
ABSTRACT

Parametrically Deformable Contour Models for Image Analysis

Lawrence Hamilton Staib

Yale University

1990

A practical system for boundary finding of natural objects in images has been

developed. It is based on a new general probabilistic method of boundary finding that

allows the incorporation of prior information about the global shape of the target ob-

ject. Determining the boundaries of objects, and thereby their shape and location, is an

important task in computer vision. Segmentation using boundary finding is enhanced

both by considering the boundary as a whole and by using model-based global shape

information. Previous boundary finding methods have either not used global shape or

have designed individual shape models specific to particular shapes. Imperfect image

data can be augmented by exploiting the extrinsic information that a model provides.

Flexible constraints in the form of a probabilistic deformable model are applied to the

problem of segmenting natural objects whose diversity and irregularity of shape makes

them poorly represented in terms of fixed features or form. The objects being considered

are expected, however, to have a tendency toward some average shape. The parametric

model is based on the elliptic Fourier decomposition of the boundary. This is augmented

with probability distributions defined on the parameters, which bias the model to a par-

ticular overall shape while allowing for deformations. Boundary finding is formulated

as a optimization problem using a maximum a posteriori objective function. The best

match is found between the boundary, as defined by the parameter vector, and a measure



of image boundary strength derived from the image, as biased by the shape prior prob-

ability. A computer implementation was constructed and applied to object delineation

problems from a variety of two-dimensional images. Results of the method applied to

real and synthetic images are presented. Extensions of this method to three dimensions

and temporal sequences are outlined.
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Page 20. In Equation 3.3, the numerators should be |x − x0|
2
q and |y − y0|

2
q

Page 23. In Equation 3.7 and on Page 25, Equations 3.9 and 3.10, v(t) should be v(t).
Page 73. On the third line after Equation 5.18, “This method of adjusting” should read “The
method of adjusting.”
Page 80. Citation [92] on line 5 should be to: A. P. Witkin, “Scale space filtering”, IJCAI, 1019-
1022, 1983.
Page 110. The second summation in Equation 7.5 should be over l, not m.
Page 114. The second line should read “example closed surface” not “example tube surface.”
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Chapter 1

Introduction

The computational formulation of visual tasks, computer vision, is applicable to all fields

where the relevant data are expressed pictorially. An important part of computer vision

is the analysis of images, the goal of which is the quantitative extraction of information

concerning the objects depicted in the image. The objects in the image must be iden-

tified or segmented in order to further analyze them. This work is concerned with the

segmentation of individual objects from images.

Distinguishing an object from its surroundings in an image requires both the

image data and additional information as to how the object distinguishes itself. This

additional information is based on a model of the object. Models can range from simple

feature criteria (e.g., a light object on a dark background) to more precise specifications

(e.g., an exact template).

Marr’s view of visual information processing is that top-down, or model-based,

information is only of secondary importance, based on psychophysical evidence, especially

from stereo and motion [58]. For the purposes of boundary determination, this requires

autonomous low-level feature detection followed by organizing or grouping processes.
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Unfortunately, grouping processes have been successful, in general, only in conjunction

with model-based information.

There are many ways in which objects can be discerned in images. Local prop-

erties, such as gray level, texture, or color, act as visual cues. Objects may satisfy some

homogeneity criterion in their interior with respect to a local property. Other objects

may be best discerned at their boundary by the change of a local property at the object’s

boundary, or some other local measure that distinguishes the boundary. These proper-

ties, however, are often inconsistent and incomplete due to inexact criteria or imperfect

viewing conditions. A putative homogeneity may not be satisfied at all points in the

object, or the property change may not be discernable at all portions of the boundary.

For this reason, these local properties need to be augmented with more global properties.

A powerful distinguishing property is overall shape. Shape can be used to com-

plete the information provided by local properties. A preconception of shape can help

resolve ambiguous information provided by local properties. Local shape features, such

as curvature, can be useful but they are not as expressive as global shape and, like other

local features, are more sensitive to poor viewing conditions. Global shape is too varied

to be adequately described by a single shape attribute such as average bending energy

or compactness. Attneave’s view of the importance of parsimony in the description of

visual phenomena, based on ideas from information theory [5], is of general significance

for the purposes of formulating a model of shape. A concise representation that removes

redundancy allows for computational efficiency.

In order to take full advantage of shape, the problem of object identification will be

approached as a process of boundary finding or delineation using a boundary measure and

incorporating global shape information. The analysis of shape has been largely limited
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to processing after delineation for classification or other purposes. This work deals with

the mathematical modeling of shape for use in model-based boundary finding.

1.1 Introduction to the Problem

Segmentation by boundary finding using only local information has often been frustrated

by poor-contrast boundary regions due to occluding and occluded objects, adverse view-

ing conditions, and noise. A model-free interpretation is doomed by the underconstrained

nature of the problem. Imperfect image data can be augmented with the extrinsic infor-

mation that a geometric shape model provides. In order to exploit model-based informa-

tion to the fullest extent, it should be incorporated explicitly, specifically, and early in the

analysis. When the model is hidden in algorithm heuristics, it may perform well, but the

generality is lost. Some models incorporate generic information such as smoothness or

low overall curvature. While this is completely appropriate when no better information is

available, the more specific the shape information used, the better. Applying the model

too late allows inconsistencies to be created by the low-level processing. In addition, the

boundary can be profitably considered as a whole because it tends to result in a more

overall consistent solution.

This work is aimed at segmenting natural objects, especially focused on those

found in biomedical images, whose diversity and irregularity of shape makes them poorly

represented in terms of fixed features or form. The objects, such as organs, cells and other

biological structures, are expected to have a tendency toward some average shape. There

will be, however, a continuum of possibilities near that average shape. Biomedical images

are an important application because automatic quantitative analysis of objects present

in these images is needed for both research and clinical applications. In addition, it
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provides a rich domain for the study of shape. This model domain is somewhere between

the extremes of a completely arbitrary object and a fixed template. This tendency can

be taken advantage of by its expression in an appropriately designed shape model.

1.2 Overview

A complete system using model-based optimization for the determination of object bound-

aries has been developed [83, 84]. This system is composed of two main elements: the

shape model and the match measure. The shape model, described in Chapter 3, is a

parametrization, represented by a parameter vector p with associated prior probability

distributions, P (p). The match measure is developed in Chapter 4 as a way of combining

the probabilistic information that the shape model provides with boundary information

that the image provides into a single objective function, M(p). The information derived

from the image, i, is a boundary measure, b(i(x, y)). The objective function is based on

a maximum a posteriori (MAP) formulation that involves the prior and a correlation, C,

between the boundary measure and a template, t(p). The template is generated from the

current value of the parameter vector. The optimization process starts at an initial point

p0, determined by the parameter’s prior probability distribution. At each iteration, the

parameter vector is updated by the amount ∆p, determined by the optimization method.

The template formation and the methods of optimization used are described in Chapter

5. A diagram outlining the approach is shown in Figure 1.1.

1.3 Main Contributions

A practical system for boundary finding of natural objects has been designed. A computer

implementation has been developed and tested on real and synthetic images. It is based
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Prior Information:
Determine parameter distribution P (p)

Image Information:
Compute boundary measure on image b(i(x, y))

Optimization:
Initialize parameter vector p← p0

�

Repeat until converged:
Objective Function Calculation:

Form Template tp(x, y)
Correlate with boundary measure C(t, b) �

Add probability term M(p) �

Optimization Method: ∆p
Update parameter vector p← p + ∆p

Figure 1.1: System overview.

on a general probabilistic method of boundary finding that allows the incorporation of

prior information about the global shape of the target object. Previous boundary find-

ing methods have either not used global shape or have designed individual shape models

specific to particular shapes. A parametrization for two-dimensional curves has been

developed into a practical shape representation for boundary finding. Probability distri-

butions on the parameters of the representation bias the model to a particular overall

shape while allowing for deformations. Boundary finding is formulated as an optimization

problem using a maximum a posteriori objective function. Extensions of this method to
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three dimensions and temporal sequences are outlined.



Chapter 2

Related Work in Boundary

Finding

2.1 Region Methods

Considerable work has focused on determining objects in images using region analysis.

Typically this involves defining a homogeneity criterion, and perhaps other criteria such

as semantic consistency. The segmentation is then determined by region growing methods

such as splitting [67], merging [17] or both [44]. These approaches depend on the unifor-

mity of regions in order to determine the salient regions in an image. These methods can

be viewed as complementary to boundary methods in that they profit from the spatial

coherence in objects. They work reliably in the interiors of regions, but the difficulty in

segmentation still lies in deciding where the region ends, that is, its boundary. Region

methods can be susceptible to errors at the boundary and often use further heuristics or

smoothing to improve the boundaries that result. Region analysis could perhaps benefit

from the incorporation of boundary methods. Region analysis is an attempt to compen-

7
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sate for the problems of boundary methods used alone, which are sometimes susceptible

to large errors due to spurious or missing edges. The current work is robust to this sort

of problem through the use of a prior model and thus can focus on the boundary. Further

justification of the boundary approach is presented in Section 4.2. In general, the lack of

focus on the boundary in region analysis and the restriction to objects with a well-defined

uniformity (often not present), seem to be unwarranted impairments.

2.2 Boundary Methods

The major alternative to region analysis is boundary analysis. This approach concentrates

on the boundaries of objects as the key distinguishing feature. Given the limitations

of region methods, boundary methods are attractive. A number of approaches using

boundary information are discussed below. It is not meant to be a comprehensive list, but

should give an idea of the range of approaches, while emphasizing those with similarities

to the current approach.

2.2.1 Edge Detectors

To some, using boundary methods means doing edge detection, that is, calculating a

binary edge image. Edge detectors have been used since the earliest work in computer

vision and thus many methods have been proposed. One influential method of edge

detection based on zero-crossings of the Laplacian of the Gaussian of the image was

proposed based on a biological motivation [59]. Canny developed a widely used edge

detector based on optimizing certain detection and localization criteria [19].

The problem with edge detectors for boundary finding is that the edges found do

not necessarily correspond to boundaries of objects. With the exception of high quality
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images from controlled environments, edge detectors produce spurious edges and gaps.

For some applications however, such as stereo matching, this does not preclude their use.

While there are ways of cleaning up edge images [77], there inevitably will be important

information lost. Thus, while boundary information is undoubtedly useful, edge detectors

per se are of limited use in general and of no use in poor quality images.

The limitations of edge detectors are due in part to their complete reliance on

computations made directly on a local neighborhood of pixels in the raw image. By using

only image information, any model-based information that may be available is ignored.

By computing locally and directly, any higher order organization to the image is also

ignored. The decision of edge versus no-edge is made prematurely if this information is

not applied.

2.2.2 Grouping

Grouping for boundary finding is a way of associating edge elements for the purpose of

determining boundaries. The association is done using similarity relations, perhaps in

conjunction with model information. A simplistic form of grouping, or linking, is used by

Nevatia and Babu [64] for binary edge images where neighboring edge points are grouped

if they point in similar directions. Forming a complete boundary is usually accomplished

by first associating individual edge elements into edge segments, then associating the

segments into a boundary. Grouping has been used for noisy images by grouping edge

points using a knowledge-based approach [85]. A probabilistic approach to grouping edge

segments based on maximum entropy has also been described [26]. A grouping method

for recognition of fixed polyhedral objects was developed by Lowe [55]. Some of this work

derives its motivation from the ideas of perceptual organization [91]. Grouping methods,

while robust to areas of weak boundary definition, often resort to arbitrary interpolation



10

in order to form a complete boundary. In addition, it is often difficult to identify and

discount spurious edge segments.

2.2.3 Pixel Search

Pixel search methods attempt to find an optimal path through an image, based on criteria

designed to find boundaries. Most methods try to find the optimum of a function that is

a combination of boundary strength and low overall curvature. Montanari [63] and others

[8, 34] have used dynamic programming to solve this optimization problem because the

function only involves local computations. Dynamic programming is discussed further in

Section 5.2.

Martelli [60] formulated the problem in terms of graph searching and used the

heuristic search algorithm, A*, to find the optimal path. This method, which uses heuris-

tic information to speed up the search, reduces the amount of computation needed.

While pixel search methods are powerful, especially when no specific shape infor-

mation is known, they are limited by their restriction to local shape properties.

2.2.4 Hough Methods

An alternative method for boundary analysis is the Hough transform. It was originally

formulated for straight lines and simple parametrizable curves such as circles [25]. The

technique was extended to general shapes by Ballard [9]. The Hough transform is a map-

ping from image space to a parameter space. Likely boundary points are first identified in

the image. Each of these points has a set of points in the parameter space corresponding

to the values of the parameters that could possibly include this boundary point. The

accumulation of these correspondences is the Hough transform. Maxima in the Hough

space correspond to possible instances of the shape, defined by the associated parameters.
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The maxima are found by examining the Hough space. Thus, storage and computational

complexity increase exponentially with the number of parameters. Typical parameters

are translation, rotation and scale. The advantage of this technique is that it is relatively

insensitive to gaps and noise. In fact, under certain conditions, the Hough method is

simply a means of implementing matched filtering [80]. The Hough approach is therefore

very similar to the current method in that it finds shapes using a parameter space and it is

based on template matching. However, the storage and computational complexity of the

Hough method are a great disadvantage especially if deformations are envisaged, although

alternate formulations have been explored [47]. The advantage of the current technique,

as will be seen, is that the entire parameter space does not have to be constructed due

to the use of local search in finding the optimal point.

2.2.5 Whole-Boundary Methods

Other investigators have considered whole-boundary methods that adjust a tentative

boundary in order to match to the image. By considering the boundary as a whole, a

structure is imposed on the problem that simplifies the task. Gaps are easily bridged

and overall consistency is more likely to result. The method described in this work is a

whole-boundary method. One of the first instances of this type of approach is that of

Widrow [88], who used parametrized templates called rubber masks to model objects.

The parameters are sizes and relationships between subparts. He used this approach

to identify chromosomes and the model is specific to this task. Yuille et al. [92] used

a parametrized template for an eye consisting of a circle bounded by two parabolas.

The template was matched to the image by optimizing a match based on morphological

features. They developed a similar template for the mouth. Both of these methods have

the advantage of describing the overall shape of the structure using very few parameters.
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However, the object must have sufficient structure to be represented in terms of parts and

a new model must be developed for each new object. These part models are related to the

representation used by Fischler and Elschlager [29], where components of an object are

held together by spring forces. The current method does not rely on a part description

and is not specific to a particular object but supplies specific global shape information.

Schudy [78] used a spherical harmonic parametrization for boundary finding (in this case,

to moving, three-dimensional data representing the heart). This model is fairly general

but provides no explicit shape information other than smoothness. All three of these

methods match the model to the image data by searching the parameter space for the

best fit.

While the above whole-boundary methods optimized in parameter spaces, the

following methods optimize in the image space. The boundary finding method of Gritton

and Parrish [39] used a flexible bead chain, where the beads are putative boundary

points. The beads are adjusted to neighboring locations to improve the match to the

image, in this case, image gradient strength. Prior information is incorporated by the use

of an initial boundary and by adjusting algorithmic parameters dictating the influence of

neighboring beads. Cooper [23, 22] used statistical likelihood as a match metric resulting

in a correlation measure. A boundary adjustment scheme similar to the bead chain

algorithm [39] is presented to perform the optimization. Kass et al. [49] used energy-

minimizing snakes that are attracted to image features such as lines and edges, while

internal spline forces impose a smoothness constraint. The weights of the smoothness

and image force terms in the energy functional can be adjusted for different behavior. In

addition, they provide a more general and unified treatment of the optimization process

by taking advantage of standard numerical techniques for partial differential equations.
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The use of image space representations for the boundary (as opposed to parameter space)

makes it difficult to incorporate global shape information and none of these methods do

so. The work of Kass et al. has been extended to include hard constraints, such as

holding the boundary to binary edge data, by using dynamic programming [3]. The idea

of energy minimizing models has also been applied to three-dimensional surfaces imposing

an additional axial symmetry force [86]. These boundary finding methods are related to

elastic matching methods used for the similar problem of registration between images

[6, 18]. One image is modeled as an elastic material. Attractive forces deform the elastic

image toward similar features in a goal image until they are balanced by the forces due

to the stiffness of the material.

All of these approaches take an initial estimate of the contour and adjust it to

optimize some measure of fit. Widrow and Yuille et al. use explicit global shape infor-

mation. Their models are best designed for structures with well-defined parts. The other

methods described limit their use of shape information to overall smoothness properties

and the implicit shape information provided by the initial placement of the contour. The

use of prior information ranges from very general (e.g., smoothness constraints) to very

specific (e.g., exact templates). The amount of prior information available in a particular

domain determines how much can be used. The boundary finding method described in

the following chapters is aimed at the situation between the extremes, where there is

some prior information about the global shape of the object, but it is not exact.



Chapter 3

Model

A model is needed that allows the application of prior information about shape to the

problem of boundary determination. The objects being modeled have smooth boundaries

that are continuously deformable. Thus, the determination of shape must be achieved

through continuous decisions rather than discrete ones. These objects do not necessarily

have an obvious decomposition that could be exploited, like a pair of scissors [38] or

even an eye [92]. Because overall shape is the only reliable salient feature, a uniform

representation that describes the entire shape is needed. The prior information is not

a set of hard constraints but a flexible bias towards more likely shapes. This sort of

model can be achieved by using a generic parametrization with probability distributions

defined on the parameters. That is, the parametrization itself will be expressive enough

to represent any potential shape of a given geometric type (for example, closed curves),

but the associated probability distributions will introduce a bias towards an expected

range of shapes. The spread in the distributions is due to variability among instances of

the object. This kind of parametrization represents a stronger use of prior information

than methods that use only simple shape characteristics.

14
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3.1 Parametrization Design Considerations

Each parametrization has particular properties that suit it for different purposes. The

class of shapes that a parametrization can express is important because it represents a

limitation of domain. Some restrictions, such as smoothness, can be convenient because

they build a necessary constraint directly into the representation. Other restrictions, such

as convexity, could represent a design compromise in that the class of problems addressed

is limited by the representation. For matching purposes, it is important that there is a

one-to-one relationship, or mapping, between the shape and its parametrization. This

mapping should also be continuous so that small deformations of the shape always result

in small changes in the parametrization. This allows matching in the parameter space.

In addition, it is desirable for the parametrization to be concise because that determines

the complexity of the matching process. The parametrization should represent the shape

economically by removing redundancy.

Certain operations are more convenient with some representations than with oth-

ers. Some geometric properties such as area or moments are directly available from some

representations. The conversion between the parametrization and the shape is usually

very important. The conversion can be represented by two functions: P(x) and the in-

verse X(p) where x is the vector of discrete points on the object in the image space

and p is the parameter vector. These functions are not always directly computable. For

example, X(p) is not directly available in implicit representations or region representa-

tions. P(x) is often only computable through an optimization process as is the case with

superquadrics [7].

Some representations, usually implicit, allow the use of an inside-outside function.

An inside-outside function is a function of position in the object space that indicates
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whether the point is inside or outside of the object and by how much. This can then be

used as the basis for an objective function to be optimized [7, 78].

The proper handling of the degrees of freedom of an object due to varying the view

angle and position is desirable because often they cannot be controlled. Changing the

view results in the corresponding geometric transformations of translation, rotation and

scaling. Some representations allow a simple application of the transformation directly

to the representation. Some parametric representations can express the view by the

individual parameters of the transformations.

3.2 Alternative Parametrizations

Boundary representations are the only representations that are relevant to this work

because of the focus on shape and need for the boundary to be directly obtainable.

Region representations such as quad trees or axis representations such as medial axis

transform are impractical because the boundary is not easily accessible. Besl [14] presents

a good overview of representations for computer vision. The main alternative parametric

boundary representations relevant to this work are presented below.

3.2.1 Direct and Differential

Direct representations are those that stay close to the actual coordinates of the object

in the object’s space. The most general version is just an explicit list of the coordinates

representing the object in an arbitrary order. If the object points can be spatially ordered,

or indexed, by a spatial parameter, this ordering should be used. Any curve, for example,

can be ordered by arclength s, and represented as x(s) and y(s). This is also sometimes

written as a single complex function, x(s) + iy(s).
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A direct representation can be derived from points of curvature maximum based

on Attneave’s demonstration of their perceptual importance for curve segmentation [5].

These maxima points are not, however, stable under deformations. The way in which

curvature maxima change has, in fact, been used to infer processes that have acted upon

the object [52].

Certain classes of curves can be represented as a single function. Curves express-

ible as a function of one coordinate, y(x), are perpendicular deformations of a straight

line, that is, deformations of a line only in the direction perpendicular to the line. Curves

expressible as a function of angle, r(θ), are radial deformations of a circle.

Surfaces are more problematic in that there is no natural ordering of points on

an arbitrary surface. Again, certain classes of surfaces can be represented as a single

function. Surfaces expressible as a function of two coordinates, z(x, y), are perpendicular

deformations of a plane. Surfaces expressible as a function of two angles, r(θ, φ), are radial

deformations of a sphere. If the proper parameters, u and v, can be found, an arbitrary

surface can be represented by x(u, v), y(u, v) and z(u, v). A surface parametrization

based on this representation will be discussed in Chapter 7.

Instead of representing the coordinates, it may be advantageous to represent a

differential property of the surface such as tangent or curvature. This is the basis for chain

codes (discrete tangent) [31], ψ(s) (continuous tangent) [10] and the extended Gaussian

image (Gaussian curvature) [43]. These differential properties allow rotation and scale

changes easily. A potential disadvantage of differential representations is that numerical

integration is needed to recover the object.
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3.2.2 Extended Gaussian Image

The extended Gaussian image [43] surface representation is the reciprocal of Gaussian

curvature, or radius of curvature, for each tangent direction. That is:

G(θ, φ) =
1

K(u, v)
(3.1)

where (u, v) specifies the point on the surface of the object that has the same orientation

as the point on the unit sphere specified by (θ, φ). In the discrete form, this becomes

a surface orientation histogram. Overall scale and orientation of the object are easily

handled. This representation, however, is limited to convex objects. Non-convex objects

must be segmented into convex pieces in order for the representation to be unique. The

two-dimensional analog is the extended circular image [42]. Although it has been used for

two-dimensional shape matching [61], it still requires segmentation into convex segments.

3.2.3 Splines

Interpolating splines are a useful curve or surface representation. They are piecewise

polynomials with specifiable continuity properties. They are most often used in graphics

or design. For a particular choice of spline representation, the shape is determined by a

set of control points. Moving a control point will change the curve locally. The different

kinds of splines are primarily distinguished by their shape and continuity properties,

the classes of curves (or surfaces) they can represent and the number of parameters

they require. Splines have more in common with direct representations than parametric

representations because the parameters represent positions on the object. The spline

formalism is a direct representation restricted to certain desired continuity requirements.
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It has the same disadvantages of direct representations in that the parameters (control

points) do not represent shape, but represent positions. To achieve a change in viewpoint,

the control points must be transformed.

Bending energy minimizing splines (or smoothing splines) are a way of interpo-

lating by minimizing the weighted sum of the overall bending energy of a shape and the

distance of the shape to the data. They have been used by Kass et al. [49], Terzopoulos

et al. [86] and others. While single points globally change the curve, the effect is still

primarily local and thus they behave very similarly to interpolating splines.

3.2.4 Sweeps

Sweeps (or generalized cylinders) are a way of representing elongated objects [2, 65].

Typically, this means a one-dimensional curve defines the spine of the object and a two-

dimensional cross-section is swept along the spine to define the surface. This cross-section

can also be made to vary along the spine. The actual properties of this representation

depend on the choices of spine and cross-section. Practical choices usually limit the class

of object that is representable.

3.2.5 Superquadrics

Superquadrics [11, 7] (in two dimensions, superellipses) are an extension of quadrics

using an exponent that varies the squareness of the shape. Superellipses can be expressed

parametrically by:

x(t) = x0 +

⎡
⎢⎢⎣ a cosq(t)

b sinq(t)

⎤
⎥⎥⎦ (3.2)
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The exponent q controls the squareness as the shape varies from an ellipse (q = 1) to a

rectangle in the limit (q = 0). The implicit form for points on the superellipse is:

|x− x0|
a2/q

+
|y − y0|
b2/q

= 1 (3.3)

One of the advantages of the implicit form is that it can be used as the basis of

an inside-outside function. For points inside the superellipse, the left hand side of Equa-

tion 3.3 is less than one; for points outside, it is greater than one. These formulas can

be extended to three dimensions. A limitation of superquadrics is that the parameters

representing the shape cannot be extracted immediately from a direct representation but

must be found through an optimization procedure. The basic shape can be altered by

such operations as twisting, bending and tapering [12], as can any explicit representation.

Using these operations, superquadrics can be thought of as a kind of sweep representa-

tion. The main disadvantage of superquadrics is that even with these altering operations,

superquadrics are limited by their convex, doubly symmetric cross-section and thus still

only represent a very limited family of shapes (without resorting to composition).

3.2.6 Fourier

Fourier representations are those that express the curve or surface in terms of an or-

thonormal basis. The motivation for a basis representation is that it allows us to express

any object as a weighted sum of a set of known functions. An orthonormal set is desirable

because it makes the parameters (weights) distinct. If two of the basis functions were

similar, representing features corresponding to their difference would require their coef-

ficients to be large in magnitude and opposite in sign. This would make the coefficient

determination difficult. Representing features corresponding to their average direction
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would require their coefficients to be roughly equal. This redundancy is inefficient. Both

of these problems can be avoided if the basis functions are as dissimilar as possible, that

is, orthogonal.

To express the function X(t) on the interval (a, b) in terms of the basis φk(t), we

write:

X(t) =
∞∑

k=1

pkφk(t) (3.4)

where:

pk =
∫ b

a
X(t)φk(t) dt (3.5)

The coefficients p, the projections of the function onto the k basis functions, are the

parameters of the representation. In order to use this representation, however, the sum

must be truncated. In most such representations the higher indexed basis functions

represent higher spatial variation. Therefore, if the function to be represented is expected

to have limited spatial variation, as is the case for most real object boundaries, the series

can be truncated and still accurately represent the function. In fact, the truncated Fourier

series is optimal in the sense of mean square error. The mean square error between the

function and its approximation as a linear combination of orthogonal basis functions is

minimized when the coefficients are the Fourier coefficients, pk [87].

The usual basis functions are the sinusoids [71], although others, such as those

based on orthogonal polynomials, are possible. The sinusoids have the advantage of rep-

resenting the familiar notion of frequency. The various representations of curves usually

differ in the choice of direct representation on which to base the decomposition. For
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curves, the common choices are r(θ), ψ(s), [x(s), y(s)] and x(s) + iy(s), as discussed in

Section 3.2.1. The use of Fourier representations of contours has been limited primarily

to classification applications such as character recognition [37] and airplane silhouettes

[62].

The r(θ) representation limits the curves to radial ones. ψ(s) is not a good Fourier

representation because it is differential. Curves reconstructed from a truncated series for

a closed curve using the ψ(s) representation may not be closed. Using a differential rep-

resentation also exacerbates the problem of corners because they become discontinuities.

The (x(s), y(s)) and x(s) + iy(s) representations are completely expressive and do not

have the problems of differential representations.

Spherical harmonics have been used [78, 10] as a type of Fourier surface repre-

sentation for radial surfaces (r(θ, φ)). The basis functions are based on sinusoids and

Legendre polynomials.

3.3 The Deformable Contour Parametrization

Fourier parametrizations are the most suitable for this work for a number of reasons.

They are a concise boundary representation. They are generic, that is, not limited to a

particular class of objects. The conversion between the parametrization and the shape

is easily and directly computable. By using a truncated series, we limit the frequency

content of the curve and thus enforce a smoothness constraint.

3.3.1 Closed Curves

The standard real Fourier representation is based on Equations 3.4 and 3.5, using the

sinusoids or trigonometric functions as the basis functions. The basis can be used, in



23

conjunction with a direct representation, to form a parametrization for closed curves.

The basis is:

φ =
{

1
2π
,
cos x
π

,
sinx
π

,
cos 2x
π

,
sin 2x
π

,
cos 3x
π

,
sin 3x
π

, . . .

}
(3.6)

Closed curves are useful for representing organs, cells and other objects that are delineated

by a complete boundary. A closed curve can be represented by two periodic functions of

t, where t varies from 0 to 2π, x(t) and y(t). If we then take the Fourier decomposition of

these two functions using the sinusoidal basis and write the resulting equations in matrix

form, we get the elliptic Fourier representation [35, 51, 53]:

v(t) =

⎡
⎢⎢⎣ x(t)

y(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ a0

c0

⎤
⎥⎥⎦ +

∞∑
k=1

⎡
⎢⎢⎣ ak bk

ck dk

⎤
⎥⎥⎦
⎡
⎢⎢⎣ cos kt

sin kt

⎤
⎥⎥⎦ (3.7)

where:

a0 =
1
2π

∫ 2π

0
x(t)dt

c0 =
1
2π

∫ 2π

0
y(t)dt

ak =
1
π

∫ 2π

0
x(t) cos kt dt

bk =
1
π

∫ 2π

0
x(t) sin kt dt

ck =
1
π

∫ 2π

0
y(t) cos kt dt

dk =
1
π

∫ 2π

0
y(t) sin kt dt



24

The closed curve is thus represented by the parameters a0, c0, a1, b1, c1, d1, a2,

b2, c2, d2, . . . , which will be referred to as the raw parameters. This particular version

of Fourier boundary representation has a number of advantages. Both the decomposition

and the reconstruction can be calculated efficiently due to the fast Fourier transform.

A geometric interpretation, in terms of ellipses, can be developed from this decompo-

sition. The geometric interpretation will allow for better visualization of the effect of

the parameters. In addition, from this geometric interpretation, invariance to rotation,

scale, translation and starting point can also be achieved. Invariance to rotation, scale

and translation is important because these parameters are determined not by the object

but by the view of the object, which often cannot be held constant. From Equation 3.7,

the relationship between the parameters and the curve can be seen to be continuous and

unique, except for the arbitrary starting point of the boundary functions x(t) and y(t).

Since the starting point is arbitrary, it will be useful to remove its effect.

In Equation 3.7, the first two coefficients, a0 and c0, determine the overall transla-

tion of the shape. Each term in the summation is the parametric form for an ellipse. The

degenerate case occurs when akdk − bkck = 0, in which case each term is the parametric

form for a straight line (a degenerate ellipse). In each term, the matrix therefore deter-

mines the characteristics of the ellipse. The contour can be viewed as being decomposed

into a sum of rotating phasors, each individually defining an ellipse, and rotating with a

speed proportional to their harmonic number, k. This can be seen in Figure 3.1 where a

contour is shown constructed from three component ellipses forming a sort of planetary

system. The straight lines represent the phasors for each ellipse shown at three different

times. Thus, the point Cij traces out the ith ellipse at time j. Each point is the center of

the next higher ellipse. C0 is the center of the first ellipse. Points C31, C32 and C33 are



25

three different points on the final curve. The elliptic Fourier representation can be seen

as a generalization or extension to pure ellipse representations [15].

It is important that the curve representation that is decomposed into Fourier

components be both continuous and periodic. While the Fourier series will always con-

verge (except for pathological cases), discontinuities will slow the convergence because

of the high frequencies inherent in a step jump. The function values should also match

at the endpoints of the interval for the same reason. Both x(t) and y(t) are periodic

because the contour is closed, and both x(t) and y(t) are continuous because the contour

is continuous. Thus, both of these properties are always satisfied.

In Equation 3.7, we can make t correspond to arclength by taking:

t(s) =
2πs
S

(3.8)

where s is arclength along the curve from the starting point and S is the total arclength

of the curve. However, when a curve is reconstructed from a truncated series, the x and

y values will differ from the original values. This difference means that Equation 3.8 no

longer holds. This can be seen by noting that from Equations 3.7 and 3.8:

∣∣∣∣dvdt
∣∣∣∣ =

ds

dt
=

S

2π
(3.9)

However, we also know that:

∣∣∣∣dvdt
∣∣∣∣ =

√(
dx

dt

)2

+
(
dy

dt

)2

(3.10)
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Figure 3.1: The contour (dark line) at the left is constructed from three component

ellipses shown at three different times. The associated raw parameter values are shown

in the bar graph at the right, where the limits of the scale for each parameter are shown

below the bar and the value of the parameter is shown above each bar.
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This expression is a complicated function of the parameters and is only equal to S
2π for

circles and for the infinite series [71]. Thus, while Equation 3.8 can be used for the

purposes of decomposition, it will not be true in general. A numerical approximation to

this relationship will be discussed in Section 5.2.

The starting point, t = 0, is, in general, arbitrary for a closed curve. A different

starting point will result in a different parametrization. The starting point can be stan-

dardized so that it does not affect the parametrization. This will be discussed in the next

section.

The direction of rotation, clockwise versus counterclockwise, must be chosen con-

sistently because the parameters depend upon it. In addition, if direction information is

used from the boundary measure (see Chapter 4), the direction of rotation must agree

with the boundary direction. This depends, for example, on whether the object of interest

is darker or brighter than its surroundings.

Ellipse Parameters

More geometrically meaningful parameters can be derived from this representation that

will allow invariance to rotation, scale, translation and starting point. The geometric

properties of each of the component ellipses can be derived from the raw elements of each

ellipse matrix. Each ellipse can be described by four geometric properties: semi-major

axis length, semi-minor axis length, rotation and phase shift. The rotation is the angle

from the x-axis to the major axis of the ellipse, defined from −π/2 to π/2. The phase

shift is the difference in phase from the major axis to the position of t = 0 (the ellipse

starting position), defined from −π to π.

These ellipse properties can be derived as follows. First consider the general form

for an ellipse, which is the product of the raw ellipse matrix and the trigonometric basis
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function vector:

⎡
⎢⎢⎣ a b

c d

⎤
⎥⎥⎦
⎡
⎢⎢⎣ cos kt

sin kt

⎤
⎥⎥⎦ (3.11)

In order to determine the ellipse parameters, consider an ellipse with its major axis aligned

with the x-axis and with no phase shift. The matrix for this ellipse is:

⎡
⎢⎢⎣ A 0

0 B

⎤
⎥⎥⎦ (3.12)

where A and B are the major and minor semi-axis lengths, respectively. The phasor

moves counterclockwise for B positive, clockwise for B negative. The ellipse can be

rotated simply by pre-multiplying the ellipse matrix by a rotation matrix. A phase shift

of the ellipse by φ0 means replacing t by t+ φ0. This is the same as a pre-multiplication

of the basis function vector by a rotation matrix, or equivalently, a post-multiplication of

the ellipse matrix. Thus, a rotation of this ellipse by θ and shift by φ can be written as

a pre-multiplication and a post-multiplication by rotation matrices:

⎡
⎢⎢⎣ cos θ − sin θ

sin θ cos θ

⎤
⎥⎥⎦
⎡
⎢⎢⎣ A 0

0 B

⎤
⎥⎥⎦
⎡
⎢⎢⎣ cosφ − sinφ

sinφ cosφ

⎤
⎥⎥⎦ (3.13)

This is equal to:

⎡
⎢⎢⎣ A cos θ cosφ−B sin θ sinφ −A cos θ sinφ−B sin θ cosφ

A sin θ cosφ+B cos θ sinφ −A sin θ sinφ+B cos θ cosφ

⎤
⎥⎥⎦
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This represents a general ellipse and is thus equivalent to the raw ellipse matrix in Equa-

tion 3.11. Therefore, to find the ellipse parameters given the values of these matrix

elements, solve the following four equations that come from identifying corresponding

matrix elements for A, B, θ and φ.

a = +A cos θ cosφ−B sin θ sinφ

b = −A cos θ sinφ−B sin θ cosφ

c = +A sin θ cosφ+B cos θ sinφ

d = −A sin θ sinφ+B cos θ cosφ (3.14)

This results in:

A2 =
α+

√
α2 − 4β2

2

B2 =
2β2

α+
√
α2 − 4β2

(3.15)

where

α = a2 + b2 + c2 + d2, β = ad− bc (3.16)

and

θ = tan−1 Ac+Bb

Aa−Bd
φ = tan−1 Ba−Ad

Ac+Bb
(3.17)
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By taking A to be positive and B to agree in sign with j, we get a consistent

sign convention. This set of parameters, a0, c0, A1, B1, φ1, θ1, A2, B2, φ2, θ2, . . . ,

represent the shape in terms of the ellipse properties and will be referred to as the refined

parameters. This conversion to refined parameters shown in Equations 3.14, 3.15, 3.16

and 3.17 is continuous and unique.

A further conversion can improve this set by making the rotation and shift param-

eters relative values and normalizing the axes’ lengths. This is useful because the refined

parameters all represent absolute quantities as opposed to quantities relative to the pre-

ceeding harmonic. Converting to relative quantities will allow the isolation of an overall

rotation parameter. In addition, this conversion will enable the removal of the overall

phase shift, φ1, which is determined by the start of the parametrization along the curve

and is thus arbitrary. The use of relative rotation and phase parameters means that

changing any one of these parameters will not change the relative relationships of any of

the other parameters. Normalizing the axes’ lengths creates an overall scale parameter.

First consider rotation. A rotation of θ0 to the object results in a rotation of

θ0 on each ellipse and therefore θk becomes θk + θ0. This is because each rotation, θk,

represents an absolute rotation from the x-axis. In order to convert to relative rotations,

take the difference between successive rotations:

θ′k = θk − θk−1 (3.18)

To convert back, use:

θk =
k∑

l=1

θ′l (3.19)
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In this way, one parameter, θ′1, determines the overall rotation of the object and each

rotation value, θ′k represents the rotation relative to the preceeding harmonic. Now

a rotation of θ0 to the object changes θ1 to θ1 + θ0 and leaves the other parameters

unchanged.

The conversion of the phase shifts to relative values is done in two parts. First,

the overall phase shift is removed, since it is arbitrary, and then the relative values are

calculated. A phase shift of φ0 applied to the boundary is equivalent to replacing t by

t + φ0. For the kth ellipse, this results in a shift of kφ0. The overall phase shift of the

object can thus be removed by subtracting its effects from the other harmonics and then

setting it to zero. That is:

φ∗k = φk − kφ1

φ∗1 = 0 (3.20)

The parameters φ∗k represent the absolute phase shifts with the overall phase set to zero.

Thus, a phase shift of φ0 applied to the object has no effect on the values of φ∗k. These

values can now be converted to and from relative values in the same way as for the

rotations:

φ′k = φ∗k − φ∗k−1

φ∗k =
k∑

l=1

φ′l (3.21)

The parameters φ′k represent the relative phase shifts.

The axes lengths can be normalized to the first major axis in order to isolate a
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single parameter that determines the overall scale:

A′
k =

Ak

A1
for k �= 1

B′
k =

Bk

A1
(3.22)

This set of parameters, a0, c0, A′
1, B

′
1, θ

′
1, A

′
2, B

′
2, φ

′
2, θ

′
2, . . . , expresses the

boundary in terms of the relative ellipse properties. The further conversion to relative

parameters shown in Equations 3.18, 3.19, 3.21 and 3.22 is both continuous and unique,

except that the starting point ambiguity has been removed. We have explicit equations for

the conversion between the raw coefficients of the Fourier expansion and the refined and

relative ellipse parameters. Figure 3.2 shows a contour constructed from three component

ellipses defined from their relative parameters (as in Figure 3.1).

We can treat the above parameter set as a single vector p and will distinguish

between the raw, refined and relative parametrizations, using K harmonics, by referring

to them as follows:

praw = (a0, c0, a1, b1, c1, d1, a2, b2, c2, d2, . . . , aK , bK , cK , dK) (3.23)

pref = (a0, c0, A1, B1, θ1, φ1, A2, B2, θ2, φ2, . . . , AK , BK , θK , φK) (3.24)

prel = (a0, c0, A
′
1, B

′
1, θ

′
1, A

′
2, B

′
2, θ

′
2, φ

′
2, . . . , A

′
K , B

′
K , θ

′
K , φ

′
K) (3.25)

3.3.2 Open Curves

The elliptical Fourier descriptors can be used for open curves. Open curves are useful for

representing objects or parts of objects that do not have a complete boundary such as

organs with openings, or blood vessels. The curve can be represented as before by two
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Figure 3.2: The contour (dark line) at the left is constructed from three component ellipses

shown at three different times. The associated relative parameter values are shown in the

bar graph at the right, where the limits of the scale for each parameter are shown below

the bar and the value of the parameter is shown above each bar.
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functions, x(t) and y(t), but since the curve is open, a straightforward representation of

the curve would result in a discontinuity.

Analogously to Persoon and Fu [71], this discontinuity can be avoided by having

the parameter t start at one end of the line, trace along the contour to the other end,

and then retrace the curve in the opposite direction to create a closed path. That is:

x(t) = x(2π − t) (3.26)

y(t) = y(2π − t) (3.27)

This results in functions x(t) and y(t) that are even and thus their Fourier sine terms, bk

and dk, are zero. The converse, namely that any elliptic Fourier expansion with bk and

dk equal to zero for all k results in an even function and thus describes an open curve, is

also true.

We can thus represent an arbitrary even function in terms of a sinusoidal basis

because this basis can be divided into even and odd functions. In order to represent even

functions, we restrict the basis functions to include only even ones.

φeven =
{

1
2π
,
cos x
π

,
cos 2x
π

,
cos 3x
π

, . . .

}
(3.28)

This parametrization can then be used for image features best described as curved

line segments. This representation can be thought of as decomposing the line into degener-

ate ellipses (flattened down to two coincident lines). The equations for the corresponding
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ellipse parameters are then just:

A2 = a2 + c2

B2 = 0 (3.29)

and

θ = tan−1 c

a

φ = 0 (3.30)

The ellipses are all degenerate with a fixed starting point at one end, thus forcing both

the minor semi-axis length, B, and the starting point, φ, to be zero. The relative trans-

formations for θk and Ak of the previous section can also be applied.

Considering these parameters as a single vector p, we have:

popenraw = (a0, c0, a1, c1, . . . , aK , cK) (3.31)

popenref = (a0, c0, A1, θ1, . . . , AK , θK) (3.32)

popenrel = (a0, c0, A
′
1, θ

′
1, . . . , A

′
K , θ

′
K) (3.33)

3.3.3 Number of Harmonics

The summation in Equation 3.7 must, in practice, be truncated. This truncation limits

the number of parameters and thus is necessary for a concise representation. Also, by

eliminating the higher harmonics, the curve is smoothed. The truncation also, however,
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decreases the accuracy of the representation.

Smoothing is necessary in order to reduce noise. Limiting the number of har-

monics limits the representation to smooth objects and thus constrains the boundary to

be smooth by excluding shapes with higher frequency variation. This is analogous to

regularization for ill-posed problems [73]. In regularization, a functional is devised that

incorporates a smoothness constraint. Here, the solution space is directly restricted to

allow only smooth solutions. Smoothing by reconstructing a truncated elliptic Fourier

representation is, in general, a good method for smoothing curves that eliminates the

problem of shrinkage [56] caused by direct filtering methods. Using too many harmonics

could unnecessarily increase the computational complexity. The number of harmonics

necessary for an accurate representation increases with the true high frequency content

of the contour. Harmonics higher than the true frequency content of the contour would

be due to noise. The probability distributions associated with their coefficients would

be clustered about zero, thus minimizing their contribution. The choice of number of

harmonics is thus a tradeoff between desired accuracy, conciseness and degree of smooth-

ing. Many biological forms are relatively smooth and unconvoluted and thus are well

represented by a small number of components.

Giardina and Kuhl [35] derive a bound on the error in representing a contour. Let

v = (x, y) be the true values for the coordinates of the curve and vK = (xK , yK) be the

approximation to the coordinates associated with the series truncated at K components.

The error is defined to be the maximum of the individual coordinate errors:

ε = max
[
sup

t
|x(t)− xK(t)|, sup

t
|y(t)− yK(t)|

]
(3.34)
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The bound on the error that they derive for the series truncated at K harmonics can be

written as:

ε ≤ 2
Nπ

max

[∫ 2π

0
|d

2x(t)
dt2

| dt,
∫ 2π

0
|d

2y(t)
dt2

| dt
]

(3.35)

The important features of this bound on the error are that it is inversely proportional

to the number of harmonics and proportional to the integral of the absolute value of the

second derivative. Empirically, Kuhl and Giardina found this bound to be too conserva-

tive on a variety of shapes by at least a factor of two [51]. In fact, the more complex the

boundary, the more conservative the bound. For this reason this bound is not a practical

method for determining the number of harmonics needed to accurately represent a shape.

Instead, the appropriate number of harmonics to use for the representation can

be determined directly because of the prior information about the shape. As will be

discussed in Section 3.4, a sample set of boundaries must be obtained. Each boundary

is reconstructed varying the number of harmonics, and the error from the boundary is

measured. From this procedure, the number of harmonics necessary to reconstruct these

curves within a fixed error bound is determined. For most of the examples considered,

between four and six terms of the expansion have been used. Figure 3.3 shows a typical

curve. The error associated with limiting the number of harmonics is plotted in Figure

3.4. The error is defined by Equation 3.34. For this shape, four harmonics are enough to

make the error less than one pixel.
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Figure 3.3: Curve for reconstruction error example.

3.4 The Parameter Probability Distributions

The probability distributions associated with the parameters are intended to bias the

model towards a particular range of shapes. This prior knowledge comes from experience

with images of the object being delineated. The images will differ due to variability in

the object shape and the view of the object.

While consistency of object shape is often a reliable assumption, leading to peaked

distributions for the governing parameters, consistency of view may be harder to come

by. Arbitrary translation and rotation are often unavoidable. This will lead to very broad

distributions for the translation and rotation parameters and will make the optimization

process more difficult, as will be seen in Chapter 5.

Prior information may not be available at all. In these cases, uniform distributions

are used for the prior probabilities of the parameters. It will be necessary, however, to
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Figure 3.4: Reconstruction error example.
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supply an initial estimate of the boundary for the optimization process, described in

Chapter 5.

Prior information can be derived from a sample of images of instances of the

object, when such a sample is available. The prior probability distributions can be esti-

mated from this sample. The distributions for each of the parameters of the model can be

estimated from the shapes determined from the sample by decomposing the boundaries

into their model parameters and collecting statistics. In order to calculate these statistics,

the boundaries of the objects must be determined. Manual segmentation is one way of

determining the shape for the sample. This is a good option when such segmentation has

already been performed. Any errors in the manual segmentation will be averaged over

the sample and therefore, unless there is significant bias, their effect will be small. Alter-

natively, this method can be run on a set of exemplar images with manual initialization

and uniform distributions.

If a particular distribution is known to govern the parameters, it can be used as

the prior probability, although if it is not unimodal it will make the optimization difficult

(see Chapter 5). Otherwise, if mean and variance information is known, a multivariate

Gaussian can be used for the N parameters:

P (p) =

(
1

(2π)N2 |Cpp|

)1/2

e−(1/2)(p−p0)T C−1
pp (p−p0) (3.36)

The vector p0 is the mean of p and Cpp is the covariance matrix of p.

The Gaussian is the natural form for a probability density. It was first discussed

by De Moivre in 1733 as the limit of the binomial distribution [24]. The Central Limit

Theorem shows that additive random variables converge to a Gaussian distribution under
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fairly general conditions [69]. The use of the Gaussian may be understood in terms of

information theory because, among probability density functions having a given variance,

the Gaussian is the one with the maximum entropy [20, 79]. The Gaussian density follows

directly from knowing no information other than a mean and a variance. For this work,

the parameters are taken to be independent. The above distribution simplifies to:

P (p) =
N∏

i=1

P (pi) =
N∏

i=1

1
σi

√
2π
e
− (pi−mi)

2

2σ2
i (3.37)

Here, mi is the mean of pi and σ2
i is the variance. The parameters in the model may not

be independent. For example, a particular object could tend to be smoother when it is

larger. This would lead to a correlation between some of the parameters. This effect will

not be exploited in this work although it could easily be incorporated by accumulating

the appropriate statistics to construct Cpp.

An example distribution is shown in Figures 3.5 and 3.6. The curve corresponding

to the mean parameter values is the middle curve shown in Figure 3.5. Above and below it

are the curves corresponding to the mean parameter values plus and minus one standard

deviation. The standard deviation for each parameter is shown in Figure 3.6.
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Figure 3.5: Example mean curve, shown with curves corresponding to parameters plus

and minus one standard deviation.
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Figure 3.6: Example parameter standard deviations.



Chapter 4

Matching

Matching in computer vision is the process of relating representations by bringing them

into correspondence [10]. In geometric modeling, we need both a representation for

information derived from the image data and a representation for prior knowledge of the

image domain. These representations will be designed such that they express the relevant

prior and image-derived information. They must also be commensurable so that we can

determine the correspondence between them. The correspondence established represents

an interpretation for the image by reconciling it with prior information. In this work, the

correspondence is determined by optimization. This means either minimizing a measure

of mismatch or maximizing a measure of match between the two representations. For a

parametric model, the correspondence is achieved by varying the parameters.

We need an appropriate measure derived from the image that can be compared

to our model. This will be discussed in Section 4.4. We also need a measure of match

between the image measure and the geometric model. This will be discussed in Section

4.1. Chapter 5 will discuss the optimization method.

44
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4.1 Match Measures

There are many ways in which to measure the degree of match between the model and

the image. In the case where the measure is just intended to compare the function values

over the region of the image, it usually involves some type of correlation or sum of squared

differences (SSD) measure [76]. The sum of squared differences mismatch measure for

two functions t and b over an area A can be written as:

SSD(t, b) =
∫ ∫

A
(t(x, y)− b(x, y))2 dx dy

=
∫ ∫

A

(
t2(x, y)− 2t(x, y)b(x, y) + b2(x, y)

)
dx dy (4.1)

The corresponding correlation match measure is:

C(t, b) =
∫ ∫

A
t(x, y)b(x, y) dx dy (4.2)

If
∫∫

A t
2(x, y) dx dy and

∫∫
A b

2(x, y) dx dy are constant, the above two measures

are equivalent. When t is a template smaller than b whose position in b is sought, then
∫∫

A b
2(x, y) dx dy will not be a constant as A varies over different portions of b. In this

case the correlation is sometimes normalized by either the mean of b in the area or the

variance of b. In the present case, where t is derived from the model and b is derived

from the image,
∫∫

A b
2(x, y) dx dy is constant because A represents the entire image but

∫∫
A t

2(x, y) dx dy varies with the length of the contour. It will be shown in Section 4.3

that even in this case, these measures are essentially equivalent.

The above measures generalize directly to vector valued functions. Scalar differ-

ences become vector differences and scalar products become dot products.
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4.2 Boundary Justification

To match the geometric model to the image, we can use either the area of the object under

consideration or the boundary. In this work, the feature of interest is shape and thus the

boundary of the object is the goal and the focus of the analysis. The object is expected

to be distinguished from the background by some measure of boundary strength, which

must be computed from the image. Only the boundary of the shape is modeled and

the matching process only considers the boundary. When the entire area of the object

is considered, the internal structure of the object can be included as part of the match.

While the internal gray level structure of some objects is a reliable and distinguishing

feature, more often it is either textural or trivially related to the boundary (e.g., a bright

border area).

The boundary value will be considered constant along the entire boundary. This

means that differences in the degree to which the object differs from the background will

be ignored. While differences in contrast with the background will occur, they are not

considered consistent enough to be used as salient criteria. The boundary measure will

be assumed to be proportional to the evidence for a boundary. Thus, the stronger the

measure, the more likely the boundary at that point. Using a constant boundary value

model weighs all the image boundary strength equally.

Focusing on the boundary has the advantage of reducing the computation of the

match because the comparison is needed only along the boundary. This computational

difference can be seen in the difference between Equation 4.2 and the one-dimensional

version for boundaries:

C(t, b) =
∫
C
t(x, y)b(x, y) ds (4.3)
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where C is the path of integration. In addition, when the model is in terms of the

boundary, the correspondence to the boundary of the object is simpler and more direct

in that the interior of the boundary does not have to be determined. Using a boundary

measure has the advantage of improving the contrast between good matches and close

matches. This is because slightly mismatched areas match much better than slightly

mismatched boundaries. In addition to boundary strength, boundary direction may also

be used, when it is available. Using boundary direction helps to distinguish properly

oriented boundary strength.

4.3 Maximum a Posteriori Match

In order to apply the prior knowledge of shape to the problem of boundary determination,

we can formulate the problem using a maximum a posteriori (or minimum error) criterion

using Bayes rule.

4.3.1 Bayes Rule

Consider the problem of boundary determination as one in which the data is an image,

b(x, y), which could be depicting any one of a set of objects, where ti(x, y) is an image

template corresponding to the ith possible object. The goal is to determine which object

is depicted. In order to determine this we should find the most probable one based on

both the prior information and the image information.

In terms of probabilities, if we want to decide which template, ti, an image, b,

corresponds to, we need to evaluate the probability of the template given the image,
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P (ti|b), and find the maximum over i. This can be expressed using Bayes rule, where:

P (tmap|b) = max
i

P (ti|b) = max
i

P (b|ti)P (ti)
P (b)

(4.4)

Here, tmap is the maximum a posteriori solution, P (ti) is the prior probability of template

ti and P (b|ti) is the conditional probability, or likelihood, of the image given the template.

Since P (b), the prior probability of the image data, will be equal for all i, it can be

eliminated and it suffices to maximize:

P (b|ti)P (ti) (4.5)

This can be simplified further, due to the monotonicity of the logarithm, by writing it as:

M(b, tmap) = max
i
M(b, ti) = max

i
[lnP (ti) + lnP (b|ti)] (4.6)

The function M is the general form of the objective function that will be optimized to

find the maximum a posteriori solution. This basic form shows the tradeoff or compro-

mise that will be made between prior information, P (ti), and image-derived information,

P (b|ti). The prior probability density used will be either uniform, in which case there is

no prior information, or estimated, as described in Section 3.4. For a uniform prior, this

formulation reduces to the maximum likelihood solution. The likelihood, P (b|ti), can be

derived from the image, as described below.
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4.3.2 Likelihood Derivation

The likelihood of obtaining b given that a particular template, ti, is present is P (b|ti).

In this section, the likelihood will be derived and substituted into the expression for the

objective function from the last section. Consider the image b to be a noise-corrupted

version of one of these templates with noise that is independent and additive: b = ti +n.

This assumption is discussed in Section 4.3.4. Then, P (b|ti) is equivalent to P (b = ti +n)

or P (n = b−ti). The noise at each pixel, n(x, y), equals b(x, y)−ti(x, y) and is governed by

the probability density Pn. These events are independent for each point, so the probability

for the noise over the entire area A is just the product of the individual probabilities.

Thus, the conditional probability of obtaining b given that it arises from ti is the product

of the noise probabilities at each pixel. That is:

P (b|ti) =
∏
A
Pn(n(x, y)) (4.7)

We make the further assumption that the noise is Gaussian with zero mean and

standard deviation σn. This assumption is discussed in Section 4.3.5. This gives:

P (b|ti) =
∏
A

1√
2πσn

e
− (b(x,y)−ti(x,y))2

2σ2
n (4.8)

Taking the logarithm, we get:

lnP (b|ti) =
∑
A

ln
1√

2πσn

−
∑
A

(b(x, y)− ti(x, y))2
2σ2

n

(4.9)
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Now, by substituting this result into Equation 4.6, we can expand the match

equation to get:

M(b, ti) = lnP (ti) +
∑
A

ln
1√

2πσn

−
∑
A

(b(x, y)− ti(x, y))2
2σ2

n

(4.10)

The first term is the logarithm of the prior probability. The second term is a constant.

The third term is the SSD calculation of Equation 4.1. As before, because
∑

A b2(x, y) is

a constant, this is approximately equivalent to a correlation if
∑

A t2i (x, y) does not vary

much. A similar interpretation for correlation as likelihood is given by Rosenfeld and

Kak [76] and others.

Equation 4.10 can then be expanded to get:

M(b, ti) = lnP (ti) +
∑
A

ln
1√

2πσn

−

1
2σ2

n

∑
A

(
b2(x, y)− 2b(x, y)ti(x, y) + t2i (x, y)

)
(4.11)

This equation is the maximum a posteriori function for images with the assumption of

independent Gaussian noise at each pixel.

4.3.3 Boundary Formulation

As discussed in Section 4.2, the focus of the match will be directed to the boundary.

The objective function will now be specialized to match boundaries. For this case, the

object template, ti(x, y), represents the boundary of the object. The ideal boundary is

one-dimensional, but it can be embedded into a two-dimensional image. This is done

by making ti(x, y) constant along the boundary of the object it represents and zero
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everywhere else. This two-dimensional template thus represents the ideal boundary re-

sponse. In order to match this template with the image, consider b(x, y) to be a boundary

measure applied to the raw image data, b(x, y) = b(i(x, y)). Thus, both ti and b are

two-dimensional functions that represent boundaries. They are summed (or integrated),

however, only along a contour, as will be explained below. The construction of the object

boundary template and the boundary measure calculation will be discussed in Chapter

5.

Because the template has support only along the boundary, it is not necessary to

sum over the entire image area for terms involving the template, but only over the curve

represented by the template.

Equation 4.11 can be rewritten:

M(b, ti) = lnP (ti) +
∑
A

ln
1√

2πσn

− 1
2σ2

n

⎛
⎝∑

A
b2(x, y) +

∑
Ci

(
−2b(x, y)ti(x, y) + t2i (x, y)

)⎞⎠ (4.12)

where Ci is the curve defined by the boundary in template ti. This can be simplified

because ti(x, y) is constant over the curve that it defines:

M(b, ti) = lnP (ti) +
∑
A

(
ln

1√
2πσn

− b2(x, y)
2σ2

n

)
+

1
2σ2

n

∑
Ci

(
2b(x, y)k − k2

)
(4.13)

where k is the magnitude of the template at any point, taken to be constant as explained

in Section 4.2 and chosen to be the maximum boundary response. The function M can

be simplified further by removing the terms that do not depend on the different possible

templates, since we want the maximum over i. We can also remove the k2 term because
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it is a function only of the length of the curve, which we can approximate as a constant

because it will not vary significantly.

M(b, ti) = lnP (ti) +
1
σ2

n

∑
Ci

b(x, y)k (4.14)

This equation is the maximum a posteriori objective for boundary templates. The first

term is the bias due to the prior probability. The second term is simply a correlation

of a boundary template with the boundary strength in the image, and is thus a kind of

matched filter [76].

We can also consider the boundary to be a vector-valued quantity where the

magnitude of the vector represents the strength of the boundary, and the direction of the

vector is the direction of the tangent to the boundary. This means that ti(x, y) has a

constant magnitude along the boundary of the object it represents and a direction equal

to the tangent to the boundary. The corresponding k is now a function of position along

the curve:

k(x, y) = k

⎡
⎢⎢⎣

∂x(p,s)
∂s

∂y(p,s)
∂s

⎤
⎥⎥⎦ (4.15)

The boundary measure b is a measure of both boundary magnitude and direction. Equa-

tion 4.14 can be interpreted as vector valued and rewritten using the dot product. This is

equivalent to assuming that the two components of the vector boundary measure are inde-

pendent and governed by the same probability density. Thus, the maximum a posteriori
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objective for the vector-valued boundary template is:

M(b, ti) = lnP (ti) +
1
σ2

n

∑
Ci

b(x, y) · k(x, y) (4.16)

4.3.4 Independence Assumption

The boundary measure at each pixel is calculated from a neighborhood of pixels and

therefore the values are correlated. In addition, the original image pixel values are most

likely correlated. The original pixel correlation is in general unknown, although it may

be possible to devise a reasonable model using Gibbs distributions [33]. However, the

correlation of the boundary measure at each position with neighboring values, caused

by the boundary measure calculation, can in principle be determined explicitly. That

is, the boundary measure value at each point is a known function of the pixels in the

neighborhood. The correlation of the boundary measure with neighboring boundary

values due to this effect can thus be determined explicitly.

The problem with including the correlation is that it excessively increases the

complexity of the problem. In order to account for the correlation between boundary

measure values, a covariance matrix for all of the boundary values would have to be

constructed and inverted. The equation analogous to Equation 4.8 would be:

P (b|ti) =

(
1

(2π)A2 |Cnn|

)1/2

e−(1/2)nT C−1
nnn (4.17)

where A is the number of pixels in the image, n is the concatenation of values of

b(x, y) − ti(x, y) and Cnn is the corresponding covariance matrix. To avoid this com-

plication, we invoke an assumption of independence. Cooper [22] made the same in-
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dependence assumption for a maximum likelihood approach to boundary finding. He

compared the probability of error with and without the independence assumption for

some simple examples and found that it was only slightly worse using the independence

assumption. His results suggest that the assumption does not alter the performance sig-

nificantly. The independence assumption amounts to ignoring information, not assuming

additional information, by the principle of maximum entropy or least information [50].

4.3.5 Noise

The noise, as described by the formulation in Equation 4.8, should be thought of as

not just the degradation of the signal due to the imaging process, but also the combined

effect of many factors such as other objects, occlusion and boundary measurement. These

factors are, in general, impossible to model explicitly. Instead, we assume it can be

described by a Gaussian density with zero mean. As explained in Section 3.4, the Gaussian

is the probability density with the maximum entropy among probability density functions

having a given variance. A non-zero mean would only change the expression by a constant.

For the variance of the noise, σ2
n, we could estimate it as we did the model parameters,

that is, measure it on solutions obtained either manually or with this method using a

uniform prior. While the performance depends on σ2
n, it is not too sensitive to it. As can

be seen in Equation 4.14, σ2
n represents the weight of the image information and thus the

relative importance of the prior information and the likelihood. The greater the noise,

the more important the prior.
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4.4 Boundary Measures

To compare the image to the boundary model, we need a boundary measure that can be

calculated from the image. A natural candidate for many images is the gray-level gradient.

Objects often contrast with their backgrounds by a difference in gray level resulting in

a strong gradient at the boundary. The gradient has the advantage of allowing the use

of direction information. The direction of the gradient, however, is not always consistent

around an object, such as when the object overlaps both lighter and darker objects. An

example is shown in Figure 6.7. Often objects do not differ significantly in terms of

gray level from the background, but are delineated by a border of a different gray level.

Measures that respond to line strength are useful in these cases. The gray level itself (or

the negative) is one measure that works as a line indicator when it is relatively high (or

low) at the boundary. A more general line detector is the Laplacian. It works as a line

detector by acting as a non-directional template for a line in that it has a low center and

a high surround.

Any measure that indicates a change in some property that distinguishes the

object from the background could be used. The proper one must be chosen with reference

to the particular character of the images involved. All of these measures benefit from

smoothing. Smoothing reduces the effect of noise in the image and produces a smoothly

varying boundary measure. This will be beneficial in the optimization process (see Section

5.2). The implementations of these measures will be discussed in Chapter 5. Examples

will be shown in Chapter 6.
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4.5 Boundary Finding Objective Function

The templates under consideration actually form a continuum and each has a correspond-

ing value of a parameter vector p as described in Chapter 3. Thus, Equation 4.6 can be

written as:

max
p

M(b,p) = max
p

[lnP (p) + lnP (b|p)] (4.18)

From this and Equation 4.14 we can write the term to be maximized as:

M(b,p) = lnP (p) +
1
σ2

n

∑
Cp
b(x, y)k (4.19)

where Cp is the curve defined by (x(p), y(p)). This is equivalent to the continuous version:

M(b,p) = lnP (p) +
k

σ2
n

∫
Cp
b(x, y)ds (4.20)

This line integral can be written as a regular definite integral:

M(b,p) = lnP (p) +
k

σ2
n

∫ S

0
b(x(p, s), y(p, s))ds (4.21)

where s is the arclength along the curve and S is the total arclength.

If a uniform prior were used, the first term would be a constant, and thus inconse-

quential in the maximization. We can, instead, expand the first term using the Gaussian
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distribution shown in Equation 3.37.

lnP (p) = ln

⎡
⎣ N∏

i=1

1
σi

√
2π
e
− (pi−mi)

2

2σ2
i

⎤
⎦

=
N∑

i=1

[
ln

(
1

σi

√
2π

)
− (pi −mi)2

2σ2
i

]
(4.22)

Now, from Equations 4.21 and 4.22 we get:

M(b,p) =
N∑

i=1

[
ln

(
1

σi

√
2π

)
− (pi −mi)2

2σ2
i

]
+

k

σ2
n

∫ S

0
b(x(p, s), y(p, s)) ds (4.23)

The corresponding vector-valued version of this equation, from Equation 4.16, is:

M(b,p) =
N∑

i=1

[
ln

(
1

σi

√
2π

)
− (pi −mi)2

2σ2
i

]
+

k

σ2
n

∫ S

0
b(x(p, s), y(p, s)) · ds (4.24)

Equations 4.23 and 4.24 are the objective functions expressed in terms of the

parameters that are used for boundary finding, and are discretized as will be explained

in Chapter 5. The first term of this objective function is the contribution of the prior

probability of the parameter vector. The influence of this term is controlled by the

variance of the prior probability. The greater the variance of the prior, the smaller the

influence of this term. The prior also determines the starting point for the optimization

process, as described in Section 5.2. The second term is the contribution of the image

information.



Chapter 5

Implementation

The system was implemented in Pascal on a DEC Vaxstation II using VMS. This chapter

discusses the important implementation issues for the system including the objective

function calculation, optimization techniques used and smoothing issues.

5.1 Objective Function Calculation

The objective function, Equation 4.23 or 4.24, consists of two terms. The first term, due

to the prior probability, is a straightforward calculation given the current value of the

parameter vector. The second term is a line integral of the boundary measure image

along the boundary defined by the current parameter vector. The boundary measure

calculation will be discussed in the next section. The integration is accomplished by first

constructing a discrete template corresponding to the boundary as defined by the current

value of the parameter vector. This template can then be directly correlated with the

boundary measure image. Template generation will be discussed in Section 5.1.2.

58
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5.1.1 Boundary Measure Implementations

The gray level gradient can be calculated by first smoothing with a Gaussian to reduce

the effect of noise and simplify the image, followed by a finite difference approximation

to the partial derivatives. This allows smoothing to be controlled independently of the

differentiation.

As a smoothing filter, the Gaussian has many advantages. The two-dimensional

Gaussian is the only separable, rotationally symmetric two-dimensional operator. The

Gaussian has the same form as its Fourier transform and has the smallest space-frequency

width product. It is the optimally localized function that is smooth in both space and

frequency.

Composing the convolutions would require more computation since a larger mask

would be needed to achieve the same accuracy. A good local approximation to the gradient

that has x and y components that are unbiased for the same point is described by Horn

[41]. This can be done by the following convolutions:

∂i

∂x
(x+

1
2
, y +

1
2
) ≈ 1

2
i(x, y) ∗ ∗

⎡
⎢⎢⎣ −1 1

−1 1

⎤
⎥⎥⎦ (5.1)

∂i

∂y
(x+

1
2
, y +

1
2
) ≈ 1

2
i(x, y) ∗ ∗

⎡
⎢⎢⎣ −1 −1

1 1

⎤
⎥⎥⎦ (5.2)

where ∗∗ is two-dimensional convolution. This gives the average of two finite difference

approximations for a point midway between pixels. The result is a gradient computation

with variable smoothness. The amount of smoothing used will be discussed in Section

5.3. The magnitude of the gradient is simply the square root of the sum of the squares
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of the x and y components of the gradient. The perpendicular to the gradient is used in

order to compare it with the curve tangent. The gray-level Laplacian is calculated after

smoothing using a similar discrete approximation:

∇2i(x, y) ≈ 1
6
i(x, y) ∗ ∗

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 1

4 −20 4

1 4 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.3)

The Gaussian convolution was implemented using the ideas outlined by Hummel

and Lowe [45]. We take advantage of the separability of the Gaussian and convolve with

two one-dimensional Gaussians. Kernel values of the Gaussian are computed using block

averages. Since the image is defined only on a finite grid, a rule is needed for points outside

the grid. We repeat the edge values outside of the border rather than taking them equal

to zero. Repeating preserves the global mean and makes the normal derivative at the

border zero.

5.1.2 Template Generation

To facilitate the integration in Equations 4.23 and 4.24, we must generate a template

corresponding to the current value of the parameter vector, p. Constructing the spa-

tially discrete template corresponding to a continuous curve is known variously as scan

conversion, rasterization and discretization [30]. In addition to achieving an accurate

discretization, the template construction should also try to limit the number of points in

the template in order to limit the computational burden of the correlation. The overall

computational burden of the construction itself must also be limited. The implementation

of this procedure is crucial because the template generation is needed for every objective



61

function evaluation, as we will see in Section 5.2. A computationally intensive template

generation would cripple the entire method. The standard approach in computer graphics

is to discretize a blurred version of the curve in order to create a more visually pleasing,

less jagged rendition of the line. We do not want to blur the template, however, because

the boundary should be accurately located. Any blurring should more properly be done

to the image. In addition, this would increase the number of points in the template.

The ideal template is the curvilinear Dirac delta function that follows the curve:

δ(x − x(t), y − y(t)). This is the most accurately localized description of the contour

and consequently allows for the most accurate match. Template accuracy is particularly

important in low-resolution images. The actual template can, of course, only be a discrete

approximation to the delta function. The question is which discrete points are part of

the template and what is their value.

To determine the form of the template, consider the problem as numerical line

integration. The line integral:

∫
C:(x(s),y(s))

f(x, y)ds (5.4)

can be written as the definite integral:

∫ s=S

s=0
f(x(s), y(s))ds (5.5)

where s is the arclength and S is the total arclength. This is discretized to be:

Ntem∑
j=0

f(xj, yj)l(xj , yj) (5.6)
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where Ntem is the number of pixels that the curve crosses, xj and yj are the coordinates

of the jth pixel and l is the length of the portion of the curve that crosses the jth pixel.

This approximation considers the function to be constant over the square area of the

pixel. It is therefore effectively the rectangle rule for line integrals. The values l(xj , yj)

are very important because if they were taken to be constant, lines at different angles

would be weighted differently. This effect is not ameliorated in higher resolution images.

5.1.2.1 Algorithm

The template generation procedure must calculate xj , yj and l(xj , yj). The computation

of the right-hand side of Equation 3.7 is done using a real-valued fast Fourier transform.

This yields values of x and y at discrete values of t. The number of points must be large

enough so that the discrete values are close enough to make linear interpolation sufficient

(approximately 3 pixels). Too many points will unduly increase the computation. The

fast Fourier transform is most efficient when applied to a sequence whose length is a power

of 2. The number of points in the reconstructed curve is chosen to be a fixed power of

2 based on the length of the initial curve. This will then be sufficient throughout the

optimization process.

The algorithm is a variation of Bresenham’s [30]. The length of the line through

the pixel depends on the slope, m, and the cross-over point between the two adjacent

pixels, xc, as shown in Figure 5.1 for a slope less than one and greater than zero. Other

slopes are handled similarly. Bresenham’s algorithm keeps track of the distance from the

center of the pixel, t, and from that we can determine xc:

xc = min(1,max(0,
2t− 1 +m

2m
)) (5.7)
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Figure 5.1: Length of curve in each pixel.

where it is bounded by zero and one in order to handle the border cases. The curve length

in the two adjacent pixels is then:

l(xj , yj) = xc

√
m2 + 1

l(xj+1, yj+1) = (1− xc)
√
m2 + 1 (5.8)

An example template is shown in Figure 5.2. The darkness of the square areas indicating
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Figure 5.2: Example template.

each pixel corresponds to the length of the curve that passes over it.

The complexity of this algorithm is proportional to the length of the boundary.

The boundary length is related to the size of the object and the resolution of the image. In

order to speed the calculation, the template generation could be simplified by making the

template binary or weighting the template simply according to whether the boundary

is straight or diagonal at each pixel. The resulting inaccuracy might not degrade the

performance too much, especially for higher resolution images. The template generation,

and the subsequent correlation, could also be parallelized fairly straightforwardly by

dividing the boundary up between processors.
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5.2 Optimization Techniques

The problem to be solved is that of maximizing the objective function M(p), as defined

in Chapter 4. In order to simplify the formulation, we will consider this optimization

problem to be completely unconstrained, that is, all values of p are considered feasible.

Any p corresponding to an object outside the limits of the image, however, is clearly

invalid. For this reason, we consider the value of the boundary measure to be zero

outside of the image area, thus making the invalid values of p nonoptimal.

A central concern of optimization is the distinction between local and global so-

lutions. If the objective function is convex, then there is only one relative optimum, and

that is the global optimum [57]. The objective function we are solving is not in general

convex, but depends ultimately on the gray-level surface shape of the image. This means

that there will be local maxima. To choose an optimization method we must first de-

cide between local and global methods. The main concerns are appropriateness to the

problem and feasibility as a solution. Global methods are naturally much more com-

putationally intensive and thus can only be justified when they are absolutely essential.

Apart from exhaustively searching the space, which is only practical in low-dimensional

problems, other alternatives are dynamic programming [8, 63] and simulated annealing

[33]. Dynamic programming requires that the objective can be formulated as a sum of

local terms, as discussed in Chapter 2, with exponentially increasing complexity as the

neighborhood enlarges. This is a powerful technique when the objective is of the proper

form. Simulated annealing is a more general technique for finding a global optimum using

a stochastic relaxation method, but unfortunately it still involves a heavy computational

burden.

For this problem, the objective has been formulated in such a way as to lessen the
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need for a global solution. Note that the prior probability term in the objective function,

shown in Equation 4.23, is quadratic. On the tails of the distributions, this quadratic

term dominates. Thus, the probability distributions make distant points in the space

non-optimal because they are on the tails of the distributions. The starting point for

the optimization will be taken to be the maximum of the prior distributions. The global

optimum probably will be near the starting point and thus a local optimum is likely to

be a global optimum. The degree to which this is true depends on the strength of the

probabilistic information. The narrower the distributions, the quicker the quadratic term

will dominate the rest of the expression and thus the more localized the optimal point.

Since a local optimization is likely to find a global optimum, although there is still the

possibility of converging to a poor local minimum, the excessive computation involved in

finding a global optimum is deemed not necessary. Poor convergence can be identified

by a corresponding low objective function value and verified visually. The case of wide

distributions for translation and rotation caused by widely varying viewpoints could be

problematic because the initial estimates of those parameters would not necessarily be

very good. An additional process to determine better starting points could be incorpo-

rated using an initial exhaustive search over just those parameters or using other low-level

features as a guide.

Dynamic programming is not possible here because the objective cannot be broken

into local terms. The representation, and thus the overall objective function, is deliber-

ately defined in terms of non-local shape characteristics in order to better characterize

shape. Dynamic programming is only possible when the objective is limited to local

properties such as continuity or low curvature.

Variational calculus methods formulate the optimization problem as a system
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of partial differential equations representing the necessary conditions for an optimum

[81, 41]. This results in the Euler-Lagrange equations, and for all non-trivial problems

they must be solved by numerical methods. These methods typically find a local solution

by iterative means [75]. Because they solve for the necessary conditions, variational

methods require higher order derivatives. While this may be a disadvantage due to the

greater instability of higher derivatives, this method has been widely used. In addition,

since these conditions are necessary but not sufficient, unless the objective function is

convex, the solution is not in general guaranteed to be an optimal point.

Instead of solving the necessary conditions, a local optimum can be found directly

from the objective function. The main computational burden of optimization, for all but

the simplest of objectives, is function evaluations (and, if used, gradient evaluations).

Most numerical optimization methods require that the gradient of the objective function

be computable. The gradient gives the direction of greatest increase in the function value

[72]. It therefore provides the best direction to move in the space in order to maximize

the objective function. An analytic form for the gradient must be derived in order to

make use of these methods. A discrete divided difference approximation, such as the

forward-difference, can of course always be computed directly from the function values.

∇f(p) ≈ f(p + ∆p)− f(p)
∆p

(5.9)

The discrete approximation is sensitive to errors in that the appropriate step to take, ∆p,

is not obvious and the wrong choice can lead to inaccuracies. It is also computationally

intensive in that it requires N function evaluations for each gradient evaluation, where

N is the dimensionality of the parameter space. The options are therefore to either use
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an optimization method that does not require gradient information, or to formulate a

gradient for the objective function. Methods that do not require gradient information

have the advantage of allowing greater flexibility in formulating the objective function and

in choosing the parameter space in that they free us of the restriction of differentiability.

Two optimization methods were used for the implementation: one computed with

gradient information and one without. One of the few practical ways to optimize without

the use of gradient information is with direction set methods [75]. The use of a method

of this type, developed by Powell, will be described in Section 5.2.1. The optimization

method of continuous gradient ascent was also implemented. While the particular form

of our objective function cannot be directly differentiated, it can be formulated in such a

way as to enable the gradient calculation. The gradient calculation and the continuous

gradient ascent method are described in Section 5.2.2.

5.2.1 Powell’s Direction Set Method

Without gradient information, an optimization method needs some other basis for choos-

ing which direction to move in the parameter space. By moving through the parameter

space, experience can be built up to determine which direction results in the greatest

increase. In general, direction set methods choose a set of directions to move in and then

alter the directions based on the progress made. This is repeated until no further change

in the function is made.

For each direction, a line maximization is done. That is, p, the parameter vector,

is updated for the direction d according to:

p′ = p + λd (5.10)
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where λ is found from:

min
λ
f(p + λd) (5.11)

where f is the function to be maximized. This one-dimensional maximization can be

solved by standard means such as golden-section search or parabolic interpolation. The

problem is that these methods require a known interval in which the maximum lies. This

interval is not, in general, known. One end of the interval is λ = 0. The other end of the

interval can be found by taking a large step in the direction that the function increases.

For a unimodal function, larger and larger steps can be taken until the function decreases

again. If the function is multimodal, this approach can be dangerous because a large

step could fall into an adjacent local maximum. The difficulty results because there is

no basis for choosing the size of the step taken in order to guarantee remaining in the

neighborhood of one local maximum. Cautious small steps will result in many function

evaluations. This disadvantage is true of all maximization methods that rely on line

maximization.

Each iteration of a direction set method is thus a set of line maximizations. In

Powell’s method [74], the direction set is initialized to be the individual parameter direc-

tions. While this set is sufficient for convergence, it can be inefficient. Powell’s method

attempts to improve upon this set by replacing the direction of largest increase in the set

with the average direction moved after maximizing in all directions. The rationale is that

the average direction moved is likely to be a good direction, but the direction of largest

increase is likely to point in a similar direction. This update to the directions therefore

adds a likely good new direction while avoiding the possibility that all of the directions
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will point in nearly the same direction. The direction set must continue to span the entire

N -dimensional space or the optimum point found will only be valid in a subspace.

The use of this method is fairly straightforward; all that is needed is function

evaluations. For this method we use the relative parameters, prel from Equation 3.25, be-

cause we are not concerned with the complexity of the gradient. In spite of the difficulties

of line maximizations, this method works well, but the number of function evaluations is

large.

Figure 5.3 shows the function value for each function evaluation taken using Pow-

ell’s method for a typical case (shown in Figure 6.3, noise standard deviation of 0.2). Note

the large number of iterations required for convergence. Also, the plot is quite jagged.

This is partially due to searches in directions where there is no possible improvement. It

is also a general property of the line maximization process which can take large steps be-

yond the range of improvement in a particular direction. The function value for each full

iteration of Powell’s method, however, converges steadily. Results using Powell’s method

will be shown in Chapter 6. This optimization method took an average of 30 minutes

CPU time on a Vaxstation II for the range of problems shown in Chapter 6.

5.2.2 Continuous Gradient Ascent

The main problem with Powell’s method is its slow speed of convergence. This is due

to both the lack of gradient information and the line maximizations. Gradient methods

are very powerful in that exploratory moves of the sort that Powell’s method makes

are made unnecessary because the gradient provides that information. Most gradient

methods use line maximization. The simplest method of this sort is steepest ascent,

which at each iteration performs a line maximization in the direction of the gradient.

This method is inefficient because each step is perpendicular to the previous one and
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Figure 5.3: Powell’s method convergence example.
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this results in a zigzagging path to the optimal point. Other methods, such as conjugate

gradient methods, attempt to overcome this problem. The rationale for line maximization

is to make the most out of each gradient computation because of the computational cost.

The problem is that the gradient direction is only the steepest direction, and therefore

the best, in the small neighborhood about the point of evaluation where the gradient

is effectively constant. The cost due to the many function evaluations required for line

maximization can outweigh the cost of additional gradient evaluations. Also, there is still

the problem of obtaining a local optimum using line maximization with a multimodal

objective.

An alternative approach which avoids the use of line maximizations is continuous

gradient ascent [72, 46, 27]. This method takes small steps in the direction of the gradient.

The truly continuous version of this method, using infinitesimal steps, is only appropriate

for an analog computer. A discrete approximation is therefore used here. The goal of

the method is to move always in the direction of greatest increase because this will save

many function evaluations. The gradient must be relatively easy to compute, however,

in order to make this method practical. If the gradient computation is comparable to the

function computation, for example, the overall computation could be greatly reduced.

5.2.2.1 Ascent Method

The ascent method follows the gradient, taking small steps until the optimal point is

reached. The initial vector p0 is updated by the following:

pj+1 = pj + ω∇M(pj) (5.12)
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Function evaluations are needed at each step to check for convergence. The gradient

weighting factor, ω, must be chosen small so as not to overstep the maximum. If ω is too

small, the number of iterations will be excessive. Thus, ω starts at a predetermined small

value. If pj+1 < pj, then ω is decreased by a set factor and pj+1 is recalculated. This

avoids overstepping due to too large a value of ω. The algorithm stops when M(pj+1)−

M(pj) = 0 or ω = 0 (within machine precision).

In order to show that this algorithm converges, we can apply the Global Conver-

gence Theorem [57]. The objective function is an ascent function for the algorithm as

long as ω is small enough. For the sake of this analysis, we will consider ω to be fixed to

a small constant. The technical conditions of closure of the mapping and compactness of

the generated points are satisfied due to continuity of the algorithm. Thus the algorithm

converges to a solution point.

In order to determine the rate of convergence, we base our derivation on a similar

derivation for the rate of convergence for steepest descent described by Luenberger [57].

Consider the following quadratic objective:

f(x) =
1
2
xTQx− xTb (5.13)

where Q is a negative definite symmetric n× n matrix. If we define yk = xk − x∗ where

x∗ is the maximum point of f we can consider the equivalent problem (differing only by

a constant) of maximizing:

E(x) =
1
2
yTQy (5.14)
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Consider the ratio of E at successive iterations of the algorithm (the convergence ratio):

E(xj+1)
E(xj)

=
1
2y

T
j+1Qyj+1

1
2y

T
j Qyj

=
1
2 (yj + ωgj)T Q(yj + ωgj)

1
2y

T
j Qyj

= 1 +
2ωgT

j Qyj + ω2gT
j Qgj

yT
j Qyj

(5.15)

where gj = ∇f(xj). Since gk = Qyk, we get:

E(xj+1)
E(xj)

= 1 +
2ωgT

j gj + ω2gT
j Qgj

gT
j Q−1gj

(5.16)

With the appropriate rotation, Q becomes diagonal with diagonal elements equal to

its eigenvalues (all negative) denoted in decreasing order: (λ1, λ2, . . . , λN ). Using this

representation we have:

E(xj+1)
E(xj)

= 1 +
2ω

∑N
i=1 g

2
ji + ω2 ∑N

i=1 λig
2
ji∑N

i=1 g
2
ji/λi

(5.17)

This expression can be bounded from above by:

E(xj+1)
E(xj)

≤ 1 + 2ωλ1 + ω2λ1λN (5.18)

Thus, if 0 < ω < −2/λN , the method converges linearly with a convergence ratio no

greater than 1+2ωλ1+ω2λ1λN . The best value for ω is −1/λN for which the convergence

ratio is 1 − λ1/λN . This method of adjusting ω can be seen as a way to keep it within

the bounds required for convergence. If ω is too large, it will overshoot and ω will be



75

adjusted. Note that while the corresponding bound for steepest descent is
(

λN−λ1
λN+λ1

)2
,

this is for an entire line maximization which requires many function evaluations. If we

consider just four iterations of continuous gradient ascent at a time and the best ratio,

the convergence ratio is better than that of steepest descent. That is:

(
1− λ1

λN

)4

<

(
λN − λ1

λN + λ1

)2

(5.19)

A typical line maximization will use many more than four function evaluations. Con-

tinuous gradient descent is therefore comparable to, and potentially much better than,

steepest descent. The above argument extends to the case of a general objective function

where Q is identified with the Hessian of the objective at the solution point [57].

To use continuous gradient ascent, both function evaluations and gradient eval-

uations are needed. The gradient calculation will be described in Section 5.2.2.2. As

explained in that section, we will use only praw and pref and not prel (from Equation

3.25) because of the complexity of the gradient with respect to the relative parameters.

The principal advantage of this method is the improvement in speed over Powell’s method.

There is some indication that the refined parameter vector, pref , is a better space to work

in because it isolates the more distinct geometric features of rotation and scale. Thus,

some types of delineation problems may work better using pref , perhaps justifying the

increase in computation.

Figure 5.4 shows the function value for each function evaluation taken using con-

tinuous gradient ascent for a typical case (shown in Figure 6.11). Note the decrease in

the number of iterations compared to Powell’s method. The jaggedness in this plot is

due to ω adjustments, most of which are at the very end. Results using continuous gra-
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dient ascent will be shown in Chapter 6. This optimization method took an average of 2

minutes CPU time on a Vaxstation II for the range of problems shown in Chapter 6.

5.2.2.2 Gradient Formulation

The specific form of the objective function developed in Section 4.5 makes the gradient

calculation difficult. Numerical integration will have to be used because the integrand is

a complicated function of the data which cannot be analytically integrated. We cannot

treat it as a double sum or integral, as in Equation 4.10, because we do not have a

closed-form expression for the two-dimensional template. The line integral formulation

of Equation 4.20 is more tractable, but it must be converted to a definite integral in

order to be differentiated. The curve of integration is defined by (x(p, t), y(p, t)) where

t is not equal to arclength along the curve, as discussed in Section 3.3.1. The definite

integral form of a line integral uses the differential element of arclength, ds, which can

be expressed as:

ds =

√(
∂x(p, t)
∂t

)2

+
(
∂y(p, t)
∂t

)2

dt (5.20)

This expression is impractical because of its complexity, since both x and y involve several

terms.

A practical gradient calculation may be obtained by using a numerical approxima-

tion based directly on the objective function calculation. The template for the objective

function calculation is computed using interpolated values. The definite integral formu-

lation of Equation 4.21 can be used by basing it on these interpolated values.
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Figure 5.4: Continuous gradient ascent convergence example.
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First, differentiate Equation 4.21 to get:

∇M(p) =
∂

∂p

(
ln p(p)− k

2σ2

∫ S

0
b(x(p, s), y(p, s))ds

)
(5.21)

=
∂ ln p(p)
∂p

− k

2σ2

∫ S

0

∂b(x(p, s), y(p, s))
∂x

∂x

∂p
+
∂b(x(p, s), y(p, s))

∂y

∂y

∂p
ds (5.22)

In the above equation, we have used the simplifying approximation that ds is not a

function of p. This results in a much simpler expression for the gradient because we

have avoided differentiating Equation 5.20. An inaccurate gradient could potentially

slow the optimization somewhat because movement would not be exactly in the direction

of greatest increase. To evaluate the above expression we must be able to calculate all

of the subexpressions and then numerically integrate. The first term can be calculated if

the distributions are chosen as closed form expressions. In particular, if they are taken

to be Gaussian, as in Equation 4.22, this gives:

P (p) =
n∏

i=1

P (pi) =
n∏

i=1

1
σi

√
2π
e
− (pi−mi)

2

2σ2
i (5.23)

lnP (p) =
n∑

i=1

[
ln

(
1

σi

√
2π

)
− (pi −mi)2

2σ2
i

]
(5.24)

∂ lnP (p)
∂p

= −pi −mi

2σ2
i

(5.25)

The partials of b, the boundary measure image, with respect to x and y, can be calculated

using a discrete divided difference approximation. The central-difference is used here

because it is symmetric but still localized. The partials with respect to p are more

problematic in that we do not have analytic expressions for x or y as functions of s.
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We do have expressions for x and y as functions of t in Equation 3.7, which can be

differentiated with respect to p. We can then use the following:

∂x(p, s)
∂p

=
∂x(p, t(s))

∂p
(5.26)

Since we know s at all points along the curve simply from partial sums of the arclength

obtained during the template generation process, and we know t at discrete points along

the curve from the inverse Fourier transform, we can interpolate to determine t(s) at all

points. That is:

t(s) = ti +
(ti+1 − ti)(s− si)

si+1 − si
(5.27)

We can derive the partials of x and y with respect to the raw parameters, praw, from the

Fourier relation in Equation 3.7:

∂x(t)
∂a0

= 1 ∂x(t)
∂ak

= cos kt ∂x(t)
∂bk

= sin kt

∂x(t)
∂c0

= 0 ∂x(t)
∂ck

= 0 ∂x(t)
∂dk

= 0
(5.28)

∂y(t)
∂a0

= 0 ∂y(t)
∂ak

= 0 ∂y(t)
∂bk

= 0

∂y(t)
∂c0

= 1 ∂y(t)
∂ck

= cos kt ∂y(t)
∂dk

= sin kt
(5.29)

resulting in extremely simple expressions. If instead we use the refined ellipse parameters,

pref (excluding the relative transformation), we start with the corresponding Fourier
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relation, using Equation 3.14:

⎡
⎢⎢⎣ x(t)

y(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ a0

c0

⎤
⎥⎥⎦+

∞∑
k=1

⎡
⎢⎢⎣ Ak cos θk cos(φk + kt)−Bk sin θk sin(φk + kt)

Ak sin θk cos(φk + kt) +Bk cos θk sin(φk + kt)

⎤
⎥⎥⎦(5.30)

and differentiate to get the correspondingly more complex expressions for the partial

derivatives:

∂x(t)
∂a0

= 1

∂x(t)
∂c0

= 0

∂x(t)
∂Ak

= cos θk cos(φk + kt)

∂x(t)
∂Bk

= − sin θk sin(φk + kt)

∂x(t)
∂θk

= −Ak sin θk cos(φk + kt)−Bk cos θk sin(φk + kt)

∂x(t)
∂φk

= −Ak cos θk sin(φk + kt)−Bk sin θk cos(φk + kt)

(5.31)

∂y(t)
∂a0

= 0

∂y(t)
∂c0

= 1

∂y(t)
∂Ak

= sin θk cos(φk + kt)

∂y(t)
∂Bk

= cos θk sin(φk + kt)

∂y(t)
∂θk

= Ak cos θk cos(φk + kt)−Bk sin θk sin(φk + kt)

∂y(t)
∂φk

= −Ak sin θk sin(φk + kt) +Bk cos θk cos(φk + kt)

(5.32)

Differentiation with respect to the relative parameters, prel, will result in a much more

complex expression because the interdependencies between the parameters greatly in-

crease.
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The vector valued version of the objective function can be differentiated similarly

to the scalar one. First, from Equations 4.21 and 4.15 we get:

M(p) = ln p(p)− k

2σ2

∫ S

0

[
bx(x(p, s), y(p, s))∂x(p,s)

∂s

]
+[

by(x(p, s), y(p, s))
∂y(p,s)

∂s

]
ds

(5.33)

where bx and by are the x and y components of b. To simplify, we can drop the explicit

notation of the dependence of x and y on p and s. From this we can differentiate to get:

∇M(p) =
∂ ln p(p)
∂p

− k

2σ2

∫ S

0

∂
∂x

[
bx(x, y)∂x

∂s + by(x, y)∂y
∂s

]
∂x
∂p +

∂
∂y

[
bx(x, y)∂x

∂s + by(x, y)∂y
∂s

]
∂y
∂p ds

=
∂ ln p(p)
∂p

− k

2σ2

∫ S

0

[
∂x
∂s

∂bx(x,y)
∂x + ∂y

∂s
∂by(x,y)

∂x

]
∂x
∂p +[

∂x
∂s

∂bx(x,y)
∂y + ∂y

∂s
∂by(x,y)

∂y

]
∂y
∂p ds

(5.34)

This expression requires the calculation of ∂x/∂s and ∂y/∂s. These, along with the

partials of bx and by with respect to x and y, can be calculated using a discrete divided

difference approximation. The other terms are calculated as above.

To numerically integrate, we use the x y points generated by the template making

procedure along with the associated lengths and t(s) values. The lengths are the weight

for each term in the integration. The template is relatively computationally expensive to

generate but it only has to be computed once for each gradient calculation. In fact, the

function value and the gradient can be calculated from one template generation. Thus,

overall the gradient computation is comparable to objective computation and practical

to use.
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5.3 Smoothing

The amount of smoothing necessary for an image depends on the amount of noise. The

distribution of the noise is not usually known. A certain amount of smoothing is necessary

to lessen the effect of noise. Further smoothing simplifies the image. Multiresolution

or scale-space methods smooth by Gaussians over a range of widths (scales) and avoid

choosing one level of smoothing [91]. These methods take advantage of the simplification

and organization that the change in scale provides.

For this work, the simplification in the image due to smoothing results in a cor-

responding simplification in the search space. A smoother and simpler structure in the

search space makes the optimum easier to find because the local region of unimodality

grows larger. This simplification also affords the possibility of decreasing the dimension-

ality of the space because the high frequency content of the boundary is blurred out,

thus making the boundary describable in terms of fewer harmonics. An example of such

an approach is shown in Figure 5.5. The results from each level are passed to the next,

where the model is increased by one harmonic and the level of smoothing is reduced.

The shortcomings of this approach are revealed when it is applied to images with

more structure due to other objects. Boundaries from a highly smoothed image will not

correspond to region boundaries in the unsmoothed image because features are merged or

destroyed as the smoothing increases. Further processing can be used to determine which

boundaries are salient [13]. Too much smoothing on complex scenes is a mistake once the

smoothing goes beyond simplifying individual objects. In general, the full multiresolution

approach can be applied only to images with well separated features that will not merge

when highly smoothed.

In order to avoid the problems of too much smoothing while still simplifying the
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Figure 5.5: Multiresolution example. Four successive stages of a multiresolution strategy

applied to a single-object synthetic image. The smoothed gradient of the synthetic image

is shown with the final contour at each level. The model increases in complexity from

one to four harmonics as the smoothing decreases from σ = 9.0 to σ = 1.0.
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image somewhat, we have adopted a simple two-level approach. Since the merging of

boundaries occurs at high levels of smoothing, the optimization is first done using an

intermediate amount of smoothing to calculate the boundary measure. This allows the

optimization to approach the appropriate solution with less of a chance of getting stuck

in a local maximum. The result of that optimization is then used as the initial estimate

for a second optimization, done on a slightly smoothed version, in order to accurately

localize the boundary.



Chapter 6

Experiments

The system must be evaluated by testing it under a variety of conditions. In particular, we

can investigate the dependence of its accuracy on prior information and image quality.

The two-dimensional boundary finding system was tested on both real and synthetic

images. The advantage of synthetic images is that the true solution is known and thus

can be used for quantitative comparison. The results on real images can be evaluated

qualitatively.

6.1 Evaluation

To evaluate a boundary found by this method we need a good measure of its error from the

true boundary. For synthetic images, the true boundary is known and thus a quantitative

measure can be devised. For real images, we must rely on qualitative evaluation. While

a better way of evaluating such a system might be in terms of some specific measure

of interest, such as area or perimeter, that results from further processing, we prefer to

evaluate the boundary finding step in isolation. A natural quantitative measure of error
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is one that is equal to zero for a perfect match and gets larger as the boundaries become

further apart in terms of euclidean distance. Quantitative evaluation is a relatively

rare and often neglected component of computer vision. Edge detector performance, a

somewhat different problem, has been addressed by Abdou and Pratt [1]. The measure

they developed, also used by Gerbrands [34], that is most relevant to this work was based,

in part, on the distance between the detected edge and the actual edge. Their measure

was limited, however, to straight edges. Cooper [23, 22] used a similar measure which was

limited to perturbations of straight lines. All of these approaches simplify the problem

by reducing it to one dimension. It should be clear, especially for closed boundaries,

that the problem is inherently two-dimensional and should be kept that way. It might be

considered reasonable to use some measure of distance between the Fourier descriptors

themselves as a measure of error. This, however, begs the question in that this system

is attempting, in part, to justify Fourier descriptors as a reasonable representation for

shape.

In order to evaluate the error, while still retaining the intrinsic two-dimensionality

of the problem, we need to establish a correspondence between the points on the two

curves. The appropriate error measure is then the average distance between the corre-

sponding points on the two curves. The correspondence can be determined by finding

the offset between the curves that produces the minimum average error. The error, ε,

between the two curves is then defined by:

ε(v, v′) = min
0≤t0≤2π

1
2π

∫ 2π

0

∥∥v(t)− v′(t+ t0)
∥∥ dt (6.1)

where v is the true curve, v′ is the measured boundary and t0 is the offset. In discrete
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form, the curves are first made commensurable by resampling them to an equal number

of equally spaced points, using simple linear interpolation. The discrete form of the error

calculation can be written as:

ε(v, v′) = min
0≤t0≤n

1
n

n∑
t=0

∥∥v(t)− v′(t+ t0)
∥∥ (6.2)

The average error has to be evaluated at all possible offsets in order to determine the

minimum. This technique is general and readily extendable to higher dimensions with

the corresponding increase in computation. The computational burden is not important,

however, since this is only done for evaluation purposes and not in actual use.

6.2 Synthetic

The image shown in Figure 6.1 is a simple synthetic Mondrian image where the target

object (the darkest) is partially occluded by one object on the right and overlaps another.

The extraneous objects are potential sources of choice or confusion because alternate

boundaries are plausible, especially at the right side of the target and at the center of the

top boundary. The probability distributions for the parameter vector p were derived from

a set of manually traced contours. The initial curve superimposed is defined by the mean

parameter vector. The starting boundary only roughly agrees with the target in terms of

shape and location. The final curve accurately delineates the target with approximately

one half pixel average error. The curve correctly avoids both the overlapped and the

occluding object both because of the limit on the number of harmonics (four) and the

bias due to the probability distributions on the parameters.

Another synthetic image is shown in Figure 6.2. The target is the s-shaped portion
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Figure 6.1: Synthetic image example. Top left: Synthetic image (96 × 96). Top right:

Gray level gradient magnitude (σ = 3.0). Bottom left: Initial contour (4 harmonics).

Bottom right: Final contour on target shape.
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of the boundary of the large object. This structure is described by an open curve model.

The other objects in the image are potential sources of confusion, as in the previous

example. Note the large number of harmonics needed due to the relative complexity of

the curve and because each harmonic is described by just two parameters as opposed

to four for closed curves. The final curve accurately describes the target and avoids the

other objects.

6.2.1 Varying Noise

The effect of noise on the performance of the system can be investigated by adding

different amounts of noise to a synthetic image and comparing the resulting boundaries

to the true boundary. The synthetic image shown in Figure 6.1 was altered by the

addition of Gaussian noise of zero mean and varying standard deviation. Examples of

the noisy images are shown in Figure 6.3. The accuracy of the results of running the

optimization on the noisy images, using the same distributions for each, is shown in

Figure 6.4. Signal-to-noise ratio (SNR) is defined here as:

SNR =
Gray level contrast between object and background

Standard deviation of Gaussian noise
(6.3)

The error shown is from the boundary from which the image was constructed. The

accuracy of the resulting contours is good (∼ 0.5 pixels) for SNR > 1 and steadily

worsens as the noise increases. Most of the error seems to be due to confusion with the

overlapping object on the right.
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Figure 6.2: Synthetic image open curve example. Top left: Synthetic image (64 × 64).

Top right: Gray level gradient magnitude (σ = 3.0). Bottom left: Initial contour (12 har-

monics). Bottom right: Final contour on target shape.
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Figure 6.3: Noise experiment images. Left, top to bottom: Image from Figure 6.1 with

Gaussian noise added with SNR of 5.0, 2.5, 1.0 and 0.5. Each shown with final contour.

Right, top to bottom: Corresponding gray level gradient magnitude (σ = 3.0).
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Figure 6.4: Sensitivity to noise experiment.
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6.2.2 Varying Initial Parameters

The performance is also affected by the values of the initial parameters, that is, the

quality of the initial guess. This effect can be investigated in a similar way by running

the same problem from different starting points and examining the results. Here we used

the same synthetic image with SNR = 2.5 constructed as above. In this experiment,

the parameters varied were vertical translation, scale and rotation. The other parameters

were held constant while each of the above three parameters were varied individually. The

range of initial curves for the parameters tested are shown in Figure 6.5 with the image

used. This image, while synthetic, has a reasonable amount of noise and complication.

The resulting optimized boundaries using these different starting points are shown in

Figure 6.6. Each parameter has a range within which the solution can be found reliable.

Once the parameters are varied beyond that range, the result will converge to nearby

features or get stuck far from the proper solution.

6.2.3 Varying Bias

This experiment is designed to demonstrate the effect of different prior probability dis-

tributions on the optimization process. The purpose of this experiment is to have a

demonstrable difference result from two different prior distributions applied to the same

image. To show that the difference is due to the bias caused by the probability term

in the objective function and not simply the starting point, the distributions will have

the same mean value, but different variances. A synthetic Mondrian image, shown in

Figure 6.7, was designed containing two similar objects. The light object corresponds to

a rotation of the mean prior curve. The dark object underneath it is a scaled version of

the mean curve. The prior distribution can be biased towards finding the light object
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Figure 6.5: Parameter sensitivity experiment parameters. Top left: Image from Figure

6.1 with Gaussian noise added (SNR = 2.5) shown with initial curves for range of vertical

translation tested. Top right: Image with initial curves for range of scale tested. Bottom:

Image with initial curves for range of rotation tested.
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Figure 6.6: Sensitivity to initial parameters experiment.
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by having a wide distribution on the rotation parameter and narrow distributions on the

others. Conversely, a wide distribution on the scale parameter and narrow distributions

on the others will bias the optimization to the dark object. These two different prior

distributions were applied to the image and the results are shown in Figure 6.7.

6.3 Real Images

The deformable object boundary finding method has been applied to a variety of objects

from real images, with an emphasis on heart and brain images. There has been a long

history of interest in the automatic analysis of cardiac images and an increasing interest,

due to new imaging techniques, in images of the brain [4]. The successful application of

this boundary finding technique to cardiac problems has been described [82].

6.3.1 Nuclear Medicine

In cardiac imaging, it is necessary to isolate the boundary of the left ventricle of the

heart in order to quantify cardiac wall motion and shape. An equilibrium radionuclide

angiocardiogram [21] acquired in the left lateral view is shown in Figure 6.8. The gray

level in these images is gamma-ray intensity corresponding to a projection in the plane

of the viewer of the volume of radioactively-labeled blood at each pixel position. The

primary difficulties in finding the left ventricle here are the low spatial resolution of the

image (48 × 48) and the fact that the left ventricle overlaps another structure, the right

ventricle, which causes an ambiguity in that portion of the boundary. The upper right of

Figure 6.8 shows the result of the gray-level gradient operation. The gradient magnitude

is displayed as gray level intensity. The initial contour derived from the mean curve of

a set of manually traced contours, seen from the same view, is shown in the lower left.
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Figure 6.7: Bias experiment. Top left: Synthetic image (64 × 64). Top right: Gray level

gradient magnitude (σ = 1.5). Middle: Initial contour (6 harmonics). Bottom left: Final

contour, biased to scaled target shape. Bottom right: Final contour, biased to rotated

target shape.
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Note that the left-most portion of the initial boundary is blunter and shorter than the

edge magnitude image indicates. The final boundary is shown in the lower right. Here,

the apex has been extended out to its true location and the regions surrounding the

apex more accurately represent the true border. However, the boundary has adhered to

a strong gradient at the top of the ventricle that may be spurious. This illustrates its

tendency (due to the prior probability term in the objective function) to not move too

far from the original contour.

6.3.2 Echocardiography

In two-dimensional echocardiography [21], the boundary of an object is rarely indicated

by complete, closed groups of edge gradients. Instead, objects are identified by subjective

contours [48], that is, contours identified by subjectively grouping incomplete contour

information. Gray level in these images represents the strength of echoes of ultrasound

waves at each pixel location due to reflection from tissue interfaces and scattering from

within tissues. Echocardiograms are particularly difficult to analyze because structures

are subject to a high level of noise and tend to have a very scattered and disjointed

response. Object boundaries are thus largely made up of organized blobs of signal in-

tensity. An example echocardiogram boundary finding problem is shown in Figure 6.9.

The left ventricle, the object to be delineated, is shown in the apical long axis view

at end-diastole along with the corresponding magnitude of the intensity gradient. The

ultrasound transducer is just above the top center of the image. The probability distri-

butions were generated from a sample of manually traced contours. Note that although

this is almost a plausible shape for this boundary, many of the strongest gradients such

as those near the lower left part of the contour are completely missed. The final con-

verged solution of the algorithm attains a more acceptable shape in this region, while the
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Figure 6.8: Left lateral radionuclide angiocardiogram example. Top left: Radionuclide

angiocardiogram (48× 48). Top right: Gray level gradient magnitude (σ = 2.0). Bottom

left: Initial contour (4 harmonics). Bottom right: Final contour on the endocardium of

the left ventricle.
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remainder of the contour still adheres to the most plausible portions in the other regions.

Note the extension of the apex of the perceived contour off the end of the upper leftmost

portion of the image. Apical dropout of this sort often occurs in echocardiograms taken

from this view. Thus, this complete boundary model approach may have further merit

in estimating the shape of the complete left ventricle even in regions where it is entirely

missing.

6.3.3 Magnetic Resonance Imaging

The algorithm has also been tested on magnetic resonance images [40]. Gray level in

these images represents a combination of the nuclear magnetic resonance properties of

the hydrogen nuclei at each pixel position. The results of the boundary finding program

applied to the problem of delineating the corpus callosum in the human brain from

magnetic resonance images are shown in Figure 6.10. The size and shape of the corpus

callosum are important in the study of its relationship to cognitive function [90]. In these

images, the corpus callosum is separated from the rest of the brain by a dark line. Thus,

a measure that responded to lines was used instead of the gray-level gradient. In this

case, we used the positive magnitude of the Laplacian of the Gaussian, which responds

to both lines and edges. The final contour succeeds in delineating the structure properly.

Because of the narrow, curved shape of the corpus callosum, six harmonics are needed to

accurately represent it.

Magnetic resonance is becoming more and more important for cardiac imaging as

acquisition rates increase into the range required for imaging the moving heart. In Figure

6.11, an oblique sagittal image of the heart roughly equivalent to the long-axis view is

shown. The inner or endocardial wall of the left ventricle is the target structure in the

image. The results of the boundary-finding procedure are shown.
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Figure 6.9: Long-axis echocardiogram example. Top left: Echocardiogram (170 × 170).

Top right: Gray level gradient magnitude (σ = 3.0). Bottom left: Initial contour (4 har-

monics). Bottom right: Final contour on the endocardium of the left ventricle.
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Figure 6.10: Magnetic resonance mid-brain sagittal image example. Top left: Magnetic

resonance image (146 × 106). Top right: Positive magnitude of the Laplacian of the

Gaussian (σ = 2.2). Bottom left: Initial contour (6 harmonics). Bottom right: Final

contour on the corpus callosum of the brain.
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Figure 6.11: Magnetic resonance oblique sagittal cardiac image example. Top left: Mag-

netic resonance image (256 × 256). Top right: Gray level gradient magnitude (σ = 4.0).

Bottom left: Initial contour (4 harmonics). Bottom right: Final contour on the endo-

cardium of the left ventricle.
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In Figure 6.12, a transaxial cardiac image shows a section through the left ven-

tricular wall. Here, the endocardial and epicardial (outer) walls of the left ventricle are

objects to be delineated. The results of the two separate optimizations are shown.

In Figure 6.13, another magnetic resonance cardiac example is shown with some-

what poorer image quality compared to the previous example. This is a transverse section

through the body showing the endocardium of the left ventricle. As before, the inner wall

is well delineated by the final optimized contour.

6.3.4 Summary

This method appears to work well delineating structures in real images, and to be rela-

tively insensitive to the problems of broken boundaries and spurious edges from nearby

objects. The start position has to be close enough to the true boundary in order to avoid

false local minima. This region of success or capture about the true boundary depends

on the quality of the image, the degree of smoothing and the particular problem. False

minima can be distinguished, however, both visually and by the relative value of the

objective function. Experimentation shows good results on a variety of medical images.

The flexibility of the model both in terms of its probabilistic nature and the parametric

representation make this an attractive method for boundary finding.
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Figure 6.12: Magnetic resonance transaxial cardiac image example. Top left: Magnetic

resonance image (256 × 156). Top right: Gray level gradient magnitude (σ = 4.0).

Middle left: Initial contour on endocardium (4 harmonics). Bottom left: Final contour

on endocardium of the left ventricle. Middle right: Initial contour on the epicardium

(4 harmonics). Bottom right: Final contour on the epicardium of the left ventricle.
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Figure 6.13: Magnetic resonance oblique sagittal cardiac image example. Top left: Mag-

netic resonance image (128 × 140). Top right: Gray level gradient magnitude (σ = 4.0).

Bottom left: Initial contour (5 harmonics). Bottom right: Final contour on the endo-

cardium of the left ventricle.



Chapter 7

Extensions

The general framework presented here can be extended in many ways. This chapter

will consider the initial steps for some of those extensions. These include incorporating

constraints, extending the parametrization to curves and surfaces in three-dimensions

and applying the technique to temporal image sequences and multimodality boundary

finding.

7.1 Boundary Constraints

Sections of the boundary that are ill-defined can be a problem when both the image and

the prior information fail to resolve them. Manual intervention may be necessary in these

cases for practical reasons.

It is therefore desirable to be able to indicate sections of the boundary to which the

optimization process must hold. These sections could be indicated manually by the user

who has specific knowledge of the image domain. The indicated sections are constraints

on the boundary that the optimization must satisfy. This could be accomplished with a
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penalty function approach [57]. A simple approach is to adjust the boundary measure as

follows:

b′(x, y) = b(x, y) +
Npoints∑

i=1

l(xi, yi) (7.1)

l(xi, yi) = ce−
(x−xi)

2+(y−yi)
2

2σ2 (7.2)

where the points (xi, yi) are the constraint points.

In order to make it a hard constraint, solve the optimization problem with this

boundary measure and let c→∞ and σ → 0. This procedure makes convergence difficult,

so instead choose a large value for c and a σ large enough to draw the boundary to the

constraint points. In Figure 7.1, an example is shown using this method. The top section

of the target object (the valve plane of the left ventricle) is not indicated in the image.

The final boundary can be adjusted by including a boundary constraint in this region.

The boundary constraint has the effect of pulling up the top edge of the boundary.

7.2 Three dimensions

Three-dimensional image analysis is becoming more important due to the availability of

practical three-dimensional imaging technologies and laser and acoustic range data capa-

bilities [66]. In diagnostic radiology, magnetic resonance imaging (MRI), single photon

emission computed tomography (SPECT) and positron emission tomography (PET) [28]

have necessitated the development of techniques for handling three-dimensional images.

Confocal microscopy is also a growing source of three-dimensional images [89].

As mentioned in Chapter 3, the main approaches to three-dimensional parametric

modeling have been superquadrics, spherical harmonics and generalized cylinders. All of
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Figure 7.1: Boundary constraint example. Top: Magnetic resonance oblique sagittal

cardiac image from Figure 6.11 with boundary constraint points, indicated by the short

bright line in the center of the image. Bottom left: Final contour without the boundary

constraint. Bottom right: Final contour with boundary constraint.
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these parametrizations are restricted to a limited class of objects. The parametrizations

described below are an attempt to develop a more general method of describing objects

in three dimensions.

7.2.1 Curves in three dimensions

The two-dimensional curve parametrization described in Chapter 3 can be easily extended

to three-dimensional curves [54]. The curve is now represented by three functions of t

using the same basis functions as before.

v(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x(t)

y(t)

z(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

a0

c0

e0

⎤
⎥⎥⎥⎥⎥⎥⎦

+
∞∑

k=1

⎡
⎢⎢⎢⎢⎢⎢⎣

ak bk

ck dk

ek fk

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣ cos kt

sin kt

⎤
⎥⎥⎦ (7.3)

Each term in the summation is now the parametric form for an ellipse in three-space.

The ellipse properties can be derived from these raw coefficients as before in order to

develop an invariant representation. Linear structures in three-dimensional images could

be represented in this way.

7.2.2 Surfaces in three dimensions

To use a Fourier representation for a function of two variables, the following basis can be

used [87]:

φ = {1, cosmα, sinmα, cos lβ, sin lβ, . . . , (7.4)

cosmα cos lβ, sinmα cos lβ,

cosmα sin lβ, sinmα sin lβ, . . . (m = 1, 2, . . . ; l = 1, 2, . . .) }
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This can be used as the basis for parametrizations of surfaces in three dimensions. Such

surfaces can be described explicitly by three functions of two surface parameters, x(α, β),

y(α, β) and z(α, β) where α and β vary over the surface and x, y, and z are the associated

Cartesian coordinates. While the choice of α and β is obvious for simple surfaces such as

spheres (use latitude and longitude) or cylinders (use longitude and height), very compli-

cated surfaces will require some further analysis to determine the appropriate tessellation.

Axis transforms [32] may provide a way of determining the overall structure on which to

base the surface parametrization.

There are three classes of simple surfaces in three dimensions that will be useful

to describe: open surfaces (with one edge), tubes (open surfaces with two edges) and

closed surfaces (no edges). The simplest type of surface to describe is actually the torus

(a closed tube) but it is of limited use in medical images. It is formed using the entire

basis shown in Equation 7.5. The result is a torus because both surface parameters are

forced to be periodic. Thus, it would be represented as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

x(α, β)

y(α, β)

z(α, β)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ax,0,0

ay,0,0

az,0,0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

∞∑
m=1

⎡
⎢⎢⎢⎢⎢⎢⎣

ax,m,0 bx,m,0

ay,m,0 by,m,0

az,m,0 bz,m,0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣ cosmα

sinmα

⎤
⎥⎥⎦ +

∞∑
m=1

⎡
⎢⎢⎢⎢⎢⎢⎣

ax,0,l bx,0,l

ay,0,l by,0,l

az,0,l bz,0,l

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣ cos lβ

sin lβ

⎤
⎥⎥⎦ +
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Figure 7.2: Torus surface example using first and second harmonics.

∞∑
m=1

∞∑
l=1

⎡
⎢⎢⎢⎢⎢⎢⎣

ax,m,l bx,m,l cx,m,l dx,m,l

ay,m,l by,m,l cy,m,l dy,m,l

az,m,l bz,m,l cz,m,l dz,m,l

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosmα cos lβ

sinmα cos lβ

cosmα sin lβ

sinmα sin lβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.5)

An example torus surface using this parametrization, with terms up to l = 2 and m = 2,

is shown in Figure 7.2. The other three types of surfaces can be described using subsets
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of the above basis.

Representing open surfaces with the above basis is complicated by the periodicity

property. Since the surface is open, a straightforward representation of the surface would

result in discontinuities at the boundary. This problem can be addressed by analogy to the

approach used for open curves, as described in Section 3.3.2. Thus, these discontinuities

can be avoided by having the two surface parameters start at one side of the surface, trace

along the surface to the other end, and then retrace the surface in the opposite direction

to create a closed path.

This results in a function x(α, β) that is even and thus only the purely even

terms, ax,0,0, ax,m,0, ax,0,l and ax,m,l are nonzero. This also holds for y(α, β) and z(α, β).

The converse is also true; that is, any expansion with only those terms nonzero for all l

and m results in an even function and thus describes an open surface. We are therefore

effectively restricting the basis to include only even functions of both l and m.

φopen = {1, cosmα, cos lβ, . . . , (7.6)

cosmα cos lβ, . . . (m = 1, 2, . . . ; l = 1, 2, . . .)}

Open surfaces are useful for a wide variety of structures including organs with one opening

and flat structures. An example open surface using this parametrization, with terms up

to l = 2 and m = 2, is shown in Figure 7.3.

Tubes require the open representation along one of the surface parameters and

the closed representation along the other. This results is the following basis which is even
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Figure 7.3: Open surface example using first and second harmonics.

in l and unrestricted in m:

φtube = {1, cos lβ, sinmα, cosmα, . . . , (7.7)

cosmα cos lβ, sinmα cos lβ, . . . (m = 1, 2, . . . ; l = 1, 2, . . .)}

Thus the only nonzero terms are ax,0,0, ax,0,l, ax,m,0, bx,m,0, ax,m,l and bx,m,l

and the corresponding y and z terms. Tubes are an extension of traditional generalized
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cylinders [2] used to represent elongated objects but usually limited to simple cross-

sections such as circles. The cross-section of a tube can be an arbitrary closed curve.

Tubes are useful for vessels and other elongated objects. They are also useful for temporal

sequences of planar images, where the third dimension is time (see Section 7.3), and

multimodal images, where the third dimension is modality (see Section 7.4). An example

tube surface using this parametrization, with terms up to l = 2 and m = 2, is shown in

Figure 7.4.

A closed surface can be represented by considering tubes whose ends close up to

a point at both ends instead of being open. This is done by expressing x and y using the

following basis:

φclosed-xy = {1, sin lβ, . . . , (7.8)

cosmα sin lβ, sinmα sin lβ, . . . (m = 1, 2, . . . ; l = 1, 2, . . .)}

thus forcing both functions to constants at the extremes of l and expressing z using the

same basis as for tubes:

φclosed-z = {1, cos lβ, sinmα, cosmα, . . . , (7.9)

cosmα cos lβ, sinmα cos lβ, . . . (m = 1, 2, . . . ; l = 1, 2, . . .)}

Closed surfaces are useful for organs and other structures with no prominent openings.

An example tube surface using this parametrization, with terms up to l = 2 and m = 2,

is shown in Figure 7.5. A geometric interpretation may exist for each harmonic based on

these shape parameters which would allow for invariance to view transformations.
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Figure 7.4: Tube surface example using first and second harmonics.

7.3 Temporal sequences

Temporal image sequence analysis is important in general because it allows for the detailed

study of dynamic phenomena from images. The current system can be adapted for the

boundary-based study of object motion in a number of different ways. By delineating an

object in successive temporal image frames, the motion of its boundary can be inferred.

Note that if points on successive boundaries can be identified, this represents an approach
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Figure 7.5: Closed surface example using first and second harmonics.

to general, non-rigid object motion, a relatively unexplored and new area of research

[36, 68].

A relatively simple approach to temporal sequences is first to solve the delineation

problem on the initial frame of the sequence. Then, that solution can be passed to the

next frame as the initial guess. The rationale for this approach is that the object would

have only moved a small distance between frames, given some limited velocity, and thus

the boundary in each frame should be close to each preceeding frame. In Figure 7.6 we
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show this approach applied to a cardiac motion sequence from magnetic resonance. This

technique could benefit from the inclusion of a model of expected motion. This could be

simply an interframe smoothness constraint or a more detailed motion model.

As mentioned in Section 7.2.2, the tube model could be effectively applied to

temporal sequences. This would allow for unified representation for both shape and

motion prior information, where shape is represented in the two spatial dimensions, and

motion is represented by the temporal dimension along the axis of the tube. A boundary

representation for a temporal sequence of three-dimensional images is even more complex.

Such a boundary would be modeled by a three-dimensional object in four dimensions.

7.4 Multimodality

Finding boundaries in images of the same object taken from different modalities is a

problem of practical importance because of the additional, and often complementary,

information available by using more than one imaging method. Because of their different

views and imaging properties, images from different modalities must be registered in

order to be comparable. This will, in general, involve translation, rotation, scaling and,

in general, warping. This transformation can be determined by finding corresponding

points in the images using either natural landmarks or fiducial marks placed in the image

to establish a coordinate system. More general techniques involve affine [70] or elastic

matching [6]. Once this transformation is determined, the boundary finding problem can

be treated in the same way as the temporal sequence problem and could be solved using

either an interframe smoothness constraint or the tube model.



119

Figure 7.6: Magnetic resonance oblique sagittal cardiac image motion example. Top:

Magnetic resonance image (256 × 256) with initial contour (4 harmonics). Middle left:

Final contour on the endocardium of the left ventricle (frame 1). Middle right: Final

contour (frame 2). Bottom left: Final contour (frame 3). Bottom right: Final contour

(frame 4).



Chapter 8

Summary

This work presents a general boundary finding system for images of simple natural objects.

The goal of this work was to incorporate model-based information into boundary finding

for continuously deformable objects. It was found to work well from testing on real and

synthetic images. The idea of augmenting a shape parametrization with probabilistic

information may have applications to other areas of computer vision for matching or

feature detection.

There are, of course, areas of potential improvement for this work. Further analy-

sis of the correlation between the values of the calculated boundary measure would help to

better understand the correlation’s effect on the match measure. Allowing for correlation

in the prior probability for the parameters could also be included and studied. In order to

speed up the optimization for relative parameters, the calculation of the gradient of the

objective function with respect to the relative parameters could be attempted, in spite of

the complexity. Since one of the main benefits of the relative parameters is the isolation of

the view parameters (translation, rotation and scale), perhaps a simpler transformation

that isolates the view parameters could be devised. This work would also benefit from

120
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the incorporation of a method to determine the initial view, that is, the translation and

rotation. Instead of assuming that the prior mean values for these parameters will be

close enough to the correct values, some kind of preprocessing or cooperative processing

could be included, aimed at determining these parameters. One approach would be to

exhaustively search through the possible translations and rotations for the best initial

match. If this were done at a low resolution, the computation might not be excessive.

Additional information, such as constraints between objects, might also help to guide the

initial placement.

Future directions include development and implementation of the ideas presented

in Chapter 7. In particular, the surface finding and motion analysis discussed represent

important and relatively unexplored new areas. Another extension, not mentioned in

Chapter 7, is to other parametrizations. The framework presented here could be used

with other shape parametrizations with computational properties similar to the ellip-

tic Fourier representation. In particular, a representation better suited to objects with

straight sides and corners would be desirable for man-made objects. This could involve

a piecewise parametrization. Other work has arisen using some of the ideas presented

here. A multilevel optimization object finder incorporating inter-object constraints has

been developed based on a similar framework [16]. Work is also being done using the

boundary finder and some of the ideas from this work for deformable object motion [68].



Appendix A

The Gaussian

The Gaussian is used throughout this work as both a smoothing filter and as a probability

density. The Gaussian was first discussed by De Moivre in 1733 as the limit of the binomial

distribution [24]. As a filter, the Gaussian has many advantages. The two-dimensional

Gaussian is the only separable rotationally symmetric two-dimensional operator. The

Gaussian has the smallest space-frequency width product. It is the optimally localized

function that is smooth in both space and frequency. It has the same form as its Fourier

transform.

It is also the natural form for a probability density. The Central Limit Theorem

shows that additive random variables converge to a Gaussian distribution under fairly

general conditions [69]. Also, among probability density functions having a given variance,

the Gaussian is the one with the maximum entropy [20, 79].
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