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Image Processing and Analysis at IPAG
I. INTRODUCTION

Medical image analysis has grown and evolved tremendously
in the last 30 years. The distinctive nature of the problems en-
countered have led to the development of a significant body of
work addressing such issues as fully three-dimensional data,
nonrigid models for motion, deformation and comparison, and
the statistical variation of normal and abnormal structure. This
area of research derives from the clinical and scientific appli-
cations which must be well understood. However, the method-
ologies developed encompass an array of techniques that have
advanced image analysis independent of the application.

This paper will describe the development of the Image Pro-
cessing and Analysis Group (IPAG) at Yale and the broad range
of work in the area of medical image analysis that has been
pursued. Throughout our work, we have endeavored to take ad-
vantage of all available information both from prior knowledge
of physical properties, geometric constraints or statistical vari-
ation as well as imaging data from various modalities. Medical
imaging problems typically lie in a well-defined domain. The
challenge is to take best advantage of the given domain to solve
the often complex and subtle problems posed.

II. ORIGIN AND HISTORY

1970’s to 1983: Initial Ph.D. Faculty in Diagnostic Radiology

During the 1970’s, several Ph.D. faculty were hired into the
Department of Diagnostic Radiology in the medical school at
Yale with their primary tasks being aimed at providing physics
support for the clinical operations in the burgeoning fields of
nuclear medicine (Bob Lange), ultrasound (Fred Kremkau) and
computed tomography (Stelios Orphanoudakis). Each of these
faculty members were able to initiate and maintain their own
research programs as well, using different methods to support
their efforts, including industrial and some federal funding. In
1982, as Magnetic Resonance was just beginning to be consid-
ered for clinical use, John Gore was hired as the NMR physi-
cist, now with a clear charge to develop a research program in
this area. Soon after (1982-1983), three more hires were made
within the Department of Diagnostic Radiology. Art Gmitro
and Gene Gindi were hired initially to help with image/signal
processing and hardware issues related to the development of a
Digital Subtraction Angiography (DSA) system, funded by an
industrial grant and Jim Duncan was hired jointly by the De-
partment and the Section of Cardiology to work on a number of
image analysis issues related to the TIMI (Thrombolysis in My-
ocardial Infarction) project funded by the National Institutes of
Health. While all of these faculty were hired for separate rea-
sons, this group began to get together and develop a number of
interactions to start to form a medical imaging methodology-
based research community at Yale.

As the social and professional relationships among this
group of seven or so faculty members matured, these people
formed, with support from clinical colleagues such as Carl
Jaffe, Richard Greenspan and Barry Zaret, the substrate for the

bioimaging science research now firmly established at Yale in
2003.

While there were a variety of attempts to integrate bioimag-
ing science into a single entity within Diagnostic Radiology,
by and large these research efforts clustered into three primary
areas: nuclear medicine, magnetic resonance imaging and im-
age post-processing. In this paper, we will focus on the evolu-
tion of the latter area, that became the Yale Image Processing
and Analysis Group (IPAG). However, at the end of the paper,
we will describe how the early possibilities of an integrated
bioimaging science community were re-kindled, bringing the
evolution of effort full circle.

1983-1989: Biomedical Image Processing Early Years

One subset of the Ph.D. researchers in the bioimaging sci-
ences areas overlapped significantly enough to form a core ef-
fort in medical image processing: Drs. Duncan, Gindi, Gmitro
and Orphanoudakis. Stelios Orphanoudakis obtained a joint ap-
pointment with the Department of Electrical Engineering (EE)
within the Faculty of Arts and Sciences at Yale in the late
1970’s. Jim Duncan and Gene Gindi also received joint ap-
pointments in Electrical Engineering. These faculty established
new courses in the EE department in both Digital Image Pro-
cessing and Computer Vision. While both had a biomedical
flavor in the examples given, the courses were established in or-
der to interest Yale graduate and undergraduate students in the
general areas of image processing and image analysis. At the
graduate level, this effort soon paid off. Several new graduate
students with focused interests in image processing and analysis
(Larry Staib, Kathy Andriole, Dimitris Gerogiannis and Volker
Tresp) joined Scott Holland (already working with Stelios Or-
phanoudakis on ultrasound signal processing) as the core stu-
dents of this new group. Early work on parallel image process-
ing algorithms [1] and vessel tracking [2] appeared during this
period. Other work by Art Gmitro and Gene Gindi focused on
optical image processing strategies for feature extraction gar-
nering a best paper award from the journal Optical Engineer-
ing [3]. In addition, a body of work on image reconstruction
methods began at this time ranging from optical methods [4] to
statistical methods in the work of Mindy Lee [5], [6] in collab-
oration with Gene Gindi and George Zubal, nuclear medicine
physicist. This work also included the development of the
Zubal Phantom [7], [8], a high-resolution three-dimensional an-
thropomorphic image phantom derived from segmented human
anatomy of the full body representing all of the major struc-
tures. This data was designed for use as a phantom in imaging
simulations such as for Monte Carlo methods.

The emphasis, however, from the outset was to bridge areas
of general image processing and computer vision with medical-
imaging-specific knowledge. As the Yale group was forming,
much of the efforts in the medical image analysis field seemed
to be coming from one of two directions: i.) computer vision
and image processing specialists with an interest in, but limited
detailed knowledge of, medical imaging and its applications
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Fig. 1. In 2D, the elliptic Fourier parameters define a curve and, by way of
probability distributions, can be used to constrain the boundary finding process.

or ii.) medical imaging physicists who understood the princi-
ples of image acquisition and formation, but who typically did
not have the specific applied mathematics, computer science or
signal and image processing background to contribute in the
algorithm development areas. By being physically located in
the medical school while maintaining close ties to engineering
through teaching and research, we strove to advance the field
by developing new image processing and analysis methodology
fully grounded with knowledge of image acquisition physics,
anatomy and physiology, and the clinical and scientific ques-
tions.

From about 1985 to 1988 there was a strong influence of
work from artificial intelligence in computer vision and med-
ical image analysis. Drs. Gindi and Duncan developed a course
project in their computer vision course in which students im-
plemented a “blocks world” image understanding system tak-
ing the problem from image acquisition to high level model
matching [9]. Jim Duncan incorporated explicit knowledge-
based concepts modeling the walls of the left ventricle of the
heart in early work [10]. Advances in the application of neural
networks to computer vision and medical image analysis were
also made at this time in the group by Gene Gindi with his grad-
uate student Joachim Utans [11]. They developed approaches
to object recognition using hierarchical matching networks.

1989-present: IPAG Flourishes

As 1990 approached, the group began to explore more deeply
some of the key areas in medical image analysis. Larry Staib,
Amir Amini and Hemant Tagare became faculty members in
the group around this time creating a critical mass of image
analysis researchers. Workstation computational and graphi-
cal power was also increasing tremendously enabling an array
of techniques that were impossible before. The development
of the web started in this period and we created one of the
first web sites in medical image analysis in December 1993
(http://noodle.med.yale.edu/). The web has obviously since be-
come an essential aspect of dissemination and research.

Below we will discuss some of the key areas that IPAG has
pursued including deformable models for segmentation, non-
rigid motion analysis aimed primarily at cardiac motion, image
registration and structural measurement.

Fig. 2. On the left, a mean curve is shown in the center along with curves
representing plus and minus one standard deviation of the model parameters.
On the right this model is used to segment the corpus callosum from a magnetic
resonance image.

Fig. 3. 2D deformable Fourier model segmenting the myocardium from mag-
netic resonance images (left: initialization; right: final curves).

Deformable Models: A strong focus of the group arose
at this time aimed at developing mathematical strategies for
extracting quantitative measurements from medical images.
Boundary finding for anatomical structure is a central problem
that pervades many measurement problems. A chapter on the
methodologies discussed below was included in a collection on
medical imaging [12]. The key themes that emerged from this
work were the incorporation of prior information of shape as
constraints or biases and the integration of multiple information
sources [13], [14]. Such information is crucial to the solution
of medical image segmentation problems in the face of noise,
ambiguity and structural complexity. We approached such seg-
mentation problems from the perspective of mathematical opti-
mization and (Bayesian) estimation theory, solved using a vari-
ety of numerical approaches. Perhaps the earliest clear example
of this trend was the Ph.D. thesis work of Larry Staib [15]. This
work was aimed at developing a concise parametrized model,
using Fourier descriptors, of a contour or surface that could then
be deformed or modified to find a specific boundary within an
image [16], [17], [18]. This model easily allows the incorpo-
ration of prior shape information and was the first technique to
use prior shape information in a general and flexible way.

A maximum a posteriori objective function of parameters, � ,
was used and allows a trade-off or compromise between prior
information, ����� ��� , and image-derived information, ���	��

� ��� .
For a uniform prior, this formulation reduces to the maximum
likelihood solution.����������� ����� �
���� � � ���	� �!�#" � � �����$

� �!�&% (1)

Prior probability distributions on the parameters are used to
introduce a global shape model with a bias toward an expected
range of shapes. This approach is illustrated in Figures 1, 2,
3 and 4. This work was initially presented in 1988 [19], [20].
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Fig. 4. Spatiotemporal models can be used to solve boundary finding prob-
lems in temporal sequences as in this cardiac left ventricle magnetic resonance
example showing three orthogonal views with the initialization of the left and
the final result on the right.

Fig. 5. Original MR cardiac image (top left) with mean contour (top middle)
and expert tracing (bottom left). Note the improvement in performance mov-
ing from an independent covariance (bottom middle) to smoothness covariance
(bottom right) and finally the prior shape covariance (top right).

Interestingly from a historical perspective, this was being devel-
oped in parallel with the deformable “snake” boundary finding
approaches of Kass, Witkin, and Terzopoulos.

Later, we studied active shape models [21] and showed the
relationship to Fourier models and ways of exploiting the use
of the covariance matrix [22], [23] (see Figure 5).

Two alternate approaches to using prior knowledge were pur-
sued by Hemant Tagare. When the prior probability distribu-
tions of the boundaries are unknown, an alternate approach
is available which uses only a single canonical shape for the
boundary. The canonical shape is encoded in a template which
fits the image boundary by deforming to minimize an energy
function. Using conformal maps, normals to a deformable 2-
d template can be extended smoothly to a large region of space
[24]. The template is deformed by moving it along the extended
normals – which are called “orthogonal curves”. Interestingly,
it is rather straightforward to show that the orthogonal curves
and dynamic programming gives the global minimum of the en-
ergy function. Finding the global minimum is crucial to avoid-
ing local minima that arise from noise and give grossly incorrect
answers. This algorithm has been successfully used for many
years to segment carpal bones in CT scans. Figure 6 shows an
example.

Fig. 6. A wrist CT image showing carpal bones (left) and a deformable tem-
plate with orthogonal curves and an example deformation (right).

Fig. 7. Functional activation map with global registration (left) and with local
registration (right) determined using the level set algorithm with shape priors to
segment and register the corpus callosum.

In the second approach, prior knowledge about the shape of
the boundaries was incorporated into a level set formulation
of active contours in a variational framework. The shape of
a boundary is all of the information that is left when location,
orientation, and size information is removed. The shape prior is
mapped into the image space by a translation, rotation and scal-
ing and it appears as an additional term in the energy function
of the level set [25]. During level set evolution, the translation,
rotation and scaling are continuously estimated and updated.
The algorithm simultaneously achieves segmentation of an im-
age and its registration with a standard coordinate system. This
method can be exploited in fMRI studies where simultaneous
segmentation and registration of local brain structures leads to
a lowering of false positives in the activation map as shown in
Figure 7.

The results of active contours are often evaluated by com-
parison with manual segmentation. Unfortunately, experimen-
tal evaluations often do not shed light on when and why active
contours become inaccurate. A theoretical analysis is required
for understanding this. In his Ph.D. thesis, Tianyun Ma theoreti-
cally explored accuracy and consistency in active contours [26],
[27]. He was able to show that some of the common forms of
external energy functions can lead to a significant bias in seg-
mentation. Some energy functions can also make the contour
unstable. By suitable modifications of the energy function, the
bias and stability problems can be eliminated [26], [27].

Integration: Boundary finding based on edge features can
be augmented by considering the incorporation of region-based
information and developing an integrated Maximum a posteri-
ori (MAP) probability method in order to determine the surface
(or curve, in 2D) parameters which correspond to the structure
which matches both the boundary strength in the image and the
region homogeneity properties [13], [28]. This work on inte-
gration was the thesis work of Amit Chakraborty.

We consider two modules: one related to boundary finding
and the other region growing where each contains a coupling
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Fig. 8. In a simple 2D game theoretic formulation, constant level curves for')(+*-, .
and
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and the corresponding reaction curves ( 1 ( and 1 / ) of the two

players are shown. For a fixed 2 (43652 (
, the best player 2 can do is to minimize' /

along the line 2 ( 3652 (
. For each different

52 (
, a different optimal response

can be found for player 2, and the collection of all these points form 1 / , the
reaction curve of player 2. The Nash equilibrium lies at the intersection of the
players reaction curves.

term that feeds information related to the other module:�87 �9;:�< �>=@?$A �B� �C7 �9 � D < �-= �E"6F DHG < �>=@?$A �I%�87 �J : G �KA#?L= �M� �C7 �J � D G �NA �4"PO D < G �NA4?�= �I% (2)= represents the output of the region-based process and A rep-
resents the output of the boundary finding module. In the
first equation, D < �>= � represents region-based classification in-
formation [13]. In the second, D G �KA � represents the boundary
strength in the shape prior-driven contribution. D < G �KA4?�= � andD G < �-=@?-A � represent interaction terms between the two modules.

Initially, these equations were solved sequentially with FQ�R
. The region based segmentation was determined first and then

that information was used to optimize the boundary.
A more powerful approach to integration comes from a game

theoretic formulation [29], [30]. We were able to derive a more
general formulation pioneering the use of game theory (started
by the thesis work of Is.ıl Bozma [31]) as a means for integrating
image information [14].

When F is non-zero, the first equation includes an additional
interaction term, D
G < �-=@?-A � , which feeds back the latest avail-
able output A of the boundary module and represents the agree-
ment of the voxels within the current boundary with the as-
sumed gray level distribution for the indicated tissue type. In
the second equation, the interaction term D < G �KA4?�= � uses the
latest available output = of the region process. The modules
assume the roles of players in a 2-player game and are opti-
mized in parallel. The game continues until the players can
not improve their positions without cooperation from the other
player. This natural stopping point of the parallel decision mak-
ing process constitutes the Nash equilibrium solution [32] (see
Figure 8).

The rational decision provided by the Nash equilibrium so-
lution is the natural counterpart of the optimum found with se-
quential objective optimization. We have found it to be more
robust to noise and initialization in a variety of 2D and 3D prob-
lems [13].

In order to compute the contribution of the region based in-
formation, we need to compute an integral over the region. We
can compute this efficiently if we convert the volume integral

Fig. 9. Results of surface finding for the head of the left caudate nucleus (top
row) and the right thalamus (bottom row) in an MR image. The wireframe and
three perpendicular slices through the 3D image (1.2mm S voxels) are shown
with the surface obtained using both boundary and region information.

to an area integral using Gauss’ divergence theorem [33]. We
construct a function whose divergence is the function we wish
to integrate by integrating in each of the coordinate directions.
Then we can simply compute the area integral of this function
during the optimization process (see [28] for details), greatly
reducing the necessary computation.

In the brain, some subcortical structures often have poor con-
trast between gray and white matter because they are striate and
appear with intermediate intensity. These structures, however,
are less variable, in terms of shape, than the cortex. Thus, prior
shape information can be of great value in identifying subcor-
tical boundaries. In Figure 9, we demonstrate the performance
of the 3D integrated method on subcortical structure examples:
the head of the right caudate nucleus and the left thalamus.
Using the integrated method with a prior shape model, along
with region and boundary information, the proper boundaries
are found.

Level Set Method Incorporating Thickness Constraint:
While some segmentation problems are well suited to the con-
straints that global shape information provides, some involve
structures whose shapes are highly variable or have no consis-
tent shape at all and thus require more generic constraints [12].

Xiaolan Zeng, in her graduate work in the group, developed a
coupled surfaces approach for automatically segmenting a vol-
umetric layer from a 3D image [34], [35], [36]. This approach
uses a set of coupled differential equations, with each equation
determining the evolution or propagation of a surface within a
level set framework. In the case of the cortex, one surface at-
tempts to localize the white matter/gray matter (WM/GM) inner
cortical boundary and the other the gray matter/cerebrospinal
fluid (GM/CSF) outer boundary. Coupling between the surfaces
incorporates the notion of an approximately fixed thickness sep-
arating the surfaces everywhere in the cortex. This soft con-
straint helps in ensuring that the GM/CSF boundary is captured
even in the deeper cortical folds in the brain. A further assump-
tion is that across each surface, there is a local difference in the
gray level values, while in between the two surfaces there is
a homogeneity of gray levels. By evolving two embedded sur-
faces simultaneously, each driven by its own image-based infor-
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Fig. 10. Evolution of coupled level sets: outer (magenta) and inner (yellow)
surfaces propagate from initialized pairs of concentric spheres in a 3D MR brain
image to localize the gray matter.

mation while maintaining the coupling, we are able to achieve
an automatic and robust segmentation of the cortex, and simul-
taneously obtain a representation of the inner and outer cortical
surfaces.

Starting from inside the inner bounding surface (gray/white
boundary), with an offset in between, the interfaces propa-
gate along the normal direction stopping at the desired place,
while maintaining the distance between them. Embedding
each surface as the zero level set in its own level function,
we have two equations: TEUWV XZYHT\[ " : V X]� ^_U`V X4� � R

andTEUWa�b	cdYHT\[ " : a�b�cE� ^_UWa�b	ce� � R
where : V X and : aLb�c are func-

tions of the surface normal direction, image-derived informa-

Fig. 11. Top: Surfaces resulting from single surface approach finding the inner
and outer cortical surfaces separately; Bottom: Coupled surfaces approach run
on same data overlaid on a sagittal slice masked by expert tracing of the outer
cortical surface showing good agreement. Coupling prevents the inner surface
from collapsing into CSF (1) and the outer surface from penetrating non-brain
tissue (2).

tion and the distance between the two surfaces. The coupling
is embedded in the design of : V X and : a�b�c . Where the dis-
tance between the two surfaces is within the normal range for
cortical thickness, the two surfaces propagate according to the
image-based information; where the distance between the two
surfaces is out of the normal range, the distance constrains the
propagation. We define:: V X � f �KA\g#hjilkmhn�poqsr �L�Lt ��UWa�b�c �: aLb�c � f �KA\u#vsw!ixg#h@�poqsr �L��t �IU VyX �ez (3)

Function f smoothly maps larger gray level transition probabil-
ity to slower speed. Function t smoothly penalizes the distance
outside of the normal range. Thus, each surface moves with
constant speed along the normal direction, and slows down or
stops when either the image-based information becomes strong
or the distance to the other surface moves away from the normal
range.

The ability of the evolving level set to change topology,
break, merge and form sharp corners greatly assists in the con-
vergence to complex structures. In addition, the level set ap-
proach facilitates structural measurement through the direct
computation of geometric parameters, such as curvature and
thickness, via the level set function [36] (see, for example, Fig-
ure 18). Surface renderings showing the evolution of the inner
and outer cortical layers found from a normal 3D brain MR im-
age using this approach are shown in Figure 10. This method
has been extensively tested in our lab and elsewhere [37] with
accurate results under a range of conditions.
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Fig. 12. Strain computed using a biophysical model from canine cardiac MR
data comparing baseline to infarcted left ventricle.

Fig. 13. Echo ultrasound data can also be analyzed with a physical model to
estimate strain. Shown here are points derived from the model overlaid on the
ultrasound image to give “echo tissue tags” analogous to MR tagging.

Nonrigid Motion Leading to Deformation: Analyzing in-
formation embedded in temporal sequences of images had long
been of interest to medical image analysis researchers, with
many of the driving applications coming from the need to quan-
tify cardiovascular function. The IPAG efforts focused primar-
ily on developing strategies to follow left ventricular (LV) mo-
tion, and ultimately deformation, in attempts to stratify differ-
ences in LV performance as derived from any one of several
non-invasive imaging modalities. A comprehensive review of
methods for estimation of cardiac motion and deformation in-
cluding the methods described below was included in a recent
book on medical image analysis [38].

In the early 1990’s, a number of groups had begun to develop
techniques to find correspondences between pairs of frames
from 2D cardiac image sequences [39], [40] as well as to de-
velop useful parametrizations for spatiotemporal datasets [41],
[42] in attempts to model and more fully determine nonrigid
motion. In the computer vision community, these efforts were
initially reported at the first conference session on nonrigid mo-
tion analysis at the IEEE Computer Society’s 1991 Conference
on Computer Vision and Pattern Recognition (CVPR91). To the
clinical cardiology community, however, many of these ideas
were seen as the most recent attempts to address the difficult
problem of stratifying left ventricular function.

Within IPAG, our focus was to develop a strategy for quanti-

fying LV function that could be used to derive information from
any one of a number of noninvasive image sequences. While
other groups focused almost solely on the promising techniques
of analyzing MR tagging [43], [44] or MR phase velocity [45],
we chose to try to develop approaches that were potentially
modality-independent. The common thread we saw was that
if we could somehow accurately segment out the endocardial
and epicardial boundaries from each frame of a cardiac image
sequence, and sample often enough, we could assume that local
surface shape would be preserved between any two frames and
hence be used as a tracking metric.

This effort began by analyzing two-dimensional cardiac im-
age sequences. Due to its spatial resolution, and in part to be
able to compare to tagging and phase velocity tracking results,
we chose to use two-dimensional cine-gradient echo MR image
sequences as our initial data. Endocardial and epicardial bound-
ary segmentation in each frame was performed using modified
versions of the Bayesian boundary finding strategy described
above (see [16]). Curvatures, { , were derived at each bound-
ary point and used as tracking tokens. Matching was performed
by finding the best local segment of length | surrounding pointA V } < at frame i+1 within a plausible search region ~ whose
shape best matches a segment surrounding candidate point A V at
time i via a squared curvature (i.e. bending energy) metric:�A Vy} < ��� �����87 �J0�y����� k �� � � < �${ � �KA Vy} < ��� { � �KA V �L� G (4)

Once the optimal A Vy} < is found in the search region, the vec-
tor � that connects these two points can be defined. Similar
displacement vectors can be located at all points A V with confi-
dences, � , assigned by the strength and uniqueness of the shape
match. Uncertainty, noise and out-of-plane motion were han-
dled by employing a regularization strategy to estimate a final
set of smoothed displacements:�� �NA ����� �����C7 �������m����� � �� �KA �x� o� �NA �!� o�#� �KA �+� G " T o� �KA �T �M��� �

(5)
Early results using this approach on 2D MR and echocardio-

graphic image sequence data were encouraging [40], but it was
appreciated that there were a number of difficulties with the ap-
proach, including the lack of including temporal information in
the modeling, the difficulties deriving motion from segmented
boundaries and perhaps most importantly, the need to address
the full 3D motion problem.

This work evolved in several directions. One effort focused
on the integration of temporal and full spatiotemporal infor-
mation/modeling into the motion recovery process [46]. This
work, by John McEachen for his thesis, continued to work on
2D image sequence data and took on a decidedly classical Elec-
trical Engineering flavor as the basic strategy was based on re-
cursive filtering incorporating a periodicity constraint. A sec-
ond effort was centered on integrating several sources of track-
ing cues into the frame-to-frame LV motion estimation process.
The initial idea was aimed at using the boundary-based shape
cues described above, along with Eulerian estimates of dis-
placement found by integrating Magnetic Resonance phase ve-
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locity information. The integration of shape with direct, dense
measurements of three-dimensional velocity provides a power-
ful set of constraints on the interpretation of motion from image
data. This work was primarily done by Fran cois Meyer, a post-
doctoral fellow in IPAG at this time (later a faculty member in
the group), who had worked on rigid body motion problems in
computer vision during his Ph.D. studies in France. While these
data provide direct measures of velocity, they are extremely
noisy. A Kalman filtering approach was developed here using
spatial and temporal constraints to determine an optimal esti-
mate of the cardiac kinematics [47].

The third research direction that evolved from our initial
shape-based 2D cardiac motion tracking work was anchored in
two key concepts. The first concept was grounded in the un-
derstanding in the cardiology clinical research literature at this
time that the quantification of LV function from noninvasive
image sequences was found to be more robust if one looked
at the relative measurement of LV myocardial wall thicken-
ing as opposed to just absolute point displacement (see e.g.
[48]). The second concept was that in order to fully under-
stand LV function, one had to appreciate that the heart is a three-
dimensional, nonrigidly deforming object and that the quantifi-
cation of this deformation likely had to be derived from the full
4-dimensional (3 spatial dimensions plus time) image informa-
tion. Wall thickening was thus only one component of a more
complete measure of myocardial deformation: the local strain
tensor.

These same basic ideas were also taking hold at the time in
the MR imaging community, driven by the development of MR
grid tagging for following tissue deformation [49], [50].

Thus, IPAG efforts on cardiac nonrigid motion in the mid-
1990’s further developed by extending our 2D shape-based mo-
tion tracking strategies to three dimensions using 3D curva-
ture to track surface-based motion derived from cine-gradient
echo MRI. The earliest efforts were performed by Amir Amini
and Jim Duncan, during Amir’s postdoctoral studies at Yale
[51]. These ideas were further developed in the Ph.D. theses of
Pengcheng Shi [52] and then Xenios Papademetris [53]. The
curvature matching process represented by equation 5 above
was now based on matching the similarity of the principal cur-
vatures between an endocardial or epicardial surface patch at
time � to a set of candidate patches within a search region at time� " � . A key next step, anchored in Pengcheng Shi’s efforts, was
the development of an interpolation approach that could accept
these image-derived, surface-based displacements and then cre-
ate quantitative measures of mechanical strain across the entire
LV myocardial volume. This work was published at the first
CVRMed conference in 1995 [54] and moved IPAG into the
area of using more realistic physical models to try to capture
the underlying myocardial tissue properties and serve as a ba-
sis for integrating information and presenting quantitative mea-
surements of strain. The advantage of this direction was that
there was an entire cardiac biomechanics community [55] that
had spent decades trying to develop accurate forward models
of the LV. The initial IPAG efforts in this area used simple, lin-
ear elastic biomechanical models (realized via a stiffness matrix¡

), assumed infinitesimal strains between any two time frames
and assumed that a sparse set of displacements, ¢ £ , could be

found from 3D shape tracking. The volume between the endo-
cardial and epicardial surfaces at each time frame was meshed
and the following Newtonian equation was then solved using
a finite element strategy at all points at each time frame to get
a dense set of displacements ¤ , where the ¥ matrix is used to
weight the confidence in the shape matches:¦ ¤ � ¥��I¤ � ¤ £ � (6)

Further extensions were then incorporated to integrate shape
based estimates of displacement with velocity estimates mea-
sured using phase velocity MR, now in a fully 4D framework
and using a continuum mechanical model of the heart [56], [57].

As the physical modeling work continued to mature and
evolve in the graduate work of Xenios Papademetris [58], [53],
[59], the formulation was viewed from a Bayesian standpoint
and the biomechanical model of the heart was augmented to in-
clude muscle fiber directions. Quantified 3D measures of strain
could now be reliably derived from a moving sequence of seg-
mented myocardial surfaces on a desktop workstation. An ex-
ample of these derived strains are shown in Figure 12. This
methodology was implemented in a software platform that is
usable by collaborators and has led to advances in the cardiol-
ogy literature on regional myocardial deformation [60].

Critical to these efforts was the notion that displacement in-
formation could come from a variety of data sources, including
shape cues, MR tags, and/or MR phase velocity information.
The shape tracking strategy permits the approach to be used
across imaging platforms. For example, further work extended
these techniques directly to 3D ultrasound data enabling the
possibility of such measurements from a low cost and portable
modality [61], shown in Figure 13.

These ideas in realistic soft tissue modeling were further de-
veloped and applied to the related problem of computing brain
deformation during neurosurgery [62], [63]. Biomechanical
models are again of extreme value here in order to accurately
model the brain and track its deformation incorporating the
effects of gravity. This work stems from the thesis of Oskar
Škrinjar. First, intraoperative sparse point measurements were
used to drive the model [62], [64]. A finite element compu-
tational approach was used to implement the biomechanical
model. Later, stereo images of the exposed brain surface were
used to provide a dense set of measurements for driving the
model. Stereo reconstruction methods were derived for this pur-
pose [65] to determine the changing surface of the brain. This
process is shown in Figure 14.

Registration Methods: Over the years, a number of us in
IPAG have worked on different registration problems with dif-
ferent approaches reflecting both the application area and the
underlying methodology, starting with rigid methods and mov-
ing to nonrigid. We developed methods for rigid registration in-
corporating constraints using linear programming [66] as well
as methods using genetic methods for improved optimization
[67]. Nonrigid methods were developed using elastic and fluid
models that were augmented with structural constraints thus
combining gray level matching with features [68]. This work,
by Yongmei Wang during her graduate work, used these con-
straints to help to bring the gray level matching into concor-
dance with the underlying anatomy. During his postdoctoral
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Fig. 14. Intraoperative stereo image pairs (top) can be used to reconstruct the exposed brain surface (bottom left) which can then be used as a constraint in the
biomechanical model for determining brain shift (bottom right).

study, Colin Studholme, worked on the problem of magnetic
resonance (MR) distortion correction mapping echo planar im-
age data to conventional MR. He developed methods to account
for both geometric and intensity distortions within the EPI data
by constraining nonrigid mutual information based registration
using the physical basis of the distortion [69].

Anand Rangarajan, a faculty member in the group at this pe-
riod, and his student Haili Chiu, developed the technique ro-
bust point matching (RPM) for nonrigid registration [70], [71].
They formulated registration completely in terms of point fea-
tures and a corresponding match matrix. The match matrix
converges to a specification of correspondence, and a corre-
sponding nonrigid transformation, with outlier rejection using
the “soft-assign” technique.

Another approach to non-rigid correspondence between
closed curves was pursued by Hemant Tagare. Generalizations
of monotonic one-to-one correspondences, called bimorphisms,
were shown to be a class of “monotonic” curves on the torus,
which is a product space of two closed curves. By suitably
defining a metric on the torus, the shapes of the two curves can
be compared and an optimal correspondence can be found [72],
[73]. Figure 15 shows an example. There are several advan-
tages of this idea. The theory clearly lays out the geometry of
correspondences. Also, the optimal correspondence is symmet-
ric, i.e. the same answer is obtained irrespective of the order in
which the two curves are compared. The last property is impor-

µ

C2

Correspondence
as a set

Projection
     (p  )

Projection
     (p  )

Product space 
C   X  C1 2

C1

1

2 An element of
the correspondence

Fig. 15. The correspondence between two closed curves is shown to be a
curve on the torus, which is the product space of the curves (left). An optimal
correspondence from one corpus callosum to another is shown on the right.

tant in applying non-rigid correspondences to motion analysis.
An information theoretic framework was developed for the

specific registration problem in radiation therapy treatment
planning where one or more low quality 2D portal x-rays (gen-
erated from therapeutic energy x-rays) need to be registered to a
3D CT image [74], [75]. Ravi Bansal, in his thesis work, devel-
oped an information theoretic approach for this problem where
simultaneous segmentation and registration were carried out in
an alternating iterative minimax entropy algorithm.

We have also pursued methods for the determination of sur-
face point correspondence for shape comparison based on cur-
vature features and geodesic interpolation [76], [77].
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Fig. 16. Registration of portal images with digitally reconstructed radiographs
(DRR) from CT before (left) and after (right) registration. Manual traces in
red indicate degree of correspondence of features. (a) anterior-posterior (AP)
portal (b) lateral portal (c) original lateral DRR (d) original AP DRR (e) AP
segmentation (f) lateral segmentation (g) registered lateral DRR (h) registered
AP DRR.

Measurement: Structure can be characterized in many
ways from simple volume measurements to curvature. We have
developed a number of techniques for specific structural mea-
surement.

The level set representation is particularly convenient for
some structural computations, such as thickness. For any point
on the outer cortical surface, the absolute value of U VyX at the
point is simply the distance from the point to the inner cortical
surface. Using this measure, we obtain a thickness map be-
tween the inner and outer cortical surfaces, which can be used
to study the normal thickness variations in different regions as
well as abnormalities, as seen in Figure 17. Cortical surface
area is also easily captured and measured from our segmenta-
tion approach.

Cortical surface determination facilitates further analysis by
the determination of sulcal surfaces [78]. First, sulcal curves
at the top and bottom of the sulcus can be automatically traced
after the specification of start and end points using dynamic
programming based on a surface maximum principal curvature
cost function. Sulcal ribbon surfaces (shown in Figure 19) can
then be determined between these curves deforming the surface
based on the distance function of the surface within the sulcus.

Neuroanatomic measurement applications apply these meth-
ods to clinical and scientific tasks such as for structural volume
measurement [79], [80]. We have developed methods for shape
analysis using factor analysis for the characterization of shape
applied to the corpus callosum [81].

Image Databases: Digital medical imaging has made it
possible to create and maintain large collections of medical
images for research and browsing. Medical image content is

Region thickness
(Lobe) (mm) ( § SD)

Left Frontal 3.40(.43)
Right Frontal 3.25(.42)

Left Posterior ¨ 3.06(.41)
Right Posterior ¨ 3.00(.40)

Fig. 17. Measurement of Cortical Thickness. Top: Table reporting mean
thickness values for N=30 normal control males. Note: ¨ Posterior region en-
compasses all parietal, temporal and occipital cortical tissue. Bottom: Thick-
ness plots of 2 normal brains (one brain: a,b; second brain: c) showing marked
thinning in the postcentral gyrus and primary and secondary visual cortices in
the occipital lobe.

difficult to describe in words and a medical image database is
most effective if it exploits image content. Developing the tech-
nology for such databases has been a focus of extensive work
by Hemant Tagare. An overview of the problems in this area
and our overall methodology is given in [82]. Much of our re-
search in this area focuses on indexing strategies for similarity
retrieval. Classical indexing strategies assume that features are
in a Euclidean space and a metric is available for comparing
them. We extend indexing strategies to the non-metric case us-
ing interval-valued arithmetic [83] and propose non-Euclidean
metric spaces for indexing [84]. Complicated feature compar-
isons, for example with dynamic programming, can also be in-
dexed [85]. In high dimensional spaces, indexing suffers from
the curse of dimension; it becomes increasingly difficult to in-
dex uniformly distributed data. Efficient indexing needs to ex-
ploit non-uniformity in data distribution and we have developed
adaptive indexing strategies for this purpose [86], [87]. These
strategies modify the indexing tree so that the resulting tree is
guaranteed to be more efficient than the original one.

Other aspects of medical image databases have also been de-
veloped. While visiting our group, Sennay Ghebreab devel-
oped a tool for creating and editing graphical image database
schemas [88]. Some interesting medical image features have
also been developed. One example is the notion of arrange-
ments of organs, which describe the manner in which different
organs appear embedded in the image [89]. Arrangement is re-
lated to the Voronoi diagram of the organs and it is possible to
define a metric comparing different arrangements.

Although our group has focused on developing image
databases in the context of medical images, a surprising and
gratifying application of this technology has been in biology in
marine mammal research [90], [91].
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Fig. 18. The inner and outer cortical surfaces of a brain colored according to
the corresponding curvature measure [92].

Fig. 19. Sulcal surfaces shown with cut-away view of brain (top) and on outer
cortical rendering (bottom).

III. RECENT DEVELOPMENTS

Two developments at Yale have led to the better integration
of education and research in medical imaging: the formation
of a program in biomedical engineering within the Faculty of
Engineering and a section of bioimaging sciences within the
Department of Diagnostic Radiology.

In 1996, with the generous support of the Whitaker Founda-
tion, we embarked on the formation of a biomedical engineer-
ing program at Yale with medical imaging as a core area (along
with biotechnology and biomechanics). This program was de-
signed to combine the strengths of engineering and medicine at
Yale and has steadily grown since then. The program provides
both undergraduate and graduate students who can participate
in research in medical imaging.

In the early Spring of 2001, the Image Processing and Anal-
ysis Group was formally united with groups in the areas of MR

Fig. 20. Bioimaging and Intervention in Neocortical Epilepsy: An example
of the integrated display of anatomical and functional magnetic resonance im-
ages, along with electrophysiological information taken from a patient. This
represents an initial version of the neurosurgical navigational framework being
developed on this grant.

Physics, Nuclear Medicine Physics and NMR Spectroscopy
within the Department of Diagnostic Radiology. This structure
was termed the Section of Bioimaging Sciences and Professor
Duncan was named as the director and Professor Doug Roth-
man, an NMR spectroscopist, named as co-director. This unifi-
cation of research groups in Diagnostic Radiology has already
resulted in a tighter connection between the image formation
and image analysis aspects of medical imaging research. In par-
ticular, as a direct result of closer collaboration with the other
groups in the Section, we were awarded the first new research
grant from the National Institute of Bioimaging and Biomedi-
cal Engineering for a biomedical engineering research partner-
ship grant entitled “Bioimaging and Intervention in Neocortical
Epilepsy” aimed at the study of epilepsy through MR imaging
and spectroscopy with analysis techniques culminating in im-
proved image guided neurosurgery for the treatment of epilepsy
(see Figure 20).

The ultimate source of the productivity of the group is the tal-
ents of the many students and scholars who have worked here.
With the recent addition of Xenios Papademetris to the fac-
ulty, we currently have four professors (Duncan, Tagare, Staib,
Papademetris), two research scientists, four postdocs and 11
graduate students. In addition, George Zubal, has long been
a close affiliate to the group, focusing on quantification in nu-
clear medicine. On the strength of all their efforts, IPAG will
continue to be productive.

Future Directions

Certainly, our core work using organ and tissue-level diag-
nostic medical images in segmenting and measuring structure
and function, image registration, and tracking and quantifying
motion and deformation will remain at the center of IPAG’s ef-
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forts in the years to come. Continuing to explore how our ap-
proaches can be integrated or economized is always something
at the forefront of our thinking: e.g. how can image intensity
and image-derived feature information be combined to develop
more robust segmentation and registration algorithms or how
can parameters found at a higher level of abstraction (e.g. strain
in an infarcted region of the left ventricle) be used to guide the
extraction of useful low level image features?

However, we also expect to be drawn in new and exciting
directions based on our exposure to emerging collaborations
with our colleagues in MR spectroscopy and physics, different
clinical areas related to image-guided intervention and struc-
tural and functional imaging at the cellular and molecular level.
While we will be able to dovetail some of these efforts with
methodological approaches we are already developing, we ex-
pect to be drawn to entirely new directions that include: track-
ing multiple nonrigid moving objects with complex evolving
relationships (e.g. cell body motion and tubule growth), esti-
mating statistical mixtures of biochemical information repre-
sented at each voxel in a variety of image datasets attempting
to probe biologically meaningful information (e.g. MR spec-
troscopy, molecular imaging using fluorescent and/or radiola-
beled probes) and designing close-to-real-time updating strate-
gies regarding tissue and tool movement in interventional pro-
cedures.

IV. GUIDING PRINCIPLES

Within IPAG, we feel fortunate to have been able to cre-
ate a stable scientific, financial and administrative environment
where medical image analysis researchers interested in apply-
ing well-grounded mathematical and computational concepts to
problems in medical imaging can flourish. There have been sev-
eral guiding principles that have helped us:

1) Take the time to find and maintain good clinical and tech-
nical collaborators who have interesting problems that are
pushing the current limits of medical image analysis and
processing technology. The profile of a good collaborator
can vary, but generally has these traits:© he/she realizes that you are looking for interesting

problems in your own (medical image analysis) re-
search area, related to the methodology and under-
lying formulation of these issues – and they want to
walk side-by-side with you toward common goals.© is someone who you can genuinely resonate with and
get along with.© is someone who has an appreciation and some under-
standing of the field of medical image analysis.

We have had longstanding and successful collaborations
with a number of scientists at Yale including Robert
Schultz (Child Study Center), Albert Sinusas (Cardiol-
ogy), Dennis Spencer (Neurosurgery) and Todd Consta-
ble (Diagnostic Radiology).

2) Go after problems that push the current state-of-the-art;
avoid problems that apply established/routine ideas in
computer vision to problems in medical image analysis
that don’t require at least some original thinking. How-
ever, keep in mind the requirements of medical image
analysis in terms of the need to validate.

3) Maintain a presence, including publications, conference
attendance, etc., in both the basic fields of computer vi-
sion and image processing as well as the more focused
field of medical image analysis. The primary medical
image analysis conferences have been IPMI (Informa-
tion Processing in Medical Imaging) and MICCAI (Med-
ical Image Computing and Computer Assisted Interven-
tion) (and its predecessors). Participation in the clini-
cal/biomedical application communities is also important
(e.g. cardiology, neurology, neuroscience, etc).

4) Permit junior faculty to develop in an independent man-
ner, but provide guidance to try to develop a cohesive and
complementary group of researchers.

5) Develop a stable internal source of funds from the De-
partment/School that carries over year-to-year.

6) Encourage collaboration and cooperation with other med-
ical image analysis groups. The intellectual life at
IPAG has periodically been enriched by visiting students
and scholars. We have had particularly good relation-
ships with visitors from Guy’s Hospital through Dave
Hawkes (Glynn Robinson, Colin Studholme), University
of Amsterdam through Arnold Smeulders (Marcel Wor-
ring, Sennay Ghebreab), Utrecht University through Max
Viergever (Wiro Niessen, Josien Pluim, Rik Stokking)
and INRIA-Sophia Antipolis through Nicholas Ayache
(Eric Bardinet).

7) Insure access to graduate students either through partic-
ipation in a medical imaging sciences graduate program
or through appointments and teaching with an appropri-
ate department (e.g. EE, BME, CS, Physics, etc.)
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[64] O. Škrinjar and J. Duncan, “Real time 3D brain shift compensation,”
in Information Proc. Med. Imaging, M. Šámal A. Kuba and A. Todd-
Pokropek, Eds., Berlin, 1999, pp. 42–55, LNCS 1613, Springer.
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