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Abstract. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) al-
lows one to capture the restricted diffusion of water molecules in fibrous
tissues which can be used to infer their structural organization. In this
paper, we propose a novel wavefront propagation method for estimating
the connectivity in the white matter of the brain using DT-MRI. First,
an anisotropic version of the static Hamilton-Jacobi equation is solved
by a sweeping method in order to obtain accurate front arrival times
and determine connectivity. Our wavefront then propagates using the
diffusion tensor rather than its principal eigenvector, which is prone to
misclassification in oblate tensor regions. Furthermore, we show that our
method is robust to noise and can estimate connectivity pathways across
regions where singularities, such as fiber crossings, are present. Prelimi-
nary connectivity results on synthetic data and on a normal human brain
are illustrated and discussed.

1 Introduction

While the basic anatomy of white matter tracts in the human brain is generally
known from anatomical dissection, much is unknown about its interconnections
and its natural variations. Therefore, the characterization and quantitative mea-
surement of its connections is of fundamental importance in understanding brain
function. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has emerged
as a noninvasive imaging modality capable of providing this information in vivo,
enabling the detailed study of white matter structure in the human brain.

Brain white matter, because of the long and fibrous nature of axons, ex-
hibits higher restriction to water diffusion across the fibers than along them.
This directional variation is measured in diffusivity rates and can be captured
by diffusion-weighted MRI. By acquiring diffusion-weighted data in at least six
non-collinear directions, it is possible to estimate a 3x3 symmetric matrix (i.e.
diffusion tensor) which characterizes diffusion in anisotropic systems [2]. After
tensor diagonalization, the eigenvector corresponding to the largest eigenvalue
is considered to point along the direction of a fiber bundle.



Numerous connectivity studies relying on the straightforward integration of
the principal tensor eigenvector have been described in the literature [4,3,9,
8]. Several problems, however, affect their reliability. First, the diffusion images
are subject to acquisition noise which can impede the ability to track fibers.
Also, while it is true that the principal eigenvector provides an estimate of the
microscopic fiber direction, because of partial voluming, signal contributions
from multiple tissues can affect individual voxel measurements [1], resulting in
a variation in the distribution of fiber directions. This problem becomes more
severe when fiber tracts cross, branch or merge.

To account for these variations, level set methods [11] have been employed [12,
10, 7]. These techniques model the evolution of an advancing front through the
white matter tracts by following the local directionality provided by the diffusion
tensor field. Such methods have been shown to be more robust to noise and sin-
gularities than classical streamlining methods. A tractography technique based
on Tsitsiklis’ fast marching method (FMM) was used by Parker et al. [12]. A
front was evolved with a speed proportional to the colinearity between the front
normal and the principal tensor eigenvector. A discrete approximation of front
direction had to be used to drive the evolution through the eigenvector field,
since the original FMM cannot handle propagation in oriented domains.

O’Donnell et al. [10] posed the connectivity problem in a Riemannian frame-
work where the space is locally warped based on the three eigenvectors and the
connectivity corresponds to the lengths of the underlying geodesic paths. Lenglet
et al. [7] has similarly considered the white matter connectivity problem as one
of finding minimal geodesics in the Riemannian space. Both methods employed
a less efficient dynamic formulation for the problem, in which a narrow band
was employed to constrain front propagation and reduce computation time.

We also propose a level set method to determine connectivity. Unlike other
methods, we solve for the true anisotropic solutions of the static front propaga-
tion equation. Our sweeping method correctly computes the arrival times so that
pathways can be determined. In addition, by using a static perspective of the
level set equation, we avoid the localization and separate extraction of zero-level
sets at different time steps of the dynamic formulation. Furthermore, the entire
diffusion tensor is used to control propagation, avoiding possible biasing of its
principal eigenvector in more isotropic regions. In the following, we first model
the white matter connectivity problem as one of anisotropic wavefront evolution.
We then proceed to describe our propagation equation and the method to solve
it. Finally, we present our results on synthetic and real data and conclude.

2 Anatomical Pathways

White matter connectivity can be viewed as an instance of the minimum-cost
path problem in an oriented weighted domain. Essentially, one would like to find
a fiber path P(s) : [0,00) — IR® that minimizes some cumulative travel cost
from a starting point A to some destination point B in the white matter.



Because of the directionality of the tensor field, the cost function, represented
by 7 or its reciprocal speed F' = 1/7, is a function of both position P(s) as well
as direction P’'(s). Hence it is called anisotropic and the minimum cumulative
cost at x is defined as:

L
T(z) = rn};n/0 7(P(s), P'(s)) ds. (1)

where L is pathway length, and the starting and ending points are given by
P(0) = A and P(L) = z. A solution to (1) also satisfies the wave propagation
equation:

IVT|| =7 (z,VT), (2)

which describes a wavefront propagating with speed 1/7 where T'(x) is the time
of arrival of the front at point x. This equation typically arises in problems where
a preferred direction of travel exists, such as propagating a front through a vector
field. In continuous space, solutions to (2) are given by the Hamilton-Jacobi (HJ)
equations. A classical solution to (2) may not exist, and therefore the viscosity
solution is commonly sought. Numerical approximations of the viscosity solution
can be found in [6,5,13].

Once the evolution equation (2) is solved for all points in the domain, one
can use the obtained arrival times and find a solution for (1). The minimum-
cost path between point A and an arbitrary point B in the white matter then
becomes a solution to:

dX
< =T, 3)

given X (0) = B. This optimal path can be constructed by integrating equation
(3) at point B back to the seed point A using standard techniques. Next, we will
elaborate on the front evolution equation that will be used to trace connectivity
pathways in the white matter.

3 Front Propagation Model

We employ the entire tensor in our propagation model to avoid the possible
misclassification of the principal eigenvector in oblate tensor regions, which may
lead to wrong assignment of front arrival times. We rather design our wavefront
to evolve from a seed point A, T'(A) = 0, at a speed governed by a function of
the diffusivity magnitude in the front normal direction n:

d(n) =n'Dn, n=VT/|VT], (4)

where D is the diffusion tensor. The motivation behind equation (4) is to let the
speed vary locally according to the tensor profile, descriptive of the underlying
tissue structure. In addition, we slow down the front more rapidly when diffu-
sivity d(n) decreases. Thus, we can write the propagation equation as follows:

IVT - a - exp(d(n)”) = 1, (5)



where v represents the slowing power based on the diffusivity response and
a controls the final propagation speed. Since water diffusion measured in the
ventricles and in the gray matter is more random than in the white matter, the
resulting tensor profile tends to be spherical with eigenvalues A; ~ Ay ~ Az. To
prevent the propagation into these areas, we choose a to be a measure of diffusion
tensor anisotropy. For that, we employed the well-known FA index [2] and after
some experimentation, we chose o = FA?. Parameter v was also empirically set
and yielded smoother results when v = 2 or 3.
Propagation equation (5) belongs to a family of static Hamilton-Jacobi equa-
tions described by:
H(z,VT)=V(z), ze
(6)
{ T(x) = q(x)

where (2 is the domain in IR®, V(z) = 1, and ¢(z) is a function prescribing
boundary condition values, T(A) = gq(A) = 0. Therefore, we can rewrite (5) as
the following Hamiltonian, after discarding the dependence of 2 on H:

H(p’ q, 7-) — a\/m.exp{(P2d11+q2d22+7"2dp323_’-i_—22pii122+2P7‘d13+2117‘d23) ry}

(7)
where p = 0T /0z, g = 0T /0y, r = 0T /0z and d;; are the tensor elements. While
equation (5) can be reformulated as a time-dependent HJ equation and solved
by recovering each zero-level set, it is more convenient and less computationally
expensive to model it as a static problem and determine arrival times instead. In
the following section, we will describe an iterative method that solves our static
HJ equation (7) so that a viscosity solution can be obtained.

4 Front Propagation Method

Hamiltonians such as (7) cannot be correctly solved by isotropic propagation
methods, such as the FMM. However, carefully crafted methods have been de-
vised [6, 5, 13] to construct accurate solutions for anisotropic equations. We use
a Lax-Friedrichs (LF) discretization of our Hamiltonian and employ a nonlinear
Gauss-Seidel updating scheme [5] to solve the propagation equation. With the
LF discretization, a solution at each grid point can be easily obtained in terms of
its neighbors. Also, no minimization is required when updating an arrival time,
and thus it is very easy to implement.
The Lax-Friedrichs Hamiltonian of equation (7) is defined as:

i~ gt ) o N\ oy N o _
HEF = j (B 0 ) g (gt —p) = (g —q) -G (=), (8)

where pT, ¢* and r* are the forward and backward difference approximations
for VT, and o, is the artificial viscosity which depends on the partial derivative
of H with respect to p, ¢ and r.

In order to get a numerical approximation for (7), we solve for HX¥ =1 by
sweeping the domain in the alternating directions +z, +y and 2. Values from



the previous sweeping step are used to make the approximation decreasing so
that it updates an arrival time only if Ti"’;-j;l i5.k- Because the LF method
yields a solution utilizing all 6-connected neighbors, values for points outside
the boundary of the domain are extrapolated to guarantee the outflow of the
solution at the boundary. Sweeping is stopped when the convergence criterion
||T]’J”,'c1 —T7% x|l < € is met. Details on the algorithm, accuracy and convergence
of LF sweeping (LFS) scheme can be found in Kao et al. [5].

Fig. 1. (a) Synthetic tensor dataset containing two fiber bundles with main diffusivities
{9,2,1} mm?/s. (b) Close-up look of the fiber-crossing location and resulting oblate
tensors. (c). Result from streamline integration across the fiber-crossing region.

5 Results

Figure 1a shows our synthetic model consisting of two fiber bundles A, B oriented
along helical paths which cross each other at their middle section (Fig. 1a). The
background was filled with nearly isotropic tensors ({4, 3,2} mm? /s, not shown).
Fig. 1b depicts a close-up view of the fiber-crossing region, where oblate tensors
resulting from the crossing are found. Figure 1c depicts a failed attempt in recon-
structing pathways from bundles A and B using the streamlining technique. The
oblate tensors in the fiber crossing region erroneously advected both pathways
away from their true trajectories.

Using our method, we reconstructed the same pathways to demonstrate that
it can handle the fiber crossing without deviating the fiber trajectories. First,
diffusion-weighted images were created from our model, and increasing levels of
Gaussian noise (62 = 0.05, 0.15 and 0.2) were added to them. The resulting
tensor images are shown in Fig. 2a-c. Then, a seed point A; was fixed at the
bottom of bundle A (Fig. 2a) and our wavefront (y=2) was propagated using
the LFS method on the tensor images. Points Az, B1 and By were fixed at the
extreme ends of each bundle (Fig. 2a) and corresponding pathways As Ay, B1Ay
and By A; were traced on VT images using a Runge-Kutta 4**-order integration.



Figures 2d, 2e, 2f illustrate the obtained connectivity pathways embedded
in the arrival time images and corresponding arrival isocurves (up to time 100).
Darker areas in the maps reveal earlier arrivals. The LFS method converged to
a solution (e = 103), after 30 iterations for results in Figs. 2d, 2e, and after 40
iterations in Fig. 2f. As can be seen, the singularity region did not prevent path-
ways connecting different branches or same branch (AsA;) from being recovered.
To assess the variability of the extracted paths, we propagated the same front
in the diffusion tensor image without added noise and then computed the mean
distance between corresponding pathways. Mean distance for all paths under
noise 02=0.05 was 1.06 voxels, for 02=0.15 mean distance was 1.22 voxels and
for 02=0.20, it was 1.65 voxels. Therefore the recovered pathways remained very
close to their trajectories, in spite of the added noise.

Fig. 2. (a-c) Tensor model with additive Gaussian noise (o2 = 0.05, 0.15 and 0.20). (d-f)
Times of arrival and connectivity pathways corresponding to images (a-c), respectively.

A diffusion-weighted image was acquired using a Siemens 3T Trio scanner
with a standard coil. A single-shot EPI image of matrix size 128x128x40, res-
olution 2x2x3 mm?, b-factors 0 and 1000 s/mm~—2, and 32 gradient directions
uniformly sampled on a sphere was obtained. The diffusion tensor was calculated
from a total of 12 averages to maximize signal to noise ratio. In this dataset, we



fixed the seed point in the splenium of the corpus callosum (Fig. 3a). We then
propagated our wavefront throughout the image using the LFS method. A total
of 25 iterations were needed for convergence. Figure 3a depicts the resulting ar-
rival time level sets between 0 and 500. In order to trace connectivity pathways
to the splenium, we first obtained a rough boundary of the white matter accord-
ing to the following procedure. The FA image was thresholded at 0.18, in order
to obtain all points belonging to the white matter. Next, by using a morpho-
logical operator, we determined the inner boundary of the thresholded region.
All pathways between points on this boundary and the point in the splenium
were traced using the map of arrival times. Fig. 3b shows the resulting 20,817
pathways, colored by the FA value at each point, where brighter points repre-
sent higher anisotropy. In Figures 3b and 3c, we can observe the main routes
of connection between various brain regions and the splenium. Points leaving
the genu of the corpus callosum (CC) connect to the splenium via the cingulum
(CI) pathways, and points in the superior frontal lobe connect via the superior
longitudinal fasciculi (SL) consistent with known anatomy.

Not all connections shown in figures 3b and 3c represent true anatomical
pathways. A metric to rate their anatomical likelihood such as the co-linearity
between pathway tangent and principal eigenvector as described by Parker et
al. [12] will be investigated. In future work, we plan to propagate our wavefront
from all points belonging to the white matter boundary and then trace all possi-
ble pathways back to corresponding seed points. By using geometric properties
such as pathway length and tangent, as well as measures derived from diffusion
images, we plan to design an automated system for brain fiber recovery.

(a)

Fig. 3. (a) Level sets depicting arrival times between 0 and 500, after propagation using
the LFS method. (b) 20,817 different pathways connecting white matter boundary to
the splenium of the corpus callosum were extracted. (c) Close-up view of the main
pathways connecting to the splenium.



6 Conclusions

An anisotropic front propagation method was described for determining connec-
tivity pathways in the white matter. It successfully recovered pathways embed-
ded in different levels of noise and was able to extract paths of connection across
areas of singularities in the diffusion tensor, unlike streamlining techniques. The
use of the static perspective of the level set equation allowed us to pose the
problem so that front arrival times could be easily computed. Moreover, our for-
mulation used the entire tensor for propagation, avoiding the possible biasing in
the eigenvector classification. Finally, results on a real diffusion tensor dataset
were presented where major fiber bundles were identified and were consistent
with known anatomy.
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