
Image Registration with Automatic
Computation of Gradients

Release 1.0

E. G. Kahn1 and L. H. Staib2

July 29, 2008

1The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
2Yale University, New Haven, Connecticut

Abstract

Many image registration algorithms are formulated as optimization problems with a gradient descent
based solver, One difficulty with designing and implementing such methods is in the implementation
of the gradient computation. This process can be time-consuming and error-prone. In addition some
functions do not have gradients that can be expressed in symbolic form. Automatic differentiation is
useful for computing gradients of complicated objective functions. It moves the burden of computing
gradients from the programmer to the computer. So far, AD hasnot been exploited for use in image
registration. This paper describes a software library the authors have developed to automate the process
of computing gradients of registration objective functions. This can alleviate the job of registration
designers somewhat and potentially make it easier to designbetter registration algorithms.

Contents

1 Introduction 1

2 ITK Implementation 2

3 Experiments 3

4 Conclusion 5

1 Introduction

In ITK’s current registration framework, in order to introduce a new metric it is often desired to compute
gradients and therefore one needs to override the function called GetValueAndDerivative . Additionally
in order to introduce new transforms, one needs to overrideGetJacobian . Unfortunately, coding such
derivatives is time consuming, error prone, and sometimes impossible when the objective function cannot



2

be expressed in symbolic form. The option of using finite differences is too slow when dealing with large
numbers of parameters. It would be nice if we could avoid having to write these functions and yet still
compute an exact gradient within a reasonable amount of time. Fortunately, there is a solution known as
Automatic Differentiation (AD) [3]. Automatic differentiation is a method for overcoming such problems
by having the computer automatically compute gradients in afast and efficient way. In addition, because
automatic differentiation alone does not scale well to large problems due to large memory requirements,
another scheme known as “checkpointing” can be combined with AD to allow the gradient evaluation of
functions of virtually any size[2, 5]. To date, the use of AD with checkpointing does not appear tohave
become popular in image registration problems. In this paper, we describe the integration of automatic
differentiation with ITK. This paper assumes the reader hasa good understanding of AD as a full discussion
of these issues is beyond the scope if this work. For more details, see References [3, 4, 5, 7].

This paper is organized as follows. In Section 2, we describehow we integrated AD with ITK’s registration
framework. In Section 3 we describe some experiments conducted with our method and Section 4 provides
a conclusion.

2 ITK Implementation

There are several open source projects available that implement automatic differentiation. The package
we used is ADOLC by A. Griewank [4] which works by operator overloading in C++. Additionally the
same author has a separate package known as Revolve [5] which implements the checkpointing algorithm.
Unfortunately, these two packages had not previously been merged together (to our knowledge). Therefore
it was necessary to combine them together before using them in ITK [6]. The result is a library called
adcheck located in the directory src/adcheck. This libraryis completely independent of ITK and can be used
to compute gradients of any scalar objective function.

In order to integrate ADOLC and Revolve, we had to modify someof the code from ADOLC, but al-
most no changes were made to therevolve function. (For the complete list of changes made to ADOLC
see the file CHANGES in the src/adcheck directory.) In addition, we wrote two new C++ classes to
serve as an API for the library.1 The two new classes we wrote are calledObjectiveFunctionBase and
Revolve (not to be confused with the C functionrevolve ), which are both in a namespace calledadolc .
adolc::ObjectiveFunctionBase is an abstract class and the coder must create a derived classfrom this
and define several methods. The most important of these isFunction which implements the actual ob-
jective function. The second class isadolc::Revolve which is a driver class that runs the checkpointing
routine. (This class is basically a C++ rewrite of the fileexample.c which is distributed together with
the revolve package). This class contains a pointer toadolc::ObjectiveFunctionBase . An instance
of adolc::Revolve and of the class derived fromadolc::ObjectiveFunctionBase must be created.
A pointer to the derivedadolc::ObjectiveFunctionBase is then passed toadolc::Revolve . Vari-
ous parameters can also be set in theadolc::Revolve class such as the number of checkpoints. Then
adolc::Revolve ’s methodEvaluate is called to compute the function value and/or gradient.

(Note: To clarify, there are two objects which are called “revolve”: (1) the Cfunction revolve by Griewank
(with lowercase “r”), and (2) our new C++class Revolve (with uppercase “R”) in the namespaceadolc ,
which is essentially a C++ interface to the C functionrevolve .)

Once we created our combined automatic differentiation andrevolve library, we then integrated it

1Another software library combining ADOLC with checkpointing, from which some aspects of our implementation were in-
spired, was written by Andrew Mauer-Oats of Northwestern University [8]. However, it is not integrated with therevolve function
so we did not use it.



3

with ITK’s registration framework by rewriting the metricsand transforms to make use of the ad-
check library. As mentioned above, to use the adcheck library, the coder must create a de-
rived class from the abstractadolc::ObjectiveFunctionBase . However, ITK works with a sim-
ilar model: all metrics are derived fromitk::ImageToImageMetric which is in turn derived
from itk::SingleValuedCostFunction . Fortunately, C++ supports multiple inheritance and we
derive all metrics from both classes. We created a special base class for this purpose called
itkek::ADRevolveImageToImageMetricBase which directly descends from these two classes. All
our rewritten metrics descend fromitkek::ADRevolveImageToImageMetricBase . See Figure1
for the class diagram. For the transforms, we adopted a similar strategy and created a new
itkek::ADRevolveTransformBase whose parent class isitk:TransformBase and all the rewritten trans-
forms were derived from this class. See Figure2.

All our rewritten transform classes can be found in the directory src/Common and our rewritten metric
classes can be found in the directory src/Algorithms. Theseclasses are placed in the namespaceitkek . We
rewrote the mean squares and mutual information metrics to make use of AD:

• itk::MeanSquaresImageToImageMetric ->
itkek::ADRevolveMeanSquaresImageToImageMetric

• itk::MattesMutualInformationImageToImageMetric ->
itkek::ADRevolveMattesMutualInformationImageToImage Metric

In addition, we rewrote the following transforms, including rigid, affine, b-spline and radial basis functions:

• itk::Euler3DTransform -> itkek::ADRevolveEuler3DTrans form

• itk::MatrixOffsetTransformBase -> itkek::ADRevolveMat rixOffsetTransformBase

• itk::BSplineDeformableTransform -> itkek::ADRevolveBS plineDeformableTransform

• itk::KernelTransform -> itkek::ADRevolveRBFTransform

Our new version ofitk::KernelTransform is for the special case of a thin plate spline radial basis function
transform in 3D which uses a GMRES [1] linear system iteration for solving for the coefficients. We called
this new classADRevolveRBFTransform . Note that it not yet possible in ITK to compute gradients of
metrics that use aKernelTransform without resorting to finite differences since itsGetJacobian function
is not yet implemented, as of the most recent version of ITK (3.6.0). The approach of this paper provides an
alternate way of computing gradients of such metrics.

3 Experiments

To test this software, we provide a test script in the accompanying software which includes at least one test
for each of the rewritten transforms and metrics. In this section we only show the results for the B-Spline
and thin plate spline transforms using the sum of squared difference metric to register a “planet” to a sphere
(see Figure3). Our planet is like a sphere except that it has seven “mountains” and seven “craters”. Both
images have dimensions 128× 128× 128 with a spacing of 1. For the B-Spline transformation, a grid of
16x16x16 controls points was used, totaling 4096 control points. For the TPS transformation, 4000 control
points were randomly distributed along the surface of the sphere. The resultant transformed images are



4

itk::ImageToImageMetric adolc::ObjectiveFunctionBase

itkek::ADRevolveImageToImageMetricBase

itkek::ADRevolveMeanSquaresImageToImageMetric itkek::ADRevolveMattesMutualInformationImageToImageMetric

Figure 1: Class diagram of metrics.

itk::Transform

itkek::ADRevolveTransformBase

itkek::ADRevolveMatrixOffsetTransformBase

itkek::ADRevolveEuler3DTransform

itkek::ADRevolveBSplineDeformableTransformitkek::ADRevolveRBFTransform

Figure 2: Class diagram of transforms.



5

shown in Figures4 and5. Note that B-Spline transformation is more local in nature and hence the warping
only occurs in the vicinity of the mountains and craters. TheTPS transform, on the other hand, is more
global in nature and the entire space is warped. Note, the control points are only along the surface of the
sphere and not spread equally out throughout the image.

Figure 3: Slice and surface rendering of planet with “mountains” and “craters”.

Figure 4: Slice of transformed image with corresponding warped grid image for B-spline grid of 16×16×16
(4096 points), using a sum of squared metric.

4 Conclusion

We used automatic differentiation with checkpointing to implement a gradient descent based registration
framework. In addition to reimplementing several metrics and transforms for which derivatives can be
computed easily without recourse to automatic differentiation, we were also able to compute derivatives of
metrics employing a kernel transform, such as thin plate splines, which is not yet possible in ITK unless one
uses finite differences. We expect that the methodology of this paper can be used to more rapidly design
new metrics or transforms without the need to write derivative functions.



References 6

Figure 5: Slice of transformed image with corresponding warped grid image for TPS of 4000 points, using
a sum of squared metric.

References

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. Van der Vorst.Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.2

[2] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse auto-
matic differentiation.Optimization Methods and Software, 1:35–54, 1992.1

[3] Andreas Griewank.Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
SIAM, Philadelphia, PA, 2000.1

[4] Andreas Griewank, David Juedes, and Jean Utke. Algorithm 755: ADOL-C: a package for the auto-
matic differentiation of algorithms written in C/C++.ACM Transactions on Mathematical Software,
22(2):131–167, June 1996.1, 2

[5] Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: an implementation of checkpointing
for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical
Software, 26(1):19–45, March 2000.1, 2

[6] L. Ibanez and W. Schroeder.The ITK Software Guide: The Insight Segmentation and Registration
Toolkit. Kitware, Inc., Albany, NY,http://www.itk.org , 2003.2

[7] Eliezer Kahn.Computational Strategies for Meshfree Nonrigid Registration. PhD thesis, Yale Univer-
sity, December 2006.1

[8] Andrew Mauer-Oats. Checkpoint,http://www.math.northwestern.edu/ ˜ amauer/projects/
checkpoint/ , 1997.1

http://www.itk.org
http://www.math.northwestern.edu/~amauer/projects/
checkpoint/

	Introduction
	ITK Implementation
	Experiments
	Conclusion

