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Abstract—This paper describes a new global shape param-
etrization for smoothly deformable three-dimensional (3D)
objects, such as those found in biomedical images, whose
diversity and irregularity make them difficult to represent
in terms of fixed features or parts. This representation is
used for geometric surface matching to 3D medical image
data, such as from magnetic resonance imaging (MRI). The
parametrization decomposes the surface into sinusoidal ba-
sis functions. Four types of surfaces are modeled: tori, open
surfaces, closed surfaces and tubes. This parametrization
allows a wide variety of smooth surfaces to be described
with a small number of parameters. Extrinsic model-based
information is incorporated by introducing prior probabil-
ities on the parameters. Surface finding is formulated as
an optimization problem. Results of the method applied to
synthetic images and 3D medical images of the heart and
brain are presented.

I. INTRODUCTION

HIS work describes an approach to finding object

boundaries in three-dimensional (3D) medical images
based on parametrically deformable shape models using
prior shape information. Boundary finding is enhanced
both by considering the bounding surface as a whole and
by using model-based shape information.

Boundary finding using only local image information has
often been frustrated by poor-contrast boundary regions
due to objects in close proximity, adverse viewing condi-
tions, noise and imaging artifacts. Imperfect image data
can be augmented with the extrinsic information that a
geometric shape model provides. The bounding surface of
an object in three dimensions can be profitably considered
as a whole, rather than as surface segments, because it
tends to result in a more consistent solution overall. These
models are best suited for objects whose diversity and ir-
regularity of shape make them poorly represented in terms
of fixed features or parts. The objects are expected to have
a tendency toward some average shape with a continuum
of possibilities near that shape. This kind of information is
available whenever there is a sample of images of the struc-
ture of interest available, as is true for many research and
clinical applications. Such smoothly deformable objects do
not necessarily have an obvious decomposition that can be
exploited. A uniform mathematical shape representation
that describes the entire shape is therefore needed and it
should describe a broad class of shapes.
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For a representation to be useful for modeling it should
be concise. Methods based on explicitly listing points or
patches on the surface are verbose because of the implicit
redundancy. Parametric representations capture the over-
all shape in a small number of parameters. This means that
the optimization of a match measure between data and a
model can occur in a lower dimensional space. Paramet-
ric representations allow the direct analytic computation of
object properties, such as surface area or curvature. This
form of representation also allows the incorporation of prior
probabilistic information.

In this work, boundary finding is formulated as an opti-
mization problem using parametric Fourier models of sur-
faces. The model is matched to the image by optimizing
in the parameter space the match between the model and
a boundary measure applied to the image. Probability dis-
tributions on the parameters of the representation are in-
corporated to bias the model to a particular overall shape
while allowing for deformations. This leads to a maximum
a posteriori objective function. This work builds on previ-
ous work on a model-based system for the analysis of curves
in two-dimensional images [1].

II. RELATED WORK IN BOUNDARY FINDING

Local edge detectors applied to real images produce spu-
rious edges and gaps. These problems can be overcome
only by the incorporation of information from higher scale
organization of the image and models of the objects sought.
Contextual information has been used for boundary deter-
mination via grouping, relaxation labeling and scale-space
methods. These methods, by themselves, will not necessar-
ily find complete boundaries. Pixel search methods, which
find an optimal path through a two-dimensional image, do
not generalize obviously to three dimensions because there
is no natural ordering of voxels in a surface. An alternative
method for boundary analysis is the Hough transform [2].
The Hough approach is similar to the current method in
that it finds shapes by looking for maxima in a parameter
space. However, the storage and computational complexity
of the Hough method are a great disadvantage, especially
if deformations are envisaged.

Other investigators have considered whole-boundary
methods that adjust a tentative surface mesh in order to
match to the image. By considering the boundary as a
whole, a structure is imposed on the problem that bridges
gaps and results in overall consistency. These active sur-
faces are a direct generalization of “snakes”[3] and have
been used for finding surfaces in 3D images [4], [5], [6].
The parameters of mesh-based representations are coordi-
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nates and are thus extremely local and ultimately flexible
but of limited expressive power.

Snakes that can adjust their topology have been devel-
oped using level sets [7] and have been extended to surfaces
[8], [9]- This allows an even greater flexibility for general
boundary finding but is not necessary when specific prior
information is known.

Other whole-boundary methods optimize in a parameter
space. Parametric representations are useful for model-
ing because they capture the overall shape concisely. This
means that the optimization of a match measure between
data and a model can occur in a lower dimensional space.
Widrow [10], and later Yuille et al. [11], used parametrized
templates to model objects where the parameters are sizes
and relationships between simple subparts. These meth-
ods describe the overall shape of the structure using very
few parameters. However, the object must have sufficient
structure to be represented in terms of parts and a new
model must be developed for each new object. Work has
also been done developing deformable templates based on
Markov models of curves incorporating knowledge of shape
from statistical features [12]. In the next section, we will
discuss parametrizations for surfaces in more detail.

Pentland and others [13], [14] have developed physically-
based methods for analyzing shape. Shapes are represented
by the low-order frequency displacement eigenvectors cor-
responding to the free vibration modes of the object. This
is a Fourier-type representation using computed basis func-
tions that are derived from a physical analogy. While such
analogous models may be appropriate for motion computa-
tions, it is not clear that this computation is worthwhile in
boundary finding where the physical analogy is less appar-
ent. In fact, recent work suggests that even a small amount
of statistical information results in an improvement over
modal analysis [15].

A number of methods have been developed specifically
to identify structures from medical images. For example,
Bomans et al. [16] use a boundary-finding method based
on a 3D version of the Marr-Hildreth edge operator to
find surfaces in MR brain images. Morphological opera-
tors are used to remove small holes and thin connections.
Similarly, Higgins et al. [17] developed a semi-automated
method for extracting the endocardium from high-speed 3D
computed tomography (CT) cardiac images. This method
uses a combination of manual editing, mathematical mor-
phology, maximum-homogeneity filtering and adaptive 3D
thresholding. A number of techniques for segmentation
rely on clustering techniques for voxel classification. Cline
et al. [18] use multispectral voxel classification, in conjunc-
tion with connectivity, to segment 3D MR brain images.
This method is limited by the assumption of normality
in the probability distributions of the tissues. Interactive
and semi-automated methods are a compromise between
hand tracing and fully automated methods. Kennedy et
al. [19] describe a number of semi-automated methods for
segmenting MR images of the brain. Hohne and Hanson
[20] use mathematical morphology, connected components

and thresholding to interactively segment 3D images with
feedback from rendered displays.

The advantage of incorporating prior information into
the boundary finding process has begun to be recognized.
Collins et al. [21] segment the brain using an elastic reg-
istration to an average brain based on a hierarchical local
correlation. The average brain provides strong prior infor-
mation about the expected image data. Cootes et al. [22]
augment a snake-like model with statistics to model struc-
tures in medical images in order to locate them. They
represent objects using a principle component analysis of
a sample of shapes. They also include information about
the expected gray levels around model points as additional
prior information. This approach, because it relies on coor-
dinates, requires consistent sampling and labeling of point
features. In addition, possible deformations are strictly
limited according to the statistics of the training samples.
The use of principle components has also been adapted for
Fourier representations by Szekély et al. [23].

III. SURFACE REPRESENTATIONS

Shape parametrizations facilitate the application of geo-
metric models to the problem of boundary finding by allow-
ing the formation of a mathematical objective function to
be optimized. Other kinds of models incorporate implicit
or explicit geometric constraints, such as generalized cylin-
ders [24], but do not lend themselves to a mathematical
formulation. An arbitrary surface can be represented ex-
plicitly by three functions of two index parameters: z(u,v),
y(u,v) and z(u,v). A surface is indexed by the two param-
eters (u,v). While a curve’s points are naturally ordered
by arclength, there is no natural ordering of points on an
arbitrary surface.

Second degree algebraic surfaces have been used exten-
sively as parametric models because of their simplicity and
conciseness. Ellipses and ellipsoids have been particularly
popular, and used, for example, in the work of Blokland
et al. to model the heart [25]. Their conciseness, how-
ever, greatly limits their expressiveness, although exten-
sions are possible. Nuyts et al. [26] forms a piece-wise el-
liptical model of the heart by using a model whose radial
cross-sections consist of two elliptic curves. Higher order
polynomial surfaces can be expressed using implicit repre-
sentations [27].

Superquadrics are an extension of quadrics using an ex-
ponent that allows the shape to vary from an ellipsoid to a
rectangular parallelepiped [28]. The basic shape can be al-
tered by such operations as twisting, bending and tapering
[29], as can any explicit representation. The main disad-
vantage of superquadrics is that even with these altering
operations, superquadrics are limited by their doubly sym-
metric cross-section and thus still only represent a very
limited family of shapes, without resorting to composition.
Superquadrics have also been augmented by deformations
according to a variety of models. In spline model defor-
mations [30], [31], the superquadric itself is reduced to a
means for initialization and the refinement is modeled by
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the deformation in a manner similar to other snake surface
techniques. Deformations based on strain modes [32] (see
discussion above) and wavelet bases [33] have also been
introduced. Wavelets are another very promising represen-
tation in that they have the ability to range from local to
global description.

Spherical harmonics have been used as a type of sur-
face representation for radial or stellar surfaces (r(0,¢))
[2], [34]. The surface is represented as a weighted sum of
spherical harmonics which are orthogonal over the sphere.
This is a type of Fourier representation, as defined below,
but is restricted to radial deformations of a sphere, and
thus models a limited class of objects. Recently, however,
spherical harmonics have been extended to more general
shapes by representing a surface using three functions of 8
and ¢ [35]. An appropriate mapping is determined by iter-
atively solving a constrained optimization problem based
on the diffusion equation. This representation can then be
used in deformable boundary finding [23]. However, the
mapping does not maintain this optimal form during the
deformation process without a recomputation of the above
optimization at each iteration.

IV. FOURIER SURFACES

Smoothly deformable biomedical objects do not neces-
sarily have an obvious decomposition that can be exploited.
A uniform shape representation that describes the entire
shape is therefore needed and it should describe a relatively
broad class of shapes.

The prior information available is a flexible bias towards
more likely shapes. This sort of model can be achieved by
using a generic parametrization with probability distribu-
tions defined on the parameters. That is, the parametriza-
tion itself is expressive enough to represent any potential
shape of a given geometric type, but the associated prob-
ability distributions introduce a bias towards an expected
range of shapes. The spread in the distributions is due to
variability among instances of the object. This kind of pa-
rametrization represents a stronger use of prior information
than methods that use only simple shape characteristics.

Fourier representations are those that express the func-
tion in terms of an orthonormal basis. The motivation for
a basis representation is that it allows us to express any
object as a weighted sum of a set of known functions. An
orthonormal set is desirable because it makes the param-
eters (weights) distinct. For example, to express the one-
dimensional function f(¢) on the interval (a,b) in terms of
the basis ¢ (), we use

(o'} b
F(t) = pror(t)  where pk:/ F()r(t)dt. (1)
k=1 a

The coefficients p, the projections of the function onto the
k basis functions, are the parameters of the representa-
tion. In order to use this representation the sum is trun-
cated. In most such representations, the higher indexed
basis functions represent higher spatial variation. There-
fore, if the function to be represented is expected to have

limited spatial variation, as is the case for most real object
boundaries, the series can be truncated and still accurately
represent the function. However, objects of arbitrary com-
plexity can be represented by including sufficiently high
harmonics. Because it is desirable to use a concise repre-
sentation, the minimum number of harmonics necessary to
represent a class of shapes can be determined given an error
tolerance and a sample of the shapes to be modeled. The
number of harmonics can be decreased until the average
error between the true boundary and the boundary from
the truncated representation exceeds the error tolerance.

The usual basis functions are the sinusoids [36], although
others, such as orthogonal polynomials or spherical har-
monics in two dimensions, are possible. The sinusoids have
the advantage of representing the familiar notion of fre-
quency. A limitation of this choice is that it does not rep-
resent sharp transitions or very complex boundaries very
well because this requires a large number of parameters.

A surface in three dimensions can be described explicitly
by three coordinate functions of two surface parameters,
x(u,v) = (z(u,v),y(u,v), z(u,v)), where u and v vary over
the surface. Thus, in order to represent surfaces, a basis
for functions of two variables is needed; the following can
be used [37]:

¢ = {1, cos mu, sin mu, cos lv, sin lv, cos mu cos lv,
sin mu cos lv, cos mu sin v, sinmu sinlv, . . .
(m,l=1,2,...) }. (2)
Each function is then represented by
flu,v) =
Ki—1Ky—1
E E A1 [@m, 1 cOsmas cos lv + by, ; sin mu cos lv+

m=0 [=0 Cm,,1 COSMu sinlv + dy, ; sin mu sin lv]
(3)
where
1 for m=0,1=0
Amg =19 2 for m>0,1=0 or m=0,1>0
4 for m>0,1>0

and the series is truncated at K; — 1 and K> — 1 terms.
This basis allows the specification of even functions using
the cosine terms and odd functions using the sine terms.
There are three sets of parameters corresponding to the
three coordinate functions: p, = {as,bs,¢s,dz}, Py =
{ay,by,cy,dy}, p- = {a:,b:,c;,d.}. These will be referred
to collectively as the parameter vector p = {pz, Py, P:}-
The complex basis is useful for computational purposes
because the parameters can be computed in a single trans-

form:
¢ ={1,emH) o (ml=+1,42,...) }. (4

Each function is then represented by
Ki—1 Ko—1

> X

m:—(Kl—l) l:—(Kz—l)

It ei(mu—i—lv) . (5)

f(u,v) =
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(b)

Fig. 1. An example torus surface (a) and an example open surface
(b) using up to fourth order harmonics.

= U

torus

—

Fig. 2. Surface types: This shows the relationship between the sur-
face types and the surface parameters v and v.

Using Euler’s formula, e = cosz + isinz, we can de-
rive the conversion between the sine-cosine basis parame-
ters and the complex basis parameters.

There are four classes of simple surfaces in three dimen-
sions that will be described: tori (closed tubes), open sur-
faces (with one edge), tubes (open surfaces with two edges)
and closed surfaces (no edges). The torus is formed us-
ing the entire basis shown in Equation 2. The result is a
torus because both surface parameters are forced to be peri-
odic. An example torus surface using this parametrization
is shown in Fig. 1. The other three types of surfaces can
be described using subsets of the above basis which flatten
out or constrain the torus in different ways as described
below and shown schematically in Fig. 2.

A. Open Surfaces

Representing open surfaces with the basis in Equation 2
is complicated by the periodicity property. Since the sur-
face is open, a straightforward representation of the sur-
face would result in discontinuities at the boundary. Thus,
these discontinuities can be avoided by having the two sur-
face parameters start at one side of the surface, trace along
the surface to the other end, and then exactly retrace the
surface in the opposite direction to create a closed path.

This is analogous to the representation of open curves [36],
[1]. Note that while the curve traced by the surface param-
eter has a slope discontinuity at the ends where it retraces
its path, the corresponding coordinate function has no such
discontinuity because the parameter slows down to a stop
as it approaches the end (82—20) =0, etc.).

This results in a function z(u,v) that is even and thus
only the purely even terms, ay,0,0, @z,m,0, @z,0, and @z m
are nonzero. This also holds for y(u,v) and z(u,v). The
converse is also true; that is, any expansion (with any num-
ber of terms) with only those terms nonzero for all I and
m results in an even function and thus describes an open
surface. We are therefore effectively restricting the basis to
include only even functions of both w and v:

dopen = {1, cosmu,coslv,... ,cosmucoslv,...
(m,l =1,2,...)}. (6)

Open surfaces are useful for a wide variety of struc-
tures, including objects with one prominent opening, the
bounding surface between two touching objects, and flat
objects. An example open surface using this parametriza-
tion is shown in Fig. 1.

B. Tube Surfaces

Tubes require the open representation along one of the
surface parameters and the closed representation along the
other. This results in the following basis which is even in
v and unrestricted in u:

btube = 11, coslv, sinmu, cosmu, . .. ,cosmu coslv,

sinmucoslvu,... (m,l=1,2,...)}. (7)
Thus, the only nonzero terms are ag 0,0, Gz,0.1, Gzm,0,
by m,0, Az,m, and by, and the corresponding y and z
terms. Tubes are an extension of generalized cylinders [24]
but in parametric form.

Tubes are useful for elongated hollow objects and elon-
gated objects with flat ends. They are also useful for tem-
poral sequences of planar images, where the third dimen-
sion is time, and multimodal images, where the third di-
mension is modality. A spatiotemporal example using a
tube model is shown in Fig. 15. Two example tube sur-
faces using this parametrization are shown in Fig. 3.

C. Closed Surfaces

Closed surfaces are the most difficult to represent be-
cause they are most dissimilar to tori. One way to rep-
resent closed surfaces is by considering tubes whose ends
close up to a point at both ends instead of being open. This
is done by using the basis

belosed = 11,sinlv, ..., cosmusinlv,sinmusinlv,. ..
(m1=1,2,..)} ()

thus forcing both functions to constants at v = 0,m,2m.
This, however, forces the ends together too. This means
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Fig. 4. Two closed surface examples using up to fourth order (a) and
eighth order (b) harmonics.

that the ends must be separated by adding a weighted term
to each coordinate of the form: sin(v — 7/2). These three
weights are three additional shape parameters.

This representation requires that the values for v be re-
peated as for an open curve but negated so that

z(u,v) + z(u, 27 — v) = 22(0,0),
y(U, U) + y(u, 2m — U) = 2y(07 0) )
z(u,v) + z(u, 27 — v) = 22(0,0). 9)

Two examples of closed surfaces using this parametrization
are shown in Fig. 4, with terms up to fourth order on the
left and eighth order on the right.

D. Surface geometry

The Fourier surface description makes the calculation
of geometric surface properties straightforward because a
continuous description of the surface is known. Without an
analytic description of the surface, curvature can be calcu-
lated based on the computation of derivatives from a local
surface patch fit, or from a discrete approximation of the
derivatives at each point. These methods are dependent
on the proper choice of the size of the patch or neigh-
borhood. For Fourier surfaces, partial derivatives of the
surface functions can be calculated from the functional de-
scription. Curvature is then calculated directly from these

Fig. 5. Curvature calculation example. Wire frame and curvature
shown from the surface shown in Figure 1 (a). Bright indicates
peaked areas, dark indicates pits and gray indicates saddle areas
as determined by the Gaussian and mean curvatures.

partial derivatives [38]. In addition, using the complex ba-
sis of Equation 4, the partials have a relatively simple form.
For example,

xo = 2%
Y Ou
Ki—1 Ko—1
> > imgue ™t = F Y img},  (10)

m:—(Kl—l) l:—(KQ—l)

where F is the discrete Fourier transform, g = (g, gy, 9z)
and x = (x,y, z). Similarly for x, and the second partial
derivatives,

Xy = fﬁl{ilg}v Xuu = fﬁl{_ng},
Xpy = FH{-1"g} xuw = F~ {-mig}.

At the edges of tubes and open surfaces and at the poles
of the closed surfaces, these formulas break down and the
calculation must be treated as a special case.

From these partial derivatives, the surface geometry can
be characterized. Gaussian (K) and mean (H) curvature
can be computed from these derivatives [38]. Surface curva-
ture properties have been used to classify and characterize
shape. For example, surface regions can be classified by
the sign of the surface curvatures as peaks, ridges, saddles,
valleys, pits and flats. An example curvature calculation
based on the Gaussian and mean curvatures is shown in
Fig. 5. This type of characterization is useful for shape
matching for deformation tracking [39] and shape classifi-
cation for determining normal and pathologic variation in
anatomic shape.

V. BOUNDARY FINDING OBJECTIVE FUNCTION

In order to fit one of these models to the image data, a
measure of fit is optimized by varying the model param-
eters. The surface is expected to be distinguishable by
some measure of boundary strength (direction can also be
used) computed from the image. The sum or integral of
the boundary strength image over a given surface indicates
the degree of correspondence between them.

Any measure that indicates a change in some property
that distinguishes the object from the background could be
used as a boundary measure. A natural candidate for many
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images is the gray-level gradient. The magnitude is the
strength of the boundary and the direction is the normal
to the boundary. The gray-level gradient can be calculated
by first smoothing with a Gaussian to reduce the effect
of noise. The smoothed boundary response will also help
in the optimization by attracting the surface from further
away. An alternative would be to match to the distance
transform of an edge map (such as from Canny’s method
[40]) calculated from the image.

A. Probabilistic Formulation

In addition to the constraint that the parametric model
provides, it is useful to incorporate prior information in
the form of probabilities to further constrain the problem.
In order to incorporate probabilistic information into the
measure of fit, consider the problem of boundary determi-
nation as one in which the data is a 3D image, b(x), which
could depict the boundary of any object in the parametric
representation, and p is a particular value of the parame-
ter vector. In terms of probabilities, if we want to decide
which parameter vector, p, an image, b, corresponds to, we
need to evaluate the probability of the template given the
image, Pr(p|b), and find the maximum over p. This can
be expressed using Bayes rule, where

Pr(blp) Pr(p)
Pr(b) '

Pmap = argmax Pr(p|b) = arg max (13)
Here, pmap is the maximum a posteriori solution, Pr(p) is
the prior probability of the parameter vector p and Pr(b|p)
is the conditional probability, or likelihood, of the image
given the parameter vector. This expression can be sim-
plified by taking the logarithm and eliminating Pr(b), the
prior probability of the image data, which is equal for all
p:

Pmap = argmax M (b, p) = argmax [In Pr(p) + In Pr(b|p)] .
P P
(14)

This maximum a posteriori objective function shows the
tradeoff or compromise that is made between prior informa-
tion, Pr(p), and image-derived information, Pr(b|p). For
a uniform prior, this formulation reduces to the maximum
likelihood solution.

In order to derive the expression for the likelihood, con-
sider the image b to be a noise-corrupted version of an
image template, t,, corresponding to a particular value of
the parameter vector with noise that is independent and
additive: b = t, +n. This assumption avoids an excessive
increase in complexity. Furthermore, Cooper [41] showed,
for a related problem, that this assumption did not alter the
performance significantly. Then, the likelihood, Pr(b|p), is
equivalent to Pr(n = b—tp). The noise at each image point,
n(x), equals b(x) — tp(x) and is governed by the probabil-
ity density Pr(n). These events are independent for each
point, so the probability for the noise over the entire region
A is just the product of the individual probabilities. The
noise is the combined effect of many factors such as signal
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degradation, artifacts and boundary measurement which
are difficult to model explicitly. We make the assumption
that the noise is Gaussian with zero mean and standard
deviation o,,.

The object template, tp(x), is an image that represents
the boundary of the object. The boundary can be em-
bedded into the image template by making ¢, (x) constant
along the boundary of the object it represents and zero ev-
erywhere else. In order to match this template with the
image b, consider b(x) to be a boundary measure applied
to the raw image data: b(x) = b(i(x))-

First, it is only necessary to sum along the boundary
for terms involving the template, because the template is
zero everywhere else. In addition, the magnitude of ¢, (x) is
taken to be constant (k), over the boundary that it defines.
The function M can be simplified further by removing the
terms that do not depend on p, such as b> which is summed
over the entire image. The details of this derivation follow

directly from the two-dimensional version [1]. Then, the
continuous version of this for a surface is
M(b,p) =InPr(p
5oz / / #(,1,0),y(p,,0), 2, )AA (1)

where dA is an area element on the surface A.

Equation 15 is the maximum a posteriori objective func-
tion for surface finding. The first term is the contribution of
the prior probability of the parameter vector. The greater
the variance of the prior, the smaller the influence of this
term. The second indicates the degree of correspondence
between the model and the image.

The probability distributions associated with the param-
eters are intended to bias the model towards a particular
range of shapes. This prior knowledge comes from experi-
ence with a sample of images of the object being delineated,
when such a sample is available. This is a common situa-
tion in medical imaging where many subjects are imaged
according to a particular protocol in either an experimental
or clinical context. When prior information is not available,
uniform distributions are used for the prior probabilities
of the parameters and an initial estimate of the bound-
ary must be supplied. The images in a sample will differ
due to variability in the object shape and the view of the
object. The prior probability distributions can then be es-
timated from the shapes determined from the sample by
decomposing the boundaries into their model parameters
and collecting statistics. The boundaries of the sample ob-
jects are determined either by manual segmentation or, in
a training phase, on a set of images with manual initializa-
tion and uniform distributions. The normal distribution
could be improved most importantly by relaxing the inde-
pendence restriction and using the covariance matrix. This
would capture a stronger model of the inherent variation.

Of course, when the model is very dissimilar to the data,
due to large variability, the model does not help very much.
Note that an initialization of the view parameters deter-
mining the translation and scaling can be determined sepa-
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rately, if necessary because of high variability, using a rigid
template and correlation. Such a mismatch can also be
aided by having multiple models representing typical con-
figurations of parameters, perhaps corresponding to clinical
states. In addition, stronger image features, along with pri-
ors, such as region information from gray level or texture
[42], can also be used.

An independent, multivariate Gaussian can be used for
the parameters. An example distribution is shown in Fig.
11. The middle surface corresponds to the mean parameter
values. To the left and right of it are the surfaces corre-
sponding to the mean parameter values plus and minus one
standard deviation, respectively.

B. FEvaluation

The objective function, Equation 15, can be evaluated
by numerical integration. The boundary measure, b, can
be evaluated at each point on the surface using linear in-
terpolation. The area element on the surface A is given
by

6x 0x

dA = | —

5o X 5o |dudv (16)

The gradient of the objective is necessary for optimization.
The derivative for the surface objective is

oM  Oln Pr(p // bz 0x 8_x

8pm 3Px 20'2 9z 8u ov
0lb(z,y,2)| 9z(p,u,v) | Ox Ox

+ ox Pz (9u v dudv (17)

and similarly for y and z. This expression can also be

evaluated by numerical integration. Expressions such as
% can be determined by discrete derivative calculations
at each point on the surface, again using trilinear inter-
polation. The expressions such as % can be calculated
from the expressions for z, y, and z (shown in Equation 3).
The partials ? and % can be evaluated analytically. For

Gaussian prior distributions,

O[InPr(p)]
opz - o2 (18)

where m, is the mean of the distribution for the parame-
ters governing x and o, is the standard deviation. The ex-

pression ai % 8x| can be calculated analytically from
Equation 10. The above follows similarly for 5— and ap

VI. BoUNDARY PARAMETER OPTIMIZATION

The problem to be solved is that of maximizing the ob-
jective function M (p). The objective function we are solv-
ing is not in general convex, but depends ultimately on
the gray-level surface shape of the image. However, the
prior probability term in the objective function is the log-
arithm of a Gaussian and is thus quadratic. This term will
therefore dominate on the tails of the distributions, making

distant points in the space non-optimal. The starting point
for the optimization will be taken to be the maximum of
the prior distributions. The global optimum probably will
be near the starting point and thus a local optimum is
likely to be a global optimum. The degree to which this is
true depends on the width of the distributions. Since a lo-
cal optimization method is likely to be sufficient, although
there is still the possibility of converging to a poor local
maximum, the excessive computation involved in finding a
global optimum is deemed not necessary. Poor convergence
can be identified by a corresponding low objective function
value and verified visually. Smoothing can also be used to
avoid getting trapped in a local maximum.

Conjugate gradient optimization [43] was used to opti-
mize the objective function. This method takes steps based
on the direction of the gradient (the direction of greatest
increase) until an optimal point is found.

The computing time depends primarily on the length
of the parameter vector, due to the gradient computation,
and the size of the object, due to the surface integration. In
addition, the convergence of the optimization also depends
on the length of the parameter vector, as this determines
the dimension of the optimization space. As an example,
for the case in Fig. 15 the execution time was roughly
10 minutes on a Sun SparcStation 10. The main memory
requirements are the 3D image and the discretized surface,
with the image being the primary storage.

VII. EXPERIMENTS

A measure of the difference or error between two surfaces
must be developed in order to test the system. There is no
simple way to determine the best correspondence between
points on the two surfaces. Instead, the error is defined as
the average distance between each point on the estimated
surface and the closest point on the true surface. That is,
the error between surfaces S and S is

f(uv

& min(, ,nes|S(u',v") —

S(u,v)|dA
f(u,v)ES -

e(S,5) =
(19)

This can be computed discretely using a distance trans-
form of a binary volume representing the true surface [44].
By correlating this with the binary volume representing
the estimated surface, we get the sum of the minimum dis-
tances from the estimated to the true surface. This is then
normalized by the size of the estimated surface.

The deformable surface boundary finding method has
been applied to a variety of objects from radiologic images.
The example shown in Fig. 6 is a simple synthetic image
of a closed surface with Gaussian noise added, resulting in
a signal-to-noise ratio (SNR) = 2.5. A probability distri-
bution was simulated and the initial surface was positioned
roughly at the target object. The final optimized surface
(using up to fourth order terms) matches well with the tar-
get. The error, calculated by the above method, is 0.65
pixels.
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Fig. 6. Closed surface synthetic image example. (a) Three perpen-

dicular slices through the 3D image (48 x 48 x 48) are shown
with the initial surface using up to four harmonics (69 parameter
closed surface) and the wire frame. (b) The same slices shown
with the final surface and the wire frame.

Experiments have shown this method to be relatively
insensitive to noise. In Fig. 7, an experiment showing the
dependence of error on additive noise is shown. A simple
synthetic image of a tube surface was degraded by additive
noise of varying levels. The resulting error is shown to rise
sharply for SNR < 1 but is quite good for higher SNR’s.

The effect of the initial values of the parameters on the
performance was such that each parameter was found to
have a region of success or capture depending on the qual-
ity of the image, within which the solution was found reli-
ably. Once the parameters are varied beyond that range,
the result will converge to false local minima correspond-
ing to nearby features. False minima can be distinguished,
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Fig. 7. Noise experiment. Top: Wire frames of initial cone param-
etrization and exact parametrization using up to four harmonics
(84 parameter tube surface). Middle: Slices of synthetic 3D im-
age (48 x 48 x 48) shown with two levels of additive noise: SNR
=1, 5. Bottom: Plot of the average error in pixels as a function
of SNR.

however, both visually and by the relative value of the ob-
jective function. In Fig. 8, the dependence of error on ini-
tial position is tested by varying the horizontal shift of the
initial parametrization using the image above with SNR, =
3. The resulting error is shown to be quite good for shifts
less than five pixels.

In Fig. 9, a 3D cardiac image of a dog’s heart from the
Dynamic Spatial Reconstructor (DSR) is analyzed. The
DSR is a dynamic, 3D imaging device based on high-speed
x-ray computed tomography capable of imaging the moving
heart [45]. As before, the closed surface was matched to
the gradient magnitude calculated from the image. The
endocardial (inner) wall of the left ventricle is successfully
delineated.

In Figs. 10, 11 and 12, one temporal frame of a 3D mag-
netic resonance image (MRI) sequence of the canine heart
cycle is analyzed. A prior was determined from a sample of
four images which were delineated manually with a closed
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Fig. 8. Starting position experiment. (a) Slice from synthetic 3D
image with SNR = 3 shown in Figure 7 overlaid with the range
of starting positions tested using the same initial surface. (b)
Plot of dependence of error on initial shift for this experiment.

surface. The corresponding wire frames are shown in Fig.
10. The prior probability distribution, characterized by the
mean and standard deviation, was determined from the pa-
rameters of the sample, and is depicted in Fig. 11. The
mean of the distribution was used as the initial position
for boundary finding of another image. The closed surface
was matched to the gradient magnitude calculated from the
image. The endocardial border of the left ventricle is suc-
cessfully delineated. Compared with contours hand-traced
by an expert, the average error was 0.64 pixels.

In Figs. 13 and 14, a 3D MRI of the human brain is
analyzed. Here, a tube surface was matched to the gradi-
ent magnitude calculated from the image. The border of
the right caudate nucleus is successfully delineated. The
initial position was the mean of a prior probability distri-
bution. The variation about this mean due to individual
parameters is shown in Fig. 13. Compared with contours
hand-traced by an expert, the average error was 0.15 pixels.

Note that with open or tube surfaces, there can be a ten-
dency to grow at the edges because the additional support
will increase the objective function even if it is relatively
weak. The objective function can be augmented using nor-
malization by a power, e.g., 1/2 or 1, of the surface area,
A = [ [dA. The power controls the strength of the nor-
malization. The likelihood interpretation of the objective
function is lost, however.

Another application of these models is to spatiotempo-

(a) (b)

Fig. 9. Dynamic spatial reconstructor (DSR) cardiac image example.
(a) Three perpendicular slices through the 3D image (98 x 100 x
110) are shown with the initial surface and the wire frame using
up to eight harmonics (321 parameter closed surface). (b) The
same slices are shown with the final surface at the endocardium
of the left ventricle and the corresponding wire frame.

ral images. Spatiotemporal models can be developed and
used to measure motion. For two-dimensional objects, the
motion can be characterized by the spatiotemporal sur-
face corresponding to the object’s moving boundary. These
spatiotemporal surfaces would be parametrized using ba-
sis functions, as described above. Generalizing further,
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(b)

Fig. 10. Cardiac MRI training set. (a) A slice through each of the

training images is shown with the corresponding contour. (b)
Wire frames using up to eight harmonics for each of the individ-
uals in the sample used to determine the distribution shown in
Fig. 11.

Fig. 11. Cardiac MRI example prior. The mean surface (center)
is shown with surfaces corresponding to parameters plus and
minus one standard deviation. This distribution is built from
the sample shown in 10 and used in Fig. 12.

(a) (b)

Fig. 12.  Cardiac MRI example. (a) Three perpendicular slices
through a 3D image (150 x 150 x 73) are shown with the initial
surface (from the prior shown in Fig. 11) and the corresponding
wire frame (321 parameter closed surface). (b) The same slices
are shown with the final surface at the endocardium and the
corresponding wire frame.

the motion of surfaces could be modeled by a manifold
in four dimensions. Note that if the correspondence be-
tween points on successive boundaries can also be deter-
mined, this represents an approach to non-rigid object mo-
tion tracking.

In Fig. 15, a 3D spatiotemporal MRI (two spatial dimen-
sions and one temporal dimension) of a dog’s heart at one
level through the entire cardiac cycle is analyzed. Here, a
tube surface was matched to the gradient magnitude cal-
culated from the image. The endocardial wall of the left
ventricle is successfully delineated throughout the cardiac
cycle. The initial position was the mean of a prior prob-
ability distribution. Compared with contours hand-traced
by an expert, the average error was 0.47 pixels.

VIII. SUMMARY

This work presents a general boundary finding system
for 3D medical images. The goal of this work was to in-
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Fig. 13. Brain MRI example prior. Example wire frames showing
the variation caused by changing five individual parameters with
high variance for the prior shape used in Fig. 14.

corporate both model-based global shape information and
prior knowledge of shape into boundary finding for con-
tinuously deformable objects. This way of modeling helps
constrain the problem and takes advantage of the strong
prior information often available in medical imaging. From
testing on real and synthetic images, the system was found
to perform well at delineating structures and to be rel-
atively insensitive to the problems of broken boundaries,
spurious edges from nearby objects, noise and starting po-
sition. The flexibility of the model makes this an attractive
method for boundary finding. In addition, a new global
shape parametrization for surfaces useful as a representa-
tion for computer vision and modeling has been described.
This parametrization extends the expressibility of previous
parametrizations.
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