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Abstract
The wide availability of high resolution magnetic resonance images (MRI) of the brain has fa-

cilitated tremendous progress in neuroscience. Accurate automated segmentation and quantifica-
tion of neuroanatomical structure from such images is crucial for the advancement of understand-
ing of brain morphology, both in normal variation and in disease. Gradient-based deformable
surface finding is a powerful technique for locating structure in three-dimensional images. How-
ever, it often suffers from poorly defined edges and noise. This paper proposes a gradient-based
deformable surface finding approach that integrates region information. This makes the resulting
procedure more robust to noise and improper initialization. In addition, prior shape information
may be incorporated. The algorithm uses Gauss’s Divergence theorem to find the surface of a
homogeneous region-classified area in the image and integrates this with a gray level gradient-
based surface finder. Experimental results on synthetic and MR brain images show a significant
improvement is achieved as a consequence of the use of this extra information. Further, these
improvements are achieved with little increase in computational overhead, an advantage derived
from the application of Gauss’s Divergence theorem.

1 Introduction

Magnetic resonance imaging (MRI) allows detailed examination of the morphology of the brain at
high resolution and in vivo. Three dimensional image analysis is important in this domain in order
to facilitate the quantitation necessary for better understanding of normal and abnormal structure.
In most cases, the analysis requires the precise identification and quantification of structures and
abnormalities in the brain in terms of volume, surface area, location and shape. The study of
abnormalities and the normal variation of the shape of brain structures is important in character-
izing the brain and will likely to lead to an increased understanding of the normal and abnormal
morphology. Brain function can be related to morphology by examining subjects with brain disor-
ders and measuring behavioral correlates to morphology in order to establish structure-function
relationships. Size differences have been noted in a variety of brain disorders, including, for ex-
ample, the hippocampus in posttraumatic stress disorder (PTSD) [1], the temporal lobe in learning
disabilities [2] and the corpus callosum in normal twins [3]. Shape can be fully characterized by
curvature in an invariant way and shape differences have also been found, for example, in the
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corpus callosum, exhibiting sexual dimorphism [4] and in the cortex, showing shape differences
due to atrophy [5].

Such analysis is important not only for structural measurement of anatomy, but for region
identification for measurement from functional images, such as positron emission tomography
(PET) or single photon emission tomography (SPECT) or functional MRI. These studies even more
directly help understanding of brain function.

This paper describes a 3D deformable surface finding methodology that integrates region in-
formation and gradient information to find a complete surface that matches the gradient strength
in the image and surrounds a homogeneous region. There is a great benefit to consider the entire
3D image set as a whole and analyze it in that way. Often, 3D images are treated as stacks of 2D
images, thereby reducing the dimensionality of the problem. While sometimes successful, such
methods tend to oversimplify or ignore the 3D properties of the structures under consideration.
This is especially important in the brain where most structures bend and turn and do not have
a preferred orientation for analysis. The robust identification and measurement of deformable
structures such as are found in the brain, is not always achievable by using a single technique
that depends on a single image-derived source of information. Thus, there is also a great need for
integrated methods that make optimal use of the multiple sources of information.

2 Background

Region-based methods The two principle sources of image derived information that are used
by most segmentation methods are region-based and boundary-based. Region-based methods
[6, 7, 8, 9, 10, 11, 12, 13] rely on the homogeneity of spatially localized features such as gray level
intensity, texture and other local pixel statistics. Homogeneity does not necessarily mean identical
pixel values within a particular region, rather it means that the variation within a region is of a
smaller extent than that between regions. The advantage of such methods is that they rely directly
on the gray level image and thus are less susceptible to noise than methods that use derivative
information. Also, if the high frequency information in an image is either missing or is unreliable,
the segmented images remain relatively unaffected. Since the typical MR image can be both noisy
and have fuzzy boundaries, these features can be very helpful. However, the problem with typical
region-based segmentation methods, is that the resulting segmentation depends considerably on
the choice of seed points and the region’s shape is too dependent on the choice of the actual
algorithm used. Also, such methods often result in an over-segmented image. Rule based systems
[14] can do better, but are extremely application-specific. Other region-based methods either use
probabilistic techniques [10, 15, 16, 17, 11] or use non-linear diffusion methods [12, 13, 18] (see [11]
or [12] for the exact mathematical relationship between these methods). These methods perform
a type of smoothing that preserves edges. However, isolating objects from the resulting image
still requires considerable effort as they also suffer from the problems of poor localization and
over-segmentation (related to the problem of choosing the appropriate scale).

Region methods are particularly susceptible to gray level variations over the image. This is
particularly relevant for MR images which often suffer from inhomogeneities of the gain field.
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The pixel intensities in MR images are often distorted by inhomogeneities due to RF coil field
strength. These effects typically result in a low spatial frequency multiplicative corruption of the
image data. Such inhomogeneities are particularly troublesome for pixel classification methods
because of their reliance on gray level values. Thus, the correction of inhomogeneities is crucial
for the application of gray-level-based techniques to MRI. However, methods using gray-level
gradients or higher-order statistics are less sensitive to these effects. Intensity calibration based on
phantoms has been tried [19] but these methods are limited by the non-linear response of tissue
to RF excitation, and gain inhomogeneities due to the interaction of anatomy with the RF coils.
Filtering techniques such as homomorphic filtering (a combination of logarithmic transformation
and high-pass filtering) or dividing by a low-pass filtered image has been used to correct these
distortions [19, 20]. These techniques can be effective but are limited by the variation of intensity
between tissue types. If a single tissue type can be identified throughout the image, the distortion
can be more accurately measured, assuming that the tissue type should have a homogeneous
value wherever it is measured. A number of techniques are based on this idea. Dawant et al.
[21] correct for intensity variation by fitting a surface to classified points either from an automated
classification operation or from user specified points. They found better correction but sensitivity
to operator error using user-specified points. Meyer et al. [22] also classify first to determine the
correction factor, correct and then reclassify the image. Wells et al. [23] uses an MRF approach to
simultaneously estimate the classification and the distortion field by alternatively iterating their
estimation.

A number of techniques for MR brain segmentation rely on voxel classification using region
based methods. These techniques assume that one or more feature parameters, such as T1 or T2,
of a particular tissue type will have values that cluster in such a way that the different brain tissues
can be distinguished from each other. In order to determine these clusters, representative voxels
must be manually identified (supervised) or clusters can be automatically determined (unsuper-
vised). Cline et al. [24] use multispectral voxel classification, in conjunction with connectivity,
to segment the head into background, facial tissue, brain, cerebrospinal fluid (CSF) and lesions
from 3D MR images. This method is limited by the assumption of normality in the probability
distributions of the tissues. Gerig et al. [25] use a similar approach. Raya [26] uses multispectral
classification in conjunction with a rule base to find brain, CSF and abnormalities from brain MR
images. Brummer et al. [27] use classification via histogram thresholding, in conjunction with mor-
phological operations, to detect the brain from MR. However, these region methods all suffer from
the problems of field inhomogeneities and poor localization of boundaries. Hence, region based
methods are likely to be inadequate by themselves for a reliable segmentation of neuroanatomic
structures of interest from MR images of the brain.

Gradient-based methods In contrast to region-based methods, boundary methods primarily use
gradient information [28, 29, 30] to locate object boundaries. Such methods have very good local-
ization properties since they rely on the gradient. Gradient methods also are relatively unaffected
by changes or inhomogeneities in the gray scale distributions. However, boundary finding in 3D
using only local information is not sufficiently robust to the effects of noise, which is enhanced by
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differentiation, poor contrast and the presence of other nearby objects.
In addition, some of the methods that are applicable in 2D can no longer be used for 3D im-

ages. For example, pixel search methods that follow an optimal path through the two dimensional
images cannot naturally be extended to three dimensions because the voxels in a surface have no
such ordering. Hough transform methods [31] can be used, but for three dimensional images it
is very expensive both in terms of storage and computational costs. To overcome these problems,
the use of whole boundary methods has proved successful. These methods avoid the problem
of broken or missing edges by imposing a structure to the solution. They augment imperfect im-
age data with shape information provided by a geometric model [32, 33, 34] and if formulated
parametrically, they form over-constrained estimates that use a few parameters to describe a large
number of points. Such deformable models have been used extensively in medical image analysis
[35].

A number of gradient-based methods have been applied to MR brain images. Bomans et al.
[36] use a boundary-finding method based on a 3D version of the Marr-Hildreth edge operator
[29] to find surfaces the brain and ventricles in MR images. Morphological operators are used
to remove small holes and thin connections. Raman et al. [37] track Marr-Hildreth edges from
coarse scale to fine scale with the intent of detecting significant edges accurately in MR images of
the brain. These methods rely primarily on edges, however, which can be effective in localizing
boundaries when there are strong transitions in the intensity but ignore other cues such as homo-
geneity which can aid in regions where edges are indistinct. Thus, edges by themselves are likely
to be insufficient to reliably and accurately segment the brain.

Interactive methods Interactive and semi-automated methods are a compromise between hand
tracing and fully automated methods. Kennedy et al. [38, 39] describe a number of semi-automated
methods for segmenting MR images of the brain. Hohne and Hanson [40] use mathematical mor-
phology, connected components and thresholding to interactively segment 3D images with feed-
back from rendered displays. Andreasen et al. [5] uses a combination of manual tracing and
thresholding to measure cortical curvature. These techniques rely on simple features and user
tracing and decisions to determine the segmentation. User interaction of this sort directly effect-
ing the segmentation leads to variability and inefficiency. It is preferable to reserve interaction for
initialization so that the final results are less sensitive to user variability.

Vector valued images In MR imaging, voxel values are a function of three tissue parameters:
proton density, T1 and T2 relaxation. By using multiecho acquisition sequences, either directly or
to compute the MR parameters, vector-valued images can be formed. The different components
can be used for multidimensional classification by clustering in this feature space. These clustering
methods are limited by their reliance on features of individual positions and ignoring the spatial
context. This vector information can also be used to determine boundary features, by calculating
vector gradients and using them in the same way as scalar gray level gradients. The gradient of
a vector image, F, is the direction and magnitude of greatest change. The formulation of Lee and
Cok [41] and Cumani [42] defines the gradient magnitude of a vector image based on the matrix
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of first partial derivatives F�. These derivatives can be calculated in the same way as scalar gray-
level gradients using smoothed differentiation. The gradient magnitude, in this formulation, is
the square root of the largest eigenvalue of F�T

F
�. This matrix can be written as:

�F�T
F
��ik �

mX
j��

�F

�xi

�F

�xk
(1)

The gradient direction is defined by the corresponding eigenvector. This vector gradient repre-
sents the direction and magnitude of greatest change in the feature space which directly corre-
sponds with the standard definition of a scalar gradient. Thus, region and gradient based in-
formation can be extracted from vector valued MR images and applied in the same way as scalar
images.

Prior knowledge An important aspect of user interaction is that the user has the advantage of
imposing prior knowledge of the shape of the structure being measured based on their knowledge
of neuroanatomy. The advantage of formalizing this information and using it in the segmentation
process has begun to be recognized. Staib and Duncan [43, 33] augment the boundary finding pro-
cess with a priori probability information representing the mean shape and the natural variation
of the structure to be segmented. Collins et al. [44] segment the brain using an elastic registration
to an average brain based on a hierarchical local correlation. The average brain provides strong
prior information about the expected image data. Cootes et al. [45] augment a snake-like model
with statistics to model structures in medical images in order to locate them. Prior information
can act as a strong guide when the intrinsic image information is weak.

Integration Methods

While both the region and boundary methods have their advantages and disadvantages their
problems are not necessarily identical. They are not affected in the same way by limitations in
the quality of the image. While the presence of noise limits the performance of any image pro-
cessing algorithm, region-based methods are less affected than gradient-based boundary finding
because the gradient is very noise sensitive. Also, if the high frequency information in the image
either is missing or is unreliable, boundary finding is more error-prone compared to region-based
segmentation. Shape variations, on the other hand, can be better handled using a deformable
boundary finding framework when we consider such variations to be generally around an aver-
age shape and such information can easily be incorporated as priors [43]. Further, since conven-
tional boundary finding relies on changes in the gray level, rather than their actual values, it is less
sensitive to changes in the gray scale distributions, such as MR inhomogeneities. Also, gradient-
based methods in general do a better job of edge localization. Given these properties, integrated
methods are likely to perform better than either of the methods alone by being able to combine
the complementary strengths of these individual methods, as has been pointed out [46, 47].

Unfortunately, however, only a limited amount of previous work has been done seeking to
integrate region and boundary information, and primarily for 2D images. Among previous meth-
ods, AI-based techniques have been used where production rules are invoked for conflict removal



Staib et al. : Integrated Approach for Neuroanatomic Structure 6

[46]. In such methods, region growing is done first followed by a binary edge detection step. There
are a few disadvantages to this procedure. First, a region classified image is often over-segmented
due to the presence of noise. Thus, one needs a validating scheme to distinguish between true
and false edges by looking at high gradient, continuity, etc. Also, such schemes have no way of
differentiating between multiple regions as it deals with the binary edge map obtained from the
region grown image. Further, such methods may suffer from the effects of poor edge localization
as is often the case with region based segmentation. Other similar efforts [47, 48] were aimed at
integrating region growing with edge-detection rather than finding complex objects.

Probability based approaches [10, 15, 17, 11] typically aim to maximize the a posteriori probabil-
ity of the region classified image given the raw image data by optimization methods like simulated
annealing. Integration here is achieved in the local or dense field sense where the edges are used
as line processes and the optimization is achieved both over the location of the line processes
as well as the pixel classification. Nonlinear diffusion methods [12, 18] achieve a similar sort of
integration in a non-probabilistic framework.

Another way of achieving local integration is the reaction-diffusion method [49]. However,
the problem of using such local integration methods is that if any one of the processes makes an
error (such as a false edge), it is propagated to the final solution. Also, a decision regarding the
final object boundary is made by considering the whole space of reaction-diffusion images and
choosing one result [49], something that can get very complicated. Finally, the recent work of Zhu
et al. [50] has similar motivations as ours, although as yet, the formulation has not been extended
3D images. The algorithm presented here is an extension of our earlier work on integration for
boundary finding in 2D images [51].

3 Surface representation

We represent surfaces using a Fourier parameterization [32, 52, 33]. It is a strong model concisely
represented in terms of parameters and easily allows the incorporation of prior information, when
such information is available. Associated parameter probability distributions can introduce a bias
towards an expected range of shapes. It is a natural extension to our 2D boundary parameteri-
zation [43]. There are a number of other approaches to three dimensional parametric modeling
including generalized cylinders [53], superquadrics [34], hyperquadrics [54] and finite element
methods [55, 56, 57].

A surface in three dimensions can be represented by three coordinate functions of two surface
parameters as x�u� v� � �x�u� v�� y�u� v�� z�u� v��, where u and v are the free parameters that vary
over the surface. Since there are two free parameters, a function of two parameters is necessary to
describe a surface. The Fourier surface representation uses the following basis [32, 33]:

� � f�� cosmu� sinmu� cos lv� sin lv� cosmu cos lv�

sinmu cos lv� cosmu sin lv� sinmu cos lv� � � �

�m � �� �� � � � � l � �� �� � � ��g (2)

The functions x, y and z are each composed of a weighted sum of the elements of the above basis
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Figure 1: Two closed surface examples using up to four and eight harmonics.

as follows:

f�u� v� �
KX

m��

KX
l��

�m�l�

am�l cosmu cos lv � bm�l sinmu cos lv �

cm�l cosmu sin lv � dm�l sinmu sin lv� (3)

where,

�m�l �

����
���

� for m � 	� l � 	

� for m � 	� l � 	 or m � 	� l � 	


 for m � 	� l � 	

The series is truncated at K , i.e. only a finite number of harmonics are used, in order to limit the
search space dimensionality and constrain the space of functions. Taken together, the coefficients
form the parameter vector:

�p � �ax� bx� cx� dx� ay� by� cy� dy� az� bz� cz � dz� (4)

The four basic classes of surfaces in three dimensions are tori (closed tubes), open surfaces
(with one edge), tubes (open surfaces with two edges) and closed surfaces. The torus, which is
periodic in both the surface variables is formed with the entire basis in Equation 2.

Closed surfaces, suitable for defining regions, are represented using:

�closed � f�� sin lv� cosmu sin lv� sinmu sin lv� � � �g (5)

which forces the functions to be constants at v � 	� �� ��. This, however, forces the ends together
as well. The ends need to be separated by adding a weighted term to each coordinate of the form
sin�v����� resulting in three more additional shape parameters. Two closed surface examples are
shown in Figure 1. It is also possible to represent open surfaces and tubes by this parameterization
[33, 52].



Staib et al. : Integrated Approach for Neuroanatomic Structure 8

4 Region information

Each voxel in the image must be classified into one of a number of regions or classes. Thus, for
each voxel, we need to decide or estimate to which class the voxel belongs. There are a variety
of approaches to region based segmentation and while there are differences, for our purposes, the
performance does not change from one method to the other considerably. The emphasis of this
paper is an integrated boundary finding approach given the raw image and the region classified
image. The exact method used to get the region classified image is not extremely critical here as
long as the output of that method gives reasonable results in part because the integrated method
makes the final decision. Any other suitable classification method could be used instead.

For our purposes, we use a method that has found broad applicability, including in the medical
domain, which models the image as a Markov Random Field (MRF) and a Maximum a posteriori
(MAP) probability approach is used to do the classification [58, 59]. The problem is posed as
an objective function optimization, which in this case consists of the a posteriori probability of the
classified image given the raw data which constitutes the likelihood term, and the prior probability
term, which, due to the MRF assumption, is given by a Gibb’s distribution.

The task is to determine a segmentationX given the raw image Y and our prior knowledge of
X . Thus, the aim is to compute argmaxX Pr�XjY �. We model the region process X by a Markov
random field. Due to the Markov property,

Pr�xijY�XS�i� � Pr�xijY�XNi
� (6)

where the subscript S�i represents the whole index set for the image except the ith pixel. The
subscript Ni denotes the sites neighboring site i.

Using the Hammersley-Clifford theorem [60], the density of X is given by the Gibbs density
of the form,

Pr�X� �
�

Z
exp

�
�
X
C

VC�X�

�
(7)

Here, Z is a normalizing constant and the summation is over all cliques C . A clique is a set of
points that are neighbors of each other. The clique potentials, VC , depend only on the pixels that
belong to clique C . This MRF model allows us to ensure that the resulting segmentation is smooth,
in the sense that neighboring pixels are encouraged to have similar properties. In effect, this helps
us to filter out the noise.

Now, given that we use this model, the segmentation can simply be performed as an image
estimation process. It can be shown that the MAP objective is equivalent to:

xi � arg max
fxi�l� l��������Lg

p�yijYN�i� xi�XN�i�p�xijXN�i� (8)

where Y corresponds to the actual image data, X corresponds to the region classified image and l

represents the classes in X . The subscriptN�i represents the neighborhood of the ith pixel leaving
out the ith pixel. A first order neighborhood system having six neighbors (2 neighbors along the
three axes) is used. At every iteration, the probability of a particular pixel being classified to dif-
ferent classes is computed and the pixel is assigned to the class that gives the highest probability.
The procedure stops when there is no change between iterations.
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5 Integrated surface finding objective function

We now define the surface finding objective function. By optimizing this function, we deter-
mine the surface parameters which correspond to the structure which matches both the gradient
strength in the image and the region homogeneity properties. The development follows along
similar lines as our earlier work for 2D images [51].

The input to the problem consists of the actual image I and the region classified image Is,
which is obtained from I after passing it through a region based segmentation step, as discussed
above. We assume that the interior of the region enclosed by the boundary that we seek belongs
to a single region in Is. All that this assumption requires is that the intra-region variability should
be smaller than the inter-region variability. This assumption can be further relaxed, as was done
in the 2D case (see [51] for details). The traditional boundary finding problem does not use the
original image directly. Being a gradient based approach, it uses instead the gradient image Ig. As
in Staib and Duncan [33, 32], we use the magnitude of the gradient vector at each voxel location. A
smooth estimate of Ig can be obtained from I by convolving the input image I with the derivative
(taken in the three directions) of a Gaussian kernel and then computing Ig, the magnitude of the
above resulting vector image. Alternatively, one can first convolve with a Gaussian to smooth the
effects of noise followed by taking a finite difference approximation to the partial derivatives in the
three directions and then calculating the magnitude of the gradient vector at each voxel location.
Thus, the input to the objective function is the gradient image Ig and the region classified image
Is.

The above surface estimation problem using gradient and region homogeneity information
can be posed in the maximum a posteriori framework. This is suitable for incorporating a priori
shape information.

Our aim is to maximize Pr��pjIg� Is�, where as described in the previous section, �p is the vector
of parameters used to parameterize the contour. First,

Pr��pjIg� Is� �
Pr��p� Ig� Is�

Pr�Ig� Is�
(9)

�
Pr�IsjIg� �p� Pr��p� Ig�

Pr�Ig� Is�
(10)

�
Pr�IsjIg� �p� Pr�Igj�p� Pr��p�

Pr�Ig� Is�
(11)

Furthermore, ignoring the denominator, which does not change with �p, our aim is to determine
(after taking the logarithm),

argmax
�p

Pr��pjIg� Is� � argmax
�p

�lnPr��p� � lnPr�Igj�p�

� lnPr�IsjIg� �p�� (12)

In Equation 12, we have taken the natural logarithm, which is a monotonically increasing function.
Knowledge of Ig could be used in the calculation of Is, for example, through the use of line pro-

cesses [10, 17]. However, if we ignore that information, we are effectively discarding information
rather than assuming extra information. Thus, the third term in Equation 12 above is simplified
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Figure 2: MR example prior. The mean surface (center) is shown with surfaces corresponding
to parameters plus and minus one standard deviation. This distribution is used in the example
shown in Figures 8 and 9.

using the approximation ignoring the dependence on Ig and we get an objective function that is a
sum of three terms, here denotedM (see Chakraborty et al. [51] for additional details):

argmax
�p

M��p� Ig� Is� � argmax
�p

�Mprior��p�

�Mgradient�Ig� �p� �Mregion�Is� �p�� (13)

Each of the three terms in the above objective incorporates a different information source.

Prior Term The first term in Equation 13 corresponds to the prior shape term. This prior infor-
mation is a flexible bias towards more likely shapes. When it is non-uniform, it biases the model
towards a particular range of shapes about the mean of the density. The spread in the probabil-
ity density is due to variability among instances of the object. We use a multivariate Gaussian to
model the density. An example density is shown in Figure 2. The middle surface corresponds to
the mean parameter values. To the left and right of it are the surfaces corresponding to the mean
parameter values plus and minus one standard deviation, respectively.

However, since there might be other objects in the image, we might need an initial estimate of
the position to start the optimization process. The information fusion that we present in this case
increases the reliability of the surface finding procedure under increased uncertainty in the initial
boundary placement and this is borne out by experimental results.

Gradient Term The second term is the gradient likelihood term. It is a measure of the likelihood
of the gradient image being the true gradient image corresponding to a particular object boundary.
At each point on the surface, the strength of the boundary can be evaluated by the magnitude of
the gradient at that particular voxel, given by the gradient image. The likelihood of the image
given the boundary parameters can be shown to be proportional to the sum of the magnitude of
the gradients at all the points that lie on the surface boundary, given a simplified model assuming
that the noise can be approximated by a zero mean Gaussian and that the voxels on the boundary
are independent. We can express the above term in the probability expression as the following
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area integral (see Staib and Duncan [32, 33] for further details):

Mgradient�Ig� �p� �

Z Z
A�p

Ig�x� y� z�dA (14)

where the area element on the surface is given by:

dA � jxu � xvjdudv � (15)

Region Term The third term in Equation 13 is responsible for incorporating the region infor-
mation into the surface finding framework. We expect the bounding surface to surround a ho-
mogeneous region. For simplicity, we assume that we have an image where the target object is
surrounded by a single background, we assign positive values to the interior of the object and
negative values outside. If more than two regions are involved, all pixels of the region that needs
to be segmented can be assigned a positive value and the remaining ones negative values, the
magnitudes of which reflect how much one expects the target region to be dissociated from the
remaining regions. Hence, remote regions are expected to have high negative values, representing
a larger penalty for including remote points. This way multiple regions can be handled. Once we
have associated positive values with the target object and negative values with points that lie out-
side, a volume integral that sums up all the points inside the surface is taken. Clearly, this integral
would be a maximum when the bounding surface is optimally placed over the object. Thus, the
third term in Equation 13 is given by:

Mregion�Is� �p� �

Z Z Z
V�p

Is�x� y� z�dV (16)

Hence, we finally have:

argmax
�p

M��p� Ig� Is� � max
�p

�Mprior��p�

�Mgradient�Ig� �p� �Mregion�Is� �p��

� max
�p

�
Mprior��p� �K�

Z Z
A�p

Ig�x� y� z�dA

� K�

Z Z Z
V�p

Is�x� y� z�dV

�
(17)

where K� and K� are the weighting constants which signify the relative importance of the two
terms in the above equation.

Volume to Area Integral Of the last two terms in Equation 17, one is an area integral and the
other is a volume integral. In general, computing an area integral is much less expensive compared
to a volume integral (O�N�� versus O�N��, where N is the diameter of the object). Thus, we can
save a lot of computation, especially when we carry out an iterative optimization procedure, if
we convert the volume integral to an area integral. An area integral must already be computed in
any case because the second term which is present in the original surface finding method already
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involves the computation of an area integral. Thus, the order of the computational complexity is
not increased. The above conversion can be done using Gauss’ divergence theorem [61] as follows.
First, construct the functions,

Fx�x� y� z� �
�

�

Z x

�
Is�	� y� z�d	

Fy�x� y� z� �
�

�

Z y

�
Is�x� 
� z�d


Fz�x� y� z� �
�

�

Z z

�
Is�x� y� ��d� (18)

so that,
�Fx

�x
�
�Fy

�y
�
�Fz

�z
� r � F � Is (19)

where F � �Fx�Fy�Fz�.
The definition of F is done in such a way that the C� continuity requirement in the statement

of the above theorem is met. Given these definitions, we have,Z Z Z
V�p

Is�x� y� z�dV �

Z Z
A�p

F � dA

�

Z Z
A�p

F � �xu � xv�dudv

�

Z Z
A�p

�Fx�yuzv � zuyv� � Fy�zuxv � xuzv�

�Fz�xuyv � yuxv��dudv (20)

We can also see that:Z Z Z
V�p

Is�x� y� z�dV � �

Z Z
A�p

Fx�yuzv � zuyv�dudv

� �

Z Z
A�p

Fy�zuxv � xuzv�dudv

� �

Z Z
A�p

Fz�xuyv � yuxv�dudv (21)

Substituting Equation 20 into Equation 17 we finally get,

max
�p

M�Ig� Is� �p� � max
�p

�Mprior��p�

�K�

Z Z
A�p

Ig�x� y� z�dA

�K�

Z Z
A�p

F � dA� (22)

The calculation of F is done only once at the start of the optimization process. These calcula-
tions merely involve summing up the values of the voxels in the image Is. Further, the derivatives,
which we need during the optimization process, are the values of the image Is itself. Thus, the
use of the additional region information hardly introduces any extra computational burden to the
deformable surface finding process.
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In the above, we have presented a 3D gradient based surface finding procedure that introduces
a matching term that incorporates information that is derived from region based segmentation.
Further, the use of Gauss’s divergence theorem allows us to reduce the whole objective calculation
to computing surface integrals only, rather than both surface and volume integrals.

6 Evaluation and Optimization

The objective function in Equation 22, can be evaluated by numerical integration. The gradient of
the objective is necessary for optimization. The surface integrals require differentiation of the area
element on the surface A given by Equation 15. The derivative of the objective is given by:

�M

�px
�

�Mprior��p�

�px

�K�

Z Z
A�p

�
Ig�x� y� z�

�

�px
jxu � xv j

�
�Ig�x� y� z�

�x

�x��p� u� v�

�px
jxu � xvj

	
dudv

��K�

Z Z
A�p

Is�x� y� z��yuzv � zuyv�
�x��p� u� v�

�px
dudv (23)

and similarly for y and z. This expression can also be evaluated by numerical integration. Expres-
sions such as �Ig�x�y�z�

�x can be obtained using discrete derivative calculation. Other expressions
like �x��p�u�v�

�px
and xu and xv can be obtained analytically from Equations 2 and 3. The derivatives

of the prior terms can be determined by analytical differentiation, as in the 2D case [43, 33].
Optimization is achieved using the conjugate gradient method, which is a local gradient op-

timization method. For surface finding, even local maximization involves a lot of computation.
Thus, to avoid even further computational burden, global optimization methods were not consid-
ered at the cost, however, of not being able to guarantee global convergence. Through the use of
prior information, the method is likely to be initialized close to the actual location, thus making
global optimization methods less of a necessity.

7 Results

Experiments were carried out both with synthetic and MR brain images to verify the performance
of the above mentioned method. The experiments were run on a Sun Sparcstation 10 with an
average execution time of 20 minutes. In order to evaluate the performance quantitatively, we
need a method to calculate the error between two surfaces expressed parametrically. The error is
defined as the average distance between each point on the estimated surface and the closest point
on the true surface [33]. That is, the error between surfaces S and �S is defined as:

e�S� �S� �

R
�u�v�� �S min�u��v���S jS�u

�� v��� �S�u� v�jdAR
�u�v�� �S dA

(24)
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This can be computed discretely by first taking a distance transform of a binary volume represent-
ing the true surface [33]. The result is then correlated with the binary volume representing the
estimated surface, which gives the minimum distance between the estimated and the true surface.
The result is then normalized by the area of the estimated surface.

We first used a synthetic example to evaluate the algorithm developed. This is useful because
for this case we have exact knowledge of the true surface boundary. Comparisons of the integrated
method were done against the traditional gradient based surface finding approach.

Figure 3 shows a simple synthetic example of a closed surface with added Gaussian noise.
The signal to noise ratio (SNR) is defined here as the ratio of gray-level contrast to the standard
deviation of the added noise and for this image it was 1.6. The initial surface was roughly placed
on the target object. The combined method performed distinctly better, noticeable especially at the
bottom of the left and right slices. The surface finder diverges under these noise conditions when
using gradient information alone, while it converges appropriately for the integrated method.

Figure 4 shows a comparison of the two methods under increasing noise conditions. The
measured error is shown here as a function of the noise level imposed on the image for both
methods. The vertical axis corresponds to the SNR of the noise used. The y-axis gives a measure
of the distance between the estimated surface and the true one using Equation 24. The integrated
method clearly performs better under high noise conditions. This test demonstrates the robustness
of the integrated method to noise.

Performance was also evaluated with respect to initialization. Figure 5 shows the performance
when the vertical shift was varied from the true position, keeping the initialization for the other
parameters fixed. This shows at larger capture region for the integrated method. In other words,
the integrated method succeeds in converging to the desired target object much further away than
in the gradient-only case. Thus, the the region within which the initialization must be in order to
converge is larger for the integrated algorithm.

In Figures 6 and 7, we use the algorithm on a three dimensional magnetic resonance human
brain image. The target object is the right thalamus which is only subtly distinguished in terms of
gray level from the surrounding structures and without strong gradients at the margins. Neither
source of information is strong. The gradient is not sufficient by itself to cause a proper solution
and the optimization does not converge. However, with the integration of region information, a
good delineation is found due to the combination of features.

In Figures 8 and 9, we demonstrate the performance on a 3D MRI to determine the head of the
right caudate nucleus. The target borders both the brighter white matter and the darker CSF. Here
again, the gradient information is not enough by itself and the surface is not found. However, by
using the integrated method with both region and gradient information, the proper boundary is
found.

8 Conclusions

We have presented in this paper an integrated method for surface finding in MR brain images
using both region and gradient information. As the examples show, the integrated approach is
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Figure 3: Surface finding for a noisy synthetic image with and without region information. (a) Top:
Three perpendicular slices through the 3D noisy image (48 � 48 � 48) are shown with the initial
surface and the wireframe. (b) Middle: The same slices through the same 3D image are shown
with the surface obtained using only the gradient information, and the corresponding wireframe.
(c) Bottom: The surface obtained using both gradient and region information from the noisy im-
age, is shown here with the same slices through the noise-free image (for comparison), along with
the corresponding wireframe. The solution found is visually indistinguishable from the true sur-
face.
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Figure 4: Noise performance of the surface finder with and without region information. The
combined method has a lower average error for this example, especially at low SNR.
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Figure 5: Performance of the surface finder with and without region information under different
starting positions. This was varied by shifting the initialization vertically. Clearly, the combined
method is superior.
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Figure 6: Initialization for surface finding for the right thalamus in an MR human brain gradient
echo image, shown in Figure 7. Three perpendicular slices through the 3D image shown with the
initial surface and the wireframe.

more robust to both increased amounts of noise as well as increasingly displaced initialization of
the initial boundary. Thus, there is an improvement over the conventional gradient based bound-
ary finding. It is important to note that this improvement in performance is achieved without
significantly increasing the computational burden, due to the appropriate application of Gauss’s
divergence theorem. Application of this method on MR brain images results in noticeable im-
provement as shown.
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