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Abstract. This paper presents a new and general nonlinear framework for fMRI 
data analysis based on statistical learning methodology: support vector ma-
chines. Unlike most current methods which assume a linear model for simplic-
ity, the estimation and analysis of fMRI signal within the proposed framework 
is nonlinear, which matches recent findings on the dynamics underlying neural 
activity and hemodynamic physiology. The approach utilizes spatio-temporal 
support vector regression (SVR), within which the intrinsic spatio-temporal 
autocorrelations in fMRI data are reflected. The novel formulation of the prob-
lem allows merging model-driven with data-driven methods, and therefore uni-
fies these two currently separate modes of fMRI analysis. In addition, mul-
tiresolution signal analysis is achieved and developed. Other advantages of the 
approach are: avoidance of interpolation after motion estimation, embedded re-
moval of low-frequency noise components, and easy incorporation of multi-run, 
multi-subject, and multi-task studies into the framework. 

1   Introduction 

Functional magnetic resonance imaging (fMRI) is a noninvasive technique for map-
ping brain function by the blood oxygenation level dependent (BOLD) effect [23]. In 
recent years, it has played an increasing role in neuroscience research, and is begin-
ning to become useful clinically as well, for example, in surgical planning.  However, 
the small signal change due to the BOLD effect is very noisy and susceptible to arti-
facts such as those caused by scanner drift, head motion, and cardio-respiratory ef-
fects. Although a task or stimulus can be repeated over and over again, there are lim-
its due to time constraints, learning adaptation of the subjects, etc. Therefore, refined 
techniques from statistics, biosignal/image processing and analysis are required for 
accurate detection and characterization of functional activity.  

The BOLD signal is a complex function of neural activity, oxygen metabolism, 
cerebral blood volume, cerebral blood flow (CBF), and other physiological parame-
ters. The dynamics underlying neural activity and hemodynamic physiology are be-
lieved to be nonlinear [2,21]. Most existing fMRI data analyses assume a linear 
model, and primarily rely on linear methods or general linear models.  As fMRI ex-
periments have grown more sophisticated, the role of nonlinearities has become more 
important. Statistical evidence that justifies the use of nonlinear analysis for fMRI has 
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also been provided recently [16]. The feasibility of its application to fMRI data has 
rarely been shown previous to this work. 

What makes fMRI analysis challenging are two features peculiar to fMRI. First, 
fMRI data have intrinsic spatial and temporal autocorrelations [28]. Second, fMRI 
data tend to have clustered activations. Common approaches either assume spatial 
independence, or spatially smooth the data with a Gaussian kernel in a preprocessing 
step. Spatial smoothing enables effective detection of a certain size of clustered acti-
vation. However, smoothing may produce a biased estimate by displacing activation 
peaks and underestimating their height. In order to address this issue, spatial model-
ing has been proposed [7,13] to take the spatial activation pattern into consideration. 
Since more powerful tests can be obtained with temporal smoothing due to the im-
proved signal to noise ratio [9], a spatio-temporal linear regression method for fMRI 
activation detection [15] has recently been developed. This method uses the time 
series of neighboring voxels together with its own. It has the advantage of modeling 
the intrinsic spatio-temporal autocorrelations of fMRI data, which is one of the novel-
ties of this work as well. The associated benefits compared to the corresponding vox-
elwise approaches have also been demonstrated.  

In general, techniques for analyzing fMRI data can be divided into model-driven, 
e.g. standard general linear model (GLM) [8], and data-driven methods, e.g. principal 
component analysis (PCA) [1] or independent component analysis (ICA) [20]. In 
model-driven methods, a model of the expected response is generated and compared 
with the data. These methods require prior knowledge of event timing from which an 
anticipated hemodynamic response can be modeled. Although accurate experimental 
paradigms are usually available, thorough understanding of the hemodynamic 
changes that relate neuronal activity to the measured BOLD [23] signal is still under 
research. Also, for brain responses that are not directly locked to the paradigm, 
model-driven analysis may not be adequate. Data-driven methods, however, explore 
the fMRI data statistically without any assumption about the paradigm or the hemo-
dynamic response function. This flexibility is desirable especially where it is difficult 
to generate a good model; however, there are drawbacks. For example, the assump-
tion implicit in PCA is that different modes are gaussian and uncorrelated, whereas 
ICA assumes that different modes are nongaussian and independent. In addition, a 
significance estimate for each component is usually not available. Given the advan-
tages and disadvantages, we propose an approach that merges data-driven methods 
with prior time course modeling by adjusting a model coefficient. 

Despite the progress in fMRI analysis, there is still a need for robust and unified 
statistical analysis methods due to the many limitations with existing techniques, as 
described above. In this paper, we develop a novel, general and reliable nonlinear 
approach for fMRI analysis based on spatio-temporal support vector regression so 
that existing difficulties resulting from noise, low resolution, inappropriate smoothing 
and modeling can be resolved.  
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2   Methods 

2.1 Support Vector Machines (SVM) and Support Vector Regression (SVR) 

The Support Vector Machine (SVM), introduced by Vapnik [27] and studied by oth-
ers [26,5], is a new and powerful learning methodology that can deal with nonlinear 
classification (SVC) and regression (SVR).  It is systematic and principled, and has 
become very popular recently in the machine learning community. The idea of SVR is 
based on the computation of a linear regression function in a high dimensional feature 
space where the input data are mapped via a nonlinear function.  

Here we sketch the ideas behind SVR; a more detailed description of SVR can be 
found in Smola [26]. Given M input sample points Mi xxxx v
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to learn this input – output mapping from the set of training examples with high gen-
eralizability. The training process of SVR is to find an optimal set of Lagrange multi-
pliers, ],1[  , Mii ∈∀α , by maximizing the SVR objective function: 

∑ ∑∑∑
= = ==

−+−=
M

i

M

i

M

j
jijiii

M

i
i xxKyO

1 1 1
2
1

1
),( vvααααε  (2) 

subject to: 

1) linear constraints:                      ∑
=

=
M

i
i

1
,0α  (3) 

 

2) box constraint:               ],1[  , MiCC i ∈∀≤≤− α  (4) 

iα is the Lagrange multiplier associated with each training example ixv . ε  in Eq. (2) 
is the insensitivity value meaning that  training error below ε  is not taken into ac-
count as error. C is the tradeoff constant between the smoothness of the SVR function 
and the total training error. K in Eqs. (1) and (2) is the kernel function. When the 
approximation function can not be linearly regressed, the kernel function maps train-
ing examples from the input space to a high dimensional feature space ℑ  by 

ℑ∈Φ→  )(xx vv , in such a way that the function f between the output and the mapped 
input data points can now be linearly regressed in the feature space. K describes the 
inner product in the feature space: 

)()(),( jiji xxxxK vvvv Φ⋅Φ=  (5) 

There are different types of kernel functions. A commonly used kernel function is the 
Gaussian radial basis function (RBF): 
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Maximizing the SVR objective function in Eq. (2) by SVR training provides us 
with an optimum set of Lagrange multipliers, ],1[ , Mii ∈∀α . The coefficient, b, of 
the estimated SVR function in Eq. (1) can be computed by adjusting the bias to pass 
through one of the given training examples with non-zero iα .  

With the nonlinear kernel mapping, the regression function in Eq. (1) can be inter-
preted as a linear combination of the input data in the feature space. Only those input 
elements with non-zero Lagrange multipliers contribute to the determination of the 
function. In fact, most of the iα ’s are zero.  The training data with non-zero iα  are 
called “support vectors”. Support vectors form a sparse subset of the training data. 
This type of representation is especially useful for high dimensional input spaces. 

2.2 fMRI Data Representation by 4-Dimensional (4D) Spatio-Temporal SVR 

SVR has recently been applied to system identification, nonlinear system prediction 
and face detection with good results [11,22,18]. Comparisons of SVR with several 
existing regression techniques, including polynomial approximation, radial basis 
functions, and neural networks were carried out in [22]. Initial attempts that directly 
use SVM have also been achieved for modeling hemodynamic response [3] and for 
comparing the patterns of fMRI activations to different visual stimuli [10]. However, 
the application of SVR in the context of fMRI analysis has not yet been exploited and 
developed. This work is the first one that introduces SVR into fMRI analysis.  

We formulate fMRI data as spatially windowed continuous 4D functions. That is, 
the fMRI data is divided into many small windows, such as a 333 ××  region within 
which the entire time series is included. Each input (the training data) within a win-
dow is a 4D vector equal to the row, column, slice, and time indices of a voxel. The 
output is the corresponding intensity. We approximate and recover all training data 
within the respective windows using SVR. The detailed formulation follows. 

Let ),,,( twvuy be the fMRI signal of voxel Twvu ],,[ at a given time point t, where 
u, v, and w are the respective row, column and slice coordinates of the data. If the 4D 
fMRI data size is twvu SSSS ××× , where tS  is the total number of time points, the 
corresponding input vector xv  is represented as 

[ ]Ttwvux ,,,=v ,          ],1[ ],,1[ ],,1[ ],,1[ twvu StSwSvSu ∈∈∈∈ . (7) 

Within each spatio-temporal window of size MSMMM twvu =××× , we have M 
input samples Mi xxxx v

K
v

K
vv ,,,,, 21 , where 4ℜ∈ixv , and the respective scalar output 

Mi yyyy ,,,,, 21 KK . SVR is used to restore the training examples within the window. 
Local intrinsic spatio-temporal correlations are accounted for during the regression by 
controlling function smoothness and training error through parameter C (Eq. (4)). In 
order to compensate for the spatial correlation between neighboring windows, we use 
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spatially overlapped windows (in all three dimensions) so that the recovered intensi-
ties over the overlapped voxels are averaged from the corresponding windows. 

2.3 Incorporation of Temporal Modeling into Spatio-Temporal SVR 

Without loss of generality, we assume a simple on-off boxcar function as our model 
variable, which contains p zeros or ones during each OFF or ON period, and c repeti-
tions or cycles of these two periods. The total number of time points, tS , should be 
equal to pc 2× . The resulting boxcar function, m(t), is: 
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where ],1[ tSt∈ . 
An additional model entry, based on m(t) in Eq. (8), is added to each input data xv  

and makes our SVR a 5-dimensional (5D) regression problem: 

[ ] 5)(,,,, ℜ∈= Ttmtwvuxv  (9) 

whereas the output is still the corresponding fMRI signal ),,,( twvuy . 
A simple analogy of this model incorporation is not available in traditional signal 

analysis because fMRI analysis is quite different from conventional systems that are 
fully characterized by an impulse response.  The human brain is a very complicated 
system: only certain regions of the brain may activate according to the hemodynamic 
response while many other regions do not. Given the input and output, we need to 
find out which part of the brain belongs to the hemodynamic response involved re-
gion. 

 
Fig. 1. General Linear Model regression and 
boxcar function fitting diagram. 
 

The intuitive justification of our model-
based formulation can be achieved by anal-
ogy with the General Linear Model (GLM) 
as it is typically used in fMRI [8]. GLM is 
given by: 

eXY += β  (10) 

where Y is a fMRI data matrix; X is a “design matrix” specifying the time courses of 
all factors hypothesized to be present in the observed data (e.g., the task reference 
function, or a linear trend); β is a map of voxel values for each hypothesized factor; 
and e is a matrix of noise or residual modeling errors. Given this linear model and a 
design matrix X, the β maps can be found by least squares estimation. The simplest 
example of the design matrix consists of a boxcar reference function (as in Eq. (8)) 
and a column vector with all entries constant 1 representing the mean value, without 
any other hypothesized factors (Fig. 1). In this case, for each voxel, the time series 
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vector is regressed through fitting the boxcar function and the mean valueµ  (Fig. 1). 
For this voxel at a give time t, the fitting vector is the corresponding row of the design 
matrix and can be represented as: 

[ ]Ttm 1 ),(  (11) 

i.e. either [ ]T1 ,0 or [ ]T1 ,1 . We extend this idea to SVR. Support Vector Machines have 
very good learning and generalization abilities. As long as we construct the input 
vectors with the essential features we would like the machine to learn, SVR can cap-
ture the complicated relationships (nonlinear or linear) hidden in the training exam-
ples. Therefore, for fMRI data representation, in addition to using the indices of the 
coordinates and time point as input vectors, we also add extra model fitting entries to 
the input vectors. For the model fitting vector in Eq. (11), the 2nd entry is a constant 1, 
which is the same for all the input vectors and can be neglected in SVR learning.  
    With the input vector in Eq. (9), we incorporate temporal modeling into the regres-
sion. Although the m(t) here is a simple boxcar function, it can be any reference func-
tion from prior knowledge about the event timing and hemodynamic response.  

2.4 Multiresolution Effects with W-scale 

With the above formulation, in order to capture the underlying relationship using 
SVR for the windowed data and accommodate the differences in scale and training set 
size, the corresponding entries in the input vector are normalized over training exam-
ples within each window. After normalization, we multiply all it by a coefficient W-
scale, and all )( itm by a coefficient W-model, whose effects are explained below. 

We can adjust the effect of temporal scale by varying W-scale, the coefficient for 
the time indices.  Varying W-scale is equivalent to examining the temporal data at 
different scales. Larger W-scale corresponds to finer temporal resolution. We can 
restore the time course at multiple resolutions and extract different frequency compo-
nents by changing W-scale. Many voxel time series in fMRI exhibit low frequency 
trend components that may be due to aliased high frequency physiological compo-
nents or drifts in scanner sensitivity. These trends can be removed in a variety of 
ways. In addition to using a simple high-pass filtering in the temporal domain, a run-
ning-lines smoother has been proposed [19] fitting with linear regression (by least-
squares) to the k nearest neighbors of a given point. The approach used by Skudlarski 
et al. [25] accounts for drift during calculation of the SPM. However, both methods 
only aim to handle linear trends. In our spatio-temporal nonlinear SVR, with appro-
priate W-scale (usually relatively small), the low frequency noise can be extracted and 
removed, and thus achieve nonlinear de-trending.  

The optimal W-scale for a specific frequency component is expected to be related 
to the total number of time points, the period of the stimulation, and the data noise 
level, whose value is currently determined empirically. More rigorous formulation of 
W-scale determination is one of our future directions, which might also be achieved 
in the frequency domain through spectrum analysis, etc.  



 

 653

2.5 Merging Model-driven with Data-driven through W-model 

The coefficient associated with the model index, W-model, determines the degree of 
influence of the temporal model term and the degree to which the approach is model-
driven.   Higher W-model (W-model = 1) is used when reliable temporal models are 
available. Otherwise, lower or zero W-model is used, and the approach becomes more 
data-driven. W-model can be interpreted as a model confidence or fitness measure, 
whose value could be empirically pre-determined as a constant or estimated from 
regression residual analysis shown below, though extra computation is needed.  

To arrive at a measure of adequacy of the temporal model, we examine how much 
of the variation in the response variable is explained by the fitted regression data. We 
view an observed iy  as consisting of two components: observed y = explained by the 

regressed relation + residual. The differences ( ii yy ˆ− ) = (observed response – pre-
dicted), or residuals [14], would all be zero in the ideal situation where all the ob-
served points lie exactly on the regressing line, and the y values would be completely 
accounted for by the regression on xv . We consider the mean of the absolute values of 
the residuals to be an overall measure of the discrepancy or departure from regres-
sion, denoted as D: ∑

=

−=
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i
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1 |ˆ| . This discrepancy measure can be used to es-

tablish an appropriate value for W-model. Let the D values calculated from our 
model-driven (W-model = 1) and data-driven (W-model = 0) methods be D_model and 
D_data, respectively. We define D_diff = D_data – D_model. For each window, an 
improved W-model can be estimated according to: 
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where D_high and D_low are high and low threshold values respectively.  

3 Experiments and Results1 

We validate the approach by using the conventional t-test [17] on our SVR restored 
fMRI data for activation detection, without additional pre-smoothing or post-
processing. The Gaussian RBF kernel function (Eq. (6)) is used in our experiments 
with σ  set empirically to 0.1. Other SVR parameters are also set empirically: 
C=1200, 20=ε (Eqs. (2), (4)).  

3.1 Simulated Data 

3.1.1 Data Generation 

                                                           
1 For the original color figures in this Section (Figs. 2 - 6), please check web site: 

http://noodle.med.yale.edu/~wang/Research/ipmi03_fig.html 
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In order to test with access to ground truth, we generate a 2D (spatial size 52×63) 
time series of synthetic data that imitates a single fMRI brain slice in which four re-
gions are activated. Three different amplitudes of activations are added to the gray 
matter (intensity 180) to simulate weak, medium and strong activations as in real 
fMRI data. For simplicity, the activations are temporally in the form of a boxcar func-
tion, with 6 scans during each off or on period. Note that a more realistic and compli-
cated reference function formed by convolving this boxcar with a Gamma function 
[4] can also be used, but we expect that the performance would be similar. The total 
number of time points is 72 (6 cycles). The generated data in Fig. 2(a) is then used as 
ground truth for comparisons. Simulated noisy data are obtained by adding Gaussian 
noise, ),50,0( ),40,0(),30,0( 222 NNN  to the ground truth data (see Fig. 2(b) 
for )30,0( 2N ). 

3.1.2 Effects of W-scale and W-model 

For this dataset, the SVR window size used is: 3×3×3×72. Fig. 3 left demonstrates 
the effects of W-scale by showing the recovered time courses for an activated pixel of 
the simulated noisy data (Fig. 2(b)) without model fitting (W-model = 0, data-driven). 
As W-scale increases, higher frequency temporal components are extracted. When W-
scale = 5 (Fig. 3(a)) the restored signal captures the low frequency component which 
can be interpreted as a nonlinear trend. Fig. 3 right demonstrates the effects of vary-
ing W-model by showing the recovered time series for the same activated pixel when 
W-scale = 0, which corresponds to zero frequency (d.c. component). As W-model 
increases, the temporal models have stronger and stronger effects during the regres-
sion and data fitting. For non-activated pixels, the model term barely affects the data 
regression as long as the gray-level variation at these locations does not happen to 
match the stimulus cycles. Note that since these are simulated data and no real physio-
logical or neuronal activities are involved, the recovered time courses do not show 
any lag or undershoots. In fact, the recovered time course accurately restores the 
ground truth time course (Fig. 3(f)), i.e., the boxcar function.  
 

   (a) (b) (c) (d)
 

                      

T 

X 

Y 

X 

 

Fig. 2.  Simulated 2D+T data.  
Top row: time T vs. spatial axis X; 
Bottom row: spatial axis Y vs. X. 

(a): Ground truth data;  
(b): Simulated noisy data,  
      with noise level )30,0( 2N ;  

(c): Restored data by our SVR  
      (W-model = 1);  

(d): Gaussian smoothed data  
      with s.t.d = 0.5. 

 

3.1.3 Recovered Image and ROC analysis for Activation Detection 

The recovered image by our method (W-model = 1) (Fig. 2(c)) accurately restores the 
ground truth (Fig. 2(a)). The image obtained using Gaussian smoothing of the original 
noisy data is shown in Fig. 2(d) for comparison. Obviously, our SVR significantly 
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improves the quality of the noisy data. We also applied the t-test for activation detec-
tion on i) non-smoothed original noisy data; ii) pre-smoothed data; iii) our SVR re-
covered data with W-model = 1; iv) our SVR recovered data with W-model deter-
mined by Eq. (12), for all three noise levels.  Note that for case iv), in Eq. (12), we 
empirically set D_low = 0 and D_high = 0.015×minimum(D_model, D_data). The 
locations and intensities of detected activations can then be compared to the known 
pattern of added activations to measure the accuracy of detection. 

We use receiver operating characteristic (ROC) analysis for evaluation. The appli-
cation of ROC analysis to the analysis of fMRI processing techniques was introduced 
by Constable et al. [6] and has been used extensively as a tool for objective compari-
sons of various strategies [25]. The essence of ROC analysis is the comparison of true 
activation rates (proportion of voxels correctly detected as significant to all voxels 
with added activations) obtained with different analysis techniques for a given false 
activation rate (proportion of voxels incorrectly detected as significant to all voxels 
without added activations). A plot of true activation rate versus false activation rate 
for different threshold values of a rating scale is called an ROC curve. Under the 
assumption that the underlying data for true positives and true negative trials form a 
binormal distribution, the area under the ROC curve can be shown to be the probabil-
ity that the corresponding analysis technique will correctly identify the true positives.  

 

  
Fig. 3.  Effects on time course with varying W-scale and 
W-model in our SVR. (Simulated noise level: )30,0( 2N .) 

Fig. 4.  ROC curves for simulated noisy 
2D + T data.

(Average effect of three noise levels) 

 

The visual comparison of the ROC curves in Fig. 4 (the average effects of the 
noisy data at three different noise levels: )50,0( ),40,0( ),30,0( 222 NNN ) indicates that 
our SVR approaches outperform the simple t-test yielding larger areas under the ROC 
curves. Compared with using fixed W-model = 1, determining W-model based on the 
model fitness / confidence measure (Eq. (12)) leads to further enhancement in activa-
tion detection. From the results of the t-test on the original noisy data and pre-
smoothed data, we can see that pre-smoothing improves the detection accuracy.      
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3.2 Real fMRI Data 

We also applied the proposed approach to a block-design cognitive fMRI experiment 
[24], examining social attribution to geometric animations. T2*- weighted images are 
acquired using a single shot echo planar sequence. The pulse sequence is TR = 
1500ms, TE = 60ms, flip angle= o60 , NEX=1, in plane voxel size = 
3.125×3.125mm2. 14 coronal slices are collected and are 10mm thick (skip 1mm). 
Corresponding T1-weighted structural images of the same thickness are collected in 
the same session (TR=500, TE=14, FOV=200mm, 256×192mm matrix, 2NEX). The 
first four volumes of fMRI time series are discarded to discount T1 saturation effects.  

We have examined this dataset for a visuospatial task from one subject and one 
run. The window size we used is 3×3×1×160, where 160 is the total number of time 
points. We did not use an isotropic window since the voxel shape is not cubic. The 
3×  3×1 window covers a brain region whose physical size is almost isotropic 
(9.4×9.4×10mm3). Visual comparisons in Fig. 5 with t-test results (on pre-smoothed 
data with empirically optimal FWHM=6.25mm) reveal that our SVR approach (W-
model = 1) leads to: greater spatial extent and statistical significance in the intraparie-
tal sulcus (IPS) with potentially better delineation and localization of the underlying 
spatial activation. Note: at the top of each slice in Fig. 5 are the respective p-value and 
t-value for threshold. When the same t-threshold used for SVR (t > 7.8) is used for 
the t-test, no activations are detected. For t-test in Fig. 5(c), we intentionally further 
decrease the t-threshold to t > 2.3 and try to detect more IPS activation regions, 
which, however, leads to a more blurred spatial extent rather than precisely localized 
spatial activation as in Fig. 5(a), as well as some false activations. The associated time 
course for an activation voxel from our SVR method for this data is shown in Fig. 6.  

 

  

        
 

Fig. 5. Results comparison for real fMRI data from     Fig. 6.  Time courses of an activation voxel for 
a visuospatial task. (Color activation maps.)                  the real fMRI data in Fig. 5. 

    (a): by SVR       (b): by t-test       (c): by t-test 
 ( p<0.001, t > 7.8 )  ( p<0.001, t > 4.2 )  ( p<0.001, t > 2.3 ) 

 

4 Conclusions and Discussions 

From a signal processing viewpoint, fMRI activation detection is a problem of nonlin-
ear spatio-temporal system identification. We have presented a novel regression 
model involving spatio-temporal correlations using support vector regression. Many 
pre-processing procedures, such as smoothing, de-trending, and interpolation after 
motion estimation, required by other methods, are embedded within this unified 
framework. Experimental results on both simulated and real fMRI data revealed its 
effectiveness. The approach meets the need for reliable and sensitive fMRI signal 
analysis. A few comments on the particulars of our method are discussed below. 



 

 657

In this paper, primarily, we discussed the method using block-design paradigms. 
However, the approach can be applied to event-related experiments as well. The ex-
ploration of the framework on event-related fMRI data is one of our future directions.  

The size of the spatial window within which we perform SVR is empirically set as 
3×  3×3 or 3×  3×1. This not only ensures that the included area covers a brain re-
gion whose physical size is almost isotropic, but also allows for some spatial continu-
ity while limiting the likelihood of heterogeneous activation within the same window. 

Correction for head motion involves rigid-body transformation estimation and re-
sampling. Due to the thick image slices typical of fMRI, intensity interpolation, re-
quired during the resampling process, can introduce significant artifacts [12]. With 
our SVR approach, interpolation after motion estimation is avoided due to the use of 
continuous variables for both the input vectors and output scalar. The spatial coordi-
nates and time indices used in the SVR learning can be any continuous (floating 
point) value. This advantage is not available for other methods. 

The ability of SVR to handle high dimensional input data makes it ideally suited 
for extensions to multi-run, multi-subject and multi-task studies. Our SVR formula-
tion allows easy incorporation of data from multiple sessions by expanding the input 
vectors and analyzing the data over multiple runs and subjects together. Similar to the 
spatial and temporal indices, now we would have two additional dimensions for run 
and subject indices. This technique would account for between-run and between-
subject variability with likely increased statistical significance in activated regions. 

The multi-task problem can also be solved in a similar way i) using only one model 
function as that in Eq. (8), with 0 representing rest, and 1 representing all the desig-
nated tasks; or ii) expanding the input vectors with each function representing a spe-
cific task (i.e. 1), versus true rest and all other tasks (i.e. 0).  

In addition to exploring the above described issues, our future work also includes 
temporal model estimation from our SVR restored data without assuming a specific 
shape of the hemodynamic response function, combining this hemodynamic modeling 
to improve the specificity and sensitivity of fMRI signal detection, comparison with 
the General Linear Model for activation detection, incorporating spatial models such 
as information about the configuration of the activation regions and anatomic prior 
knowledge into the framework, as well as further validation. 
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