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Abstract

This paper presents a new approach for 3D brain surface matching based on shape using a
combination of geodesic distance and surface curvature. An initial sparse set of corresponding
points are first generated by matching local geometrical features. Geodesic interpolation is then
employed in order to capture the complex surface. In addition, surface correspondence and
triangulation are computed simultaneously through a hierarchical scheme. Experiments applied
to human cerebral cortical surfaces are shown to evaluate the approach. It is shown that the

proposed method performs well for both surface matching and surface shape recovery.

Keywords: surface matching, correspondence, corresponding points, geodesics, geometrical

features, shortest paths, shape, triangulation.



1 Introduction

The shape analysis of the human cerebral cortex is of tremendous interest to neuroscientists
trying to understand the relationship between morphologic differences and behavioral and psy-
chological factors in normal individuals and in those with disorders. For example, cortical
differences associated with sex [25], age [14] and cognitive abilities [15] have been found and are
studied in order to understand normal development. Differences have also been associated with
many neurologic and psychiatric disorders and are key to understanding abnormalities in regions
or systems associated with these disorders. The measurement of brain structure has revealed
cortical abnormalities associated with conditions such as Alzheimer’s disease [28], schizophrenia

[37], dyslexia [31], panic disorder [24] and in preterm infants [26].

The detailed comparison of different human brains requires nonrigid registration of surfaces,
or surface matching. This can be achieved by determining the correspondence of 3D point
sets between pairs of surfaces. While shape provides the basis for such a correspondence, this
problem remains a difficult one due to ambiguity when the surfaces are complex and variable.
In addition, the lack of ground truth for matching / correspondence remains a problem for

evaluating such methods.

A number of methods have been developed to match surfaces and to determine surface
correspondence. The classic approach is the iterative closest point method (ICP) [1]. This
method (and related ones [9]) minimize the distance from points in one surface to the closest
point in another surface. The robust point matching approach of Rangarajan et al. [27] also uses
distance and has the advantage of establishing the correspondence between two sets of points
in a robust way, discarding outlier points. Neither approach, however, explicitly uses shape to
determine this match. ICP has been improved with shape information for sulcal model building
[5].

Others determine surface correspondence by finding a continuous mapping for the purposes



of determining a full 3D volumetric deformation. Davatzikos et al. [7] determine a map from one
surface to another by elastically reparametrizing one of the surfaces so that geometric features
align. This work has been extended by explicitly constraining sulcal and gyral curve matches
[40]. Thompson and Toga [39] formulate warping using Chen surfaces (hybrid superquadrics
and spherical harmonics) to extract surface models of structure, including sulci. Other related

work in nonrigid volumetric transformation include [6, 35, 11].

A surface correspondence algorithm is also developed in [10] to build a statistical shape
model. In this method, random point sets on the surface are identified first, and then these
clouds of points are registered and matched to establish correspondence using a multi-resolution
octree spline approach. The accuracy of the correspondence is dependent on the registration
process, which is very computationally expensive and may not be sufficiently flexible for complex
deformations. In addition, a further surface triangulation method is needed to form a surface

from the unorganized points.

In our approach, we use curvature as part of the matching criterion. Matching of shape based
on curvature has also been used for non-rigid motion tracking [8]. Shi et al. [36] use shape-
based correspondence for analyzing left-ventricular motion. Note that for motion, the problem
of correspondence is much more constrained due to the incremental change in shape between
time frames. Other methods are designed particularly for matching curves in 2D [38, 23] and

may not extend easily to 3D.

Geodesic distance is an important geometric measure for understanding complex shape and
is a key component of our approach. One of the first uses in brain analysis was by Griffin
[13] who used mean geodesic distance to characterize cortical shape. Geodesic distance and
curvature have also been used to follow sulci [44, 17, 29]. The cortical surface is composed of
folds (gyri) separated by sulci. The geodesic path connecting points in a sulcus will tend to

follow the sulcus. Recently, minimal paths constructed across the surface have also been used



for surface patch parameterization [3].

2 Algorithm Overview

We propose a new automatic method using shape-based matching and geodesic interpolation to
directly identify corresponding points on pairs of brain surfaces [42]. An individual (or study)
surface is matched to a reference (or atlas) surface. This method simultaneously triangulates
the study surface based on the generated points. An initial sparse set of points on the study
surface are determined based on proximity and shape. The interpolated points in 3D are then
generated by finding the shortest surface paths between the initial points and then labeling the
interpolated points equally spaced along these paths. Given corresponding surface points, it
is necessary to triangulate these 3D points to visualize and validate the surface. Our surface
mapping algorithm also triangulates the brain surface during the identification of corresponding
surface points by using a hierarchical scheme (Figure 1). The detailed steps of our approach are

described in the next Section.

3 Owur Approach

3.1 Initial Points Matching and Triangulation

This algorithm starts with segmented brain images, which can be determined either manually
or automatically. Triangulated surfaces (at the level of voxel size) can be extracted from the

segmented images using the Marching Cube algorithm [22].

3.1.1 Initial Points Labeling on the Atlas

First, a small set of points on an atlas brain surface is labeled manually. These points are

normally sulcal, gyral or other feature points, which would be visually identifiable from a 3D



Atlas brain Atlas brain E
initial points initial points | Al\tlasl and stud)
Iabeling triangulation | + | 10¢& geometr

Y

(Sect|on 3.1)

I

I

I

I

I

I

Geodesic path computlng betwgen i
each pair of triangle nodes i
(Sectlon 3.2) i
I

I

I

I

I

Hierarchical
surface
d—point select|on on each geods| [féconstruction ;

path and triangle subdivision i

(Section 3.3)

I :Manual (only ,

Generated | *once for atlas),
surface points and j mmmmmmm---
triangulation dens e
| Automatic |

(I J

_________7::§__________

Figure 1: System framework of our hierarchical algorithm.

rendering. In order to match these points more accurately in the study brain, we divide the
atlas initial points into four varieties according to their positions in the brain: [ = 1 for inter-
hemispheric fissure sulcal points; [ = 2 for creases at the brain stem and cerebellum; [ = 3 for
the remaining sulcal points; | = 4 for gyral points. An initial triangulation of these points is

constructed manually. This manual step only needs to be done once for the atlas image.

3.1.2 Corresponding Initial Points on the Study

For each individual study brain, we use the following automatic method to determine the cor-
responding points of the atlas. The initial triangle connections are inherited from the atlas.

First, we align the study to the atlas by scaling, translation and rotation. The Procrustes



shape distance method [2] is adopted here to calculate the scaling parameter using several
thousand points evenly sampled on the two surfaces. Rigid registration is then performed using
distance transform methods [16].

The procedure for determining the initial corresponding points of the atlas is based on an
objective function matching local geometry (Eq.(1)). For each initial point i on the atlas surface,

the objective function to be minimized within a region for point j on the study surface is:
Oij = dij - ngj - fij (1)
where d;;, n;; and f;; are respectively, a Euclidean distance measure, a surface normal match

measure and a 21 feature (curvedness) match measure, formulated as follows.

The Euclidean distance measure is defined as:

dij = 1+l — i + lyi — il + [z — ) (2)
where (z,y,z) is the 3D co-ordinates for each surface point. Note that 1 < d;; < R,,, where
R,, is the radius of the search window with center point 7. While a fixed radius is used here, a
coarse to fine search strategy can be achieved by using gradually decreased window size.

The surface normal match measure is defined as:

ngj =2 — ;- 7 (3)
where 77 is the unit normal vector for each surface point. Note that 1 < n;; < 3.
The feature match measure is defined in terms of curvedness.
Given the segmented brain image L, the Gaussian curvature, K, and the mean surface

curvature, H, can be calculated from the partial derivatives of the image as [30, 34, 43]:
2 (iyjk)e [L%(ijka — L%) + 2L, Lj(Li Lk, — Lz’ijk)]
(L7 + L3+ L})? ’

ik [(Lii + L)L — 2L; L Lij]
2(L? + L? + L2)3/2

K =

7



where Q = {(z,y, 2), (y, 2z, x), (2, z,y)} is the set of circular shifts of (z,y, z).

The two principal curvatures k; and ko are related to the Gaussian and mean curvatures as
[4]: ki = H + \/m, and ke = H — VH?2 — K. Shape can be characterized by two values:
one describing the type of curvature and one describing the degree [21]. A shape index function,
defined as S = 2 arctan [(ks + k1)/(k2 — k1)], can be used to classify surfaces into nine types
[21]. Shape index distinguishes between sulci and gyri [43]. Curvedness measures the degree of
curvature [21]: C = /(k? + k2)/2.

In our matching procedure, we would like to locate sulcal and gyral points, ¢, by thresholding

a signed curvedness, Cy, defined as:

k24k2 .
1= ifS>0

)

Cs = (5)
—JEER s <0
Then,
gyrus, it Cs > K,
t =< sulcus, if Oy < —Kj (6)
no feature, otherwise
The threshold values K, and K, are chosen dynamically so that the selected sulcal or gyral
points are approximately a specified percentage of the total surface points (see Figure 2 for
detailed percentages, fixed for each scale). Also, in order to locate these points more accurately,

we empirically identify them at three scales according to their labeling [ in the atlas specified

above:
1, ifl=3o0r4
scale =1 2. ifl=1 (7)
3, ifl=2

Due to variations in shape, points with different labels, [, are more consistent when measured

at their respective scales, which can be seen in Figure 2.



(a) scale 1 (b) scale 2 (c) scale 3

Figure 2: Sulci (red) and gyri (green) points of the study brain by thresholding the curvedness (Eq.(5)).
Top: dorsal view; Bottom: ventral view. (a): scale 1 (Gauss smoothing o = 0.5), sulci (35%), gyri (15%);
(b): scale 2 (smoothing o = 1.5), sulci (25%), gyri (10%); (c): scale 3 (smoothing o = 2.5), sulci (10%),
gyri (3%). (Note: the percentages shown in the brackets are the number of selected sulci or gyri points over

the total number of surface points.)
The feature (curvedness) match measure used in Eq.(1) is formulated as:

(sulcus, sulcus)
L0, if (t;,t5) = § (gyrus, gyrus)

(no feature, no feature)

fij = ‘ (8)
(sulcus, no feature)

2.8, if (¢;,t;) =

(gyrus, no feature)
\

| 3.0, if (ti,tj) = (sulcus, gyrus)

Thus, for each labeled point on the atlas, the point on the study surface which minimizes

Eq.(1) within a radius R,, (normally chosen to be 15 pixels) is selected as the corresponding



point.

3.2 Geodesic Path Computation

Given the set of corresponding points and their connections, the second step is to determine the
shortest paths between each pair of connected surface points (Figure 3).

There are many methods to solve the shortest surface path finding problem [18, 19, 20,
32, 41]. The algorithm we use is based on Kimmel’s two methods [18, 20], and is almost
the same as his extended Fast Marching Method [20]. The Fast Marching Method [33, 34]
is an extremely fast numerical algorithm for solving the Eikonal equation | VT |= F(z,y)

on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid

(d) (e) (f)

Figure 3: Diagram for corresponding surface points identification and surface triangulation in our hierarchical
approach. (a): initial points and triangulation; (b): shortest paths between each pair of connected points; (c):
selected mid-points on each shortest path (red dots) and triangle subdivision; (d): more dense triangulation;

(e): repeating of (c) in a hierarchical way; (f): even more dense triangulation.
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points. This technique has been extended to triangulated domains with the same computational

complexity [20].

When we calculate the shortest path between two surface points, one is treated as the source
point, and the other as the destination point. In our implementation, using this extended Fast
Marching Method, we first solve the Eikonal equation with speed F = 1 on the triangulated
surface to compute the distance T' from a source point. Note that for all geodesic computations
we use the original triangulated surface. Then, we backtrack along the gradient of the distance
T from the destination point. For each triangle, there is one gradient. We start from a point and
“flow” inside the triangle which has the largest gradient according to the computed gradients. In
this way, we get a sequence of straight segments, each segment corresponding to a path through
one triangle. Since the original surface triangulation is done at the voxel level, the discrete path
is fine enough to be a good approximation of the geodesic path on the continuous surface. In

this way, the shortest path between the source and destination points is traced.

Figure 4 shows the Marching Cube triangulation [22] and two shortest paths for a synthetic

surface.

Figure 4: Shortest paths on a synthetic surface. (a): the synthetic surface (image size: 32 x 32 x 32); (b):

two shortest paths on the Marching Cube triangulated surface of (a).
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3.3 Mid-point Selection and Triangle Subdivision

The third step of our approach is selecting the mid-point on each shortest path, and decomposing
each triangle into four smaller ones (Figure 3(c)). In this way, a more dense triangulation is

derived (Figure 3(a) and 3(d)).

3.4 Hierarchical Surface Reconstruction

(d) (e) (f)

Figure 5: 3D synthetic surface reconstruction. (a): the synthetic surface (22, 782 points and 45, 560 triangles)
(image size: 100 x 100 x 100); (b): another view of (a); (c): initial points and triangulation (38 points and
72 triangles); (d) to (f): generated surface points and surface triangulation based on these points respectively
after 1st, 2nd and 3rd iterations by our hierarchical approach (with number of points/triangles respectively:

146/288, 578/1152, 2306/4608).

Now, we simply repeat the previous two steps (Section 3.2 and Section 3.3) and thus generate

even denser surface points and triangulation. Figure 3 diagrams our hierarchical strategy. We
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(d) (e) (f)

Figure 6: Brain surface reconstruction. (a): the original surface (164,477 points and 329,816 triangles);
(b): initial points and triangulation (69 points and 134 triangles); (c) to (f): generated surface points and tri-
angulation after 1st, 2nd, 3rd and 4th iterations by our hierarchical approach (with number of points/triangles

respectively: 270/536, 1,074/2, 144, 4,290/8,576, 17,154/34, 304).

repeat this process until the triangles are small enough. Figure 5 shows a synthetic surface
reconstruction example. Figure 6 shows a brain surface reconstruction process. As the iterations
continue, more and more dense surface points and triangulation are derived. Note that since
the number of identified corresponding points at each iteration is always the same for the atlas

and study brains, the two surfaces are then matched at different scales.

4 Features of the Proposed Method

The assumption of our approach is that the relative deformation of the two surfaces is approxi-

mately a uniform stretching between the initial points. Locally uniform stretching, or homothetic

13



deformation [12] is a reasonable assumption and can be satisfied, at least approximately, by the
appropriate selection of the initial points. The general requirement for the initial points labeling
on the atlas surface is an even distribution. In areas of greater complexity, it may be necessary to
include a denser distribution of initial points so that more accurate results can be derived. Deep

sulcal areas have longer surface paths given the same FKuclidean distance between the points.

Our initial points matching uses surface curvature, and the points interpolation is based on
geodesics. Therefore, our approach can capture the global and local shape of the surface, which
is the main advantage compared to other points matching algorithms [1, 27, 10]. Figure 7 shows

schematically how the geodesic paths can follow brain sulci.

Notation:
initial points;

e interpolated points generated
from the 1st iteration;

interpolated points generated
from the 2nd iteration.

() (b) (c)

Figure 7: Schematic diagram showing brain sulci being followed. (a): geodesic paths and its mid-points on

brain surface; (b): wire-frame version of (a); (c): notation for the diagram.

In our hierarchical closed surface reconstruction algorithm, if the number of initial points
and triangles are respectively Py and Tp, then at ith iteration, the generated points, P;, and
triangles, T;, are given by (see Appendix for detailed derivation):

i

4 .
P, =Py + To; T; = 4'Ty (9)

Normally, surfaces are reconstructed to four iterations in our experiments.
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5 Experiments and Evaluation

5.1 Real Pair of Atlas and Study Brains

Figure 8: Automatically matched initial points on the brain surface (top and bottom are two different views).
Left: atlas surface hand-labeled 69 points; Right: study surface corresponding 69 points identified by our

automatic point matching procedure (Section 3.1).

Figure 8 shows the automatic points matching results on a pair of brain surfaces (Section
3.1). Regular sulcal and gyral points are identified consistently, as are the interhemispheric
fissure points and points on the ventral surface at the brain stem and cerebellum. The consistent
matching is due to the combined effect of the three measures (Eq.(2),(3),(8)) using the curvedness
measure at three different scales.

Figures 9 and 10 demonstrate the surface correspondence and reconstruction process respec-
tively for the atlas and study brains. The initial points for the atlas and study used in the
iterations are shown in Figure 8. The dense mapping of the study and the atlas surfaces is then
established by starting with the sparse initial corresponding points.

In order to evaluate our approach, we also implemented a simple closest point method for

15



(a) (b) (c) ()

Figure 9: Atlas surface correspondence and reconstruction by our shape-based approach (top and bottom
are two different views). (a): initial points and triangulation (69 points and 134 triangles); (b): generated
surface points and triangulation after 2nd iteration (1,074 points and 2,144 triangles); (c): reconstructed
surface after the 4th iteration with normals extracted from the original surface (17,154 points and 34,304

triangles); (d): original atlas surface (187,969 points and 377,238 triangles).

surface matching. This method identifies the closest point on the study as the corresponding
point for the atlas. By calculating the corresponding points of the reconstructed atlas after the
4th iteration (Figure 9(c)), we get the reconstructed study surface shown in Figure 12. Since
the generated points for the atlas are roughly evenly distributed on the original atlas surface,
the reconstructed surface in Figure 9(c) is a good approximation of the original one in Figure
9(d), with many visible sulci and gyri. We therefore expect that the corresponding points for
the study should also reveal the sulcal and gyral pattern. From the top of Figures 10 and 12,
it can be seen that our shape-based approach is able to generate more sulci and gyri on the

reconstructed surface faithfully, resulting in a much better approximation of the original surface
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Figure 10: Study surface correspondence and reconstruction by our shape-based approach (top and bottom
are two different views). (a): generated surface points and triangulation after 2nd iteration (wire-frame); (b):
generated surface points and triangulation after the 4th iteration; (c): reconstructed surface after the 4th
iteration with normals computed from triangulation; (d): reconstructed surface after the 4th iteration with

normals extracted from the original surface.

Figure 11: Two views of the original study surface (164,477 points and 329,816 triangles).

(Figure 11). The bottom of Figures 10 and 12 show that the simple closest point method can
not give a reasonable posterior reconstructed surface. The difference in the posterior region can

also be seen in Figure 13, where the five points in the atlas are corresponded well by our geodesic
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Figure 12: Study surface correspondence and reconstruction by simple closest point approach (top and
bottom are two different views). (a): calculated corresponding surface points and projected triangulation of
reconstructed atlas in Figure 9(c) (compare with Figure 10(b)); (b): reconstructed surface of (a) with normals
computed from triangulation (compare with Figure 10(c)); (c): reconstructed surface of (a) with normals
extracted from the original surface (compare with Figure 10(d)). Note, dark areas are due to the variation
of the normals between the original surface (Figure 11) and the reconstructed surface in (b), and they show

disagreement between the two surfaces.

method. The simple closest point method calculated the wrong corresponding points because
the rigid and scaling transformation could not compensate for the deformation in the posterior

part of the study brain.

5.2 Locally Deformed Atlas Brain

One major advantage of the proposed method is that it is able to capture the global and local

shape of the surface, which can also be demonstrated in the experiment here. Shown in the top
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Figure 13: Located corresponding points comparison by different methods. Left: five points on the atlas
posterior surface; Middle: the five corresponding points on the study surface by our shape-based method;

Right: the five corresponding points on the study surface by the simple closest point method.

and bottom of Figure 14(a) are two deformed atlas brains with varying degrees of local bulging
and denting. They are well reconstructed by using our shape-based surface matching (see Figure
14(b)). However, this can not be achieved by the simple closest point method, especially for

large local deformation, as shown in Figure 14(c) and 14(d).

5.3 Real Atlas and Synthetically Warped Study

In order to further evaluate the method both quantitatively and qualitatively, we define a par-
ticular warp and apply it to the atlas brain image, generating a warped study image to which
both our algorithm and the simple closest point algorithm can be applied. We use the following

sinusoidal displacement fields for transforming the atlas image to a study image:

Tnew = Zold + Azsin(myea/32);
Ynew = Yold + AySin(Trzold/32);
Znew = Zold + Azsin(mzyq/32) (10)

where (Zo14, Yold, Zo1a) are coordinates of a point in the atlas image and (Zpew, Ynew, Znew) are
coordinates of the corresponding point in the transformed study image. A, A,, A, are the

limits of the maximum displacement distances along the z, y, z directions, respectively.
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Figure 14: Locally deformed atlas surface correspondence and reconstruction (top and bottom are different
degrees of bulging and denting). (a): original locally deformed atlas surfaces; (b): reconstructed surfaces by
our surface matching algorithm after 4th iteration; (c): wire-frames of (b) (our method); (d): wire-frames of

reconstructed surfaces by simple closest point approach.

The transformed study image in this experiment is shown in Figure 15 bottom. The atlas
initial points and triangulation are shown in Figure 9(a). The initial points of the study are
derived either from the known warp, or from our automatic matching procedure described in
Section 3.1. Using known initial points, the evaluation only reflects the comparison of our
geodesic dense points correspondence algorithm and the simple closest point algorithm, and
does not include the initial points matching step. Using the automatic matching procedure, the
entire framework is evaluated.

By calculating the corresponding points of the reconstructed atlas after the 4th iteration
(Figure 9(b)), we get the reconstructed study surfaces with different initial points and different
methods shown in Figure 16. Clearly, our method gives better results no matter how the initial

points are derived.
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Figure 15: Atlas surface and synthetically warped study surface. Top: three views of the atlas surface
(same brain as that in Figure 9(c)); Bottom: three views of the warped study surface by Eq.(10) with

A, = A, =A. =5.0 (154,080 points and 308, 808 triangles).

Figure 16: Reconstruction of the warped study surface (Figure 15 bottom) with different initial points and
different methods. Left and Middle: by our shape-based method after the 4th iteration with initial points from
known warp (left) and with initial points from our point matching procedure (middle); Right: by the simple

closest point method.

Another way of examining the results, which is also useful for shape characterization, is to
calculate the distance between each pair of points and visualize the distance as a color map on
the study surface. Since the study here is warped from the true atlas by Eq.(10), we have the

known distance map (Figure 17(a)) for evaluation. This color map is calculated and visualized
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Figure 17: Evaluation of different methods for the known warp (Eq.(10)). (a): true absolute distance map
and direction of differences (left and right are two different views); (b): results by our shape-based method
(initial points from known warp) with absolute distance average error 1.9 pixels; (c): results by our shape-based
method (initial points from our point matching procedure) with absolute distance average error 2.9 pixels; (d):

results by the simple closest point method with absolute distance average error 4.0 pixels.
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densely at each point on the study surface (154,080 points in total). For both methods, we
first calculated the colored distance map at 17,154 points (the number of corresponding points
for the atlas after the 4th iteration), and then used an iterative merging technique to color the
remaining study surface points. The average error of the absolute distance to the true distance
map is evaluated at the calculated 17,154 points. From the results in Figure 17, we can see that
the displacement pattern and mean square distance error for our method (Figure 17(b),(c)) are
much better than for the simple closest point method (Figure 17(d)). The simple closest point
approach tends to give smaller absolute distances than the true distance, while our shape-based

approach results in more accurate distances comparable to the true distance.

6 Conclusions and Future Directions

We have presented a new shape-based approach for 3D brain surface matching using geodesic
paths and geometrical features. The entire process of our method is automatic except for the
atlas initial critical points labeling and initial triangulation construction, which need to be done
only once for the atlas. By minimizing the objective function which incorporates local surface
geometry, the initial points on the study surface are identified and matched. The corresponding
surface points are generated by labeling mid-points on the shortest paths recursively. Surface
correspondence and triangulation are computed simultaneously by using a hierarchical scheme.
Experimental results and evaluation further demonstrate that our method performs well for

surface matching and surface shape recovery.

The directions of future research include: incorporating other attributes and coarse to fine
search for initial points matching; further validation on large amount of brain images; and
using generated corresponding surface points as landmarks for 3D statistical model building and

surface based volumetric non-rigid registration.
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Appendix — Number of Generated Points and Triangles

In our hierarchical closed surface reconstruction algorithm, the complexity of the final triangula-
tion is related to the initial triangulation and the number of iterations. For a closed surface, the
number of triangle edges, F, is related to the number of triangles by £ = 3T/2. If P;, T; and E;
are respectively the number of points, triangles, and edges at the ith iteration (i = 1,2,3,...),

we have:

3
Ei = 3T
T, = 4T, | =4'T

E, = 6T, ,=6-47'T (11)
because each triangle is divided into four at each iteration. Also note that F; = 4F,.

Since the points are generated by labeling one mid-point on each surface path ended with

two vertices of a triangle, then:

i—1
Po=P 1 +Ei1=(Py+E ) +E_1=P+)> E, (12)
n=0
Substituting Eq.(11) into Eq.(12), we have:
i—1 4i -1
P=Py+> 64" 'Ty =P+ To (13)
n=0
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