x(p, u, v), y(p, u, v), z(p, u, v))|dA (23)

Equation 23 can be evaluated by numerical integration. The boundary strength
array, |b| can be evaluated at each point on the surface using linear interpolation.
The length element on the curve is given by:

ds =

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

dt =

√

(

dx

dt

)2

+

(

dy

dt

)2

dt (24)

The area element on the surface A is given by:

dA =

∣

∣

∣

∣

∂x

∂u
×
∂x

∂v

∣

∣

∣

∣

dudv (25)

The gradient of the objective is necessary for optimization. The derivative of
the curve objective with respect to the parameters governing x is:

∂M

∂px
=

∫ S

0

[

|b(x, y)|
∂

∂px

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

+
∂|b(x, y)|

∂x

∂x(p, s)

∂px

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

]

ds (26)

The corresponding derivative for the surface objective is:

∂M

∂px
=

∫ ∫

A

[

|b(x, y, z)|
∂

∂px

∣

∣

∣

∣

∂x

∂u
×
∂x

∂v

∣

∣

∣

∣

+
∂|b(x, y, z)|

∂x

∂x(p, u, v)

∂px

∣

∣

∣

∣

∂x

∂u
×
∂x

∂v

∣

∣

∣

∣

]

dudv

(27)
and similarly for y and z. This expression can also be evaluated by numerical

integration. Expressions such as ∂|b|
∂x

can be determined by discrete derivative
calculations at each point on the curve or surface, again using linear interpolation.
The expressions such as ∂x

∂px

can be calculated from the expressions for x, y,

and z (shown in Equation 6 or Equation 14).
The partials ∂x

∂u
and ∂x

∂v
can be evaluated either analytically or from discrete

approximation. The expressions ∂
∂px

∣

∣

∂x
∂u
× ∂x

∂v

∣

∣ and
∣

∣

dx
dt

∣

∣ can be calculated by

expanding and evaluating expressions such as ∂
∂px

(dx
dv
) by discrete approximation.

The above follows similarly for ∂
∂py

and ∂
∂pz

.
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7.6.1 Probabilistic Formulation

In order to incorporate probabilistic information into the measure of fit, consider
the problem of boundary determination as one in which the data is a two or three
dimensional image, b(x), which could be depicting the boundary of any object in
the parametric representation and tp(x) is an image template corresponding to a
particular value of the parameter vector p. In terms of probabilities, if we want
to decide which template, tp, an image, b, corresponds to, we need to evaluate the
probability of the template given the image, Pr(tp|b), and find the maximum over
p. This can be expressed using Bayes rule, where:

Pr(tmap|b) = max
p

Pr(tp|b) = max
p

Pr(b|tp) Pr(tp)

Pr(b)
(28)

Here, tmap is the maximum a posteriori solution, Pr(tp) is the prior probability of
template tp and Pr(b|tp) is the conditional probability, or likelihood, of the image
given the template. This expression can be simplified by taking the logarithm and
eliminating Pr(b), the prior probability of the image data, which is equal for all p:

M(b, tmap) = max
p

M(b, tp) = max
p

[ln Pr(tp) + lnPr(b|tp)] (29)

This maximum a posteriori objective function shows the tradeoff or compromise
that is made between prior information, Pr(tp), and image-derived information,
Pr(b|tp). For a uniform prior, this formulation reduces to the maximum likelihood
solution.
In order to derive the expression for the likelihood, consider the image b to be a

noise-corrupted version of one of these templates with noise that is independent and
additive: b = tp + n. This assumption avoids an excessive increase in complexity.
Furthermore, Cooper [7] showed, for a related problem, that this assumption did
not alter the performance significantly. Then, the likelihood, Pr(b|tp), is equivalent
to Pr(n = b− tp). The noise at each image point, n(x), equals b(x)− tp(x) and is
governed by the probability density Pr(n). These events are independent for each
point, so the probability for the noise over the entire region A is just the product of
the individual probabilities. The noise is the combined effect of many factors such
as signal degradation, occlusion and boundary measurement which are difficult to
model explicitly. We make the assumption that the noise is Gaussian with zero
mean and standard deviation σn.
The object template, tp(x), represents the boundary of the object. The bound-

ary can be embedded into the image template by making tp(x) constant along the
boundary of the object it represents and zero everywhere else. In order to match
this template with the image, consider b(x) to be a boundary measure applied
to the raw image data, b(x) = b(i(x)). Both tp and b are image functions that
represent boundaries that are summed (or integrated), only along the boundary.
Because the template has support only along the boundary, it is not necessary

to sum over the entire image for terms involving the template, but only where the
template has support. In addition, the magnitude of tp(x) is taken to be constant
(k), over the boundary that it defines. The function M can be simplified further
by removing the terms that do not depend on p.
The continuous version of this for a curve is:

M(b,p) = lnPr(p) +
k

2σ2
n

∫ S

0

[b(x(p, s), y(p, s))− k]ds (30)
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Figure 5: Example mean curve, shown with curves corresponding to parameters
plus and minus one standard deviation.

where s is arclength. For a surface, it is:

M(b,p) = lnPr(p) +
k

2σ2
n

∫ ∫

A

[b(x(p, u, v), y(p, u, v), z(p, u, v))− k]dA (31)

where dA is an area element on the surface A.
Equations 30 and 31 are the maximum a posteriori objective functions for

curve and surface finding. In both, the first term is the contribution of the prior
probability of the parameter vector. The greater the variance of the prior, the
smaller the influence of this term. The second term is equivalent to the objectives
in Equations 22 and 23.
The probability distributions associated with the parameters are intended to

bias the model towards a particular range of shapes. This prior knowledge comes
from experience with a sample of images of the object being delineated, when such a
sample is available. When prior information is not available, uniform distributions
are used for the prior probabilities of the parameters and an initial estimate of the
boundary must be supplied. The images in a sample will differ due to variability
in the object shape and the view of the object. The prior probability distributions
can then be estimated from the shapes determined from the sample by decom-
posing the boundaries into their model parameters and collecting statistics. The
boundaries of the sample objects are determined either by manual segmentation
or, alternatively, this method can go through a training phase on a set of images
with manual initialization and uniform distributions. This has been done only for
the curve models so far because invariance to the surface parametrization has not
been established for the surface models.
An independent, multivariate Gaussian can be used for the parameters. An

example distribution is shown in Figure 5. The middle curve corresponds to the
mean parameter values. Above and below it are the curves corresponding to the
mean parameter values plus and minus one standard deviation.

7.7 Boundary Parameter Optimization

The problem to be solved is that of maximizing the objective function M(p).
The objective function we are solving is not in general convex, but depends ulti-
mately on the gray-level surface shape of the image. If the starting point of the
optimization is good enough, the global optimum can be found by a local optimiza-
tion. Thus, an initial position for the surface must be supplied by the user or some
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initial processing step. Continuous gradient ascent [32] was used to optimize the
objective function. This method takes small steps in the direction of the gradient
(the direction of greatest increase) until an optimal point is found.

The problem to be solved is that of maximizing the objective function M(p).
The objective function we are solving is not in general convex, but depends ulti-
mately on the gray-level surface shape of the image. However, the prior probability
term in the objective function is quadratic and it dominates on the tails of the dis-
tributions, making distant points in the space non-optimal. The starting point for
the optimization will be taken to be the maximum of the prior distributions. The
global optimum probably will be near the starting point and thus a local optimum
is likely to be a global optimum. The degree to which this is true depends on
the width of the distributions. Since a local optimization method is likely to be
sufficient, although there is still the possibility of converging to a poor local max-
imum, the excessive computation involved in finding a global optimum is deemed
not necessary. Poor convergence can be identified by a corresponding low objective
function value and verified visually. Smoothing can also be used to avoid getting
trapped in a local maximum.

7.8 Experiments

From experiments varying the amount of noise added to a synthetic image, this
method has been shown to be relatively insensitive to noise [33]. The effect of the
initial values of the parameters on the performance was investigated by examining
the results of running the same problem from different starting points. Each pa-
rameter was found to have a range within which the solution was found reliably
[33]. Once the parameters are varied beyond that range, the result will converge
to false local minima corresponding to nearby features. This region of success or
capture about the true boundary depends on the quality of the image, the de-
gree of smoothing and the particular problem. False minima can be distinguished,
however, both visually and by the relative value of the objective function.

The deformable object boundary finding method has been applied to a variety
of objects from real images, with an emphasis on heart and brain images using
primarily magnetic resonance images. The results of the method applied to the
problem of delineating the corpus callosum in the human brain from magnetic
resonance images are shown in Figure 6. In these images, the corpus callosum
is separated from the rest of the brain by a dark line. In this case, we used the
positive magnitude of the Laplacian of the Gaussian as a line detector. The final
contour succeeds in delineating the structure properly.

Magnetic resonance is becoming more and more important for cardiac imaging
as acquisition rates increase into the range required for imaging the moving heart.
In Figure 7, a transaxial cardiac image shows a section through the left ventricular
wall. Here, the endocardial (inner) and epicardial (outer) walls of the left ventricle
are objects to be delineated. The results of the two separate optimizations are
shown.

In Figure 8, a transaxial slice of one frame of a cardiac image of a dog from
the Dynamic Spatial Reconstructor (DSR) is analyzed. The DSR is a dynamic,
three-dimensional imaging device based on high-speed x-ray computed tomography
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Figure 6: Magnetic resonance mid-brain sagittal image example. Top: Magnetic
resonance image (146 × 106). Middle: Initial contour (6 harmonics). Bottom:
Final contour on the corpus callosum of the brain.
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Figure 7: Magnetic resonance transaxial cardiac image example. Top: Magnetic
resonance image (256 × 156). Middle: Initial contour on the endocardium and
epicardium (4 harmonics). Bottom: Final contour on the endocardium and epi-
cardium of the left ventricle.
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Figure 8: Dynamic Spatial Reconstructor (DSR) transaxial cardiac image exam-
ple. Top: Original transaxial view of left ventricle. Middle: initial contour for
epicardium and endocardium. Bottom: Converged result of boundary detection
algorithm on epicardium and endocardium.
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capable of imaging the moving heart [34]. Both the endocardial (inner) and epicar-
dial (outer) walls of the left ventricle are delineated as the result of two separate
optimizations.
Surface finding in three-dimensional images is becoming more important due to

the availability of range images and true three-dimensional images from magnetic
resonance imaging (MRI), computed tomography (CT), single photon emission
computed tomography (SPECT), positron emission tomography (PET) and con-
focal microscopy. Results of the surface finding method applied to the problem of
delineating the upper portion of the cerebrum of the human brain from a three-
dimensional magnetic resonance image are shown in Figure 9. The surface was
matched to the gradient magnitude calculated from the image. The final bound-
ary succeeds in delineating the structure properly.
In Figure 10, a three-dimensional cardiac image of a dog’s heart from the Dy-

namic Spatial Reconstructor (DSR) is analyzed. The DSR is a dynamic, three-
dimensional imaging device based on high-speed x-ray computed tomography ca-
pable of imaging the moving heart [34]. As before, the surface was matched to the
gradient magnitude calculated from the image. The endocardial (inner) wall of
the left ventricle is successfully delineated.

7.9 Summary

This work presents a general boundary finding system for both two-dimensional
and three-dimensional images of simple natural objects. The goal of this work was
to incorporate model-based information about global shape into boundary finding
for continuously deformable objects. In addition, the shape parametrization can
be augmented with probabilistic information. From testing on real and synthetic,
the system was found to perform well at delineating structures and to be relatively
insensitive to the problems of broken boundaries and spurious edges from nearby
objects. The flexibility of the model make this an attractive method for bound-
ary finding. In addition, a new global shape parametrization for surfaces useful
as a representation for computer vision and modeling has been described. This
parametrization extends the expressibility of previous parametrizations. Although
the current formulation is for three-dimensional images, these surface models also
could be used to model 2 1

2 -D range data where the model would include the hidden
surface.
There are, of course, areas of potential improvement for this work. The surface

shape parametrization needs invariance to view and choice of surface parametri-
zation u, v. Because the initial estimates of the view parameters may not be very
good, an additional process to determine them could be added. This could involve
an initial exhaustive coarse search over just those parameters. If this were done at
a low resolution, the computation might not be excessive. Additional information,
such as other low-level features or constraints between objects, might also help to
guide the initial placement.
The framework presented here could perhaps also be used with other shape

parametrizations better suited to man-made objects with straight sides and corners.
The method could also be extended to object recognition where an image is fit to
each of the models for different objects in a database. The correct model will result
in the best fit because it will be the closest in the parameter space. The boundary
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Figure 9: Magnetic resonance brain image example. Left: Three perpendicular
slices through the three-dimensional image (120 × 160 × 78) are shown with the
initial surface. Right: The same slices shown with final surface indicating the
upper portion of the cerebrum. Bottom: Wire frame of initial (left) and final
(right) surface.
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Figure 10: Dynamic Spatial Reconstructor (DSR) cardiac image example. Left:
Three perpendicular slices through the three-dimensional image (49× 50× 55) are
shown with the initial surface. Right: The same slices shown with final surface at
the endocardium. Bottom: Wire frame of initial (left) and final (right) surface.
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finder and some of the ideas from this work have also been applied to the problem
of contour-based deformable object motion [35].
Spatiotemporal models can be developed and used to measure motion. For two-

dimensional objects, the motion can be characterized by the spatiotemporal surface
corresponding to the object’s moving boundary. The motion of surfaces could be
modeled by a manifold in four dimensions. These spatiotemporal surfaces would
be parametrized using basis functions. Note that if the correspondence between
points on successive boundaries can be determined, this represents an approach to
general, non-rigid object motion.
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