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Deformable Boundary Finding in Medical Images
by Integrating Gradient and Region Information
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Abstract— Accurately segmenting and quantifying struc-
tures is a key issue in biomedical image analysis. The two
conventional methods of image segmentation, region-based
segmentation and boundary finding, often suffer from a vari-
ety of limitations. Here we propose a method which endeav-
ors to integrate the two approachesin an effort to form a uni-
fied approach that is robust to noise and poor initialization.
Our approach uses Green’s theorem to derive the boundary
of a homogeneous region-classified area in the image and
integrates this with a grey level gradient-based boundary
finder. This combines the perceptual notions of edge/shape
information with grey level homogeneity. A number of ex-
periments were performed both on synthetic and real med-
ical images of the brain and heart to evaluate the new ap-
proach and it is shown that the integrated method typically
performs better when compared to conventional gradient
based deformable boundary finding. Further, this method
yields these improvements with little increase in computa-
tional overhead, an advantage derived from the application
of the Green’s theorem.

I. INTRODUCTION

EGMENTATION of pertinent structures is of utmost

importance for a variety of image analysis and visual-
ization tasks. Examples of medical image analysis tasks
that are of interest to us are multimodality image regis-
tration, structural measurement of anatomy, deriving pri-
ors for image reconstruction in another modality and car-
diac motion tracking. However, robust identification and
measurement of such naturally occurring deformable struc-
tures/objects is not always achievable by using a single
technique that depends on a single image-derived source of
information. The basic premise of this paper is that we be-
lieve that to be able to do this reliably, one needs to make
use of integrated methods that make use of both boundary
and region information.

Most segmentation methods can be divided primarily
into region-based and boundary-based approaches. Region-
based methods [15], [14], [30], rely on the homogeneity of
spatially localized features such as grey level intensity, tex-
ture and other pixel statistics. Homogeneity does not nec-
essarily mean identical pixel values within a particular re-
gion, rather it means that the variation within a region is of
a smaller extent than that between regions. The advantage
of such methods is that since they rely directly on the grey
level image, they are less susceptible to noise than methods
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that use derivative information. Also, if the high frequency
information in an image 1s either missing or is unreliable,
the segmented images remain relatively unaffected. How-
ever, the problem with typical region-based segmentation
methods, such as the split and merge techniques [18], is
that the resulting segmentation depends considerably on
the choice of seed points and the region’s shape is too de-
pendent on the choice of the actual algorithm used. In
addition, such methods often result in an over-segmented
image. Rule based systems [6] do better, but are extremely
application-specific. Other region-based methods either
use probabilistic techniques [15], [27], [21], [5], [14] or use
non-linear diffusion methods [30], [1] (see [14] or [30] for the
exact mathematical relationship between these methods).
The main idea behind these methods is to do what can
be termed as edge-preserved smoothing. However, isolating
objects from the resulting image still requires considerable
effort as they also suffer from the problems of poor lo-
calization and over-segmentation (related to the problem
of choosing the appropriate scale). In contrast to region-
based methods, boundary methods primarily use gradient
information to locate object boundaries. Low level bound-
ary methods that perform edge detection [7], [25] typically
result in false or broken edges. Thus, we are more inter-
ested in deformable whole boundary methods [33], [17], [2],
[13], [8], [23] which rely on the gradient features at a sub-
set of the spatial positions of an image (near an object
boundary). While we have chosen the deformable shape-
based parameterization of [33], we believe that our inte-
gration method can be used in conjunction with any of the
other whole boundary approaches like the classical snakes
method of [17] or with the topologically adaptable active
contour methods like those of [28], [8], [23] or their vari-
ants like the reaction-diffusion approach of [34]. The latter
methods are more adaptable to changes in the topology
of the object under consideration, but they still base their
decisions regarding boundary points on the value of the
gradient and thus suffer from its noise sensitivity.

While both the region and boundary methods have their
advantages and disadvantages, their problems are not nec-
essarily identical, 1.e. they are not affected in the same
way by the various problems. While the presence of noise
limits the performance of any image processing algorithm,
the region-based methods are less affected than gradient-
based boundary finding because the gradient is very noise
sensitive. Also, if the high frequency information in the
image either is missing or is unreliable, boundary finding is
more error-prone compared to region-based segmentation.
Shape variations, on the other hand, can be better handled



using a deformable boundary finding framework when we
consider such variations to be generally around an average
shape and such information can easily be incorporated as
priors [33]. Further, since conventional boundary finding
relies on changes in the grey level, rather than their ac-
tual values, it is less sensitive to changes in the grey scale
distributions such as shading artifacts over images. Also,
gradient-based methods in general do a better job of edge
localization. This brings us to the realization that inte-
grated methods are likely to perform better than either of
the methods alone by being able to combine the comple-
mentary strengths of these individual methods, as pointed
out in [29], [12].

A limited amount of previous work seeking to integrate
region and boundary methods has been done. Among the
available methods, Al-based techniques have been used
where production rules are invoked for conflict removal [29].
Here, region growing is done first followed by an binary
edge detection step. There are a few disadvantages to this
procedure. First, a region classified image is often over-
segmented due to the presence of noise. Thus, one needs
a validation scheme to distinguish between true and false
edges by looking at high gradient, continuity, etc. Also,
such a scheme has no way of differentiating between multi-
ple regions as it deals with the binary edge map obtained
from the region segmented image. Further, such a method
may suffer from the effects of poor edge localization as is
often the case with region-based segmentation. This is also
true of other similar efforts [12], [16] where rather than find-
ing complex objects, the intention is in integrating region
growing with edge-detection. Probability based approaches
like [15], [27], [5], [14] or the nonlinear diffusion methods
of [30], [1] achieve integration in the local or dense field
Another way of achieving local integration is the
reaction-diffusion method of [34]. However, the problem
of using such local integration methods is that if any one
of the processes makes an error (e.g. a false edge), it is
propagated to the final solution. Also, a decision regarding
the final object boundary in [34] is made by considering
the whole space of reaction-diffusion images and somehow
choosing one result, something that can get very compli-
cated. Finally, we note that the recent work of [31], [36]
has similar motivations as ours even though the final im-
plementation is similar to the weak membrane method of
[5], [27]. Also, the final solution in [36] lacks the notion of
shape because integration is primarily is carried out in a
local pixel-wise sense.

sense.

Our ultimate goal is to develop a fully bi-directional
framework for integrating boundary finding and region-
based segmentation. This would lead to a system where
the two modules would operate in parallel so that at each
step the outputs of each model get updated using informa-
tion from the outputs of both the models from the previ-
ous iteration. Our initial effort presented in this paper is
aimed at using the results of region-based segmentation to
assist boundary finding and is one portion of the complete
system. Unlike most of the other existing methods, it in-
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tegrates region-based segmentation with boundary finding
rather than edge detection, thereby making it resistant to
the problems of false and broken edges while at the same
time having well localized boundaries. The ability to use
model-based information such as shape also allows it to
compensate for missing and noisy information. This use
of shape is particularly advantageous for medical images
where the interesting structures vary around an average
shape, characteristic of that task or application. Further,
since there are no intermediate steps such as line following
involved, it 1s computationally attractive as well.

II. REGION-BASED SEGMENTATION

The main idea here is to classify a particular image into
a number of regions or classes. Thus for each pixel in the
image it is necessary to decide or estimate which class it be-
longs to. There are a variety of approaches to region-based
segmentation. In the discussion below, we briefly describe
the approach we have used which is adapted from the ef-
forts of [24] and [20]. Tt has the capability of classifying
images into distinctive regions based on either their grey
level values or for a more general case, based on their tex-
ture properties. We consider textured images more general
because grey level images can be considered to be the most
simple form of texture images [32]. The only assumption
is that the variation of the considered feature (either grey
level or texture) within a region is of a smaller magnitude
than the variation between regions.

The intensity image is modeled as a Gaussian Markov
random field (GMRF). This model has been used by many
researchers to model texture and other image characteris-
tics [32], [24], [11]. Tt models the conditional probability of
the image intensity given the classification.

Let S denote the M x M image lattice, ie. S =
{(4,5), 1 <4,j < M}. Let {Ls,s € S} and {Y;,s € S} de-
note the labels and the zero mean array obtained from the
image data respectively. Note that the labels can belong
to only a certain number of region classes. This number is
prespecified. Let N, denote the neighborhood of a site s
(a first order neighborhood consists of only four neighbors,
eight in the case of a second order system and so on). Now,
if one further assumes that all the nearest neighbors of s
also have the same label as s, one can write the following
expression for the conditional density of the intensity at
the pixel site s [24], [32]:

P(Ys = yslyr =y, r€E N, Ly = l)
_ 6:L‘p(—U(Y5 :ys|Yr =y, 7€ N, L, :l)) (1)
Z(lyr,r € Ns)

where Z(l|y,,r € N;) is the partition function of the con-
ditional Gibbs distribution, and

U(Ys = ys|Yr =Y, TE Ng, L, = l)

1
= 952 (3/? -2 Z ®ls,rysyr> (2)
g

reN;

In (2), o; and ©' are the GMRF model parameters of the
[ region class. Without going further into the details,
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one can see that for a first order GMRF model, if f is
the mean and &2 is the variance of the sub-image under
consideration, then the feature vector for each region is

denoted by (see [32], [24] for further details):
F = (01,05,05,04,/1,57) (3)

where the €’s correspond to the influence from the four
neighbors that make up the first order neighborhood.
These parameters for each region are estimated by a least
squares estimate (see [32] for details) method using a win-
dow around a user specified point, representative of that
particular region.

Once the intensity image Y* has been modeled, the next
task is to determine the classification. This is achieved
by maximizing the posterior (the Maximum a posteriori
(MAP) method) distribution of the region labels given the
intensity image:

P(Y*|L)P(L)

P(LIY") = =5 (1)

where L corresponds to the classified image with L, de-
scribing the label at the s** pixel. The label field L is
modeled as a first or second order MRF, which says that
P(Lg¢|Lsys) = P(Ls|Ly,7r € Ns) where Lg/, is the whole
label field excluding the site s, and N, denotes the appro-
priate neighborhood of site s. It acts as a prior that empha-
sizes the property that neighboring pixels of the classified
image share the same label (see [20] for details). Maxi-
mizing (4) gives an optimal Bayesian estimate. In our re-
sults, we used the coordinate-wise descent method of [20],
similar to the iterated conditional mode (ICM) algorithm
[4]. Here, one starts with an initial labeling, L° and then
iterates sequentially (or in parallel) through each pizel, re-
placing the current label at that pixel with the label that
mazimizes P(Ly|Y™*, Lg/,), where Lg/, represents the la-
bel set for the whole image except the site s, and the other
symbols have the same connotations as before. Without
going into the details (see [24], [20]) it can be shown that
this is equivalent to maximizing Vs € S

argniaxP(Ls|Y*,L5/s) = P(L,|Y",L,,r € N,)  (5)

which is reduced to determining
L= argniaxP(yﬂ 5/37L37Lr,7’ € NS)P(L5|L,~,7° € Ns)
(6)

for each of the sites s using the ICM algorithm.

The functional in (6) is optimized at each step where the
first term, the conditional probability term is given by (2)
and the second term is the prior term given by the MRF
assumption. To summarize the algorithm, at each itera-
tion, each pixel is updated to maximize (6) using the data
at site s and the neighborhood, and the current estimate
of the labels of the neighborhood. This continues so long
as the number of changes is above a certain fraction of the
image size.

We note here that the computational complexity of this
region segmentation step will depend primarily on the num-
ber of parameters used to characterize the GMRF model.
For most images (except where texture is important), the
only parameters of interest are the mean and the variance
(thus we don’t use the 6’s in (3)).
set of parameters, it greatly speeds up the process.

If we use this reduced

I1I. BOUNDARY PARAMETERIZATION

As already mentioned, we are primarily interested in
finding a class of objects with smooth boundaries that are
continuously deformable. Simple edge detectors are of lim-
ited or no use under such circumstances as the output of
edge detectors does not necessarily correspond to object
boundaries except for very high quality images. Hence we
are concerned with a whole boundary method so that a
global structure can be imposed on the problem. A variety
of deformable contour methods have been proposed (see
the introduction for a brief review). In this paper, we use
the approach due to [33] which uses a Fourier parameter-
ization for the boundary. It expresses a curve in terms of
an orthonormal basis [19], [22].
problem easier as the cross correlation matrix becomes di-

It makes the estimation

agonal. We note that for most practical situations we con-
strain ourselves to a limited number of harmonics. Thus,

o =030 )= (2]l w56

in(kt
sl
(7)
where, v(t) is the contour vector consisting of the x and
y coordinates and ag, bg, cx and dj are the corresponding
Fourier coefficients.

The curve is thus represented by
P = (ao, co,a1,b1,c1,d1,....) (8)

The estimation of these parameters to find the boundary
is posed as an optimization problem, where, the objective
function measures the strength of the boundary given the
set of parameters from the image. We shall come to this
issue in the following section. We would also like to point
out here that we chose to use the Fourier parameterization
because in our view, it is suitable for the range of objects
that we are interested in and because of its ability to in-
corporate prior shape information effectively. Further, the
version developed in [33] can be made invariant to starting
point, scale and 2-D rotation and translation, thus making
the whole process view independent. However, we believe
that our integration method can be used in conjunction
with any of the other whole boundary approaches like the
classical snakes method of [17] or with the topologically
adaptable active contour methods like those of [28], [8],
[23].

IV. INTEGRATION

The basic premise of this work is that the integration of
region and boundary information will result in an improved



algorithm for solving the segmentation problem. In this
section, we first discuss the motivation behind our approach
and then describe it mathematically.

As input to the integration algorithm, we have both the
actual image I and the region classified image I,, which
is obtained from [ after passing it through the region seg-
mentation step discussed before. This information is intro-
duced as an added prior into the gradient-based deformable
boundary finding framework. In its simplest form, this re-
gion term enforces the boundary to enclose a single region
in I,. As we shall later see, the assumption of a single
region is not strictly necessary, but for the sake of simplic-
ity, we will continue with it and modifications to it will be
discussed later. The traditional boundary finding problem
does not use the original image directly, but uses instead
the gradient image I,. As in the approach of [33], we shall
use the magnitude of the gradient vector at each pixel loca-
tion. We have also used the gradient direction along with
the magnitude (see [35]). The gradient image can be ob-
tained by convolving I with the derivative of a Gaussian.
We take the magnitude of the corresponding vector image
to get I;. Hence, the input to the integration system is the
gradient image I, and the region classified image I,..

We shall pose the boundary estimation problem using
gradient and region homogeneity information in the max-
imum a posterior: framework. Our aim is to maximize
P(p|ly, I), where as described in the previous section, p'is
the vector of parameters used to parameterize the contour.
Now,

Pl L) = e )
P(L11,, P, 1)
P(Iy, 1) (10)
P11y P19 P(5)
P, I,) (11)

Thus, ignoring the denominator which does not change
with p our aim is to determine,

—k
p =

x arg mf:}x P(I;|1,,p)P(14P) P (P)

arg max P(pl|l,, I,)

7
(12)
or,

argmax P(p|lg, I,) argmax [In P(p) + In P(I,|p)
7 7

+ InP(L|I,7)] (13)

In the last equation (13), we have just taken the natural
logarithm, which is a monotonically increasing function.
Knowledge of I; may be used to calculate /., through the
use of line processes [15], [5]. However, if we do not use
that information, we are effectively discarding information
rather than assuming extra information. Thus, finally, the

above can be written in the following form:
argmax M(p,1,,I,) = argmax[Mpy,io ()
I2 7

+Mgradient(lg;m + Mregion (L‘;@] (14)
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We now explain each of the terms in (14).

Prior shape term: The first term in equation (14) corre-
sponds to the prior shape term. This can be obtained from
previous experience or from expert knowledge about the
natural structures that exist in the image. When it is non-
uniform, it biases the model towards a particular range of
shapes. Use of prior boundary information can especially
be important in clinical applications such as delineating the
corpus callosum or the endocardium of the heart, where the
nature of the shape does not change a great deal from indi-
vidual to individual even though the exact reconstruction is
different. Prior boundary information under such circum-
stances can be obtained from previously outlined bound-
aries. These are first parameterized and then the mean
and variance of these parameters are calculated to obtain
a multivariate Gaussian prior, which could then be used
to constrain the optimization at a later stage for further
instances of similar structures (see [33] for more details).
Since there might be other objects in the image, we would
always need an initial estimate of the boundary to start the
optimization process. The prior shape, if available, can be
used for this purpose as well. The prior information could
be of particular importance if the boundary is ill-defined.

Gradient term: The second term in equation (14) is the
likelihood term, which depends on the gradient image. It is
a measure of the likelihood of the contour of the described
object being the true boundary, once the parameters defin-
ing the boundary are given. This is expressed in terms of
a contour integral, where the integral is computed over Cj,
the curve described by the boundary (z(p,t), y(p,t)). At
each point on the contour, the strength of the boundary is
evaluated by the magnitude of the gradient at that particu-
lar point, given by the gradient image. Thus, the likelihood
of the whole contour being the true boundary becomes pro-
portional to the sum of the magnitude of the gradients at
all the points that lie on the boundary. If we assume that
the noise can be approximated by a zero mean Gaussian,
and further assume that the pixels on the boundary are
independent, then we may express the above term in the
probability expression as the following line integral ([33])
where o2 is the variance of the underlying noise process (k1
being a constant):

k1
Mgradient(jgaﬁ) = O_T/C

n 5
The derivation of the above equation is straightforward and
can be found in [33].

Region term: For every image, the region-based segmen-
tation step is carried out only once using the method de-
scribed in section 2. The last term ( of equation (14) ) in-
corporates this region information into the boundary find-
ing framework. As we have already mentioned, we would
like the boundary to enclose within it a homogeneous or
slowly varying (w.r.t. grey level or texture) region. In
other words, we expect the interior of the boundary to be
filled with the region of a single class. This realizes the ex-
pectation that the variations within an object are assumed
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to be smaller than those between objects. We emphasize
here that this similarity measure may be based on image
intensity, texture properties or any other image attribute
that can be handled by the region process. However, this
method can also deal with situations like outlining an annu-
lus, where the central part might belong to a separate class.
To describe this term mathematically, let us consider the

Region of Interest
Given Contour

Fig. 1. An example demonstrating the use of region information in
the boundary finding process

situation in Figure 1 showing a hypothetical region clas-
sified image and the boundary at any instance during the
optimization process. For simplicity’s sake, let us assume
that there are only two regions and we want to segment out
the object in the center from the surrounding background.
As we can see, the boundary does not include the entire
central region. At some points it includes the background
and at other places it excludes points that belong to the
central region. We would like to penalize cases where points
from the surrounding regions are included and would like to
reward if more and more of the central region is included.
A very simple way of doing this would be to do the follow-
ing. Let us consider for this simple image, all points that
lie inside the central region to have value 1.0 and all points
that lie outside a value —1.0. Now, if we sum up the values
of all the points that are inside the contour, it 1s clear that
the sum achieves a maximum when the contour is so placed
such that it includes all of the points with a value 1.0 and
excludes all of the points that have a value of —1.0, that
lie on the surrounding region.

If more than two regions are involved, all pixels of the re-
gion that needs to be segmented can be assigned a positive
value and the remaining ones negative values, the mag-
nitudes of which reflect how much one expects the target
region to be dissociated from the remaining regions. Hence,
remote regions are expected to have high negative values,
representing a larger penalty for including remote points.
This way multiple regions can be handled. For an annulus,
e.g. in a transaxial heart image, it does not matter what
value the points have in the region within the inner bound-
ary of the annulus. We can also relax the assumption that
the interior of a region needs to be a connected region. If
we know that the target object consists of more than one
region, then all those regions are assigned positive values
and those that lie outside are assigned negative ones. Thus,
the only requirement is that the points immediately inside

and outside of where we expect the boundary to be located
should be different.

For a mathematical description of the term, assume that
the prior conditional distribution of I.|p" be given by an

exponential of the form P(I,|p) = %eff“ﬁ Trdd Ghere 7 is

.. . I.dA ,_,
a normalizing constant given by Z = f‘EP effAr? dp, P
is the range of p and Ay is the area bounded by the contour
described by the parameter vector . Thus,

Miegion (I 7)o / /A ()i (16)

Simplified Integration using Green’s theorem: The
objective function involving all the three above terms can
be expressed as:

argmax M(p, Iy, I,) = argmax[Mp,ior(P)
P P

+Mgradient(lgaﬁ) + Mregion (Ir ) }5)]

= arg max [Mprm« () + K1 /
c

P
+ K, // I (z,y)dA

where K7 and K5 are the weighting constants which signi-
fies the relative importance of the two terms in the above
equation. We will discuss this issue later.

Of the last two terms in (17), one is a line integral and
the other is an area integral. In general, computing a line
integral is much less expensive compared to an area inte-
gral. Thus we would save a lot of computation, especially
when we carry out an iterative optimization procedure, if
we could convert the area integral to a line integral. We
already compute a line integral in the second term which
is present in the original boundary finding method. The
above conversion can be obtained using Green’s theorem
[3] as follows. Let,

Iy(z(p,1),y(p.t))dt

2

(17)

M (z,y) = /Of I (z,y)dz; N,(z,y) = —/Oy Ir(:b,z)(dz)
18

Hence, using Green’s Theorem,
1 Oz Oy
I.(z,y)dA = = Ny(z,y) — + M, (z,y) =]dt (1
[ [ e man=g [ 0w G+ it G as)
Thus, finally we have,

argmax M (p, Iy, I,) = arg max [Mp,;or (P) + / (K114(z,y)
P 2 .

+ Ko {N,(z,y) bz | M, (z,y) 8—y} )di]

ot at (20

In this section we have presented a deformable bound-
ary finding procedure that introduces a prior term which
incorporates information that we obtain from region-based
segmentation. Further, using Green’s theorem, we reduced



the whole problem to computing line integrals only rather
than both line and area integrals. Since, M, and N, are
evaluated only once for an image, and is not repeated at
every iteration, the computational speedup due to the use
of the Green’s theorem formalism is from O(target area)
to O(target perimeter). For most objects this difference is
quite significant because the number of pixels within the
target object is generally much larger than the number of
sample points on the contour.

It is essential to point out here that in practice, the func-
tions M, and N, are evaluated by simply summing the
pixel values of I, in either the x or y direction. Thus,
M, (i,j) = 34—, I (k, j) and similarly along the other co-
ordinate for N, (). Hence, even though I, is discontinuous,
M, () and N,() are continuous in the x and y direction re-
spectively. Further, the derivatives of these functions which
are necessary for the gradient calculation yield .. Thus,
for most of the computations, these differentiations are not
being carried out numerically due to the way the objective
function is constructed. = We emphasize here that at no
stage are we taking derivatives of I, which is discontinu-
ous. Optimization is achieved using the conjugate gradient
method. The process is terminated when the change in the
objective function falls below a pre-determined threshold.

V. RESULTS

Experiments were carried out both with synthetic and
natural images to verify the performance of the above
method.

Synthetic Images: The output of all these experiments
are object boundaries. We have set up experiments using
synthetic images to quantitatively evaluate the method.

For our purposes, we created a synthetic image that has
one target object in the center surrounded by a background
as shown in Figure 2(a). The target object has both convex
and concave parts to it. Further, it also has some high cur-
vature points that make the boundary finding process non-
trivial. To make it even more difficult, we have smoothed
the image using a Gaussian kernel so that the edges be-
come fuzzy. On top of that, white noise was added which
would again affect the boundaries the most as they were
smoothed. The result is a considerably lower SNR at the
boundaries that at any other location in the image. Thus,
this procedure represents many of the difficulties associ-
ated with structure segmentation in biomedical images. No
prior information was used for these images. The region-
based segmentation was carried out using only the mean
and the variances of the two regions under consideration.

For evaluation we used the following procedure. First,
the true boundary was evenly sampled into 256 points. The
boundary finding process was initialized with a boundary
that is spatially distant from the true boundary and re-
sults in an output boundary. For all the examples using
synthetic images, we used 8 harmonics (see Discussion sec-
tion also). This result was then evenly sampled into the
same number of points. To find out how closely the output
boundary approximated the true boundary, we need to cal-
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culate the distance between them. To solve the problem of
pointwise correspondence, we keep the true boundary fixed,
and vary the starting point of the other boundary point by
point, calculating at each step the total distance as a sum
of the distances between each corresponding points. The
minimum of these is considered to be the reported value
of the distance. The comparisons were done using three
versions of the objective function. When only the gradient-
based term in the objective function was used, we have the
traditional gradient-based boundary finder. The second
method only uses the region-based term, where informa-
tion only from the region classified image is used. Finally,
the proposed method uses both of the above terms.

First, we compare the performance of the three meth-
ods under varying amounts of noise. For each noise level,
the three methods were executed using the same initial
boundary placement. The three methods were allowed to
run for the same number of iterations or until the change
between successive iterations fell below a certain predeter-
mined level.

Fig. 2. Performance of the three methods for a noisy image
(SNR=2.0). In the last three images, the more gray contours
represent the initial boundaries and the brighter ones the final
derived boundaries. (a)Top,Left: Original image; (b)Top,Right:
Region classified image; (c)Middle,Left: Output of Bound-
ary finding using gradient information only; (d)Middle,Right:
Output of Boundary finding using region information only;
(e)Bottom: Output of Boundary finding using the integrated ap-
proach.

Figure 3(a) shows a comparison of the three methods for
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Fig. 3. Performance plots (a)Top,Left: Performance under noise
using the three methods. The SNR varies from 4.0 to 1.0;
(b)Top,Right: Convergence speed using the three methods
(SNR=2.0); (c)Bottom: Performance under different Initializa-
tions (SNR=2.0)

this example. The Y-axis gives a measure of the distance
between the approximated contour and the true one. (This
is a scaled version of the square of the distance between
the contours calculated as described above.) In this and
all the following plots, ’Gradient’ represents the gradient-
based method, "Region’ corresponds to the boundary found
based only on the region classified image, and ’Combined’
refers to the proposed integrated method. As we might
expect, the performance of all the three methods worsen
as we Increase the amount of noise. However, as can be
seen, the combined method is the least sensitive to noise.
Also, it performs much better compared to the traditional
gradient-based method. Since the gradient-based method
relies upon the first derivative, it is more susceptible to
noise than the region-based method, which uses homogene-
ity within the image. On the other hand, the combined
method seems to give uniformly better results.

In Figure 2, we show the result for a particular value
of the noise given by SNR=2.0. The initial boundary is
considerably displaced and disfigured when compared to
the actual boundary. We see that the combined method
produces the best result.

The next part of the experiment is to see how fast the
methods converge. Figure 3(b) shows the situation when
the image used has a noise level given by SNR=2.0 and
has the same starting position shown in Figure 2. Clearly,
the combined method performs better than the other two,
especially compared to the gradient-based boundary find-
ing. Due to the global nature of the region term, initially
the convergence is faster for the region-only method. But
once it comes close to the actual boundary, due to the bet-
ter localization property of the integrated method (which
comes from the gradient term), the integrated method out-
performs the region-only method. As for the gradient-only

method, the effect of noise and fuzzy boundaries resist it
from getting the best match. Thus not only the results are
better (as we concluded from the previous experiment),
but also the convergence is faster. The next plot, Fig-
ure 3(c) shows the situation under different starting posi-
tions. The initial contours vary from each other not only
by translation and rotation, but also in terms of their ex-
act shapes. We can observe that when the initial contour is
close to the actual one, there is very little difference among
the three methods. However, when the inmitialization is far
enough, the integrated method does considerably better
than the gradient-only method. The region-only method
comes close, the difference being due to the better localiza-
tion property of the integrated approach. It must be noted
that for the results shown in Figures 3, the experiments
were repeated ten times under exactly the same settings,
the only variation being that the noise sample is different
even though the noise distribution is the same. The re-
ported results were obtained by taking the average of the
above which filtered out minor variations that might have
arisen. One needs to do this because even though the noise
distribution remains the same, the pixel values of the noise
could be different.

Now, we consider a situation where one or both of the
methods might produce unrealistic results. To investigate
such a situation, we devised an experiment with a synthetic
occlusion. In Figure 4(a), in a part of the image the inten-
sity is lowered to a level slightly above the background.
However, as it touches the background there is a further
fall in the intensity level. For this part, the SNR=1.5, and
for the rest of the image, the SNR=3.0, where the SNR, is
calculated in a similar fashion as in the previous case. In
addition, as in the previous case, we smooth the bound-
aries and add noise to it. This situation may happen in a
medical X-ray image where an object is just behind part
of another object of interest. Partial volume effects might
also result in such spatial variations. Now, if we perform
region-based segmentation under the assumption that there
are two regions, then that part of the central region beyond
the artificial occlusion boundary will be classified with the
background as can be seen in the figure. Thus, as far as
the region-based segmentation is concerned, it sees an oc-
clusion. Now, if we base the boundary finding on this re-
gion classified image, it would tend to pull its boundary
to the occlusion boundary. For those parts where there
is no occlusion, 1t would still work. For those parts where
there is occlusion, it would make gross mistakes resulting in
a huge overall error. The gradient-based method doesn’t
see much of a difference as it searches for a local gradi-
ent maxima, which is still there. Since the initialization 1s
closer to the actual boundary than the occlusion boundary,
the gradient-based method ignores the occlusion boundary.
Thus, even if one of the methods fail partly, the integrated
approach still gives reasonable results as it uses informa-
tion from both the methods. This method can potentially
be used in conjunction with methods to handle occlusions
(see [26] for example, which preserves depth information)



Fig. 4. Performance of the three methods for an occluded image. In
the last three images, the more gray contour represents the initial
boundary placing and the brighter one the final derived boundary.
(a)Top,Left: Original image; (b)Top,Right: Region segmented
image; (c)Middle,Left: Output of Boundary finding using gradi-
ent information only; (d)Middle,Right: Output of Boundary find-
ing using region information only; (¢)Bottom: Output of Bound-
ary finding using an integrated approach.

for even better results. If the initialization were close to the
occlusion boundary, of course, none of the methods would
work and for all the cases, including the integrated method,
we would get grossly wrong results. It is precisely in situ-
ations like this that the importance of the prior boundary
information can be realized.

Real Images: In this section we apply the algorithm
to real clinical images. Figure 5a shows a short axis Mag-
netic Resonance (MR) image of a dog heart. The aim is to
outline the endocardium. A simple region-based segmen-
tation using only the means and the variances was done
and the output is shown in Figure 5b. Thus, once again,
the user selected three points (by mouse clicks), one inside
the endocardium, one on the epicardium and another on
the outer background. The means and variances of these
regions were calculated by using as least squares method
on the window of pixels surrounding these user-selected
points. Also, as with the synthetic images, we used 8 har-
monics to describe the boundary. The initial boundary 1s
shown in Figure 5c. Figure 5d shows the probable bound-
ary as outlined by an expert. We display this only for
the sake of comparison. Once again no prior information
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Fig. 5. Example with an MR heart image. (a)Top,Left: Original
image; (b)Top,Right: Region classified image; (c)Middle,Left:
Original image with the initialization as marked by an user;
(d)Middle,Right: Original image with the contour of the endo-
cardium drawn by an expert; (e)Bottom,Left: Output of Bound-
ary finding using gradient information only; (f)Bottom,Right:
Output of Boundary finding using an integrated (gradient + re-
gion) approach using the same initialization.

was used. In all the experiments, we used the same ini-
tialization and the same number of harmonics to describe
the boundaries for both the methods. As we can see, the
image quality 1s very poor and the edges seem to be very
fuzzy. Thus the gradient information is weak. If we apply
gradient-based boundary finding, due to a lack of strong
edge information, the boundary will diverge after a few it-
erations, as shown in Figure 5e. On the other hand, as we
can see the region information in itself is also not very good.
Figure 5f shows the results of the integrated method, which
though not perfect, is much better compared to the other
method. The main reason for this improved performance 1s
that neither region-based segmentation nor gradient-based
boundary finding will actually fail as there is some infor-
mation in both the gradient and the region classified im-
age. By themselves, they have the limitations previously
described and thus neither method alone produces desir-
able results. Once we combine them, the output improves
due to the information fusion, which relieves some of the
limitations found when using the algorithms separately.
Figure 6 shows a similar sequence using a mid-sagittal
MR brain image, where the task is segmenting the cor-
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Fig. 6. Example with an MR brain image. (a)Top,Left: Origi-
nal image; (b) Top,Right: Region classified image; (c)Middle,left:
Original image with the initialization as marked by an user;
(d)Middle,Right: Original image with the contour of the corpus
callosum drawn by an expert; (e)Bottom,Left: Output of Bound-
ary finding using gradient information only; (f)Bottom,Right:
Output of Boundary finding using an integrated (gradient + re-
gion) approach using the same initialization.

pus callosum. Here, we used 10 harmonics to describe the
boundary. Once again, the expert drawing is used only for
the sake of comparison. Region-based segmentation was
done for three regions: the corpus callosum, the grey mat-
ter and the background (that includes the CSF) using only
the means and the variances (in the same fashion as be-
fore).

In Figure 7, the task is to outline the epicardium on an
MR image of a dog heart. Since the epicardium, is con-
siderably smoother than the endocardium we used only 5
harmonics to describe the boundary. As in the example
for the endocardium, region-based segmentation was done
for three regions: endocardium, epicardium and the back-
ground using only the means and the variances, using a
similar procedure as described for the other images (see
Figure 7(b) for the region-segmented result). This is a
particularly difficult image because the right ventricle is
not at all conspicuous and thus only an expert eye can
point out the epicardial boundary as shown in Figure 7c.
Without any constraints, the output of a normal gradient-
based boundary finding algorithm is as shown in Figure
7Te. One way of introducing constraints, where otherwise

Fig. 7. Example with an MR heart image to outline the epicardium;
(a)Top,Left: Original image; (b)Top,Middle: Region classified
image; (c)Top,Right: Initial boundary; (d)Bottom,Left: Origi-
nal image with the contour of the epicardium drawn by an ex-
pert; (€)Bottom,Middle: Output of Boundary finding using gra-
dient information only without any constraints; (f)Bottom,Right:
Output of Boundary finding using an integrated approach using
region-based constraints and under the same initialization.

there are no image features, is to mark out areas beyond
which the boundary should not go. This can simply be
done in the present framework by negating the pixels of
the classified image in these forbidden areas. The forbid-
den region removes the right ventricle (parts of which can
be differentiated in the region classified image, and essen-
tially, the forbidden region just connects them). In this
example, a region was roughly pointed out as forbidden for
the epicardium by the user depending on a rough estimate
of where the epicardial wall separates the right ventricle.
Using this procedure, the output of the integrated approach
is as shown in Figure 7f.

Next, we consider the case of an ultrasound image of the
heart as shown in Figure 8(a), where the task is to out-
line the left ventricle. This is an ideal example where the
texture and not just the pixel intensity is important. Re-
gion classification was done using texture properties and
is shown in Figure 8(b). Here, three regions were chosen
where the user selected a point, one inside the left ventri-
cle, one in the surrounding myocardium, and one more in
the background. As usual, a window was selected around
the user-defined points, and then the mean, variance and
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Fig. 8. Example with an ultrasound image of the heart.
(a)Top,Left: Original image; (b)Top,Right: Region classified im-
age; (c)Middle,Left: Initial boundary as marked by an user;
(d)Middle,Right: Output of a gradient-based boundary finder.
That it diverges is clear; (e)Bottom: Output of an integrated
(gradient + region) boundary finder which looks quite reason-

able.

four other GMRF parameters were estimated using a least
squares procedure as mentioned in section 2, and described
in detail in [24]. A gradient-based method by itself is not
likely to produce good results. Thus, as shown in Fig-
ure 8(d), using a gradient-based boundary finder leads us
nowhere. On the other hand, the boundary finder in the
integrated case as shown in Figure 8(e) does not diverge
and the result looks reasonable.

Reproducibility: Since there is still some human op-
erator interaction required to use our proposed algorithm,
we present results aimed at testing the reproducibility of
the boundaries generated by the algorithm. We test the
algorithm’s reproducibility against results generated by a
human operator (i.e. manual tracing). We hypothesize
that our approach will have a smaller variance, implying
better reproducibility.

First, a bank of ten images were selected. These MR im-
ages constitute a canine heart from the apex to the base.
For each one of these images, the algorithm was executed
ten different times to find out the boundary of the endo-
cardium from different initial settings as provided by an
human operator. Note, that for the initialization, the op-
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erator quickly clicked a few points around the boundary.
However, for manual tracings, the human operator care-
fully traced the boundary. The output of the algorithm
consisted of the boundary of the endocardium. The bound-
aries were uniformly sampled to always have the same num-
ber of points. The mean and the variance in the contour
position was calculated for each one of these images. The
variance was then divided by the number of points on the
contour.

For the manual tracings by a human operator, a domain
expert traced carefully the boundaries for each of these
images ten times and the same procedure as above was re-
peated. To minimize the effect of memorizing, the order of
the images were randomized and the tracings were consid-
erably spaced out in time. The results are shown in Table 1.
Figure 9 shows the mean contours (human and algorithm

Fig. 9. Four of the images used in the Reproducibility experiment
with the mean contour as hand traced by an operator, and as
found by the algorithm overlayed. The broken line represents the
hand-traced contour and the solid line the algorithmic procedure.
(Please see the text for explanations.)

generated) overlayed on four of the images, where the bro-
ken contour represents the human drawn and the solid one
the algorithmic version. As we can see from the table, the
variance is always at least twice for the human tracings
when compared to the algorithmic results. This consti-
tutes a significant deviation in reproducibility between the
two methods. That it is indeed the case, is borne out by a
standard pairwise T-test on the variance data which shows
that the difference between the two cases is highly signifi-
cant (p < 0.001).

We note again that this experiment clearly shows two
important things. First, as demonstrated in Figure 9, the
results from the algorithm and the human tracings are in
close agreement. Second, the result of the T-test shows
that the variability in the algorithm is significantly smaller
when compared to human tracings. Thus, the algorithm
produces results that reasonably agree with a human ex-
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pert’s desired result, but provides a much more stable (i.e.
less variable) estimate of the boundary location.

Image Number Algorithm Human
variance (pizel?) | variance (pizel?)
1 0.631 1.47
2 0.5 1.50
3 0.576 1.371
4 0.67 1.7
5 0.53 1.85
6 0.72 1.81
7 0.75 1.71
8 0.83 1.99
9 0.24 1.4
10 0.576 2.1
TABLE I

VARIATIONS UsSING HUMAN HAND DRAWN AND AUTOMATED
TRACINGS.

VI. DiscussioN

While the algorithm works under a wide range of param-
eter settings, to get an optimal performance, it is important
to choose them in a rational way.

Choice of the number of Harmonics: The performance of
the algorithm depends considerably on the proper choice of
the number of harmonics, especially if the data are noisy,
because this choice constrains the range of shapes that the
algorithm can allow, thereby acting as a regularizer. A
large number of harmonics allows the algorithm to pro-
duce boundaries representing a large range of shapes, but
makes the optimization procedure computationally long,
and in some cases might even result in divergence. How-
ever, most of the biological forms that we are interested
in are relatively smooth and un-convoluted. Hence, they
can be represented by a limited number of harmonics. We
may choose to have a larger number of harmonics for more
complicated structures at higher computational cost. A
principled selection of the number of harmonics necessary,
is made by calculating the modeling error for the type of
objects under investigation and choosing the least number
(of harmonics) that produces an error smaller than a pre-
determined limit (see also [33]). Here, in this paper, we
used 8 harmonics for the synthetic images and the endo-
cardium example. For the corpus callosum, we used 10
harmonics. However, for the smoother epicardium, only 5
harmonics were used.

Choice of the number of regions in the image: The
region-based segmentation method discussed here doesn’t
automatically determine the number of regions the image
pixels need to be classified into. Instead, we use an super-
vised segmentation procedure, where the user determines
the relevant number of classes. We used two considerations
to make an appropriate choice. On one hand, we wanted
to choose a minimum number of classes that would pro-
vide a reasonable region segmentation. Also, we had in
consideration the fact that our final outcome was the tar-
geted structure. Thus, we chose the number of classes in

such a way that the targeted structure is well differenti-
ated from the neighboring tissue. As long as this criteria
is met, even if the segmentation of the background is sub-
optimal, the final outcome is not effected. Some knowl-
edge regarding the anatomy of the imaged region can be
of considerable help in making an educated guess. From
our experience, as we have noted in the experiments, three
regions for the heart images (endocardium, epicardium and
the background) and three for the brain (grey matter, white
matter and the CSF) images were adequate.

Choice of the relative weighting between the gradient and
the region term: We performed some theoretical and prac-
tical analysis to help us make this selection [10]. From
that study, our observation was that a reasonable weight-
ing scheme would be to use K1y = 1 and Ky = 1/SNR
in equation (20) i.e. give more weight to the region-based
term as the noise increases. For practical images, one can
make this choice by first making a rough noise analysis of
the given image. This can easily be done using the region
properties which are being calculated during the region seg-
mentation step.

Computational costs: The appropriate use of Green’s
theorem assures us that the increase in the final optimiza-
tion time that produces the final boundary is minimal.
However, we note that the integrated algorithm is still
computationally more involved than the original gradient-
based boundary finding. This is so because after all, the
region-based segmentation needs to be done as an addi-
tional step. But, as mentioned before and as we saw in
the examples, for most images, it can be simplified by only
using the means and the variances of the regions involved
rather than the whole set of parameters. On an average, it
takes about a minute to obtain the region classification on
a Sun Sparcl0 workstation. Another 1.0-1.5 minutes are
necessary for the boundary optimization. However, this
depends on the number of regions involved, the complexity
of the boundary, etc. Also, a better optimization of the
code 1s likely to make the procedure faster.

VII. CONCLUSIONS

We have presented in this paper a new technique for in-
tegrating gradient and region information within the de-
formable boundary finding framework. We note again
that the region homogeneity constraint does not necessar-
ily mean regions of constant value. All it requires is that
the intra-region variation is smaller than the inter-region
variation. Further, it i1s also not constrained just to the
use of intensity value. Other region features like texture
can also be used within this framework as our example
with the ultrasound image demonstrates. The method is
posed within a Bayesian framework of maximization of the
a posterior: probability. Appropriate use of Green’s theo-
rem makes the algorithm computationally attractive. As
the examples show, the integrated approach is more ro-
bust to both increased amounts of noise, as well as in-
creasingly displaced initialization of the initial boundary.
Almost uniformly there 1s an improvement over the con-
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ventional gradient-based boundary finding. To prove this,
we have devised a variety of experiments and the results
from all of them are favorable.

Application of this method on real medical images re-
sults in noticeable improvement as has been shown. We
are using it for clinical research purposes for outlining the
endocardial and epicardial boundaries of the heart and the
results are much better than what we had achieved using
the purely boundary-based method of [33].

However, there remain areas of potential improvement.
We note that some of the probabilistic assumptions may
not hold if the parameterized boundary is too far away from
the true boundary at any instant. However, the resulting
objective function that is generated from the probabilistic
assumptions can also be interpreted as finding the bound-
ary that best matches (agrees) with the gradient and region
image. This interpretation continues to be valid. Thus in
some sense, the method transcends its probabilistic limita-
tions albeit in an ad hoc way. This can be made mathemat-
ically more complete. Also, the method can be extended
to find multiple objects simultaneously. Generating priors,
maybe from a multiscale image representation, could also
be an area of potential investigation. Currently, we are in
the process of extending the whole integration framework
to three- dimensional images [9].
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