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Abstract�This paper describes a new global shape param�
etrization for smoothly deformable three�dimensional ��D�
objects� such as those found in biomedical images� whose
diversity and irregularity make them di�cult to represent
in terms of �xed features or parts� This representation is
used for geometric surface matching to �D medical image
data� such as from magnetic resonance imaging �MRI�� The
parametrization decomposes the surface into sinusoidal ba�
sis functions� Four types of surfaces are modeled	 tori� open
surfaces� closed surfaces and tubes� This parametrization
allows a wide variety of smooth surfaces to be described
with a small number of parameters� Extrinsic model�based
information is incorporated by introducing prior probabil�
ities on the parameters� Surface �nding is formulated as
an optimization problem� Results of the method applied to
synthetic images and �D medical images of the heart and
brain are presented�

I� Introduction

T
HIS work describes an approach to �nding object
boundaries in three�dimensional ��D� medical images

based on parametrically deformable shape models using
prior shape information� Boundary �nding is enhanced
both by considering the bounding surface as a whole and
by using model�based shape information�

Boundary �nding using only local image information has
often been frustrated by poor�contrast boundary regions
due to objects in close proximity� adverse viewing condi�
tions� noise and imaging artifacts� Imperfect image data
can be augmented with the extrinsic information that a
geometric shape model provides� The bounding surface of
an object in three dimensions can be pro�tably considered
as a whole� rather than as surface segments� because it
tends to result in a more consistent solution overall� These
models are best suited for objects whose diversity and ir�
regularity of shape make them poorly represented in terms
of �xed features or parts� The objects are expected to have
a tendency toward some average shape with a continuum
of possibilities near that shape� This kind of information is
available whenever there is a sample of images of the struc�
ture of interest available� as is true for many research and
clinical applications� Such smoothly deformable objects do
not necessarily have an obvious decomposition that can be
exploited� A uniform mathematical shape representation
that describes the entire shape is therefore needed and it
should describe a broad class of shapes�

This work was supported in part by a Biomedical Engineering Re�
search Grant from the Whitaker Foundation and by the National In�
stitutes of Health under Grant R��HL��������A� from the National
Heart Lung and Blood Institute�
L� Staib and J� Duncan are with the Departments of Diagnostic Ra�

diology and Electrical Engineering� Yale University� ��� Cedar Street�
New Haven� CT� �	
������� USA� �e�mail� lawrence�staib
yale�edu��

For a representation to be useful for modeling it should
be concise� Methods based on explicitly listing points or
patches on the surface are verbose because of the implicit
redundancy� Parametric representations capture the over�
all shape in a small number of parameters� This means that
the optimization of a match measure between data and a
model can occur in a lower dimensional space� Paramet�
ric representations allow the direct analytic computation of
object properties� such as surface area or curvature� This
form of representation also allows the incorporation of prior
probabilistic information�

In this work� boundary �nding is formulated as an opti�
mization problem using parametric Fourier models of sur�
faces� The model is matched to the image by optimizing
in the parameter space the match between the model and
a boundary measure applied to the image� Probability dis�
tributions on the parameters of the representation are in�
corporated to bias the model to a particular overall shape
while allowing for deformations� This leads to a maximum
a posteriori objective function� This work builds on previ�
ous work on a model�based system for the analysis of curves
in two�dimensional images ��	�

II� Related Work in Boundary Finding

Local edge detectors applied to real images produce spu�
rious edges and gaps� These problems can be overcome
only by the incorporation of information from higher scale
organization of the image and models of the objects sought�
Contextual information has been used for boundary deter�
mination via grouping� relaxation labeling and scale�space
methods� These methods� by themselves� will not necessar�
ily �nd complete boundaries� Pixel search methods� which
�nd an optimal path through a two�dimensional image� do
not generalize obviously to three dimensions because there
is no natural ordering of voxels in a surface� An alternative
method for boundary analysis is the Hough transform �
	�
The Hough approach is similar to the current method in
that it �nds shapes by looking for maxima in a parameter
space� However� the storage and computational complexity
of the Hough method are a great disadvantage� especially
if deformations are envisaged�

Other investigators have considered whole�boundary
methods that adjust a tentative surface mesh in order to
match to the image� By considering the boundary as a
whole� a structure is imposed on the problem that bridges
gaps and results in overall consistency� These active sur�
faces are a direct generalization of �snakes���	 and have
been used for �nding surfaces in �D images �
	� ��	� ��	�
The parameters of mesh�based representations are coordi�
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nates and are thus extremely local and ultimately �exible
but of limited expressive power�

Snakes that can adjust their topology have been devel�
oped using level sets ��	 and have been extended to surfaces
��	� ��	� This allows an even greater �exibility for general
boundary �nding but is not necessary when speci�c prior
information is known�

Other whole�boundary methods optimize in a parameter
space� Parametric representations are useful for model�
ing because they capture the overall shape concisely� This
means that the optimization of a match measure between
data and a model can occur in a lower dimensional space�
Widrow ���	� and later Yuille et al� ���	� used parametrized
templates to model objects where the parameters are sizes
and relationships between simple subparts� These meth�
ods describe the overall shape of the structure using very
few parameters� However� the object must have su�cient
structure to be represented in terms of parts and a new
model must be developed for each new object� Work has
also been done developing deformable templates based on
Markov models of curves incorporating knowledge of shape
from statistical features ��
	� In the next section� we will
discuss parametrizations for surfaces in more detail�

Pentland and others ���	� ��
	 have developed physically�
based methods for analyzing shape� Shapes are represented
by the low�order frequency displacement eigenvectors cor�
responding to the free vibration modes of the object� This
is a Fourier�type representation using computed basis func�
tions that are derived from a physical analogy� While such
analogous models may be appropriate for motion computa�
tions� it is not clear that this computation is worthwhile in
boundary �nding where the physical analogy is less appar�
ent� In fact� recent work suggests that even a small amount
of statistical information results in an improvement over
modal analysis ���	�

A number of methods have been developed speci�cally
to identify structures from medical images� For example�
Bomans et al� ���	 use a boundary��nding method based
on a �D version of the Marr�Hildreth edge operator to
�nd surfaces in MR brain images� Morphological opera�
tors are used to remove small holes and thin connections�
Similarly� Higgins et al� ���	 developed a semi�automated
method for extracting the endocardium from high�speed �D
computed tomography �CT� cardiac images� This method
uses a combination of manual editing� mathematical mor�
phology� maximum�homogeneity �ltering and adaptive �D
thresholding� A number of techniques for segmentation
rely on clustering techniques for voxel classi�cation� Cline
et al� ���	 use multispectral voxel classi�cation� in conjunc�
tion with connectivity� to segment �D MR brain images�
This method is limited by the assumption of normality
in the probability distributions of the tissues� Interactive
and semi�automated methods are a compromise between
hand tracing and fully automated methods� Kennedy et

al� ���	 describe a number of semi�automated methods for
segmenting MR images of the brain� Hohne and Hanson
�
�	 use mathematical morphology� connected components

and thresholding to interactively segment �D images with
feedback from rendered displays�

The advantage of incorporating prior information into
the boundary �nding process has begun to be recognized�
Collins et al� �
�	 segment the brain using an elastic reg�
istration to an average brain based on a hierarchical local
correlation� The average brain provides strong prior infor�
mation about the expected image data� Cootes et al� �

	
augment a snake�like model with statistics to model struc�
tures in medical images in order to locate them� They
represent objects using a principle component analysis of
a sample of shapes� They also include information about
the expected gray levels around model points as additional
prior information� This approach� because it relies on coor�
dinates� requires consistent sampling and labeling of point
features� In addition� possible deformations are strictly
limited according to the statistics of the training samples�
The use of principle components has also been adapted for
Fourier representations by Szek�ely et al� �
�	�

III� Surface Representations

Shape parametrizations facilitate the application of geo�
metric models to the problem of boundary �nding by allow�
ing the formation of a mathematical objective function to
be optimized� Other kinds of models incorporate implicit
or explicit geometric constraints� such as generalized cylin�
ders �

	� but do not lend themselves to a mathematical
formulation� An arbitrary surface can be represented ex�
plicitly by three functions of two index parameters� x�u� v��
y�u� v� and z�u� v�� A surface is indexed by the two param�
eters �u� v�� While a curve�s points are naturally ordered
by arclength� there is no natural ordering of points on an
arbitrary surface�

Second degree algebraic surfaces have been used exten�
sively as parametric models because of their simplicity and
conciseness� Ellipses and ellipsoids have been particularly
popular� and used� for example� in the work of Blokland
et al� to model the heart �
�	� Their conciseness� how�
ever� greatly limits their expressiveness� although exten�
sions are possible� Nuyts et al� �
�	 forms a piece�wise el�
liptical model of the heart by using a model whose radial
cross�sections consist of two elliptic curves� Higher order
polynomial surfaces can be expressed using implicit repre�
sentations �
�	�

Superquadrics are an extension of quadrics using an ex�
ponent that allows the shape to vary from an ellipsoid to a
rectangular parallelepiped �
�	� The basic shape can be al�
tered by such operations as twisting� bending and tapering
�
�	� as can any explicit representation� The main disad�
vantage of superquadrics is that even with these altering
operations� superquadrics are limited by their doubly sym�
metric cross�section and thus still only represent a very
limited family of shapes� without resorting to composition�
Superquadrics have also been augmented by deformations
according to a variety of models� In spline model defor�
mations ���	� ���	� the superquadric itself is reduced to a
means for initialization and the re�nement is modeled by
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the deformation in a manner similar to other snake surface
techniques� Deformations based on strain modes ��
	 �see
discussion above� and wavelet bases ���	 have also been
introduced� Wavelets are another very promising represen�
tation in that they have the ability to range from local to
global description�
Spherical harmonics have been used as a type of sur�

face representation for radial or stellar surfaces �r��� ���
�
	� ��
	� The surface is represented as a weighted sum of
spherical harmonics which are orthogonal over the sphere�
This is a type of Fourier representation� as de�ned below�
but is restricted to radial deformations of a sphere� and
thus models a limited class of objects� Recently� however�
spherical harmonics have been extended to more general
shapes by representing a surface using three functions of �
and � ���	� An appropriate mapping is determined by iter�
atively solving a constrained optimization problem based
on the di�usion equation� This representation can then be
used in deformable boundary �nding �
�	� However� the
mapping does not maintain this optimal form during the
deformation process without a recomputation of the above
optimization at each iteration�

IV� Fourier Surfaces

Smoothly deformable biomedical objects do not neces�
sarily have an obvious decomposition that can be exploited�
A uniform shape representation that describes the entire
shape is therefore needed and it should describe a relatively
broad class of shapes�
The prior information available is a �exible bias towards

more likely shapes� This sort of model can be achieved by
using a generic parametrization with probability distribu�
tions de�ned on the parameters� That is� the parametriza�
tion itself is expressive enough to represent any potential
shape of a given geometric type� but the associated prob�
ability distributions introduce a bias towards an expected
range of shapes� The spread in the distributions is due to
variability among instances of the object� This kind of pa�
rametrization represents a stronger use of prior information
than methods that use only simple shape characteristics�
Fourier representations are those that express the func�

tion in terms of an orthonormal basis� The motivation for
a basis representation is that it allows us to express any
object as a weighted sum of a set of known functions� An
orthonormal set is desirable because it makes the param�
eters �weights� distinct� For example� to express the one�
dimensional function f�t� on the interval �a� b� in terms of
the basis �k�t�� we use

f�t� �

�X
k��

pk�k�t� where pk �

Z b

a

f�t��k�t� dt � ���

The coe�cients p� the projections of the function onto the
k basis functions� are the parameters of the representa�
tion� In order to use this representation the sum is trun�
cated� In most such representations� the higher indexed
basis functions represent higher spatial variation� There�
fore� if the function to be represented is expected to have

limited spatial variation� as is the case for most real object
boundaries� the series can be truncated and still accurately
represent the function� However� objects of arbitrary com�
plexity can be represented by including su�ciently high
harmonics� Because it is desirable to use a concise repre�
sentation� the minimum number of harmonics necessary to
represent a class of shapes can be determined given an error
tolerance and a sample of the shapes to be modeled� The
number of harmonics can be decreased until the average
error between the true boundary and the boundary from
the truncated representation exceeds the error tolerance�
The usual basis functions are the sinusoids ���	� although

others� such as orthogonal polynomials or spherical har�
monics in two dimensions� are possible� The sinusoids have
the advantage of representing the familiar notion of fre�
quency� A limitation of this choice is that it does not rep�
resent sharp transitions or very complex boundaries very
well because this requires a large number of parameters�
A surface in three dimensions can be described explicitly

by three coordinate functions of two surface parameters�
x�u� v� � �x�u� v�� y�u� v�� z�u� v��� where u and v vary over
the surface� Thus� in order to represent surfaces� a basis
for functions of two variables is needed� the following can
be used ���	�

� � f�� cosmu� sinmu� cos lv� sin lv� cosmu cos lv�

sinmu cos lv� cosmu sin lv� sinmu sin lv� � � �

�m� l � �� 
� � � � � g � �
�

Each function is then represented by

f�u� v� �

K���X
m��

K���X
l��

�m�l �am�l cosmu cos lv � bm�l sinmu cos lv�
cm�l cosmu sin lv � dm�l sinmu sin lv	

���

where

�m�l �

��
�

� for m � �� l � �

 for m � �� l � � or m � �� l � �

 for m � �� l � �

and the series is truncated at K� � � and K� � � terms�
This basis allows the speci�cation of even functions using
the cosine terms and odd functions using the sine terms�
There are three sets of parameters corresponding to the
three coordinate functions� px � fax� bx� cx� dxg� py �
fay� by� cy� dyg� pz � faz� bz� cz� dzg� These will be referred
to collectively as the parameter vector p � fpx�py�pzg�
The complex basis is useful for computational purposes

because the parameters can be computed in a single trans�
form�

� � f�� ei�mu
lv�� � � � �m� l � ����
� � � � � g � �
�

Each function is then represented by

f�u� v� �

K���X
m���K����

K���X
l���K����

gm�l e
i�mu
lv� � ���
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�a� �b�

Fig� �� An example torus surface �a� and an example open surface
�b� using up to fourth order harmonics�
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Fig� �� Surface types� This shows the relationship between the sur�
face types and the surface parameters u and v�

Using Euler�s formula� eix � cosx � i sinx� we can de�
rive the conversion between the sine�cosine basis parame�
ters and the complex basis parameters�

There are four classes of simple surfaces in three dimen�
sions that will be described� tori �closed tubes�� open sur�
faces �with one edge�� tubes �open surfaces with two edges�
and closed surfaces �no edges�� The torus is formed us�
ing the entire basis shown in Equation 
� The result is a
torus because both surface parameters are forced to be peri�
odic� An example torus surface using this parametrization
is shown in Fig� �� The other three types of surfaces can
be described using subsets of the above basis which �atten
out or constrain the torus in di�erent ways as described
below and shown schematically in Fig� 
�

A� Open Surfaces

Representing open surfaces with the basis in Equation 

is complicated by the periodicity property� Since the sur�
face is open� a straightforward representation of the sur�
face would result in discontinuities at the boundary� Thus�
these discontinuities can be avoided by having the two sur�
face parameters start at one side of the surface� trace along
the surface to the other end� and then exactly retrace the
surface in the opposite direction to create a closed path�

This is analogous to the representation of open curves ���	�
��	� Note that while the curve traced by the surface param�
eter has a slope discontinuity at the ends where it retraces
its path� the corresponding coordinate function has no such
discontinuity because the parameter slows down to a stop

as it approaches the end ��x���
�u

� �� etc���
This results in a function x�u� v� that is even and thus

only the purely even terms� ax����� ax�m��� ax���l and ax�m�l

are nonzero� This also holds for y�u� v� and z�u� v�� The
converse is also true� that is� any expansion �with any num�
ber of terms� with only those terms nonzero for all l and
m results in an even function and thus describes an open
surface� We are therefore e�ectively restricting the basis to
include only even functions of both u and v�

�open � f�� cosmu� cos lv� � � � � cosmu cos lv� � � �

�m� l � �� 
� � � � �g � ���

Open surfaces are useful for a wide variety of struc�
tures� including objects with one prominent opening� the
bounding surface between two touching objects� and �at
objects� An example open surface using this parametriza�
tion is shown in Fig� ��

B� Tube Surfaces

Tubes require the open representation along one of the
surface parameters and the closed representation along the
other� This results in the following basis which is even in
v and unrestricted in u�

�tube � f�� cos lv� sinmu� cosmu� � � � � cosmu cos lv�

sinmu cos lv� � � � �m� l � �� 
� � � � �g � ���

Thus� the only nonzero terms are ax����� ax���l� ax�m���
bx�m��� ax�m�l and bx�m�l and the corresponding y and z
terms� Tubes are an extension of generalized cylinders �

	
but in parametric form�
Tubes are useful for elongated hollow objects and elon�

gated objects with �at ends� They are also useful for tem�
poral sequences of planar images� where the third dimen�
sion is time� and multimodal images� where the third di�
mension is modality� A spatiotemporal example using a
tube model is shown in Fig� ��� Two example tube sur�
faces using this parametrization are shown in Fig� ��

C� Closed Surfaces

Closed surfaces are the most di�cult to represent be�
cause they are most dissimilar to tori� One way to rep�
resent closed surfaces is by considering tubes whose ends
close up to a point at both ends instead of being open� This
is done by using the basis

�closed � f�� sin lv� � � � � cosmu sin lv� sinmu sin lv� � � �

�m� l � �� 
� � � � �g ���

thus forcing both functions to constants at v � �� �� 
��
This� however� forces the ends together too� This means
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Fig� �� Two tube surface examples using up to fourth order harmon�
ics�

�a� �b�

Fig� �� Two closed surface examples using up to fourth order �a� and
eighth order �b� harmonics�

that the ends must be separated by adding a weighted term
to each coordinate of the form� sin�v � ��
�� These three
weights are three additional shape parameters�
This representation requires that the values for v be re�

peated as for an open curve but negated so that

x�u� v� � x�u� 
� � v� � 
x��� �� �

y�u� v� � y�u� 
� � v� � 
y��� �� �

z�u� v� � z�u� 
� � v� � 
z��� �� � ���

Two examples of closed surfaces using this parametrization
are shown in Fig� 
� with terms up to fourth order on the
left and eighth order on the right�

D� Surface geometry

The Fourier surface description makes the calculation
of geometric surface properties straightforward because a
continuous description of the surface is known� Without an
analytic description of the surface� curvature can be calcu�
lated based on the computation of derivatives from a local
surface patch �t� or from a discrete approximation of the
derivatives at each point� These methods are dependent
on the proper choice of the size of the patch or neigh�
borhood� For Fourier surfaces� partial derivatives of the
surface functions can be calculated from the functional de�
scription� Curvature is then calculated directly from these

Fig� 
� Curvature calculation example� Wire frame and curvature
shown from the surface shown in Figure � �a�� Bright indicates
peaked areas� dark indicates pits and gray indicates saddle areas
as determined by the Gaussian and mean curvatures�

partial derivatives ���	� In addition� using the complex ba�
sis of Equation 
� the partials have a relatively simple form�
For example�

xu �
�x

�u
�

K���X
m���K����

K���X
l���K����

imgmle
i�mv
lu� � F��fimgg � ����

where F is the discrete Fourier transform� g � �gx� gy� gz�
and x � �x� y� z�� Similarly for xv and the second partial
derivatives�

xv � F��filgg � xuu � F��f�m�
gg � ����

xvv � F��f�l�gg �xuv � F��f�mlgg � ��
�

At the edges of tubes and open surfaces and at the poles
of the closed surfaces� these formulas break down and the
calculation must be treated as a special case�
From these partial derivatives� the surface geometry can

be characterized� Gaussian �K� and mean �H� curvature
can be computed from these derivatives ���	� Surface curva�
ture properties have been used to classify and characterize
shape� For example� surface regions can be classi�ed by
the sign of the surface curvatures as peaks� ridges� saddles�
valleys� pits and �ats� An example curvature calculation
based on the Gaussian and mean curvatures is shown in
Fig� �� This type of characterization is useful for shape
matching for deformation tracking ���	 and shape classi��
cation for determining normal and pathologic variation in
anatomic shape�

V� Boundary Finding Objective Function

In order to �t one of these models to the image data� a
measure of �t is optimized by varying the model param�
eters� The surface is expected to be distinguishable by
some measure of boundary strength �direction can also be
used� computed from the image� The sum or integral of
the boundary strength image over a given surface indicates
the degree of correspondence between them�
Any measure that indicates a change in some property

that distinguishes the object from the background could be
used as a boundary measure� A natural candidate for many
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images is the gray�level gradient� The magnitude is the
strength of the boundary and the direction is the normal
to the boundary� The gray�level gradient can be calculated
by �rst smoothing with a Gaussian to reduce the e�ect
of noise� The smoothed boundary response will also help
in the optimization by attracting the surface from further
away� An alternative would be to match to the distance
transform of an edge map �such as from Canny�s method
�
�	� calculated from the image�

A� Probabilistic Formulation

In addition to the constraint that the parametric model
provides� it is useful to incorporate prior information in
the form of probabilities to further constrain the problem�
In order to incorporate probabilistic information into the
measure of �t� consider the problem of boundary determi�
nation as one in which the data is a �D image� b�x�� which
could depict the boundary of any object in the parametric
representation� and p is a particular value of the parame�
ter vector� In terms of probabilities� if we want to decide
which parameter vector� p� an image� b� corresponds to� we
need to evaluate the probability of the template given the
image� Pr�pjb�� and �nd the maximum over p� This can
be expressed using Bayes rule� where

pmap � argmax
p

Pr�pjb� � argmax
p

Pr�bjp� Pr�p�

Pr�b�
� ����

Here� pmap is the maximum a posteriori solution� Pr�p� is
the prior probability of the parameter vector p and Pr�bjp�
is the conditional probability� or likelihood� of the image
given the parameter vector� This expression can be sim�
pli�ed by taking the logarithm and eliminating Pr�b�� the
prior probability of the image data� which is equal for all
p�

pmap � argmax
p

M�b�p� � argmax
p

�ln Pr�p� � lnPr�bjp�	 �

��
�

This maximum a posteriori objective function shows the
tradeo� or compromise that is made between prior informa�
tion� Pr�p�� and image�derived information� Pr�bjp�� For
a uniform prior� this formulation reduces to the maximum
likelihood solution�
In order to derive the expression for the likelihood� con�

sider the image b to be a noise�corrupted version of an
image template� tp� corresponding to a particular value of
the parameter vector with noise that is independent and
additive� b � tp � n� This assumption avoids an excessive
increase in complexity� Furthermore� Cooper �
�	 showed�
for a related problem� that this assumption did not alter the
performance signi�cantly� Then� the likelihood� Pr�bjp�� is
equivalent to Pr�n � b�tp�� The noise at each image point�
n�x�� equals b�x�� tp�x� and is governed by the probabil�
ity density Pr�n�� These events are independent for each
point� so the probability for the noise over the entire region
A is just the product of the individual probabilities� The
noise is the combined e�ect of many factors such as signal

degradation� artifacts and boundary measurement which
are di�cult to model explicitly� We make the assumption
that the noise is Gaussian with zero mean and standard
deviation 	n�
The object template� tp�x�� is an image that represents

the boundary of the object� The boundary can be em�
bedded into the image template by making tp�x� constant
along the boundary of the object it represents and zero ev�
erywhere else� In order to match this template with the
image b� consider b�x� to be a boundary measure applied
to the raw image data� b�x� � b�i�x���
First� it is only necessary to sum along the boundary

for terms involving the template� because the template is
zero everywhere else� In addition� the magnitude of tp�x� is
taken to be constant �k�� over the boundary that it de�nes�
The function M can be simpli�ed further by removing the
terms that do not depend on p� such as b� which is summed
over the entire image� The details of this derivation follow
directly from the two�dimensional version ��	� Then� the
continuous version of this for a surface is

M�b�p� � lnPr�p� �

k


	�n

Z Z
A

�b�x�p� u� v�� y�p� u� v�� z�p� u� v��	dA ����

where dA is an area element on the surface A�
Equation �� is the maximum a posteriori objective func�

tion for surface �nding� The �rst term is the contribution of
the prior probability of the parameter vector� The greater
the variance of the prior� the smaller the in�uence of this
term� The second indicates the degree of correspondence
between the model and the image�
The probability distributions associated with the param�

eters are intended to bias the model towards a particular
range of shapes� This prior knowledge comes from experi�
ence with a sample of images of the object being delineated�
when such a sample is available� This is a common situa�
tion in medical imaging where many subjects are imaged
according to a particular protocol in either an experimental
or clinical context� When prior information is not available�
uniform distributions are used for the prior probabilities
of the parameters and an initial estimate of the bound�
ary must be supplied� The images in a sample will di�er
due to variability in the object shape and the view of the
object� The prior probability distributions can then be es�
timated from the shapes determined from the sample by
decomposing the boundaries into their model parameters
and collecting statistics� The boundaries of the sample ob�
jects are determined either by manual segmentation or� in
a training phase� on a set of images with manual initializa�
tion and uniform distributions� The normal distribution
could be improved most importantly by relaxing the inde�
pendence restriction and using the covariance matrix� This
would capture a stronger model of the inherent variation�
Of course� when the model is very dissimilar to the data�

due to large variability� the model does not help very much�
Note that an initialization of the view parameters deter�
mining the translation and scaling can be determined sepa�
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rately� if necessary because of high variability� using a rigid
template and correlation� Such a mismatch can also be
aided by having multiple models representing typical con�
�gurations of parameters� perhaps corresponding to clinical
states� In addition� stronger image features� along with pri�
ors� such as region information from gray level or texture
�

	� can also be used�
An independent� multivariate Gaussian can be used for

the parameters� An example distribution is shown in Fig�
��� The middle surface corresponds to the mean parameter
values� To the left and right of it are the surfaces corre�
sponding to the mean parameter values plus and minus one
standard deviation� respectively�

B� Evaluation

The objective function� Equation ��� can be evaluated
by numerical integration� The boundary measure� b� can
be evaluated at each point on the surface using linear in�
terpolation� The area element on the surface A is given
by

dA �

�����x�u � �x

�v

����dudv � ����

The gradient of the objective is necessary for optimization�
The derivative for the surface objective is

�M

�px
�

� ln Pr�p�

�px
�

k


	�n

Z Z
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�
jb�x� y� z�j

�
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�����x�u � �x
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�jb�x� y� z�j

�x

�x�p� u� v�

�px

�����x�u � �x

�v

����
�
dudv ����

and similarly for y and z� This expression can also be
evaluated by numerical integration� Expressions such as
�jbj
�x

can be determined by discrete derivative calculations
at each point on the surface� again using trilinear inter�
polation� The expressions such as �x

�px
can be calculated

from the expressions for x� y� and z �shown in Equation ���
The partials �x

�u
and �x

�v
can be evaluated analytically� For

Gaussian prior distributions�

� �ln Pr�p�	

�px
� �

px �mx

	�x
� ����

where mx is the mean of the distribution for the parame�
ters governing x and 	x is the standard deviation� The ex�
pression �

�px

���x
�u
� �x

�v

�� can be calculated analytically from

Equation ��� The above follows similarly for �
�py

and �
�pz

�

VI� Boundary Parameter Optimization

The problem to be solved is that of maximizing the ob�
jective function M�p�� The objective function we are solv�
ing is not in general convex� but depends ultimately on
the gray�level surface shape of the image� However� the
prior probability term in the objective function is the log�
arithm of a Gaussian and is thus quadratic� This term will
therefore dominate on the tails of the distributions� making

distant points in the space non�optimal� The starting point
for the optimization will be taken to be the maximum of
the prior distributions� The global optimum probably will
be near the starting point and thus a local optimum is
likely to be a global optimum� The degree to which this is
true depends on the width of the distributions� Since a lo�
cal optimization method is likely to be su�cient� although
there is still the possibility of converging to a poor local
maximum� the excessive computation involved in �nding a
global optimum is deemed not necessary� Poor convergence
can be identi�ed by a corresponding low objective function
value and veri�ed visually� Smoothing can also be used to
avoid getting trapped in a local maximum�

Conjugate gradient optimization �
�	 was used to opti�
mize the objective function� This method takes steps based
on the direction of the gradient �the direction of greatest
increase� until an optimal point is found�

The computing time depends primarily on the length
of the parameter vector� due to the gradient computation�
and the size of the object� due to the surface integration� In
addition� the convergence of the optimization also depends
on the length of the parameter vector� as this determines
the dimension of the optimization space� As an example�
for the case in Fig� �� the execution time was roughly
�� minutes on a Sun SparcStation ��� The main memory
requirements are the �D image and the discretized surface�
with the image being the primary storage�

VII� Experiments

A measure of the di�erence or error between two surfaces
must be developed in order to test the system� There is no
simple way to determine the best correspondence between
points on the two surfaces� Instead� the error is de�ned as
the average distance between each point on the estimated
surface and the closest point on the true surface� That is�
the error between surfaces S and �S is

e�S� �S� �

R
�u�v�� �S

min�u��v���S jS�u
�� v��� �S�u� v�j dAR

�u�v�� �S
dA

�

����

This can be computed discretely using a distance trans�
form of a binary volume representing the true surface �

	�
By correlating this with the binary volume representing
the estimated surface� we get the sum of the minimum dis�
tances from the estimated to the true surface� This is then
normalized by the size of the estimated surface�

The deformable surface boundary �nding method has
been applied to a variety of objects from radiologic images�
The example shown in Fig� � is a simple synthetic image
of a closed surface with Gaussian noise added� resulting in
a signal�to�noise ratio �SNR� � 
��� A probability distri�
bution was simulated and the initial surface was positioned
roughly at the target object� The �nal optimized surface
�using up to fourth order terms� matches well with the tar�
get� The error� calculated by the above method� is ����
pixels�
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�a� �b�

Fig� 	� Closed surface synthetic image example� �a� Three perpen�
dicular slices through the �D image ��� � �� � ��� are shown
with the initial surface using up to four harmonics �	� parameter
closed surface� and the wire frame� �b� The same slices shown
with the �nal surface and the wire frame�

Experiments have shown this method to be relatively
insensitive to noise� In Fig� �� an experiment showing the
dependence of error on additive noise is shown� A simple
synthetic image of a tube surface was degraded by additive
noise of varying levels� The resulting error is shown to rise
sharply for SNR 
 � but is quite good for higher SNR�s�

The e�ect of the initial values of the parameters on the
performance was such that each parameter was found to
have a region of success or capture depending on the qual�
ity of the image� within which the solution was found reli�
ably� Once the parameters are varied beyond that range�
the result will converge to false local minima correspond�
ing to nearby features� False minima can be distinguished�

�

��


��


���

���

�

��


��


� � 
 � 
 � �
SNR

Pixel error ��

�

�

�

� �

Fig� �� Noise experiment� Top� Wire frames of initial cone param�
etrization and exact parametrization using up to four harmonics
��� parameter tube surface�� Middle� Slices of synthetic �D im�
age ���� ��� ��� shown with two levels of additive noise� SNR
� �� 
� Bottom� Plot of the average error in pixels as a function
of SNR�

however� both visually and by the relative value of the ob�
jective function� In Fig� �� the dependence of error on ini�
tial position is tested by varying the horizontal shift of the
initial parametrization using the image above with SNR �
�� The resulting error is shown to be quite good for shifts
less than �ve pixels�
In Fig� �� a �D cardiac image of a dog�s heart from the

Dynamic Spatial Reconstructor �DSR� is analyzed� The
DSR is a dynamic� �D imaging device based on high�speed
x�ray computed tomography capable of imaging the moving
heart �
�	� As before� the closed surface was matched to
the gradient magnitude calculated from the image� The
endocardial �inner� wall of the left ventricle is successfully
delineated�

In Figs� ��� �� and �
� one temporal frame of a �D mag�
netic resonance image �MRI� sequence of the canine heart
cycle is analyzed� A prior was determined from a sample of
four images which were delineated manually with a closed
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��� �� � � ��
Horizontal Shift �pixels�

Average Error �pixels� �

�

�

� �

�

�

�

�b�

Fig� �� Starting position experiment� �a� Slice from synthetic �D
image with SNR � � shown in Figure � overlaid with the range
of starting positions tested using the same initial surface� �b�
Plot of dependence of error on initial shift for this experiment�

surface� The corresponding wire frames are shown in Fig�
��� The prior probability distribution� characterized by the
mean and standard deviation� was determined from the pa�
rameters of the sample� and is depicted in Fig� ��� The
mean of the distribution was used as the initial position
for boundary �nding of another image� The closed surface
was matched to the gradient magnitude calculated from the
image� The endocardial border of the left ventricle is suc�
cessfully delineated� Compared with contours hand�traced
by an expert� the average error was ���
 pixels�

In Figs� �� and �
� a �D MRI of the human brain is
analyzed� Here� a tube surface was matched to the gradi�
ent magnitude calculated from the image� The border of
the right caudate nucleus is successfully delineated� The
initial position was the mean of a prior probability distri�
bution� The variation about this mean due to individual
parameters is shown in Fig� ��� Compared with contours
hand�traced by an expert� the average error was ���� pixels�

Note that with open or tube surfaces� there can be a ten�
dency to grow at the edges because the additional support
will increase the objective function even if it is relatively
weak� The objective function can be augmented using nor�
malization by a power� e�g�� ��
 or �� of the surface area�
A �

R R
dA� The power controls the strength of the nor�

malization� The likelihood interpretation of the objective
function is lost� however�

Another application of these models is to spatiotempo�

�a� �b�

Fig� �� Dynamic spatial reconstructor �DSR� cardiac image example�
�a� Three perpendicular slices through the �D image ���� ����
���� are shown with the initial surface and the wire frame using
up to eight harmonics ���� parameter closed surface�� �b� The
same slices are shown with the �nal surface at the endocardium
of the left ventricle and the corresponding wire frame�

ral images� Spatiotemporal models can be developed and
used to measure motion� For two�dimensional objects� the
motion can be characterized by the spatiotemporal sur�
face corresponding to the object�s moving boundary� These
spatiotemporal surfaces would be parametrized using ba�
sis functions� as described above� Generalizing further�



STAIB AND DUNCAN	 MODEL
BASED DEFORMABLE SURFACE FINDING FOR MEDICAL IMAGES ���

�a� �b�

Fig� ��� Cardiac MRI training set� �a� A slice through each of the
training images is shown with the corresponding contour� �b�
Wire frames using up to eight harmonics for each of the individ�
uals in the sample used to determine the distribution shown in
Fig� ���

Fig� ��� Cardiac MRI example prior� The mean surface �center�
is shown with surfaces corresponding to parameters plus and
minus one standard deviation� This distribution is built from
the sample shown in �� and used in Fig� ���

�a� �b�

Fig� ��� Cardiac MRI example� �a� Three perpendicular slices
through a �D image ��
� � �
�� ��� are shown with the initial
surface �from the prior shown in Fig� ��� and the corresponding
wire frame ���� parameter closed surface�� �b� The same slices
are shown with the �nal surface at the endocardium and the
corresponding wire frame�

the motion of surfaces could be modeled by a manifold
in four dimensions� Note that if the correspondence be�
tween points on successive boundaries can also be deter�
mined� this represents an approach to non�rigid object mo�
tion tracking�
In Fig� ��� a �D spatiotemporal MRI �two spatial dimen�

sions and one temporal dimension� of a dog�s heart at one
level through the entire cardiac cycle is analyzed� Here� a
tube surface was matched to the gradient magnitude cal�
culated from the image� The endocardial wall of the left
ventricle is successfully delineated throughout the cardiac
cycle� The initial position was the mean of a prior prob�
ability distribution� Compared with contours hand�traced
by an expert� the average error was ��
� pixels�

VIII� Summary

This work presents a general boundary �nding system
for �D medical images� The goal of this work was to in�
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Fig� ��� Brain MRI example prior� Example wire frames showing
the variation caused by changing �ve individual parameters with
high variance for the prior shape used in Fig� ���

corporate both model�based global shape information and
prior knowledge of shape into boundary �nding for con�
tinuously deformable objects� This way of modeling helps
constrain the problem and takes advantage of the strong
prior information often available in medical imaging� From
testing on real and synthetic images� the system was found
to perform well at delineating structures and to be rel�
atively insensitive to the problems of broken boundaries�
spurious edges from nearby objects� noise and starting po�
sition� The �exibility of the model makes this an attractive
method for boundary �nding� In addition� a new global
shape parametrization for surfaces useful as a representa�
tion for computer vision and modeling has been described�
This parametrization extends the expressibility of previous
parametrizations�
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